20
Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a , J. Feeney b, * a Chemistry Department, University of Southampton, Southampton SO17 1BJ, UK b Molecular Structure Division , MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK Received 6 January 2007 Available online 17 January 2007 Keywords: NMR history; Progress in NMR Spectroscopy; NMR Milestones Contents 1. Introduction ............................................................................... 179 2. Milestones in NMR spectroscopy covered by Progress in NMR Spectroscopy................................. 180 3. The editors of Progress in NMR Spectroscopy ....................................................... 184 Acknowledgements .......................................................................... 184 Appendix A. Contents of Volumes 1–50 of Progress in NMR Spectroscopy................................. 185 References................................................................................. 196 1. Introduction This issue completes the 50th volume of Progress in NMR Spectroscopy, edited since its initiation 40 years ago by Jim Emsley, Jim Feeney and Les Sutcliffe (Fig. 1). The journal was founded in 1966 shortly after the publica- tion of their comprehensive (at the time) NMR text-book [1]. This was written when the authors were at Liverpool University during a period when NMR was expanding at an astonishing rate. After its publication it was realised that it would be virtually impossible for such a comprehen- sive text to be kept up-to-date by simply publishing further editions. For this reason Les Sutcliffe approached our pub- lisher with the proposal to set up a review series based on invited articles from carefully chosen NMR experts to pro- vide updated coverage of selected areas across a broad front of the subject. His proposal was readily accepted and Progress in NMR Spectroscopy was born. The journal has continued to grow and flourish initially with Pergamon Press and latterly (since 1991) with Elsevier. We encourage our selected authors to write thorough, detailed and authoritative review articles that will be seen by the NMR community as being the primary source for learning about a topic. The extent to which this has been successful can be judged by an examination of the contents of the first 50 volumes given in Appendix A. The electronic versions of any of these articles can be accessed via Science Direct. From the diversity of the review titles in Appendix A it can be seen that our aim to cover all aspects of NMR and its wide application in chemistry, biology and medicine is being met. Progress in NMR Spectroscopy is now published simulta- neously on the Internet as part of Science Direct, as well as in the traditional print form. Making articles available on the Internet, not only for our own journal, but generally for most scientific publications, has been a very significant advance and is revolutionizing how we gain access to properly refer- eed material. It is very encouraging how the publishers, both ‘‘commercial’’, such as Elsevier, and ‘‘academic’’, such as the Learned Societies, have risen to the challenge posed by such a momentous change in how the results of research can be made available. Writing papers describing original research 0079-6565/$ - see front matter Ó 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.pnmrs.2007.01.002 * Corresponding author. Tel.: +44 208 959 3666x2023; fax: +44 208 906 4477. E-mail address: [email protected] (J. Feeney). www.elsevier.com/locate/pnmrs Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

www.elsevier.com/locate/pnmrs

Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy

J.W. Emsley a, J. Feeney b,*

a Chemistry Department, University of Southampton, Southampton SO17 1BJ, UKb Molecular Structure Division , MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

Received 6 January 2007Available online 17 January 2007

Keywords: NMR history; Progress in NMR Spectroscopy; NMR Milestones

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1792. Milestones in NMR spectroscopy covered by Progress in NMR Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1803. The editors of Progress in NMR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Appendix A. Contents of Volumes 1–50 of Progress in NMR Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

1. Introduction

This issue completes the 50th volume of Progress inNMR Spectroscopy, edited since its initiation 40 yearsago by Jim Emsley, Jim Feeney and Les Sutcliffe (Fig. 1).The journal was founded in 1966 shortly after the publica-tion of their comprehensive (at the time) NMR text-book[1]. This was written when the authors were at LiverpoolUniversity during a period when NMR was expanding atan astonishing rate. After its publication it was realisedthat it would be virtually impossible for such a comprehen-sive text to be kept up-to-date by simply publishing furthereditions. For this reason Les Sutcliffe approached our pub-lisher with the proposal to set up a review series based oninvited articles from carefully chosen NMR experts to pro-vide updated coverage of selected areas across a broadfront of the subject. His proposal was readily acceptedand Progress in NMR Spectroscopy was born. The journalhas continued to grow and flourish initially with Pergamon

0079-6565/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.pnmrs.2007.01.002

* Corresponding author. Tel.: +44 208 959 3666x2023; fax: +44 208 9064477.

E-mail address: [email protected] (J. Feeney).

Press and latterly (since 1991) with Elsevier. We encourageour selected authors to write thorough, detailed andauthoritative review articles that will be seen by theNMR community as being the primary source for learningabout a topic. The extent to which this has been successfulcan be judged by an examination of the contents of the first50 volumes given in Appendix A. The electronic versions ofany of these articles can be accessed via Science Direct.From the diversity of the review titles in Appendix A itcan be seen that our aim to cover all aspects of NMRand its wide application in chemistry, biology and medicineis being met.

Progress in NMR Spectroscopy is now published simulta-neously on the Internet as part of Science Direct, as well as inthe traditional print form. Making articles available on theInternet, not only for our own journal, but generally for mostscientific publications, has been a very significant advanceand is revolutionizing how we gain access to properly refer-eed material. It is very encouraging how the publishers, both‘‘commercial’’, such as Elsevier, and ‘‘academic’’, such as theLearned Societies, have risen to the challenge posed by such amomentous change in how the results of research can bemade available. Writing papers describing original research

Page 2: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

Fig. 1. The editors of Progress in NMR Spectroscopy, Jim Emsley, Jim Feeney and Les Sutcliffe (July 2001).

180 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

in primary journals is regarded as an essential part of doingresearch, and needs no encouragement, whereas writing areview is an extra, and competing task, that requires anexceptional effort. Writing a review is an opportunity to chal-lenge one’s understanding of a subject in a more general waythan is done in writing a research paper, and in our view ben-efits not only the individual authors but also the researchcommunity in general.

2. Milestones in NMR spectroscopy covered by Progress in

NMR Spectroscopy

In an earlier historical article [2] we charted the mile-stones in NMR advances up till 1994: we have now updatedthis list to include more recent advances covering theperiod 1995–2006 (see Table 1). Over the last 40 yearsProgress in NMR Spectroscopy has covered most of theareas mentioned here with articles exploring each of thenew emerging areas.

When PNMRS first appeared in 1966 the great advanceswhich were to revolutionize experimental NMR had alreadybeen initiated. In 1958 magic angle spinning (MAS) of solidsamples to provide higher resolution spectra had been dem-onstrated, and Andrew described these experiments in anarticle in Volume 8. In this same volume, Mansfielddescribed some of the pulse methods used for line-narrowingof spectra in solid state NMR, developed by himself and alsoby Waugh and his colleagues. These two techniques, whencombined with methods for polarization transfer, wouldeventually lead to the wonderful array of experiments whichnow make solid-state NMR such a powerful method ofstudying materials including, recently, microcrystalline andfibrous proteins. When PNMRS was first published in1966 it was just one year after Ernst and Anderson had intro-duced the pulse Fourier transform experiment, which wouldeventually revolutionize the whole of NMR. However, mostNMR experiments on liquids and solutions in 1966 still

involved only one dimensional NMR obtained in the contin-uous wave mode at relatively low magnetic fields (100 MHz1H instruments had just become commercially available). Atthis time solution studies mainly used 1H NMR and were pri-marily involved in determinations of molecular structuresand quantitative analysis of complex mixtures. The potentialof the technique for providing dynamic information fromline-width studies and structural information from NOEmeasurements was already well known. When commercialFT spectrometers became available in the late 1960s the dra-matic increase in sensitivity resulted in 13C NMR studies atnatural abundance becoming routine.

The early volumes of JPNMRS were mainly concernedwith reviewing the developments in the basics of NMR: thusarticles appeared on the theory and calculation of chemicalshifts, coupling constants, and how molecular dynamicscan be studied via relaxation rates. Methods of analyzingspectra were described, and detailed descriptions of someof the exciting new techniques of double and multiple reso-nance were provided. Articles appeared in these early vol-umes on MAS and multi-pulse line narrowing, and oneother emerging NMR method was described, namely thatof using liquid crystalline solvents to obtain partially-aver-aged quantities such as chemical shift anisotropies and resid-ual dipolar couplings.

A little later, in 1973, Lauterbur and independently Mans-field and Grannell published the papers which introducedMRI, and which soon led to the now familiar medical imagingtechniques. MRI continued to develop at a rapid rate with firstreports of studies of limbs, organs and then of whole bodiesbeing reported [82]. The quality of the images improvedgreatly following implementation of new techniques such asecho planar imaging [83] and spin-warp imaging [91] togetherwith 3D projection reconstruction methods [94].

The early 1970s also saw the development of a completelynew area of NMR application when Moon and Richards[23] and Hoult and co-workers [24] demonstrated for the

Page 3: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

Table 1Milestones in the development of nuclear magnetic resonance spectroscopya

1924–1939 Early work characterizing nuclear magnetic moments and using beam methods [3–5]1936 First attempt (unsuccessful) to detect NMR in solids [45,46]1938 First NMR experiment using molecular beam method [5]1945 Detection of NMR signals in bulk materials [6,7]1948 Bloembergen, Purcell and Pound (BPP) paper on relaxation [8]1948 Van Vleck expression for second and fourth moments [63]1949 Knight shift in metals [9]1949–1950 Discovery of chemical shift [9–11]

Discovery of spin–spin coupling [12–14]1950 Hahn spin echoes [16]1950 Discovery of nuclear quadrupolar resonance [31]1951 Discovery of 1H chemical shifts [30]1952 First commercial NMR spectrometer (Varian 30 MHz)1952 Bloch [6] and Purcell [7] receive Nobel Prize for NMR1953 Bloch equations for NMR relaxation [6,32]1953 Overhauser effect [18]1953 Theory for effects of exchange on NMR spectra [33,34]1954 Carr-Purcell spin echoes [35]1955 Solomon equations for NMR relaxation [36]1955 Relaxation in the rotating frame [37]1956 Early NMR studies on body fluids and tissues [120,121]1953–1958 Sample-spinning used for resolution improvement [32]

Field gradient shimming with electric currents [38]Magnetic flux stabilization (Varian)Spin-decoupling [39]Variable temperature operation ([40] and Varian)

1957 Redfield theory of relaxation [41]1957 Analysis of second-order spectra [42,43,92,93]1957 NMR spectrum shown to be Fourier transform (FT) of Free Induction Decay (FID) [44]1958 Magic angle spinning used for high resolution studies of solids [19,20]1959 Blood flow measurements in vivo [47]1959 Vicinal coupling constant dependence on dihedral angle [48]1961 First 60 MHz field/frequency locked NMR spectrometer (Varian A60)1962 First superconducting magnet NMR spectrometer (Varian 220 MHz)1962 Indirect detection of nuclei heteronuclear double resonance (INDOR) [49]1963 Liquid crystal solvents used [54]1964 Spectrum accumulation for signal averaging [52]1965 Nuclear Overhauser enhancements (NOE) used in conformational studies [50]1965 Pulsed field gradients used for transport and diffusion studies [122,123]1965 Deuterium spectrum of a liquid crystal [51]1965 Fourier transform (FT) techniques introduced [17,52]1967 Spin multiplets detected in solids [53]1969 Nuclear ferromagnetism [56]1969 First commercial FT NMR spectrometer (Bruker 90 MHz)1969 Computer controlled pulse programmers1969 Lanthanide paramagnetic shift reagents [57]1970–1975 13C studies at natural abundance become routine1970 Rotating frame T1 relaxation used for chemical exchange studies [15]1970 First commercial FT spectrometer with superconducting magnet (Bruker 270 MHz)1971 Pulse sequences for solvent signal suppression [58]1971 T1 relaxation measurements in FT mode [60]1971 Two-dimensional (2D) NMR concept suggested [61]1971 Photo CIDNP (chemically induced dynamic nuclear polarization) [64,65]1972 13C studies of cellular metabolism [62]1972 Transferred NOE [21] and its use in studies of bound ligand conformations [29]1973 31P detection of intracellular phosphates [23]1973 NMR analysis of body fluids [23] and tissues [24]1973 Spin-imaging methods proposed [27,28,119]1973 NMR diffraction used for NMR imaging [28]1973 Zeugmatography: first two-dimensional NMR image [27]1973 360 MHz superconducting NMR spectrometer (Bruker)1974 Sensitive point imaging method [66]1974 2D-NMR techniques developed [67]1975 Slice selection in imaging by selective excitation [68–70]

(continued on next page)

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 181

Page 4: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

Table 1 (continued)

1975 Fourier zeugmatography [71]1976–1979 31P studies of muscle metabolism [72–80]1976 Cross polarization/magic angle spinning for solids [81]1976 Cryogenic probes [124,125]1977 First 600 MHz spectrometer (non-persistent) (Mellon Institute)1977–1980 Spin-imaging of human limbs and organs [82]1977 Echo-planar imaging [83]1977–1978 Whole-body scanning1979 Detection of insensitive nuclei enhanced by polarization transfer (INEPT) [84]1979 Detection of heteronuclear multiple quantum coherence (HMQC) [55,85]1979 500 MHz superconducting spectrometer (Bruker)1979 Chemical shift imaging [86–89]1980 Surface coils used for in vivo NMR [90]1980 Spin warp-imaging [91]1980 3D-projection reconstruction [94]1980 Pulse field gradients used for coherence selection [115]1981 Composite pulse decoupling [98,109]1981 NMR used to diagnose a medical condition [95]1981–1983 Perfusion methods used for NMR studies of cell metabolism [96,97]1982 Full assignments for small protein [99]1983 First 3D structures of proteins from NMR data [22,100]1983 Whole body imaging at 1.5 T [101]1984–1987 Gradient methods used for spatial localization [102–104]1984 Combined imaging and spectroscopy (human brain) [105]1985 FLASH imaging [106]1985 MR Angiographic images [107]1986 NMR microscopy imaging on live cell [108]1987 600 MHz superconducting spectrometer (Bruker; Varian; Oxford Instruments)1987 Para-hydrogen and synthesis used to provide enhanced nuclear alignment [126]1987 Echo-planar imaging at 2 T [110]1987 RARE imaging [127,128]1988 2D-NMR combined with isotopically labelled proteins for full assignments [111]1988 Whole body imaging and spectroscopy at 4T [112]1988 Averaging 2nd order effects in solid state NMR using a double rotor (DOR) [129]1988 Solid state MAS re-coupling experiments [153–156,200]1989 17O NMR in solids by dynamic-angle spinning and double rotation (DAS) [130]1989 3D-NMR on isotopically labelled proteins [113]1990 4D-NMR on isotopically labelled proteins – assignment and conformation [114]1990 Pulse field gradients routinely incorporated into pulse sequences [115,116]1991 Functional MR-detection of cognitive responses [25,26]1991 Richard Ernst receives Nobel Prize for contributions to the development of NMR methodology1992 750 MHz spectrometers (Bruker; Varian; Oxford Instruments)1992 Diffusion-ordered spectroscopy DOSY [131,144]1993 NMR microscopy using superconducting receiver coil [117]1994 NMR force detection [118]1995–1997 Residual dipolar coupling use for protein structure determination [132–134]1995 Microcoil 1H detection in nanolitre volumes [135]1995 Determinations of chirality using NMR of solutions in liquid crystalline solvents [136]1996 Structure activity relationships (SAR) by NMR [137]1996–1999 Automated protein assignments [138,139,206,207]1994–1997 Sensitivity increase in NMR and MRI using hyperpolarized inert gases [140–143]1997–1999 TROSY [145], CRINEPT [146] and CRIPT [147] sequences for structural studies of large proteins >100 kDa1997 Measurement of angles between bond vectors using dipole–dipole cross-correlated relaxation [148]1998 Scalar couplings across hydrogen bonds measured in liquids [149,199]1998 Assignment of MAS spectra via scalar couplings [150,151]1993 Commercial cryoprobe and preamplifiers for increasing sensitivity (Bruker)1998 Whole body 8T MRI for patient scanning [152]1999 NMR structural genomics programs initiated [157–159,201]1999 Sensitivity-Encoded Magnetic Resonance Imaging [160]2000 Targeted contrast reagents [161]2000 Fast spinning for narrowing 1H solid state signals [162]2001 Symmetry based re-coupling schemes for MAS [163]2001 High resolution protein NMR spectroscopy inside living cells [164]2002 Protein structures from solid state NMR studies [165]2002 Kurt Wuthrich awarded Nobel Prize for NMR protein structure determination2002 Automated protein structure determination [166,167]

(continued on next page)

182 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Page 5: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

Table 1 (continued)

2002 Scalar couplings across hydrogen bonds measured in solids [168]2002 Single scan 2D spectrum [202]2002 Solid state NMR of amyloid protein structures [169]2002–2005 Fast multidimensional NMR experiments [170–172,203,204]2003 New methods for DNP [173,174]2003 Peter Mansfield and Paul Lauterbur awarded Nobel Prize for MRI2003 High resolution spectra from disordered solids [175]2003 MQ-MAS experiment for 1/2 integer quadrupolar nuclei [176]2003 3D structures of membrane proteins in micelles [177,178]2004 ‘Open’ and ‘Short-bore’ magnets used for MRI2006 Molecular imaging using a targeted hyperpolarized biosensor [179]2006 950 MHz actively shielded magnets used for NMR (Bruker)

a Most of the earlier milestones (1926–1994) were taken from Emsley and Feeney [2], and Feeney [59].

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 183

first time that high resolution NMR 31P spectra could beobtained on cells and tissues. These so called MRS (mag-netic resonance spectroscopy) methods were initially usedto examine human muscle metabolism and later extendedto include diagnostic studies of solid tumours and cancercells [180]. In 1974, the spectacular developments in multidi-mensional NMR spectroscopy by Ernst and co-workers [67]triggered acceleration in NMR activity with new possibilitiesbeing further opened up by an avalanche of novel ideas frommany laboratories. The manufacturers also played a majorrole by providing the pulse programmers and probe hard-ware that allowed everyone to join in the fun. New tech-niques were developed in the late 1970s that were torevolutionize multidimensional NMR (most notably INEPT[84] and HMQC [55,85] and the use of pulsed field gradientsfor coherences selection [115,116]). By 1982 application ofthis methodology had led to full structural assignments forsmall proteins and soon after to the first 3D structure deter-mination of a protein in solution using only NMR data[22,100] (part of the work that earned Kurt Wuthrich theNobel Prize for Chemistry in 2002). The late 1980s saw fur-ther improvements in technology with the availability ofhigh field instruments (up to 750 MHz) and the developmentof 2D, 3D and 4D novel pulse sequences for use with isoto-pically (13C/15N) labelled molecules: these were applied withgreat success to assign signals from proteins and other com-plex biological molecules [111,113,114,181,205]. Deutera-tion became commonly used for diluting protons (givingsharper lines for detected nuclei) at 50–80% deuteration lev-els [182,183]. Later >95% deuteration was used to capitalizedon TROSY experiments on large proteins.

Over the last 10 years important advances have alsobeen made in metabolomics studies where the power ofNMR in the analysis of complex mixtures is demonstratedperfectly by providing detailed profiles of the metabolitesin body fluids and tissues under various physiological con-ditions and toxicological challenges [184–186]. Highthroughput screening of potential drugs binding to targetproteins achieved using NMR is another application mak-ing valuable contributions to the drug discovery process inthe pharmaceutical industries [187–190]. Applications ofNMR to fundamental studies in materials such as polymers

have also resulted from the improved NMR technology[191–195]. The determinations of the structures of largeproteins dissolved in aqueous solution have been greatlyfacilitated by the development of new techniques. Forexample, by exploiting dipole-CSA (chemical shift anisotro-py) cross-correlation (instead of ignoring it) TROSY [145]and CRINEPT [146] pulse sequences for detecting the nar-row components of multidimensional signals have vastlyextended the molecular weight range (to >100 kDa) of largemacromolecules that can be successfully studied by NMR.Likewise the clever application of various alignment meth-ods for extracting residual dipolar coupling constants isleading to determinations of improved protein structures[196–198].

Improvements in NMR technology and techniques haveoften stimulated renewed and profitable activity in existingwell-established research areas. For example, paramagneticprobes are now being increasingly used to obtain longrange distance information in proteins. Likewise the appli-cation of dynamic nuclear polarization to enhance sensitiv-ity in studies of biological samples and metabolic processeshas enjoyed a renaissance [173,174]. The availability ofincreased sensitivity afforded by modern spectrometersequipped with cryoprobes now allows routine applicationof the elegant pulse sequence INADEQUATE used fordetecting nuclei involved in 13C–13C spin coupling [208–210]. The full potential of this method can now be realisedparticularly in monitoring the fate of 13C labels in biosyn-thetic pathway studies.

In the last 40 years there have been many clever innova-tions in NMR and MRI, with the major developmentsbeing undoubtedly in the spectrometers and imaging sys-tems. The three elements which go to producing a spec-trometer or imaging system namely the magnet, theradiofrequency generation and detection system, and theintegral computer used to control the data acquisitionand processing required to produce the spectrum or image,have all changed beyond the wildest dreams of the scien-tists in 1966. NMR has also benefited enormously fromthe advances in computing, which in 2007 makes it possibleto calculate chemical shifts, spin–spin coupling constantsand electric field gradients to a precision undreamt of

Page 6: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

184 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

40 years ago. Such computations, and those used to con-vert NMR data into molecular structures, or spatial imag-es, are at the heart of modern uses of NMR.

Magnet technology has brought us to the threshold ofthe stable, high-resolution, gigahertz spectrometer, andsome whole body MRI systems are now operating at 8 T.This is a far cry from the unstable, power-hungry electro-magnets of 1966, which were the state-of-the-art for mostlaboratories at that time.

Other essential features of the NMR spectrometer havealso seen great progress. Thus, for liquid samples it is nowroutine to select coherences using digital phase shifting, orwith field gradients. The development of gradient-selectionpulse sequences also led to the revitalization of pulse fieldgradient spin-echo experiments, both to measure self-diffu-sion, and to separate spectra of components in a mixtureon the basis of their masses [123]. For solid samples themodern NMR spectrometer is even more dramatically dif-ferent from the systems used by the early pioneers. Magicangle spinning at speeds up to �60 kHz is now available(by using small rotors), and together with many adroitmanipulations of the nuclear spins enable high resolutionspectra of carbons to be obtained on medium sized mole-cules that rival those obtained on the same sample dis-solved in a solvent. Solid state equivalents of 2Dexperiments such as COSY and INADEQUATE have beendemonstrated, and it has even proved possible using protonMAS to determine the structure of a protein in the solidstate [165]. This development circumvents the limitationof molecular weight, which applies in solution state inves-tigations of macromolecular structure. Solid state methods,particularly re-coupling experiments, now make it possibleto obtain structural information for biological materials,such as membrane proteins, which are difficult to studyby diffraction methods.

Both NMR and MRI/MRS continue to develop, and tofind new applications, and the amount of published materialincreases every year showing the continuing need for reviewarticles to summarize, and to critically evaluate the mass ofinformation being produced. We intend that Progress inNMR Spectroscopy will fulfil this need, but to achieve thisgoal requires our fellow NMR spectroscopists to continueto rise to the challenge of writing review articles.

3. The editors of Progress in NMR Spectroscopy

J.W. Emsley (Ph.D., F.R.S.C.): Jim Emsley graduatedwith a degree in Chemistry from the University of Leeds in1956 and then studied in the Department of Inorganic andStructural Chemistry at that University from 1956 to 1960for a Ph.D. on solid state nuclear magnetic resonance. Hewas an ICI Research Fellow from 1960 to 1962 in the Univer-sity of Liverpool. He was a Lecturer in Chemistry in the Uni-versity of Durham from 1962 to 1967 before moving toSouthampton University where he has been a Professor since1995. His main research interests are in NMR studies ofliquid crystalline samples.

J. Feeney (Ph.D., D.Sc., F.R.S.C.): Jim Feeney gradu-ated with a degree in Chemistry from the University of Liv-erpool in 1958 and completed his Ph.D.on NMR solutionstudies in 1960 at the same University. From 1960 to1964 he was a Lecturer in the Chemistry Department atLiverpool University before joining Varian Associates(1964–1969) where he was appointed Director of EuropeanLaboratories in 1967. He joined the Medical ResearchCouncil first in Cambridge (Molecular Pharmacology)1969–1972 and afterwards at the National Institute forMedical Research, Mill Hill, London 1972–2007 where hebecame Centre Controller, MRC Biomedical NMR Centreand Head, Molecular Structure Division. He has been aVisiting Professor at the Universities of Essex and Surrey.His main research interests are in the use of NMR to studyprotein structures and protein ligand interactions.

L.H. Sutcliffe (Ph.D., M.R.S.C.): Les Sutcliffe receivedhis B.Sc. for Chemistry in London and his doctorate forPhysical Chemistry from Leeds University. He was onthe staff in the Inorganic and Physical Chemistry Depart-ment at the University of Liverpool from 1958 to 1985,being appointed Reader in 1971. He moved to the Chemis-try Department at Royal Holloway and Bedford New Col-lege in 1985, becoming Honorary Professor andsubsequently to the University of Surrey in 1990 as VisitingProfessor. In 1995 he moved to the Institute of FoodResearch in Norwich. His special research interests includethe study of molecular dynamics using nuclear and electronmagnetic resonance techniques as applied to the under-standing and development of functional fluids and the rhe-ology of foods.

Acknowledgements

In addition to thanking the 665 authors who have con-tributed to articles in the 50 volumes of Progress in NMRSpectroscopy we would also like to gratefully acknowledgethe tremendous support and professional help we have re-ceived from the Elsevier publishing and production teamsover the years. We have been fortunate in having had excel-lent Publishing Editors who have been active in developingthe journal (most recently Karel Nederveen, Rob vanDaalen, Egbert van Wezenbeek, Michiel Thijssen, AndyGent and Swan Go) and dedicated production teams (mostrecently Rebecca Monahan, Mary Murphy and OwenHynes). Finally we would particularly like to acknowledgethe contributions of their colleagues Cecilia Hughes,Angelique Janssen and April Nishimura who have had amajor impact on the smooth running of the journal byproviding the editors with the vital day-to-day helpfulcontact with Elsevier. We would also like to thank BerryBirdsall, Lyndon Emsley, Geoff Kelly, Malcolm Levitt,Andrew Lane and Peter Morris for their helpful commentson the review, particularly on the list of Milestones.However we have used our own judgement in decidingwhich contributions to include and apologise if we haveoverlooked any important references.

Page 7: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 185

Appendix A. Contents of Volumes 1–50 of Progress in NMR

Spectroscopy

Volume 50

Valentina Domenici, Marco Geppi andCarlo Alberto Veracini

NMR in chiral and achiral smectic phases:structure, orientational order and dynamics

1–50

M.L. Johns and K.G. Hollingsworth

Characterization of emulsion systems usingNMR and MRI 51–70

Gil Goobes, Patrick S. Stayton and Gary P. Drobny

Solid state NMR studies of molecularrecognition at protein–mineral interfaces 71–85

R. Bohmer, K.R. Jeffrey and M. Vogel

Solid-state Li NMR with applications to thetranslational dynamics in ion conductors 87–174

Rob van Daalen

Publisher’s note 175

Sture Forsen

Congratulations 177

J.W. Emsley and J. Feeney

Forty years of Progress in Nuclear MagneticResonance Spectroscopy 179–198

Steven P. Brown

Probing proton–proton proximities in the solidstate 199–251

Volume 49

N. Rama Krishna and V. Jayalakshmi

Complete relaxation and conformationalexchange matrix analysis of STD-NMRspectra of ligand–receptor complexes 1–25

Maya Dadiani, Edna Furman-Haran andHadassa Degani

The application of NMR in tumorangiogenesis research

27–44

Lothar Helm

Relaxivity in paramagnetic systems: theoryand mechanisms 45–64

Susan J. Berners-Price, Luca Ronconi and PeterJ. Sadler

Insights into the mechanism of action ofplatinum anticancer drugs from multinuclearNMR spectroscopy

65–98

Peter B. Barker and Doris D.M. Lin

In vivo proton MR spectroscopy of the humanbrain 99–128

3–235

Carole Gardiennet-Doucet, Bernard Henry andPiotr Tekely

Probing the ionisation state of functionalgroups by chemical shift tensor fingerprints

129–149

Glenn H. Penner and Xiaolong Liu

Silver NMR spectroscopy 151–167

R.M. Claramunt, C. Lopez, M.D. Santa Marıa,D. Sanz and J. Elguero

The use of NMR spectroscopy to studytautomerism

169–206

R.A. Wind and J.Z. Hu

In vivo and ex vivo high-resolution 1H NMR inbiological systems using low-speed magic anglespinning

207–259

Paul S. Pregosin

Ion pairing using PGSE diffusion methods 261–288

Volume 48

John Battiste and Richard A. Newmark

Applications of 19F multidimensional NMR 1–23

Wolfgang Bermel, Ivano Bertini,Isabella C. Felli, Mario Piccioli andRoberta Pierattelli

13C-detected protonless NMRspectroscopy of proteins in solution

25–45

Charles D. Schwieters, John J. Kuszewskiand G. Marius Clore

Using Xplor-NIH for NMR molecularstructure determination

47–62

Mark S. Conradi, Brian T. Saam,Dmitriy A. Yablonskiy and Jason C. Woods

Hyperpolarized 3He and perfluorocarbongas diffusion MRI of lungs

63–83

Sergey V. Dvinskikh, Dick Sandstrom,Herbert Zimmermann and Arnold Maliniak

Carbon-13 NMR spectroscopy applied tocolumnar liquid crystals 8

5–107

Jinyuan Zhou and Peter C.M. van Zijl

Chemical exchange saturation transferimaging and spectroscopy 10 9–136

Jeremy Flinders and Thorsten Dieckmann

NMR spectroscopy of ribonucleic acids 13 7–159

J. Mitchell, P. Blomler and P.J. McDonald

Spatially resolved nuclear magneticresonance studies of planar samples 16 1–181

Wenyi Zhang, Takeshi Sato andSteven O. Smith

18

NMR spectroscopy of basic/aromaticamino acid clusters in membrane proteins

Lukas K. Tamm and Binyong Liang

3–199

NMR of membrane proteins in solution 20

1–210 Maggy Hologne, Veniamin Chevelkovand Bernd Reif

Deuterated peptides and proteins inMAS solid-state NMR 21

1–232

Stephen J. Kadlecek, Kiarash Emami,Martin C. Fischer, Masaru Ishii, Jiangsheng Yu,John M. Woodburn, Mehdi NikKhah,Vahid Vahdat, David A. Lipson,James E. Baumgardner and Rahim R. Rizi

Corrigendum to Imaging physiologicalparameters with hyperpolarized gas MRI 23

Volume 47

Alexey Krushelnitsky and Detlef Reichert

Solid-state NMR and protein dynamics 1–25

Christopher A. Hunter,Martin J. Packer and Cristiano Zonta

From structure to chemical shift and vice-versa

27–39
Page 8: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

186 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Alessandro Bagno, Federico Rastrelliand Giacomo Saielli

NMR techniques for the investigationof solvation phenomena and non-covalentinteractions

41–93

Clement R. Yonker and John C. Linehan

The use of supercritical fluids as solventsfor NMR spectroscopy 95–109

S. Ramaprasad

1 Magnetic resonance spectroscopic

imaging studies of lithium

111–121 Terry Gullion and Alexander J. Vega

Measuring heteronuclear dipolar couplingsfor I = 1/2, S > 1/2 spin pairs byREDOR and REAPDOR NMR

123–136

Eduardo Ribeiro deAzevedo, Tito JoseBonagamba and Detlef Reicher

Molecular dynamics in solid polymers

137–164 Tracy L. Whitehead andThomas Kieber-Emmons

Applying in vitro NMR spectroscopy and1H NMR metabonomics to breast cancercharacterization and detection

165–174

Mikko I. Kettunen and Kevin M. Brindle

Apoptosis detection using magneticresonance imaging and spectroscopy 175–185

Stephen J. Kadlecek, Kiarash Emami,Martin C. Fischer, Masaru Ishii, JiangshengYu, John M. Woodburn, Mehdi NikKhah,Vahid Vahdat, David A. Lipson,James E. Baumgardner and Rahim R. Rizi

Imaging physiological parameters withhyperpolarized gas MRI

187–212

Volume 46

Anne S. Ulrich

Solid state 19F NMR methods for studyingbiomembranes 1–21

Martin Blackledge

Recent progress in the study of biomolecularstructure and dynamics in solution fromresidual dipolar couplings 23–61

Alexej Jerschow

From nuclear structure to the quadrupolar NMRinteraction and high-resolution spectroscopy 63–78

Daniel Huster

Investigations of the structure and dynamics ofmembrane-associated peptides by magic anglespinning NMR 7 9–107

Daniel Malmodin and Martin Billeter

High-throughput analysis of protein NMRspectra 10 9–129

Helena Kovacs, Detlef Moskau andManfred Spraul

Cryogenically cooled probes – a leap in NMRtechnology 13

1–155

Book review. M.H. Levitt: Melinda J. Duer,Editor, ‘‘Introduction to Solid-State NMRSpectroscopy’’, Blackwell

Science (2004) 15 7–158 Torsten Brand, Eurico J. Cabrita and Stefan Berger

Intermolecular interaction as investigated byNOE and diffusion studies 15

9–196

Paul Hodgkinson

Heteronuclear decoupling in the NMR of solids

97–222

Volume 45

T. Dziembowska, P.E. Hansen andZ. Rozwadowski

Studies based on deuterium isotope effect on13C chemical shifts

1–29

Peter F. Flynn

Multidimensional multinuclear solution NMRstudies of encapsulated macromolecules 31–51

Sharon E. Ashbrook and Stephen Wimperis

High-resolution NMR of quadrupolar nucleiin solids: the satellite-transition magic anglespinning (STMAS) experiment 53–108

John C. Lindon, Elaine Holmes andJeremy K. Nicholson

Toxicological applications of magneticresonance

109–143

Ingo Schnell

Dipolar recoupling in fast-MAS solid-stateNMR spectroscopy 145–207

L.A. Cardoza, A.K. Korir, W.H. Otto,C.J. Wurrey and C.K. Larive

Applications of NMR spectroscopy inenvironmental science

209–238

A. Suter

The magnetic resonance force microscope 239–274

Stephan Grzesiek, Florence Cordier,Victor Jaravine and Michael Barfield

Insights into biomolecular hydrogenbonds from hydrogen bond scalarcouplings

275–300

Colan E. Hughes

Spin counting 301–313

Chris A.E.M. Spronk, Sander B. Nabuurs,Elmar Krieger, Gert Vriend andGeerten W. Vuister

Validation of protein structures derived byNMR spectroscopy

315–337

Volume 44

J. Frahm, P. Dechent, J. Baudewig andK. D. Merboldt

Advances in functional MRI of the humanbrain

1–32

Page 9: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 187

Wolfram Gronwald and Hans Robert Kalbitzer

Automated structure determination ofproteins by NMR spectroscopy 33–96

Perttu Permi and Arto Annila

Coherence transfer in proteins 97–137

R.K. Harris: book review. ‘‘Annual Reports onNMR Spectroscopy’’, Volume 49, ed. G.A.Webb: Academic Press (Elsevier Science),Oxford, England

ISBN 0-12-505449-1, ISSN 0066-4103 (2003) 139

R. Andrew Atkinson and Bruno Kieffer

The role of protein motions in molecularrecognition: insights from heteronuclear NMRrelaxation measurements 141–187

David Fushman, Ranjani Varadan,Michael Assfalg and Olivier Walker

Determining domain orientation inmacromolecules by using spin-relaxation andresidual dipolar coupling measurements

189–214

Pellegrino Conte, Riccardo Spaccini andAlessandro Piccolo

State of the art of CPMAS 13C NMRspectroscopy applied to natural organic matter

215–223

Jeffrey W. Peng, Jonathan Mooreand Norzehan Abdul-Manan

NMR experiments for lead generation in drugdiscovery

225–256

Rainer Kimmich and Esteban Anoardo

Field-cycling NMR relaxometry 257–320

Volume 43

M.D. Mantle and A.J. Sederman

Dynamic MRI in chemical process and reactionengineering 3– 60

Andres Ramos

Book Review: Protein NMR for the Millennium,Vol. 20 of the Biological Magnetic ResonanceBook Series, N.Rama Krishna, Lawrence J.Berliner (Eds.); Kluwer Academic/PlenumPublishers, New York, 2002 61– 62

Alex D. Bain

Chemical exchange in NMR 63–1 03

Peter Guntert

Automated NMR protein structurecalculation 105–1 25

Volume 42

Andrea Cherubini and Angelo Bifone

Hyperpolarized xenon in biology 1–30

G. Klein and M.E. Ries

The dynamics and physical structure of polymersabove the glass transition–transverse relaxationstudies of linear chains, star polymers andnetworks 31–52

Robert Tycko

Applications of solid state NMR to the structuralcharacterization of amyloid fibrils: methods andresults 53–68

Luisa Ciobanu, Andrew G. Webb andCharles H. Pennington

Magnetic resonance imaging of biological cells

69–93 Eriks Kupce, Toshiaki Nishida and Ray Freeman

Hadamard NMR spectroscopy 9

5–122

Volume 41

Marc Baldus

Correlation experiments for assignment andstructure elucidation of immobilizedpolypeptides under magic angle spinning 1–47

R. Blinc and T. Apih

NMR in multidimensionally modulatedincommensurate and CDW systems 49–82

Zeev Luz, Piotr Tekely and Detlef Reichert

Slow exchange involving equivalent sites insolids by one-dimensional MAS NMRtechniques

83–113

Ronald Y. Dong

Relaxation and the dynamics of molecules inthe liquid crystalline phases 115–151

Cecil Dybowski and Guenther Neue

Solid state 207Pb NMR spectroscopy 153–170

B.M. Fung

13C NMR studies of liquid crystals 171–186

Brian J. Stockman and Claudio Dalvit

NMR screening techniques in drug discoveryand drug design 187–231

Juha Vaara, Jukka Jokisaari, Roderick E.Wasylishen and David L. Bryce

Spin–spin coupling tensors as determined byexperiment and computational chemistry

233–304

Dominique Frueh

Internal motions in proteins and interferenceeffects in nuclear magnetic resonance 305–324

Volume 40

Ian C.P. Smith and Laura C. Stewart

Magnetic resonance spectroscopy in medicine:clinical impact 1–34

T.N. Huckerby

The keratan sulphates: structuralinvestigations using NMR spectroscopy 35–110

M.P. Augustine

Transient properties of radiation damping 111–150

S.L. Maunu

NMR studies of wood and wood products 151–174

Eva de Alba and Nico Tjandra

NMR dipolar couplings for the structuredetermination of biopolymers in solution 175–197
Page 10: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

188 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Peter Luginbuhl and Kurt Wuthrich

Semi-classical nuclear spin relaxation theoryrevisited for use with biological macromolecules 199–247

Ivano Bertini, Claudio Luchinat and GiacomoParigi

Magnetic susceptibility in paramagnetic NMR

249–273 E.T. Ahrens, P.T. Narasimhan, T. Nakada andR.E. Jacobs

Small animal neuroimaging using magneticresonance microscopy

275–306

C. Mayer

Nuclear magnetic resonance on dispersednanoparticles 307–366

Volume 39

J.C. Lindon, E. Holmes and J.K. Nicholson

Pattern recognition methods and applicationsin biomedical magnetic resonance 1–40

Maria L. Garcia-Martin, Paloma Ballesteros andSebastian Cerdan

The metabolism of water in cells and tissues asdetected by NMR methods

41–77

Isao Ando, Shigeki Kuroki, Hiromichi Kurosuand Takeshi Yamanobe

NMR chemical shift calculations andstructural characterizations of polymers

79–133

Christopher E. Dempsey

Hydrogen exchange in peptides and proteinsusing NMR spectroscopy 135–170

Lu-Yun Lian and David A. Middleton

Labelling approaches for protein structuralstudies by solution-state and solid-state NMR 171–190

R. Bohmer, G. Diezemann, G. Hinzeand E. Rossler

Dynamics of supercooled liquids and glassysolids

191–267

R. George Ratcliffe, Albrecht Roscherand Yair Shachar-Hill

Plant NMR spectroscopy

267–300 Chenhua Zhao and Tetsuo Asakura

Structure of Silk studied with NMR

301–352

Volume 38

N. Nestle, A. Schaff and W.S. Veeman

Mechanically detected NMR, an evaluation ofthe applicability for chemical investigations 1–35

E.C. Reynhardt and G.L. High

Nuclear magnetic resonance studies ofdiamond

37–81

N. Jamin and F. Toma

NMR studies of protein-DNA interactions 83–114

R. Sharp, L. Lohr and J. Miller

Paramagnetic NMR relaxation enhancement:recent advances in theory 115–158

V.A. Mandelshtam

FDM: the filter diagonalization method fordata processing in NMR experiments 159–196

D.M. Korzhnev, M. Billeter, A.S. Arseniev andV.Y. Orekhov

NMR studies of Brownian tumbling andinternal motions in proteins

197–266

M. Pons and O. Millet

Dynamic NMR studies of supramolecularcomplexes 267–324

J.A. Jones

NMR quantum computation 325–360

Volume 37

F.C. Oliveira, M.J.P. Ferreira, C.V. Nunez,G.V. Rodriguez and V.P. Emerenciano

13C NMR spectroscopy of eudesmanesesquiterpenes

1–45

L. Ernst

NMR studies of cyclophanes 4 7–190

Anil Kumar, R. Christy Rani Graceand P.K. Madhu

Cross-correlations in NMR 19

1–319 R.H. Contreras and J.E. Peralta

Angular dependence of spin–spin couplingconstants 32

1–425

Volume 36

P. Lazzeretti

Ring currents 1–88

J.J. van der Klink and H.B. Brom

NMR in metals, metal particles and metalcluster compounds 89–201

P. Hodgkinson and L. Emsley

Numerical simulation of solid-state NMRexperiments 201–239

D. Grucker

Oxymetry by magnetic resonance: applicationsto animal biology and medicine 241–270

J.C. Martins, M. Biesemans and R. Willem

Tin NMR based methodologies and their usein structural tin chemistry 271–322

Alexander L. Breeze

Isotope-filtered NMR methods for the studyof biomolecular structure and interactions 323–372

Volume 35

J.H. Davis and M. Auger

Static and magic angle spinning NMR ofmembrane peptides and proteins 1–84

Raymond J. Abraham

A model for the calculation of protonchemical shifts in non-conjugated organiccompounds 85–152
Page 11: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 189

M.J. Shapiro and J.S. Gounarides

NMR methods utilized in combinatorialchemistry research 153–200

S. Williams

Book Review: In vivo NMR spectroscopy:principles and techniques, R.A. de Graaf,Wiley, Chichester, 1998

201

O.N. Antzutkin

Sideband manipulation in magic-angle-spinning nuclear magnetic resonance 203–266

H. Fukui

Theory and calculation of nuclear spin–spincoupling constants 267–294

H. Desvaux and P. Berthault

Study of dynamic processes in liquids usingoff-resonance rf irradiation 295–340

G. Vlahov

Application of NMR to the study of olive oils 341–357

J. Horsewill

Quantum tunnelling aspects of methyl grouprotation studied by NMR 359–389

Volume 34

J.H. Kristensen, H. Bildsoe, H.J. Jakobsen andN.C. Nielsen

Application of Lie algebra to NMRspectroscopy

1–69

Simon B. Duckett and Christopher J. Sleigh

Applications of the parahydrogenphenomenon: a chemical perspective 71–92

Michael Sattler, Jurgen Schleucher and ChristianGriesinger

Heteronuclear multidimensional NMRexperiments for the structure determination ofproteins in solution employing pulsed fieldgradients

93–158

M.E. Smith and E.R.H. van Eck

Recent advances in experimental solid stateNMR methodology for half-integer spinquadrupolar nuclei 159–201

C.S. Johnson, Jr

Diffusion ordered nuclear magnetic resonancespectroscopy: principles and applications 203–256

P. Koehl

Linear prediction spectral analysis of NMRdata 257–299

S. Williams

Cerebral amino acids studied by nuclearmagnetic resonance spectroscopy in vivo 301–326

G.W. Buchanan

Nuclear magnetic resonance studies of crownethers 327–377

Volume 33

Peter Bachert

Pharmacokinetics using fluorine NMR in vivo 1–56

M. Luhmer and J. Reisse

Quadrupole NMR relaxation of the noblegases dissolved in simple liquids and solutions:a critical review of experimental data in thelight of computer simulation results 57–76

Aaron Sodickson and David G. Cory

A generalized k-space formalism for treatingthe spatial aspects of a variety of NMRexperiments 77–108

Brian J. Stockman

NMR spectroscopy as a tool forstructure-based drug design 109–151

M.J.P. Ferreira, V.P. Emerenciano,G.A.R. Linia, P. Romoff, P.A. T. Macariand G.V. Rodrigues

13C NMR spectroscopy of monoterpenoids

153–206 Mark W.F. Fischer, Ananya Majumdar and ErikR.P. Zuiderweg

Protein NMR relaxation: theory, applicationsand outlook

207–272

J.B. Miller

NMR imaging of materials 273–308

Volume 32

R. Bruschweiler

Dipolar averaging in NMR Spectroscopy:from polarization transfer to crossrelaxation 1–19

Eike Brunner and Ulrich Sternberg

Solid-state NMR investigations on the natureof hydrogen bonds 21–57

Ray Freeman

Shaped radiofrequency pulses in highresolution NMR 59–106

Michael Nilges and Sean I. O’Donoghue

Ambiguous NOEs and automated NOEassignment 107–139

P.M. Kentgens

Off-resonance nutation nuclear magneticresonance spectroscopy of half-integerquadrupolar nuclei 141–164

Doree Sitkoff and David A. Case

Theories of chemical shift anisotropies inproteins and nucleic acids 165–190

Gottfried Otting

Erratum to ‘‘NMR studies of water bound tobiological molecules: Progr. NMR Spectrosc.,31 (1997) 259–285 191

Gerhard Wider

Technical aspects of NMR spectroscopy withbiological macromolecules and studies ofhydration in solution 193–275

Cheryl H. Arrowsmith and Yu-Sung Wu

NMR of large (s > 25 kDa) proteins andprotein complexes 277–286
Page 12: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

190 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Sybren S. Wijmenga and Bernd N.M. van Buuren

The use of NMR methods for conformationalstudies of nucleic acids 287–387

Volume 31

Andrew G. Webb

Radiofrequency microcoils in magneticresonance 1–42

John A. Chudek and Geoffrey Hunter

Magnetic resonance imaging of plants 43–62

Vladimir A. Daragan and Kevin H. Mayo

Motional model analyses of protein andpeptide dynamics using NMR relaxation 63–105

Barry J. Hardy, Stephen W. Doughty,Martin F. Parretti, Jenifer Tennison,Bryan E. Finn and Kevin Gardner

Internet conferences in NMRspectroscopy

107–117

Clifford B. LeMaster

Nuclear magnetic resonance spectroscopy ofmolecules in the gas phase 119–154

R. Kreis

Quantitative localized 1H MR spectroscopyfor clinical use 155–195

Gareth A. Morris, Herve Barjat andTimothy J. Horne

Reference deconvolution methods

197–257 Gottfried Otting

NMR studies of water bound to biologicalmolecules

259–285

Richard Kemp-Harper, Steven P. Brown, ColanE. Hughes, Peter Styles and Stephen Wimperis

Erratum to ‘‘23Na NMR methods for selectiveobservation of sodium ions in orderedenvironments’’: Progr. NMR Spectrosc.,30 (1997) 157–181’’

287

Andrew N. Lane

Book review: NMR spectroscopy and itsapplications to biomedical research:Susanta K. Sarkar (ed.) 289–291

Johannes Natterer and Joachim Bargon

Parahydrogen induced polarization 293–315

H. Fukui

Theory and calculation of nuclear shieldingconstants 317–342

Ted Watson and C.T. Philip Chang

Characterizing porous media with NMRmethods 343–386

Volume 30

Huaping Mo and Thomas C. Pochapsky

Intermolecular interactions characterized bynuclear Overhauser effects 1–38

Reginald Waldeck, Philip W. Kuchel,Alison J. Lennon and Bogdan E. Chapman

NMR diffusion measurements to characterizemembrane transport and solute binding

39–68

P.J. McDonald

Stray field magnetic resonance imaging 69–99

Daniel Canet

Radiofrequency field gradient experiments 101–135

Stefan Berger

NMR techniques employing selectiveradiofrequency pulses in combination withpulsed field gradients 137–156

Richard Kemp-Harper, Steven P. Brown, ColanE. Hughes, Peter Styles and Stephen Wimperis

NMR methods for selective observation ofsodium ions in ordered environments

157–181

W.A. Thomas

Unravelling molecular structure andconformation—the modern role ofcoupling constants 183–207

Jerome W. Rathke, Robert J. Klingler,Rex E. Gerald II, Kurt W. Kramarzand Klaus Woelk

Toroids in NMR spectroscopy

209–253

Volume 29

John C. Lindon, Jeremy K. Nicholsonand Ian D. Wilson

Direct coupling of chromatographicseparations to NMR spectroscopy

1–49

Gabriele Varani, Fareed Aboul-ela andFriedric H.-T. Allain

NMR investigation of RNA structure

51–127 Dan Farcasiu and Anca Ghenciu

Determination of acidity functions and acidstrengths by 13C NMR

129–168

Fritz Schick

Bone marrow NMR in vivo 169–227

Angel C. de Dios

Ab initio calculations of the NMR chemicalshift 229–278

Volume 28

J.W. Emsley and J. Feeney

Milestones in the first fifty years of NMR 1–9

E.R. Andrew and E. Szczesniak

A historical account of NMR in the solid state 11–36

James N. Shoolery

The development of experimental andanalytical high resolution NMR 37–52

Jack S. Cohen, Jerzy W. Jaroszewski, OferKaplan, Jesus Ruiz-Cabelloand Steven W. Collier

A history of biological applications of NMRspectroscopy

53–85
Page 13: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 191

Felix W. Wehrli

From NMR diffraction and zeugmatographyto modern imaging and beyond 87–135

Bertil Halle

Spin dynamics of exchanging quadrupolarnuclei in locally anisotropic systems 137–159

Teresa W.-M. Fan

Metabolite profiling by one- andtwo-dimensional NMR analysis ofcomplex mixtures

161–219

Kunisuke Asayama, Yoshio Kitaoka, Guo-qingZheng and Kenji Ishida

NMR studies of high Tc superconductors

221–253 Jack M. Miller

Fluorine-19 magic-angle spinningNMR

255–281

J.A. Peters, J. Huskens and D.J. Raber

Lanthanide induced shifts and relaxation rateenhancements 283–350

Volume 27

Helmut Duddeck

Selenium-77 nuclear magnetic resonancespectroscopy 1–323

Laszlo Szilogyi

Chemical shifts in proteins come of age 325–430

Elizabeth F. Hounsell

1H NMR in the structural and conformationalanalysis of oligosaccharides andglycoconjugates 445–474

Mika Ala-Korpela

1H NMR spectroscopy of human bloodplasma 475–554

Photis Dais and Apostolos Spyros

13C Nuclear magnetic relaxation and localdynamics of synthetic polymers in dilutesolution and in the bulk state 555–633

Martin Billeter

Hydration water molecules seen by NMR andby X-ray crystallography 635–645

Paul Jonsen

2H zero field NMR spectroscopy 647–727

Volume 26

Jukka Jokisaari

NMR of noble gases dissolved in isotropic andanisotropic liquids 1–26

Rafael Bruschweiler and David A. Case

Characterization of biomolecular structureand dynamics by NMR cross relaxation 27–58

Alex D. Bain, Ian W. Burton andWilliam F. Reynolds

Artifacts in two-dimensional NMR 59–89

Ivano Bertini, Claudio Luchinatand Mario Piccioli

Copper-zinc superoxide dismutase: aparamagnetic protein that provides a uniqueframe for the NMR investigation

91–139

J. Courtieu, J.P. Bayle and B.M. Fung

Variable angle sample spinning NMR in liquidcrystals 141–169

Ioannis P. Gerothanassis

Multinuclear and multidimensional NMRmethodology for studying individualwater molecules bound to peptides andproteins in solution: principles andapplications 171–237

Ioannis P. Gerothanassis

17O NMR studies of hemoproteins andsynthetic model compounds in the solutionand solid states 239–292

J.T. Gerig

Fluorine NMR of proteins 293–370

David M. LeMaster

Isotope labelling in solution proteinassignment and structural analysis 371–419

Charles R. Sanders, II , Brian J. Hare,Kathleen P. Howard and James H.Prestegard

Magnetically-oriented phospholipid micellesas a tool for the study of membrane-associatedmolecules

421–444

Olle Soderman and Peter Stilbs

NMR studies of complex surfactant systems 445–482

Goran Lindblom and Greger Oredd

NMR Studies of translational diffusion inlyotropic liquid crystals and lipidmembranes 483–515

Feng Ni

Recent developments in transferred NOEmethods 517–606

Volume 25

J.P. Cohen Addad

NMR and fractal properties of polymericliquids and gels 1–316

Giovanna Barbarella

Sulfur-33 NMR 317–343

P.J. Hore and R.W. Broadhurst

Photo-CIDNP of biopolymers 345–402

Mark S. Searle

NMR Studies of Drug–DNA interactions 403–480

Andrew N. Lane

NMR studies of dynamics in nucleic acids 481–505

E.W. Lang and H.-D. Ludemann

Density dependence of rotational andtranslational molecular dynamics in liquidsstudied by high pressure NMR 507–633
Page 14: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

192 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Volume 24

Pawan K. Agrawal and Dharam C. Jain

13C NMR spectroscopy of oleananetriterpenoids

1–90

Patrick J. Barrie and Jacek Klinowski

129Xe NMR As a probe for the study ofmicroporous solids: a critical review 91–108

Majumdar and R.V. Hosur

Simulation of 2D NMR spectra fordetermination of solution conformations ofnucleic acids 109–158

Hellmut Eckert

Structural characterization of noncrystallinesolids and glasses using solid state NMR 159–293

Timothy J. Norwood

Multiple-quantum NMR methods 295–375

T.E. Bull

Relaxation in the rotating frame in liquids 377–410

Susan J. Kohler and Nancy H. Kolodny

Sodium magnetic resonance imaging andchemical shift imaging 411–433

Robin K. Harris and Alejandro C. Olivieri

Quadrupolar effects transferred to spin 1/2magic-angle spinning spectra of solids 435–456

O.B. Lapina, V.M. Mastikhin, A.A. Shubin,V.N. Krasilnikov and K.I. Zamaraev

51V Solid state NMR studies of vanadia basedcatalysts

457–525

Detlef Brinkmann

NMR studies of superionic conductors 527–552

Volume 23

P. Jezzard, J.J. Attard, T.A. Carpenterand L. D. Hall

Nuclear magnetic resonance imaging in thesolid state

1–41

G. Marius Clore and Angela M. Gronenborn

Applications of three- and four-dimensionalheteronuclear NMR spectroscopy to proteinstructure determination 43–92

Robert Turner and Paul Keller

Angiography and perfusion measurements byNMR 93–133

Maurice Gueron, Pierre Plateauand Michel Decorps

Solvent signal suppression in NMR

135–209 Roy E. Hoffman and George C. Levy

Modern methods of NMR data processingand data evaluation

211–258

V.M. Mastikhin, I.L. Mudrakovskyand A.V. Nosov

1H NMR magic angle spinning (MAS) studiesof heterogeneous catalysis

259–299

Leonid B. Krivdin and Ernest W. Della

Spin–spin coupling constants between carbonsseparated by more than one bond 301–610

Volume 22

R.V. Hosur

Scaling in one and two dimensional NMRspectroscopy in liquids 1–53

S.W. Homans

Oligosaccharide conformations: application ofNMR and energy calculations 55–81

Brandan A. Borgias, Miriam Gochin, DeborahJ. Kerwood and Thomas L. James

Relaxation matrix analysis of 2D NMR data

83–100 Gerhard Wagner

NMR investigations of protein structure

101–139 Keith G. Orrell, Vladimir Sik and DavidStephenson

Quantitative investigations of molecularstereodynamics by 1D and 2D NMR methods

141–208

Bernd Wrackmeyer and Klaus Horchler

NMR parameters of alkynes 209–253

Henrik Gesmar, Jens J. Led and FritsAbildgaard

Improved methods for quantitative spectralanalysis of NMR data

255–288

Jan Schraml

29Si N M R spectroscopy of trimethylsilyl tags 289–348

Isao Ando, Takeshi Yamanobe and TetsuoAsakura

Primary and secondary structures of syntheticpolymer systems as studied by 13C N M Rspectroscopy

349–400

J.-Ph. Ansermet, C.P. Slichter and J.H. Sinfelt

Solid state NMR techniques for the study ofsurface phenomena 401–421

Philip H. Bolton

A primer on isotopic labelling in NMRinvestigations of biopolymers 423–452

Oliver W. Howarth

Vanadium-51 NMR 453–485

Seymour H. Koenig and Rodney D. Brown III

Field-cycling relaxometry of protein solutionsand tissue: implications for MRI 487–567

Ajoy K. Roy and Paul T. Inglefield

Solid state NMR studies of local motions inpolymers 569–603

Volume 21

J.W. Akitt

Multinuclear studies of aluminium compounds 1–149

Robin L. Armstrong

Displacive order-disorder crossover inperovskite and antifluorite crystals undergoingrotational phase transitions 151–173

Andreas Dolle and Thorsten Bluhm

Orientation of the rotational diffusionprincipal axis system determined by nuclearrelaxation data 175–201
Page 15: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 193

K. Ott, M.A. Haghani, C.A. Paulick and D.Quitmann

Quadrupolar relaxation and thermodynamicalprocesses in liquid metallic alloys

203–235

D. Canet

Construction, evolution and detection ofmagnetization modes designed for treatinglongitudinal relaxation of weakly coupled spin1/2 systems with magnetic equivalence 237–291

Leonid B. Krivdin and Gennady A. Kalabin

Structural applications of one-bond carbon–carbon spin–spin coupling constants 293–448

Jeremy K. Nicholson and Ian D. Wilson

High resolution proton magnetic resonancespectroscopy of biological fluids 449–501

Ole Winneche Sorensen

Polarization transfer experiments inhigh-resolution NMR spectroscopy 503–569

Volume 20

Rudolph Willem

2D NMR applied to dynamic stereochemicalproblems 1–94

O.N. Chupakhin, V.N. Charushin andA.I. Chernyshev

Application of 1H, 13C and 15N NMRin the chemistry of 1,4-diazines

95–206

Poul Erik Hansen

Isotope effects in nuclear shielding 207–255

Kevin M. Brindle

NMR methods for measuring enzymekinetics in vivo 257–293

Alex D. Bain

The superspin formalism for pulse NMR 295–314

George H. Weiss and James A. Ferretti

Optimal design of relaxation time experiments 317–335

Robert E. London

13C labelling in studies of metabolic regulation 337–383

R. Kimmich, G. Schnur and M. Kopf

The tube concept of macromolecular liquids inthe light of NMR experiments 385–421

J.F. Hinton, K.R. Metz and R.W. Briggs

Thallium NMR spectroscopy 423–513

David S. Stephenson

Linear prediction and maximum entropymethods in NMR spectroscopy 515–626

Volume 19

Peter Stilbs

Fourier transform pulsed-gradient spin-echostudies of molecular diffusion 1–45

J. Shaka and James Keeler

Broadband spin decoupling inisotropic-liquids 47–129

Wolfgang Robien, Brigitte Kopp,Diana Schabl and Herbert Schwarz

Carbon-13 NMR spectroscopy of cardenolidesand bufadienolides

131–181

C. Chachaty

Applications of NMR methods to the physicalchemistry of micellar solutions 183–222

Katalin E. Kover and Gyula Batta

Theoretical and practical aspects of one- andtwo-dimensional heteronuclear Overhauserexperiments and selective 13C T1-determinations of heteronuclear distances 223–266

P. Gerothanassis

Methods of avoiding the effects of acousticringing in pulsed fourier transform nuclearmagnetic resonance spectroscopy 267–329

B. Blumich

White noise nonlinear system analysis innuclear magnetic resonance spectroscopy 331–417

Volume 18

J.P.G. Malthouse

13C NMR of enzymes 1–59

Malcolm H. Levitt

Composite pulses 61–122

Paul Rosch

NMR-studies of phosphoryl transferringenzymes 123–169

F. Noack

NMR field-cycling spectroscopy: principlesand applications 171–276

Vladimir Mlynarik

Measurement of spin coupling constants toquadrupolar nuclei via relaxation studies 277–305

K. Dill and R.D. Carter

13C NMR spectral studies of the N-terminalportion of glycophorins 307–326

Manfred Holz

New developments in NMR of simpleelectrolyte solutions 327–403

Volume 17

Angela M. Gronenborn and G. Marius Clore

Investigation of the solution structures ofshort nucleic acid fragments by means ofnuclear Overhauser enhancementmeasurements 1–32

R.A. Wind, M.J. Duijvestijn, C. van der Lugt, A.Manenschijn and J. Vriend

Applications of dynamic nuclear polarizationin 13C NMR in solids

33–67

A. Schwenk

Steady-state techniques for low sensitivity andslowly relaxing nuclei 69–140
Page 16: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

194 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

Jozef Kowalewski, Lars Nordenskiold, NikolasBenetis and Per-Olof Westlund

Theory of nuclear spin relaxation inparamagnetic systems in solution

141–185

Janez Stepisnik

Measuring and imaging of flow by NMR 187–209

K. Muller, P. Meier and G. Kothe

Multipulse dynamic NMR of liquid crystalpolymers 211–239

P.S. Belton and R.G. Ratcliffe

NMR and compartmentation in biologicaltissues 241–279

David L. Turner

Basic two-dimensional NMR 281–358

Volume 16

David G. Gorenstein

Non-biological aspects of phosphorus-31NMR spectroscopy 1–98

J.P. Bloxsidge and J.A. Elvidge

Practical aspects of tritium magnetic resonance 99–114

H.G. Hertz

The problem of intramolecular rotation inliquids and nuclear magnetic relaxation 115–162

O.W. Sorensen, G.W. Eich, M.H. Levitt, G.Bodenhausen and R.R. Ernst

Product operator formalism for thedescription of NMR pulse experiments

163–192

W.S. Veeman

Carbon-13 chemical shift anisotropy 193–235

J. Klinowski

Nuclear magnetic resonance studies of zeolites 237–309

Christopher J. Turner

Multipulse NMR in liquids 311–370

Volume 15

R.E. Gordon, P.E. Hanley and D. Shaw

Topical magnetic resonance 1–47

R.A. Iles, A.N. Stevens and J.R. Griffiths

NMR Studies of metabolites in living tissue 49–200

N.A.B. Gray

Computer assisted analysis of carbon-13NMR spectral data 201–248

J. Lounila and J. Jokisaari

Anisotropies in spin–spin coupling constantsand chemical shifts as determined from theNMR spectra of molecules oriented by liquidcrystal solvents 249–290

Peter L. Rinaldi

The determination of absolute configurationusing nuclear magnetic resonance techniques 291–352

Jeremy K.M. Sanders and John D. Mersh

Nuclear magnetic double resonance; the use ofdifference spectroscopy 353–400

Volume 14

Poul Erik Hansen

Carbon–hydrogen spin–spin couplingconstants 175–295

J. Tabony

Nuclear magnetic resonance studies ofmolecules physisorbed on homogeneoussurfaces 1–26

J.C. Lindon and A.G. Ferrige

Digitisation and data processing in Fouriertransform NMR 27–66

Fuyuhiko Inagaki and Tatsuo Miyazawa

NMR analyses of molecular conformationsand conformational equilibria with thelanthanide probe method 67–111

Russell E. Jacobs and Eric Oldfield

NMR of membranes 113–136

Geoffrey Bodenhausen

Multiple-quantum NMR 137–173

Volume 13

Dennis R. Burton, Sture Forsen, GunnarKarlstrom and Raymond A. Dwek

Proton relaxation enhancement (PRE) inbiochemistry: a critical survey

1–45

F. Heatley

Nuclear magnetic relaxation of syntheticpolymers in dilute solution 47–85

Lee J. Todd Allen R. Siedle

NMR studies of boranes, carboranes andhetero-atom boranes 87–176

Victor Wray

Carbon–carbon coupling constants: acompilation of data and a practicalguide 177–256

Pierre Laszlo

Fast kinetics studied by NMR 257–270

R. Lenk

Thermodynamics of nuclear spins 271–302

C.W. Haigh R.B. Mallion

Ring current theories in nuclear magneticresonance 303–344

Volume 12

Oliver W. Howarth David M.J. Lilley

Carbon-13-NMR of peptides and proteins 1–40

D.I. Hoult

The NMR receiver: a description and analysisof design 41–77

Robert L. Vold and Regitze R. Vold

Nuclear magnetic relaxation in coupled spinsystems 79–133

David B. Davies

Conformations of nucleosides and nucleotides 135–225
Page 17: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 195

Bernd Wrackmeyer

Carbon-13 NMR spectroscopy of boroncompounds 227–259

R.N. Young

NMR spectroscopy of carbanions andcarbocations 261–286

Volume 11

Jozef Kowalewski

Calculations of nuclear spin–spin couplingconstants 1–78

J.N. Shoolery

Some quantitative applications of 13C NMRspectroscopy 79–93

Brian E. Mann

Dynamic 13C NMR spectroscopy 95–114

V.S. Petrosyan

NMR Spectra and structures of organotincompounds 115–148

K.A.K. Ebraheem and G.A. Webb

Semi-empirical calculations of the chemicalshifts of nuclei other than protons 149–181

S. Aime and L. Milone

Dynamic 13C NMR spectroscopy of metalcarbonyls 183–210

Henry H. Mantsch, Hazime Saito andIan C.P. Smith

Deuterium magnetic resonance, applicationsin chemistry, physics and biology

211–272

Volume 10

P.D. Buckley, K.W. Jolley and D.N. Pinder

Application of density matrix theory to NMRline-shape calculations 1–26

J. Hilton and L.H. Sutcliffe

The ‘‘through-space’’ mechanism in spin–spincoupling 27–39

V.F. Bystrov

Spin–spin coupling and the conformationalstates of peptide systems 41–82

J.W. Emsley, L. Phillips and V. Wray

Flourine coupling constants 83–752

Volume 9

J. Reuben

Paramagnetic lanthanide shift reagents inNMR spectroscopy: principles, methodologyand applications 3–70

N.M. Sergeyev

Nuclear magnetic resonance spectroscopy ofcyclopentadienyl compounds 71–144

Ronald G. Lawler

Chemically induced dynamic nuclearpolarization 147–210

Volume 8

E.R. Andrew

The narrowing of NMR spectra of solids byhigh-speed specimen rotation and theresolution of chemical shift and spin multipletstructures for solids 1–39

P. Mansfield

Pulsed NMR in solids 43–101

J.H. Goldstein, V.S. Watts and L.S. Rattet

13CH Satellite NMR Spectra 104–162

G.J. Martin and M.L. Martin

The stereochemistry of double bonds 166–259

Volume 7

J.W. Emsley, L. Phillips

Fluorine chemical shifts 1–520

Volume 6

J.N. Murrell

The theory of nuclear spin–spin coupling inhigh resolution NMR spectroscopy 1–60

E.G. Finer and R.K. Harris

Spin–spin coupling between phosphorusnuclei 61–118

E.W. Randall and D.G. Gillies

Nitrogen nuclear magneticresonance 119–174

Volume 5

V.J. Kowalewski

The indor technique in high-resolution nuclearmagnetic resonance 1–31

T.H. Siddall and W.E. Stewart

Magnetic non-equivalence related tosymmetry considerations and restrictedmolecular motion 33–147

Harold Booth

Applications of 1H nuclear magneticresonance spectroscopy to theconformational analysis of cycliccompounds 149–381

Volume 4

Roy Foster and Colin A. Fyfe

Nuclear magnetic resonance of organiccharge-transfer complexes 1–89

Norman S. Ham, T. Mole

The application of NMR to organometallicexchange reactions 91–192
Page 18: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

196 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

L.W. Reeves

The study of water in hydrate crystals bynuclear magnetic resonance 193–233

C. Deverell

Nuclear magnetic resonance studies ofelectrolyte solutions 235–334

Monisha Bose

Nuclear magnetic resonance in magneticmaterials 335–444

Volume 3

P. Diehl, R.K. Harris and R.G. Jones

Sub-spectral analysis 1–61

H. Batiz-Hernandez and R.A. Bernheim

The isotope shift 63–85

K.J. Packer

Nuclear spin relaxation studies of moleculesadsorbed on surfaces 87–128

E.L. Mackor and C. Maclean

Relaxation processes in systems of two non-identical spins 129–157

H.G. Hertz

Microdynamic behaviour of liquids as studiedby NMR relaxation times 159–230

Pierre Laszlo

Solvent effects and nuclear magnetic resonance 231–402

Volume 2

D.E. O’Reilly

Chemical shift calculations 1–61

A.D. Buckingham, K.A. McLauchlan

High resolution nuclear magnetic resonance inpartially oriented molecules 63–109

E. De Boer and H. Van Willigen

Nuclear magnetic resonance of paramagneticsystems 111–161

Ruth M. Lynden-Bell

The calculation of line shapes by densitymatrix methods 163–204

R.F. Zurcher

The cause and calculation of proton chemicalshifts in non-conjugated organic compounds 205–257

Volume 1

R.E. Richards

Foreword xix

O. Haworth and R.E. Richards

The use of modulation in magnetic resonance 1–14

Ragnar A. Hoffman and Sture Forsen

High resolution nuclear magnetic double andmultiple resonance 15–204

J.D. Swalen

Computer techniques in the analysis of NMRspectra 205–250

G. Mavel

Studies of phosphorus compounds using themagnetic resonance spectra of nuclei otherthan phosphorus-31 251–373

References

[1] High Resolution Nuclear Magnetic Resonance Spectroscopy, 2Volumes, Pergamon Press 1965, 1966, J.W. Emsley, J. Feeney, L.H.Sutcliffe (Available on Science Direct website for Progress in NMRSpectroscopy as Volume 1, Part 1 pp.1–663 (1965): Volume 1, Part 2pp. 665–1154 (1966)).

[2] J.W. Emsley, J. Feeney, Prog. NMR Spectrosc. 28 (1995) 1.[3] W. Pauli, Naturwisschaften 12 (1924) 741.[4] W. Gerlach, O. Stem, Ann. Phys. Leipzig. 74 (1924) 673.[5] I.I. Rabi, S. Millman, P. Kusch, J.R. Zacharias, Phys. Rev. 55 (1939)

526, 53 (1938) 318.[6] F. Bloch, W.W. Hansen, M.E. Packard, Phys. Rev. 69 (1946) 127.[7] E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69 (1946) 37.[8] N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73 (1948) 679.[9] W.D. Knight, Phys. Rev. 76 (1949) 1259.

[10] W.G. Proctor, F.C. Yu, Phys. Rev. 77 (1950) 717.[11] W.C. Dickinson, Phys. Rev. 77 (1950) 736.[12] W.G. Proctor, F.C. Yu, Phys. Rev. 81 (1951) 20.[13] H.S. Gutowsky, D.W. McCall, Phys. Rev. 82 (1951) 748.[14] E.L. Hahn, D.E. Maxwell, Phys. Rev. 84 (1951) 1246.[15] C. Deverell, R.E. Morgan, J.H. Strange, Mol. Phys. 18 (1970) 553.[16] E.L. Hahn, Phys. Rev. 80 (1950) 580.[17] R.R. Ernst, W.A. Anderson, Rev. Sci. Instrum. 37 (1966) 93.[18] A.W. Overhauser, Phys. Rev. 92 (1953) 411.[19] E.R. Andrew, A. Bradbury, R.G. Eades, Nature 182 (1958) 1659,

183 (1959) 1802.[20] I.J. Lowe, Phys. Rev. Lett. 2 (1959) 285.[21] A.A. Bothner-By, R. Gassend, Ann. NY Acad. Sci. 222 (1972) 668.[22] M.P. Williamson, T. Havel, K. Wuthrich, J. Mol. Biol. 182 (1985)

195.[23] R.B. Moon, J.H. Richards, J. Biol. Chem. 248 (1973) 7276.[24] D.I. Hoult, S.J.W. Busby, D.G. Gadian, G.K. Radda, R.E.

Richards, P.J. Seeley, Nature 252 (1974) 285.[25] J.W. Belliveau, D.N. Kennedy, R.C. McKinstry, B.R. Buchbinder,

R.M. Weisskoff, M.S. Cohen, J.M. Vevea, T.J. Brady, B.R. Rosen,Science 254 (1991) 716.

[26] J. Prichard, D. Rothman, E. Novotny, O. Petroff, T. Kuwabara, M.Avison, A. Howseman, C. Hanstock, R. Shulman, Proc. Natl. Acad.Sci. USA 88 (1991) 5829.

[27] P.C. Lauterbur, Nature 242 (1973) 190.[28] P. Mansfield, P.K. Grannell, J. Phys. C: Solid State Phys. 6 (1973)

L422.[29] J.P. Albrand, B. Birdsall, J. Feeney, G.C.K. Roberts, A.S.V. Burgen,

Int. J. Biol. Macromol. 1 (1979) 37.[30] J.T. Arnold, S.S. Dharmatti, M.E. Packard, J. Chem. Phys. 19

(1951) 507.[31] H.G. Dehmelt, H. Kruger, Naturwissenschaften 37 (1950) 111.[32] F. Bloch, Phys. Rev. 94 (1954) 946.[33] H.S. Gutowsky, D.W. McCall, C.P. Slichter, J. Chem. Phys. 21

(1953) 279.[34] H.M. McConnell, J. Chem. Phys. 28 (1958) 430.[35] H.Y. Carr, E.M. Purcell, Phys. Rev. 94 (1954) 630.[36] I. Solomon, Phys. Rev. 99 (1955) 559.[37] A.G. Redfield, Phys. Rev. 98 (1955) 1787.[38] M.J.E. Golay, Rev. Sci. Instrum. 29 (1958) 313.[39] A.L. Bloom, J.N. Shoolery, Phys. Rev. 97 (1955) 1261.[40] H.S. Gutowsky, L.H. Meyer, R.E. McClure, Rev. Sci. Instrum. 24

(1953) 644.[41] A.G. Redfield, IBM J. Res. Dev. 1 (1957) 19.

Page 19: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198 197

[42] H.S. Gutowsky, C.H. Holm, A. Saika, G.A. Williams, J. Am. Chem.Soc. 79 (1957) 4596.

[43] H.J. Bernstein, J.A. Pople, W.G. Schneider, Can. J. Chem. 35 (1957)65;H.J. Bernstein, J.A. Pople, W.G. Schneider, Can. J. Chem. 35 (1957)1060.

[44] I.J. Lowe, R.E. Norberg, Phys. Rev. 107 (1957) 46.[45] C.J. Gorter, Physica 3 (1936) 995.[46] C.J. Gorter, L.F.J. Broer, Physica 9 (1942) 591.[47] J.R. Singer, Science 130 (1959) 1652.[48] M. Karplus, J. Chem. Phys. 30 (1959) 11;

M. Karplus, J. Phys. Chem. 64 (1960) 1793.[49] E.B. Baker, J. Chem. Phys. 37 (1962) 911.[50] F.A.L. Anet, A.J.R. Bourn, J. Am. Chem. Soc. 87 (1965) 5250.[51] W.D. Phillips, J.C. Rowell, L.R. Melby, J. Chem. Phys. 41 (1964)

2551.[52] R.R. Ernst, Rev. Sci. Instrum. 36 (1965) 1689.[53] E.R. Andrew, L.F. Farnell, T.D. Gledhill, Phys. Rev. Lett. 19 (1967) 6.[54] A. Saupe, G. Englert, Phys. Rev. 11 (1963) 462.[55] L. Mueller, J. Am. Chem. Soc. 101 (1979) 4481.[56] M. Chapellier, M. Goldman, V.H. Chan, A. Abragam, C. R. Acad.

Sci. 268 (1969) 1530.[57] R.E. Sievers (Ed.), NMR Shift Reagents, Academic Press, New

York, 1973.[58] S.L. Patt, S.B. Sykes, J. Chem. Phys. 54 (1971) 1148.[59] J. Feeney, in: R. Budd, S.E. Cozzens (Eds.), Invisible Connections:

Instruments, Institutions and Science, SPIE Optical EngineeringPress, Chapter 10, 1992.

[60] R.L. Vold, J.S. Waugh, M.P. Klein, D.E. Phelps, J. Chem. Phys. 48(1968) 3831.

[61] J. Jeener, Ampere International Summer School, Basko Polje,Yugoslavia, 1971, (unpublished).

[62] N.A. Matwiyoff, T.E. Needham, Biochem. Biophys. Res. Commun.49 (1972) 1158.

[63] J.H. Van Vleck, Phys. Rev. 74 (1948) 1168.[64] R. Kaptein, J.C.S. Chem. Commun. (1971) 732.[65] R. Kaptein, K. Dijkstra, K. Nicolay, Nature 247 (1978) 293.[66] W.S. Hinshaw, Phys. Lett. 48 (1974) 87.[67] W.P. Aue, E. Bartholdi, R.R. Ernst, J. Chem. Phys. 64 (1976) 229.[68] A.N. Garroway, P.K. Grannell, P. Mansfield, J. Phys. C: Solid State

Phys. 7 (1974) L457.[69] R.J. Sutherland, J.M.S. Hutchison, J. Phys. E. 11 (1978) 79.[70] D.I. Hoult, J. Magn. Reson. 26 (1977) 165;

D.I. Hoult, J. Magn. Reson. 35 (1979) 69.[71] A. Kumar, D. Welti, R.R. Ernst, J. Magn. Reson. 18 (1975) 69.[72] C.T. Burt, T. Glonek, M. Barany, J. Biol. Chem. 251 (1976) 2584.[73] C.T. Burt, T. Glonek, M. Barany, Science 195 (1977) 145.[74] B. Garlick, G.K. Radda, P.J. Seeley, Biochem. Biophys. Res.

Commun. 74 (1977) 1256.[75] E. Jacobus, G.J. Taylor, D.P. Hollis, R.L. Nunnally, Nature 265

(1977) 756.[76] P. Hollis, R.L. Nunnally, Biochem. Biophys. Res. Commun. 75

(1977) 1086.[77] J. Yoshizaki, J. Biochem. 84 (1977) 11.[78] M. Cohen, C.T. Burt, Proc. Natl. Acad. Sci. USA 7 (1977) 4271.[79] A. Sehr, G.K. Radda, Biochem. Biophys. J. Commun. 77 (1977)

195.[80] C.T. Burt, S.M. Cohen, M. Bbriny, Ann. Rev. Biophys. Bioeng. 8

(1979) 1.[81] J. Schaefer, E.O. Stejskal, J. Am. Chem. Soc. 98 (1976) 1030.[82] P.G. Morris, NMR Imaging in Medicine and Biology, Oxford

University Press, 1986.[83] P. Mansfield, I.L. Pykett, J. Magn. Reson. 29 (1978) 355.[84] G.A. Morris, R. Freeman, J. Am. Chem. Soc. 101 (1979) 760.[85] D.P. Burum, R.R. Ernst, J. Magn. Reson. 39 (1980) 163.[86] J. Cox, P.J. Styles, J. Magn. Reson. 40 (1980) 209.[87] T.R. Brown, P.M. Kincaid, K. Ugurbil, Proc. Natl. Acad. Sci. USA

79 (1982) 3523.

[88] A.A. Maudsley, S.K. Hilal, W.H. Perman, H.E. Simon, J. Magn.Reson. 51 (1983) 147.

[89] A.A. Maudsley, A. Oppelt, A. Ganssen, Siemens Forsch. Entwickl.Ber. 8 (1979) 326.

[90] J.J.H. Ackerman, T.H. Grove, G.G. Wong, D.G. Gadian, G.K.Radda, Nature 283 (1980) 167.

[91] W.A. Edelstein, J.M.S. Hutchison, G. Johnson, T. Redpath, Phys.Med. Biol. 25 (1980) 751.

[92] J.T. Arnold, Phys. Rev. 102 (1956) 136.[93] W.A. Anderson, Phys. Dev. 102 (1956) 151.[94] C.M. Lai, P.C. Lauterbur, J. Phys. E. Sci. Instrum. 13 (1980) 747.[95] B.D. Ross, G.K. Radda, D.G. Gadian, G. Rocker, M. Esiri, J.

Falconer-Smith, J. New Engl. J. Med. 304 (1981) 1338.[96] K. Ugurbil, D.L. Guernsey, T.R. Brown, P. Glynn, N. Tobkes, I.S.

Edelman, Proc. Natl. Acad. Sci. USA 78 (1981) 4843.[97] D.L. Foxall, J.S. Cohen, J. Magn. Reson. 52 (1983) 346.[98] M.H. Levitt, R. Freeman, J. Magn. Reson. 43 (1981) 502.[99] G. Wagner, K. Wuthrich, J. Mol. Biol. 155 (1982) 347.

[100] W. Braun, G. Wider, K.H. Lee, K. Wuthrich, J. Mol. Biol. 169 (1983)921.

[101] H.R. Hart, P.A. Bottomley, W.A. Edelstein, S.J. Karr, W.M. Leue,O. Mueller, R.W. Redington, J.F. Schenck, L.S. Smith, D. Vatis,Am. J. Roentgenol. 141 (1983) 1195.

[102] P.A. Bottomley, US Patent, 4 480 228, 1984.[103] R.J. Ordidge, A. Connelly, J.A.B. Lohman, J. Magn. Reson. 66

(1986) 283.[104] J. Frahm, K.D. Merboldt, W. Hgnicke, J. Magn. Reson. 72 (1987)

502.[105] P.A. Bottomley, H.R. Hart Jr., W.A. Edelstein, J.F. Schenck, L.S.

Smith, W.M. Leue, O.M. Mueller, R.W. Redington, Radiology 150(1984) 441.

[106] A. Haase, J. Frahm, D. Matthaei, W. Hgnicke, K.D. Merboldt, J.Magn. Reson. 67 (1986) 258.

[107] V.J. Wedeen, R.A. Mueli, R.R. Edelman, S. Geller, L. Frank, T.Brady, B. Rosen, Science 230 (1985) 946.

[108] J. Aguayo, S. Blackband, J. Schoeniger, M. Mattingly, M. Hinter-mann, Nature 322 (1986) 190.

[109] J.S. Waugh, J. Magn. Reson. 49 (1982) 517.[110] I.L. Pykett, R.R. Rzedzian, Magn. Reson. Med. 5 (1987) 563.[111] D.H. Torchia, S.W. Sparks, A. Bax, Biochemistry 27 (1988) 5135.[112] H. Barfuss, H. Fischer, D. Hentschel, R. Ladebeck, J. Vetter,

Radiology 169 (1988) 811.[113] D. Marion, P.C. Driscoll, L.E. Kay, P.T. Wingfield, A. Bax, A.M.

Gronenborn, G.M. Clore, Biochemistry 28 (1989) 6150.[114] L.E. Kay, G.M. Clore, A. Bax, A.M. Gronenborn, Science 249 (1990)

411.[115] A. Bax, P.G. De Jong, A.F. Mehlkopf, J. Schmidt, Chem. Phys.

Lett. 69 (1980) 567.[116] R.E. Hurd, J. Magn. Reson. 87 (1990) 422.[117] R.D. Black, T.A. Early, P.B. Roemer, O.M. Mueller, A. Morgo-

Campero, L.G. Turner, G.A. Johnson, Science 259 (1993) 793.[118] D. Rugar, O. Zugar, S. Hoen, C.S. Yannoni, H.M. Vieth, R.D.

Kendrick, Science 264 (1994) 1560.[119] R. Damadian, K. Zaner, D. Hor, R. Dimaio, Proc. Natl. Acad. Sci.

USA 71 (1974) 1471.[120] O. Jardetzky, J.E. Wertz, Arch. Biochem. Biophys. 65 (1956) 569.[121] E. Odeblad, N. Bhar, G. Lindstrom, Arch. Biochem. Biophys. 63

(1956) 221.[122] E.O. Stejskal, J.E.J. Tanner, Chem. Phys. 42 (1965) 288.[123] C.S. Johnson, Prog. NMR Spectrosc. 34 (1999) 203.[124] D.I. Hoult, R.E. Richards, J. Magn. Reson. 24 (1976) 71.[125] P. Styles, N.F. Soffe, C.A. Scott, D.A. Cragg, D.J. White, P.C.J.

White, J. Magn. Reson. 60 (1984) 397.[126] C.R. Bowers, D.P. Weitekamp, J. Am. Chem. Soc. 109 (1987) 5541.[127] H.G. Friedburg, B. Wimmer, J. Hennig, A. Frankenschmidt, K.H.

Hauenstein, Urologe. A. 26 (1987) 309.[128] J. Hennig, H. Friedburg, Magn. Reson. Imaging 6 (1988) 391.[129] A. Samoson, E. Lippmaa, A. Pines, Mol. Phys. 65 (1988) 1013.

Page 20: Forty years of Progress in Nuclear Magnetic Resonance … · 2017. 7. 30. · Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy J.W. Emsley a, J. Feeney b,* a Chemistry

198 J.W. Emsley, J. Feeney / Progress in Nuclear Magnetic Resonance Spectroscopy 50 (2007) 179–198

[130] B.F. Chmelka, K.T. Mueller, A. Pines, J. Stebbins, Y. Wu, J.W.Zwanziger, Nature 339 (1989) 42.

[131] K.F. Morris, C.S. Johnson Jr., J. Am. Chem. Soc. 114 (1992) 3139.[132] J.R. Tolman, J.M. Flanagan, M.A. Kennedy, J.H. Prestegard, Proc.

Natl. Acad. Sci. USA 92 (1995) 9279.[133] N. Tjandra, S. Grzesiek, A. Bax, J. Am. Chem. Soc. 118 (1996) 6264.[134] N. Tjandra, A. Bax, J. Magn. Reson. 124 (1997) 512.[135] D.L. Olson, M.E. Lacey, J.V. Sweedler, Anal. Chem. 70 (1998) 645.[136] I. Canet, J. Courtieu, A. Loewenstein, A. Meddour, J.M. Pechine, J.

Am. Chem. Soc. 117 (1995) 6520.[137] S.B. Shuker, P.J. Hajduk, R.P. Meadows, S.W. Fesik, Science 274

(1996) 1531.[138] C. Bartels, M. Billeter, P. Guntert, K. Wuthrich, J. Biomol. NMR 7

(1996) 207.[139] H.N.B. Moseley, G.T. Montelione, Curr. Opin. Struct. Biol. 9 (1999)

635.[140] M.S. Albert, G.D. Cates, B. Driehuys, W. Happer, B. Saam, C.S.

Springer Jr., A. Wishnia, Nature 370 (1994) 199.[141] J.R. MacFall, H.C. Charles, R.D. Black, H. Middleton, J.C. Swartz,

B. Saam, B. Driehuys, C. Erickson, W. Happer, G.D. Cates, G.A.Johnson, C.E. Ravin, Radiology 200 (1996) 553.

[142] A. Bifone, Y.Q. Song, R. Seydoux, R.E. Taylor, B.M. Goodson, T.Pietrass, T.F. Budinger, G. Navon, A. Pines, Proc. Natl. Acad. Sci.USA 93 (1996) 12932.

[143] B.M. Goodson, Y. Song, R.E. Taylor, V.D. Schepkin, K.M.Brennan, G.C. Chingas, T.F. Budinger, G. Navon, A. Pines, A.Proc. Natl. Acad. Sci. USA 94 (1997) 14725.

[144] H. Barjat, G.A. Morris, S. Smart, A.G. Swanson, S.C.R. Williams,J. Magn. Reson. Ser. B 108 (1995) 170.

[145] K. Pervushin, R. Riek, G. Wider, K. Wuthrich, Proc. Natl. Acad.Sci. USA 94 (1997) 12366.

[146] R. Riek, G. Wider, K. Pervushin, K. Wuthrich, Proc. Natl. Acad.Sci. USA 96 (1999) 4918.

[147] R. Bruschweiler, R.R. Ernst, J. Chem. Phys. 96 (1991) 1758.[148] B. Reif, M. Hennig, C. Griesinger, Science 276 (1997) 1230.[149] A.J. Dingley, S. Grzesiek, J. Am. Chem. Soc. 120 (1998) 8293.[150] A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley, J. Am. Chem.

Soc. 120 (1998) 13194.[151] A. Lesage, L. Emsley, J. Magn. Reson. 148 (2001) 449.[152] P-M.L. Robitaille, A.M. Abduljalil, A. Kangarlu, X. Zhang,

Y.Yu.R. Burgess, S. Bair, P. Noa, L. Yang, H. Zhu, B. Palmer, Z.Jiang, D.M. Chakeres, D. Spigos, NMR Biomed. 11 (1998) 263.

[153] T.G. Oas, R.G. Griffin, M.H. Levitt, J. Chem. Phys. 89 (1988) 692.[154] M.H. Levitt, T.G. Oas, R.G. Griffin, Isr. J. Chem. 28 (1988) 271.[155] T. Gullion, M.D. Poliks, J. Schaefer, J. Magn. Reson. 80 (1988) 553.[156] T. Gullion, J. Schaefer, J. Magn. Reson. 81 (1989) 196.[157] G.T. Montelione, D. Zheng, Y.J. Huang, K.C. Gunsalus, T.

Szyperski, Nat. Struct. Biol. 7 (2000) 982.[158] D. Christendat, A. Yee, A. Dharamsi, Y. Kluger, A. Savchenko,

J.R. Cort, V. Booth, C.D. Mackereth, V. Saridakis, I. Ekiel, G.Kozlov, K.L. Maxwell, N. Wu, L.P. McIntosh, K. Gehring, M.A.Kennedy, A.R. Davidson, E.F. Pai, M. Gerstein, A.M. Edwards,C.H. Arrowsmith, Nat. Struct. Biol. 7 (2000) 903.

[159] S. Yokoyama, H. Hirota, T. Kigawa, T. Yabuki, M. Shirouzu, T.Terada, Y. Ito, Y. Matsuo, Y. Kuroda, Y. Nishimura, Y. Kyogoku,K. Miki, R. Masui, S. Kuramitsu, Nat. Struct. Biol. 7 (2000) 943.

[160] K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Mag.Reson. Med. 42 (1999) 952.

[161] A.Y. Louie, M.M. Huber, E.T. Ahrens, U. Rothbacher, R. Moats,R.E. Jacobs, S.E.D. De Lange, J.P. Mugler III, J.R. Brookeman, J.Knight-Scott, J.D. Truwit, C.D. Teates, T.M. Daniel, P.L. Bogorad,G.D. Cates, Radiology 210 (1999) 851.

[162] I. Schnell, H.W. Spiess, J. Magn. Reson. 151 (2001) 153.[163] A. Brinkmann, M.H. Levitt, J. Chem. Phys. 115 (2001) 357.[164] Z. Serber, V. Dotsch, Biochemistry 40 (2001) 14317.[165] F. Castellani, B. van Rossum, A. Diehl, M. Schubert, K. Rehbein,

H. Oschkinat, Nature 420 (2002) 98.[166] T. Herrmann, P. Guntert, K. Wuthrich, J. Mol. Biol. 24 (2002) 171.

[167] A. Grishaev, M. Llinas, Proc. Natl. Acad. Sci. USA 99 (2002) 6713.[168] S.P. Brown, M. Perez-Torralba, D. Sanz, R.M. Claramunt, L.

Emsley, Chem. Commun. 17 (2002) 1852.[169] A.T. Petkova, Y. Ishii, J.J. Balbach, O.N. Antzutkin, R.D.

Leapman, F. Delaglio, R. Tycko, Proc. Natl. Acad. Sci. USA 99(2002) 16742.

[170] E. Kupce, R. Freeman, J. Biomol. NMR 27 (2003) 383.[171] M. Mishkovsky, L. Frydman, J. Magn. Reson. 173 (2005) 344.[172] S. Kim, T. Szyperski, J. Am. Chem. Soc. 125 (2003) 1385.[173] J.H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L.

Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc.Natl. Acad. Sci. USA 100 (2003) 10158.

[174] V.S. Bajaj, C.T. Farrar, M.K. Hornstein, I. Mastovsky, J. Vieregg, J.Bryant, B. Elena, K.E. Kreischer, R.J. Temkin, R.G. Griffin, J.Magn. Reson. 160 (2003) 85.

[175] D. Sakellariou, S.P. Brown, M. Bardet, A. Lesage, S. Hediger, C.A.Meriles, A. Pines, L. Emsley, J. Am. Chem. Soc. 125 (2003) 4376.

[176] J. Grinshtein, L. Frydman, J. Am. Chem. Soc. 125 (2003) 7451.[177] C. Fernandez, K. Wuthrich, FEBS Lett. 555 (2003) 144.[178] L.K. Tamm, B. Liang, Prog. NMR Spectrosc. 48 (2006) 201.[179] L. Schroder, T.J. Lowery, C. Hilty, D.E. Wemmer, A. Pines, Science

314 (2006) 446.[180] R.A. Iles, A.N. Stevens, J.R. Griffiths, Prog. NMR Spectrosc. 15

(1982) 49.[181] G. Wagner, Prog. NMR Spectrosc. 22 (1990) 101.[182] C.H. Arrowsmith, Y.-S. Wu, Prog. NMR Spectrosc. 32 (1998) 277.[183] L-Y. Lian, D.A. Middleton, Prog. NMR Spectrosc. 39 (2001) 171.[184] T.W.-M. Fan, Prog. NMR Spectrosc. 28 (1996) 161.[185] J.C. Lindon, J.K. Nicholson, I.D. Wilson, Prog. NMR Spectrosc. 29

(1996) 1.[186] J.C. Lindon, E. Holmes, J.K. Nicholson, Prog. NMR Spectrosc. 45

(2004) 109.[187] B.J. Stockman, Prog. NMR Spectrosc. 31 (1997) 109.[188] P. Bachert, Prog. NMR Spectrosc. 33 (1998) 1.[189] B.J. Stockman, C. Dalvit, Prog. NMR Spectrosc. 41 (2002) 187.[190] J.W. Peng, J. Moore, N. Abdul-Manan, Prog. NMR Spectrosc. 44

(2004) 225.[191] F. Heatley, Prog. NMR Spectrosc. 13 (1979) 47.[192] P. Dais, A. Spyros, Prog. NMR Spectrosc. 27 (1995) 555.[193] I. Ando, S. Kuroki, H. Kurosu, T. Yamanobe, Prog. NMR

Spectrosc. 39 (2001) 79.[194] P.G. Klein, M.E. Ries, Prog. NMR Spectrosc. 42 (2003) 31.[195] E. Ribeiro deAzevedo, T.J. Bonagamba, D. Reicher, Prog. NMR

Spectrosc. 47 (2005) 13.[196] E. de Alba, N. Tjandra, Prog. NMR Spectrosc. 40 (2002) 175.[197] D. Fushman, R. Varadan, M. Assfalg, O. Walker, Prog. NMR

Spectrosc. 44 (2004) 189.[198] M. Blackledge, Prog. NMR Spectrosc. 46 (2005) 23.[199] K. Pervushin, A. Ono, C. Fernandez, T. Szyperski, M. Kainosho, K.

Wuthrich, Proc. Natl. Acad. Sci. USA 95 (1998) 14147.[200] C.P. Jaroniec, B.A. Tounge, C.M. Rienstra, J. Herzfeld, R.G.

Griffin, J. Am. Chem. Soc. 121 (1999) 10237.[201] M.A. Kennedy, G.T. Montelione, C.H. Arrowsmith, J.L. Markley,

J. Struct. Funct. Genomics 2 (2002) 155.[202] L. Frydman, T. Scherf, A. Lupulescu, Proc. Natl. Acad. Sci. USA 99

(2002) 15858.[203] T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N.B. Moseley, G.T.

Montelione, Proc. Natl. Acad. Sci. USA 99 (2002) 8009.[204] Y. Shrot, B. Shapira, L. Frydman, J. Magn. Reson. 171 (2004) 163.[205] G.M. Clore, A.M. Gronenborn, Prog. NMR Spectrosc. 23 (1991) 43.[206] W. Gronwald, H.R. Kalbitzer, Prog. NMR Spectrosc. 44 (2004) 33.[207] T. Herrmann, P. Guntert, K. Wuthrich, J. Biomol. NMR 24 (2002) 171.[208] A. Bax, R. Freeman, S.P. Kempsell, J. Am. Chem. Soc. 102 (1980)

4849.[209] A. Bax, R. Freeman, T.A. Frenkiel, J. Am. Chem. Soc. 103 (1981)

2102.[210] A. Bax, R. Freeman, T.A. Frenkiel, M.H. Levitt, J. Magn. Reson. 43

(1981) 478.