40
Fourier Analysis of Iterative Methods for the Helmholtz problem Hanzhi Diao MSc Thesis Defence supervisor: Prof. dr. ir. C. Vuik December 20, 2012 Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 1 / 32

Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis of Iterative Methodsfor the Helmholtz problem

Hanzhi Diao

MSc Thesis Defencesupervisor: Prof. dr. ir. C. Vuik

December 20, 2012

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 1 / 32

Page 2: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Outline

1 Problem Formulation

2 Iterative MethodsIterative SolversPreconditioning TechniquesMultilevel Krylov Multigrid Method

3 Fourier AnalysisTheoryAnalysis of the PreconditioningMultigrid AnalysisMultigrid Convergence

4 Numerical Experiments

5 Future Work

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 2 / 32

Page 3: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Problem Formulation

Helmholtz Problem

Helmholtz equation

−∆u(x)− k2 u(x) = f(x) in Ω ∈ R3

Boundary condition

Dirichlet / Neumann / Sommerfeld

Discretization

finite difference method / finite element method

Linear system • sparse• symmetric but non-Hermitian

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 3 / 32

Page 4: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Problem Formulation

Thesis Work

Objective

spectral properties =⇒ convergence behaviour

Task1 Preconditioning techniques

– shifted Laplacian preconditioner M– deflation operator P and Q

2 Iterative solver– multigrid method for M−1

– Krylov subspace method for Ax = b / AM−1x = b / AM−1Qx = b

3 Fourier analysis– spectrum distribution– convergence factor

4 Numerical solution

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 4 / 32

Page 5: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Problem Formulation

Thesis Work

Objective

spectral properties =⇒ convergence behaviour

Task1 Preconditioning techniques

– shifted Laplacian preconditioner M– deflation operator P and Q

2 Iterative solver– multigrid method for M−1

– Krylov subspace method for Ax = b / AM−1x = b / AM−1Qx = b

3 Fourier analysis– spectrum distribution– convergence factor

4 Numerical solution

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 4 / 32

Page 6: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Problem Formulation

Model Problem

1D dimensionless Helmholtz problem with homogeneous Dirichletboundary condition

−∆u(x)− k2 u(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = 0.

The resulting linear system

Ax = b where A =1

h2

2 −1−1 2 −1

. . . . . . . . .−1 2 −1−1 2

− k2IWave resolution

gw · h =2π

k

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 5 / 32

Page 7: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Problem Formulation

Model Problem

Eigenvalue

λl =4

h2sin2(lπh/2)− k2 for l = 1, 2, · · · , n

Difficulty in solving Helmholtz problem

0 100 200 300 400 500

102

104

106

108

wavenumber k

extremitiesofλ

λmax

|λmin|

indefiniteness

0 100 200 300 400 500

102

104

106

108

wavenumber k

conditionnumberκ

condition number

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 6 / 32

Page 8: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Iterative Solvers

Multigrid Method

The solver for inverting the shifted Laplacian preconditioner M• The coarsening strategy is done by doubling the mesh size,

i.e. Ωh → Ω2h.• The smoother is ω-Jacobi iteration operator.

– ω is chosen as the optimal one ωopt.• The intergrid transfer

– restriction by full weighting operator– prolongation by linear interpolation operator

The failure of MG in solving Ax = b

• The coarse grid cannot cope with high wavenumber problem.• The ω-Jacobi iteration does not converge.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 7 / 32

Page 9: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Iterative Solvers

Multigrid Method

The solver for inverting the shifted Laplacian preconditioner M• The coarsening strategy is done by doubling the mesh size,

i.e. Ωh → Ω2h.• The smoother is ω-Jacobi iteration operator.

– ω is chosen as the optimal one ωopt.• The intergrid transfer

– restriction by full weighting operator– prolongation by linear interpolation operator

The failure of MG in solving Ax = b

• The coarse grid cannot cope with high wavenumber problem.• The ω-Jacobi iteration does not converge.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 7 / 32

Page 10: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Iterative Solvers

Krylov Subspace Methods

The solver for solving the linear system Ax = b

• GMRES, used in the thesis work• CG• BiCGStab• GCR,IDR(s),. . .

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 8 / 32

Page 11: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Iterative Solvers

Approximated Inversion

Given the iteration operator G, there is the approximated inversion

A−1 = (I −G)A−1.

For the stationary iteration, there is

A−1m = (I −Gm)A−1.

For the multigrid iteration, there is

A−1MG = (I − Tm1 )A−1.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 9 / 32

Page 12: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Shifted Laplacian Preconditioner

M := −∆h − (β1 + ιβ2︸ ︷︷ ︸shift

)k2I

• preconditioned system

A := AM−1 = M−1A and σ(AM−1) = σ(M−1A)

• preservation of symmetry

(AM−1)T = AM−1

• circular spectrum distribution

(λr −1

2)2 + (λi −

β1 − 1

2β2)2 =

β22 + (1− β1)2(2β2)2

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 10 / 32

Page 13: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Shifted Laplacian Preconditioner

M := −∆h − (β1 + ιβ2︸ ︷︷ ︸shift

)k2I

• preconditioned system

A := AM−1 = M−1A and σ(AM−1) = σ(M−1A)

• preservation of symmetry

(AM−1)T = AM−1

• circular spectrum distribution

(λr −1

2)2 + (λi −

β1 − 1

2β2)2 =

β22 + (1− β1)2(2β2)2

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 10 / 32

Page 14: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Shifted Laplacian Preconditioner

β1 = 1 =⇒ the most compact distribution

−1 0 1−1

0

1

2

ℜ(λ)

ℑ(λ

)

shift = 0 − 0.5ι

−1 0 1−1

0

1

2

ℜ(λ)

ℑ(λ

)

shift = 0 − 1ι

−1 0 1−1

0

1

2

ℜ(λ)ℑ(λ

)

shift = 1 − 0.5ι

−1 0 1−1

0

1

2

ℜ(λ)

ℑ(λ

)

shift = 1 − 1ι

The spectrum distributions of the preconditioned matrix AM−1 with respect toseveral typical shifts when k = 100

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 11 / 32

Page 15: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Deflation Operator

For an invertible A, take any n× r full rank matrices Y and Zleft P := I − A ZE−1Y T + λd ZE

−1Y T ,

right Q := I − ZE−1Y T A+ λd ZE−1Y T ,

where E = Y T AZ.

0 0.5 1

−0.5

0

0.5

ℜ(λ)

ℑ(λ

)

r = n/20

0 0.5 1

−0.5

0

0.5

ℜ(λ)

ℑ(λ

)

r = n/10

0 0.5 1

−0.5

0

0.5

ℜ(λ)

ℑ(λ

)

r = n/5

0 0.5 1

−0.5

0

0.5

ℜ(λ)

ℑ(λ

)

r = n/2

The spectrum distributions of the deflated matrix AQ towards λd = 0.2where k = 100, shift = 1− ι1,AZ = Z Λr and Y T A = Λr Y

T

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 12 / 32

Page 16: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Deflation Operatorσ(A) = λ1, · · · , λn with |λ1| 6 · · · 6 |λn|

• Projector in case of λd = 0

PD · PD = PD and QD ·QD = QD.

• Preservation of symmetry in case of λd = 0,• Spectrum distribution

σ(PA) = σ(AQ) = λd, · · · , λd, µr+1, · · · , µn.

• Condition number

κ(PA) =|µn|

min|λd|, |µr+1|in case of λd 6= 0,

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 13 / 32

Page 17: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Deflation OperatorInaccuracy in E−1

Assume AZ = Z Λr and Y T A = Λr YT , then E = Y T AZ = Λr.

E−1 = diag(1− ε1λ1

, · · · , 1− εrλr

)

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 14 / 32

Page 18: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Deflation OperatorInaccuracy in E−1

Assume AZ = Z Λr and Y T A = Λr YT , then E = Y T AZ = Λr.

E−1 = diag(1− ε1λ1

, · · · , 1− εrλr

)

⇓σ(PA) = (1− ε1)λd + λ1ε1, · · · , (1− εr)λd + λrεr, λr+1, · · · , λn

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 14 / 32

Page 19: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Preconditioning Techniques

Deflation OperatorInaccuracy in E−1

Assume AZ = Z Λr and Y T A = Λr YT , then E = Y T AZ = Λr.

E−1 = diag(1− ε1λ1

, · · · , 1− εrλr

)

⇓σ(PA) = (1− ε1)λd + λ1ε1, · · · , (1− εr)λd + λrεr, λr+1, · · · , λn

⇓λd = 0 ⇒ σ(PA) = λ1ε1︸︷︷︸

6=0

, · · · , λrεr︸︷︷︸6=0

, λr+1, · · · , λn,

λd = λn ⇒ σ(PA) ≈ λn, · · · , λn, λr+1, · · · , λn.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 14 / 32

Page 20: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Multilevel Krylov Multigrid Method

Multilevel Krylov Multigrid Method

A recursive Krylov solution of E−1

1 Use the approximation

M−1 ≈ Z(Y TMZ)−1Y T .

2 Take the replacement

E :=Y T AZ = Y TAM−1Z ≈ Y TAZ︸ ︷︷ ︸A(2)

(Y TMZ︸ ︷︷ ︸M(2)

)−1 Y TZ︸ ︷︷ ︸B(2)

E−1 ≈(A(2)M

−1(2)B(2)

)−13 Solve A−1(2) in the same way as A−1

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 15 / 32

Page 21: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Iterative Methods Multilevel Krylov Multigrid Method

Multilevel Krylov Multigrid Method

1

2

3

4

5

k-th iteration (k + 1)-th iteration multigrid method• multilevel Krylov method exact inversion of M(m)

exact inversion of A(m)

The illustration of multilevel Krylov multigrid method in a five-level grid

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 16 / 32

Page 22: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Principles of Fourier Analysis

Find out a subspace E = spanφ1, · · · , φm such that

KE ⊂ E =⇒ K Φ = Φ K.

For any v = Φc ∈ E, there is

K v = K Φc = ΦK c where K amplifies c.

Assume E is the union of several disjoint subspaces. Then, there is adiagonal block matrix

K :∧= [K l] with l as the block index.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 17 / 32

Page 23: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Principles of Fourier Analysis

Find out a subspace E = spanφ1, · · · , φm such that

KE ⊂ E =⇒ K Φ = Φ K.

For any v = Φc ∈ E, there is

K v = K Φc = ΦK c where K amplifies c.

Assume E is the union of several disjoint subspaces. Then, there is adiagonal block matrix

K :∧= [K l] with l as the block index.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 17 / 32

Page 24: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

Elh := spanφlh, φn−lh in Ωh =⇒ El2h := spanφl2h in Ω2h.

A1,M1, S :Elh → Elh

A2,M2 :El2h → El2h

R21 :Elh → El2h

P 12 :El2h → Elh

=⇒ T 21 : Elh → Elh

In a multilevel grid, there is

Tmk = Sν2k

(I − P kk+1 (I − Tmk+1)M

−1k+1 R

k+1k Mk

)Sν1k with Tmm = 0,

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 18 / 32

Page 25: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

Elh := spanφlh, φn−lh in Ωh =⇒ El2h := spanφl2h in Ω2h.

A1,M1, S :Elh → Elh

A2,M2 :El2h → El2h

R21 :Elh → El2h

P 12 :El2h → Elh

=⇒ T 21 : Elh → Elh

In a multilevel grid, there is

Tmk = Sν2k

(I − P kk+1 (I − Tmk+1)M

−1k+1 R

k+1k Mk

)Sν1k with Tmm = 0,

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 18 / 32

Page 26: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Application to Preconditioning

Shifted Laplacian preconditioner

˜A = AM−1

Deflation operator

Q = I − P 12

˜E2R

12(λnI − ˜

A) with ˜E2 = R2

1˜AP 1

2

Advantage of Fourier analysis• computational time• memory requirement• accuracy

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 19 / 32

Page 27: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Theory

Application to Preconditioning

Shifted Laplacian preconditioner

˜A = AM−1

Deflation operator

Q = I − P 12

˜E2R

12(λnI − ˜

A) with ˜E2 = R2

1˜AP 1

2

Advantage of Fourier analysis• computational time• memory requirement• accuracy

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 19 / 32

Page 28: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Analysis of the Preconditioning

Basic Preconditioning Effect

• The spectrum of AM−1 is restricted to a circular distribution.

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

k =10

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)ℑ(λ

)

k =50

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

k =100

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

k =500

• The spectrum of AM−1Q is clustered around (1, 0).

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

k =10

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

k =50

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

k =100

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

k =500

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 20 / 32

Page 29: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Analysis of the Preconditioning

Choice of Shift β1 + ιβ2

1 β2 determines the length of arc on which the eigenvalues ofAM−1 are located.

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

β =1-0.2i

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

β =1-1i

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

β =1-5i

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

β =1-10i

2 β2 has the indirect influence on the tightness of spectrumdistribution of AM−1Q.

0.8 0.9 1 1.1

−0.2

−0.1

0

ℜ(λ)

ℑ(λ

)

β =1-0.2i

0.8 0.9 1 1.1

−0.2

−0.1

0

ℜ(λ)

ℑ(λ

)

β =1-1i

0.8 0.9 1 1.1

−0.2

−0.1

0

ℜ(λ)

ℑ(λ

)β =1-5i

0.8 0.9 1 1.1

−0.2

−0.1

0

ℜ(λ)

ℑ(λ

)

β =1-10i

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 21 / 32

Page 30: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Analysis of the Preconditioning

Influence of Wave resolution gw

1 High resolution exerts little negative influence on the spectrumdistribution of AM−1.

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

gw =10

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

gw =30

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

gw =60

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

gw =120

2 High resolution results in a more favourable spectrum distributionof AM−1Q.

0.8 1 1.2

−0.2

0

0.2

ℜ(λ)

ℑ(λ

)

gw = 10

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

gw =30

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)gw =60

0.96 1 1.04

−0.04

0

0.04

ℜ(λ)

ℑ(λ

)

gw =120

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 22 / 32

Page 31: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Multigrid Analysis

Approximated Shifted Laplacian PreconditioningAM−1 = A(I − Tm

1 )M−1

• The multigrid introduces disturbance to the preconditioning effect.

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

1-grid analysis

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

2-grid analysis

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

3-grid analysis

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

4-grid analysis

• The disturbance can be easily corrected by several iterations at acheap cost.

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

1 iteration

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

2 iterations

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)3 iterations

−0.5 0 0.5 1 1.5−1

−0.5

0

0.5

1

ℜ(λ)

ℑ(λ

)

4 iterations

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 23 / 32

Page 32: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Multigrid Analysis

Approximated Deflation PreconditioningAM−1Q where the construction of Q is based on the M−1

• The preconditioning AM−1Q is much more sensitive to theaccuracy in the approximation of M−1.

0.8 0.9 1 1.1−0.2

−0.1

0

0.1

ℜ(λ)

ℑ(λ

)

1 iteration

0.8 0.9 1 1.1−0.2

−0.1

0

0.1

ℜ(λ)

ℑ(λ

)

2 iterations

0.8 0.9 1 1.1−0.2

−0.1

0

0.1

ℜ(λ)

ℑ(λ

)

3 iterations

0.8 0.9 1 1.1−0.2

−0.1

0

0.1

ℜ(λ)

ℑ(λ

)

4 iterations

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 24 / 32

Page 33: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Multigrid Convergence

Multigrid Convergence Factor

• independence of k• independence of the sign of β2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.90.9

0.9

1

1

1

1

1

11

β1

β2

0 2 4 6 8 10

−5

−3

−1

0

1

3

5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 30 and gw = 30

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.70.7

0.7

0.8

0.8

0.80.8

0.8

0.9

0.9

0.9

0.9

11

1

1

0.9

1

1

11 11

β1

β2

0 2 4 6 8 10

−5

−3

−1

0

1

3

5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 30 and gw = 120

• High resolution is favourable for the convergence.

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 25 / 32

Page 34: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Fourier Analysis Multigrid Convergence

Optimal Shift for the Preconditioner

• A small shift is favourable for the Krylov convergence of AM−1.• A large shift is favourable for the multigrid convergence of M−1.

To find out

(β1 + ιβ2)opt := arg min|β1 + ιβ2| : max16l6n−1

G(l, β1, β2) 6 c < 1.

gw = 10 gw = 30 gw = 60 gw = 120 gw = 240

m = 2 0.1096 0.0126 0 0 0m = 3 0.3228 0.0616 0.0150 0 0m = 4 0.3931 0.2002 0.0632 0.0155 0m = 5 0.3931 0.2886 0.2012 0.0636 0.0156

The optimal β2 in the shift 1 + ιβ2 for ρ(Tm1 ) 6 c = 0.9

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 26 / 32

Page 35: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Numerical Experiments

Basic Convergence Behaviour

0 100 200 300 400 500

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

iteration step m

‖r m

‖2/‖

r 0‖2

k = 100 and n = 479

A

AM−1

AM−1Q

Overview of the convergence behaviour by different preconditioning

• verify– the different preconditioning effect– the advantage of AM−1Q over AM−1

– the influence of wavenumber and wave resolution

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 27 / 32

Page 36: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Numerical Experiments

Influence of Orthogonalization

• Householder reflection outperforms modified Gram-Schmidt inconvergence behaviour.• GMRES using modified Gram-Schmidt fails to converge in the

very small system.

0 5 10 15

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

iteration step m

‖r m

‖2/‖

r 0‖2

k = 10 and n = 15

modified Gram-SchmidtHouseholder reflection

very small system

0 100 200 300 400 500

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

iteration step m

‖r m

‖2/‖

r 0‖2

k = 100 and n = 479

modified Gram-SchmidtHouseholder reflection

normal size system

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 28 / 32

Page 37: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Numerical Experiments

Influence of Approximated Preconditioning

• The inaccuracy in M−1 has little influence on the convergencebehaviour

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 11/11 36/36 60/60 108/105 153/149 193/188 265/25830 12/12 36/36 60/58 114/108 161/152 209/196 255/24060 12/12 36/36 63/62 113/111 161/158 207/204 255/250

Number of iterations with respect to different degrees of approximations i.e. AM−1 / AM−1

• The inaccuracy in Q slows down the convergence.

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 6/9/9 11/18/18 14/26/27 21/43/44 28/59/61 33/71/70 39/98/11130 4/5/5 6/13/13 6/15/17 8/36/37 9/54/55 10/73/75 11/92/ 9460 3/4/4 4/ 5/ 8 4/ 7/ 9 5/12/16 6/18/22 6/24/27 6/32/ 34

Number of iterations with respect to different degrees of approximations i.e. AM−1Q / AM−1Q / AM−1Q

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 29 / 32

Page 38: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Numerical Experiments

Internal Iteration in MKMG(,#2, · · · ,#m−1, )

• It is worth doing more iterations on the higher levels.• The convergence behaviour will be slowed by more iterations on

the lower levels.

0 100 200 300 400 5000

10

20

30

40

50

60

wavenumber k

number

ofiterations

gw = 30

(⋄,2,2,2,2,)(⋄,4,2,2,2,)(⋄,2,4,2,2,)(⋄,2,2,4,2,)(⋄,2,2,2,4,)

0 100 200 300 400 5000

10

20

30

40

50

60

wavenumber k

number

ofiterations

gw = 60

(⋄,2,2,2,2,)(⋄,4,2,2,2,)(⋄,2,4,2,2,)(⋄,2,2,4,2,)(⋄,2,2,2,4,)

Number of iterations with respect to different MKMG setup in a six-level grid

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 30 / 32

Page 39: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Future Work

Suggestion on Future Work

• higher dimensional problems• local Fourier analysis• different Krylov solvers

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 31 / 32

Page 40: Fourier Analysis of Iterative Methods for the Helmholtz ...ta.twi.tudelft.nl/users/vuik/numanal/diao_presentation2.pdf · Krylov Subspace Methods The solver for solving the linear

Thank you for watching !

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 32 / 32