31
Forensic Analysis of Illicit Drugs and Trace Explosives using Ambient Pressure Ionization Mass Spectrometry Tim M. Brewer, Christopher Szakal, Matthew Staymates, Ed Sisco, Lenny Demoranville, Thomas Forbes, Eric Windsor, Shin Muramato and Greg Gillen Material Measurement Laboratory (MML) Surface and Microanalysis Science Division National Institute of Standards and Technology The Science and Technology Directorate of the U.S. Department of Homeland Security sponsored the production of portions of this work under Interagency Agreement HSHQDC-12-X-00024 and HSHQDC-11-X-00420 with the National Institute of Standards and Technology

Forensic Analysis of Illicit Drugs and Trace Explosives using ......Plasma: APGD Analysis of Forensic Compounds APGD-MS spectra of Musinex DM and Sudafed Pills. Plasma 75W and 1 L/min

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Forensic Analysis of Illicit Drugs and Trace

    Explosives using Ambient Pressure

    Ionization Mass Spectrometry

    Tim M. Brewer, Christopher Szakal, Matthew Staymates, Ed Sisco, Lenny Demoranville, Thomas Forbes, Eric Windsor, Shin Muramato and Greg Gillen

    Material Measurement Laboratory (MML)

    Surface and Microanalysis Science Division

    National Institute of Standards and Technology

    The Science and Technology Directorate of the U.S. Department of Homeland Security sponsored

    the production of portions of this work under Interagency Agreement HSHQDC-12-X-00024 and

    HSHQDC-11-X-00420 with the National Institute of Standards and Technology

  • Forensic and Trace Contraband Detection

    Ambient Desorption

    and Ionization

    Specific Chemical

    Analysis and Detection

    Contraband Materials

    -Organic

    -Inorganic

    -Nuclear

    API-MS

    Plasma Liquid

    Photon Thermal

    Goals:

    1. Next generation technology

    for DHS screening

    2. Improved technologies for

    high throughput forensic

    analysis

    3. Standard methods for

    evaluation of API sources

  • API-MS Surface Analysis Methodologies

    Under Investigation at NIST • Liquid Based Sources

    – Electrospray Ionization (ESI)

    – Atmospheric Pressure Chemical Ionization (APCI)

    – Desorption Electrospray Ionization (DESI) and (SESI)

    – Desorption Electro-Flow Focusing Ionization (DEFFI)

    – PaperSpray Ionization (PS)

    • Plasma Based Sources

    – Atmospheric Pressure Glow Discharge (APGD)

    – Low Temperature Plasma (LTP)

    • Thermal Based Sources

    – Atmospheric Pressure Thermal Desorption Ionization (APTDI)

    • Laser Based Sources

    – Atmospheric Pressure Matrix-Assisted Laser Desorption Ionization (AP-MALDI)

    – Laser Diode Thermal Desorption (LDTD)

  • Why API-MS

    • Fast analysis – high sample throughput

    • Multiple sources – maximum flexibility

    – High ionization efficiency

    – Selectivity and flexibility of gas phase and solution phase chemistries

    • Sample requirements minimized (direct analysis of wet/insulating/geometric

    samples or swipes, + vacuum-incompatible surfaces, non planar, non

    conductive)

    – Can analyze solids, liquids and vapors both positive and negative polarities

    • Performance of Mass Spectrometers and MS/MS (chemical speciation and

    identification)

    – No need for chromatographic separation

  • Liquid: DESI Analysis of Explosives Residues

    Szakal, C. and Brewer, T.M., Anal. Chem., 2009, 81, 5257-5266

  • Liquid: DESI C-4 Spectra

    C-4 samples from

    Montgomery Country

    bomb squad

    Explosives-containing portions of C-4 samples obtained with liquid-liquid extraction in acetonitrile

    (explosives, polars)

  • Liquid: DESI Fingerprint analysis

    Image of a fingerprint after DESI-MS

    analysis

    500 µm

    0

    500000

    1000000

    1500000

    2000000

    2500000

    3000000

    3500000

    50 150 250 350 450 550 650 750

    Sig

    na

    l In

    ten

    sit

    y

    m/z

    Cholesterol

    Oleic Acid

    Squalene

    Positive Ion Scan using DESI-MS

  • Allows for analysis on metal surfaces

    Typical enhancement of 10x but have seen up to 2000x enhancement

    Liquid: Nebulizer Assisted DESI

    Selected Ion Monitoring vs. Frequency

    8.0E+04

    1.8E+05

    2.8E+05

    3.8E+05

    4.8E+05

    5.8E+05

    6.8E+05

    7.8E+05

    8.8E+05

    9.8E+05

    1 101 201 301 401 0.0E+00

    5.0E+05

    1.0E+06

    1.5E+06

    2.0E+06

    2.5E+06

    3.0E+06

    1 11 21 31 41 51 61 71

    TNT m/z 226 Cocaine m/z 304

    time

  • Liquid: Desorption Electro-Flow Focusing

    Ionization

  • Liquid: PaperSpray –Directly from Swipes

    ≤ 5 mm

    300 ng RDX

    3000 ng PETN

    The Swipe is the Ion Source – Little to no Sample Preparation Required

  • C4 IR Neg

    0.0E+00

    1.0E+05

    2.0E+05

    3.0E+05

    4.0E+05

    5.0E+05

    0 100 200 300 400

    m/z

    Inte

    nsit

    y (

    a.u

    .)

    C4 IR Pos

    0.0E+00

    1.0E+04

    2.0E+04

    3.0E+04

    4.0E+04

    5.0E+04

    0 100 200 300 400 500

    m/s

    Inte

    nsit

    y (

    a.u

    .)

    C4 IL Pos

    0.0E+00

    1.0E+04

    2.0E+04

    3.0E+04

    4.0E+04

    5.0E+04

    6.0E+04

    0 100 200 300 400 500

    m/s

    Inte

    nsit

    y (

    a.u

    .)

    C4 IL Neg

    0.0E+00

    2.0E+05

    4.0E+05

    6.0E+05

    8.0E+05

    1.0E+06

    1.2E+06

    1.4E+06

    0 100 200 300 400

    m/z

    Inte

    nsit

    y (

    a.u

    .)

    Plasma: APGD Analysis of C-4 Residues

    *

    *

    * *

    * *

    * *

    *

    *

    *

    *

    *

    * *

    * *

    *

    *

    *

    *

    *

    *

    *

    * *

    Negative

    m/z

    m/z

    m/z

    Positive

    Positive

    Negative

    *

    * * *

    *

    RDX - 284, 268, 221, 129, 62, 46

    DOS or DCA - 127

    PIB – 95, 79, 65

    *

    * * * *

    *

    *

    RDX – 222, 177,131

    DOS – 427, 185

    DCA – 371, 241, 113

    PIB – 97,83,56

    * *

    *

    *

    *

    *

    * *

    *

    *

    *

    Placed visible amount on explosive swipe. Plasma 75W and 1 L/min He and O 0.1 L/min. No liquid

    needed for extraction.

  • Plasma: OTC Pharmaceutical - Aleve

    0.0E+00

    1.0E+05

    2.0E+05

    3.0E+05

    4.0E+05

    5.0E+05

    6.0E+05

    7.0E+05

    0 50 100 150 200 250 300

    Inte

    nsit

    y (a.u

    .)

    m/z

    *Naproxen – 230, 185, 170, 154, 116

    *

    * M+

    *

    *

    *

    NIST EI Database Aleve

    Molecular ion Signal at m/z 230

    EI “like” fragmentation - NIST EI Database Searchable (>200,000 compounds)

    Active Ingredient – Naproxen

    MW = 230

    APGD-MS spectra of Aleve Pill. Plasma 75W and 1 L/min He and O 0.1 L/min

  • 0.0E+00

    8.0E+04

    1.6E+05

    2.4E+05

    3.2E+05

    4.0E+05

    4.8E+05

    5.6E+05

    0 100 200 300

    Inte

    nsit

    y (a.u

    .)

    m/z

    Plasma: APGD Analysis of Forensic Compounds

    APGD-MS spectra of Musinex DM and Sudafed Pills. Plasma 75W and 1 L/min He and O 0.1 L/min

    0.0E+00

    5.0E+05

    1.0E+06

    1.5E+06

    2.0E+06

    0 100 200 300 400 500

    Inte

    nsit

    y (a.u

    .)

    m/z

    *Pseudoephedrine – 330, 165, 118, 77

    * M+

    * M+M

    *

    *

    *

    *Methamphetamine – 150, 134, 58

    * MH+

    *

    Forensic Compounds Characterized by APGD

    OTC pharmaceuticals

    Mucinex DM

    Aleve

    Sudafed

    Alka-Selzter Plus Nightime

    Ibuprofen

    Tylenol

    Asprin

    Explosives

    C-4

    RDX

    PETN

    TNT

    NG

    HMX

    Semtex H

    Semtex A

    Narcotics

    THC

    Cocaine

    Heroin

    MDMA

    Methamphetamine

    Hydrocodone

  • Plasma: APGD-MS Analysis of Ecstasy and

    Cocaine Mixture

    APGD-MS spectra of Ecstasy and Cocaine. Plasma 75W and 1 L/min He fragmentation pattern with O to

    extensive.

    0.0E+00

    8.0E+04

    1.6E+05

    2.4E+05

    3.2E+05

    4.0E+05

    0 50 100 150 200 250 300 350 400

    Inte

    nsit

    y (a.u

    .)

    m/z

    * [M+H]+- Cocaine

    * [M+H]+- Ecstasy

    MW = 303 MW = 193

  • Plasma: Low Temperature Plasma –

    Explosive Particles

    SEMTEX H SEMTEX A

    PETN - 378

    RDX - 284

    PETN - 378

    Discha

    rge

    Gas Plas

    ma MS

    Inlet

  • Plasma: LTP Depth Profiling - PMMA

    1 2

    3

    4 5

    500µm 1500µm Crater cross section

    PMMA

    SiO2/Si

    ToF-SIMS analysis spots

    5 4 3 2 1

    ToF-SIMS analysis spots

    SIMS depth profiling can reveal changes in chemistry along the depth of the film

    0

    10000

    20000

    30000

    40000

    50000

    0 50 100 150 200

    Inte

    nsit

    y (co

    un

    ts)

    Sputter Time (s)

    Spot 4

    Spot 3

    Spot 2

    Spot 1

    4 3 2 1

    m/z 69

    C2H3O2+

    Results suggest damage is localized at the

    surface, and the extent of damage seems

    proportional to plasma exposure. In the

    sub-surface region, the intensity is seen to

    quickly return to steady state values

  • Laser: AP Laser Diode Thermal Desorption Mass

    Spectrometry (LDTD-MS)

    Q1 RDX #21-26 RT: 0.18-0.23 AV: 6 SB: 18 0.01-0.17 NL: 3.62E7T: - p APCI Q1MS [15.070-400.000]

    50 100 150 200 250 300 350

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e Ab

    unda

    nce

    255.15

    268.16

    283.07

    227.08

    157.30 336.13

    46.08

    199.29

    291.19

    143.2388.91319.19

    115.16341.3845.03 87.16

    41.88

    Rela

    tiv

    e A

    bu

    nd

    an

    ce

    100

    50

    0

    m/z 100 200 300

    TNT

    [M-H]-

    [NO2]- m/z 226

    [M]-

    m/z 227

    m/z 46

    Q1 amm_nitrate #76-80 RT: 0.28-0.30 AV: 5 SB: 31 0.16-0.27 NL: 1.02E8T: - p APCI Q1MS [15.070-150.000]

    20 40 60 80 100 120 140

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rela

    tive

    Abun

    danc

    e

    61.9

    89.1

    143.187.0 98.163.945.9 121.3 130.9114.959.0 71.142.031.815.8

    Rela

    tiv

    e A

    bu

    nd

    an

    ce

    100

    50

    0

    m/z 20 140 60 100

    [NO3]-

    [NO2]-

    m/z 62

    m/z 46

    Ammonium Nitrate

  • Laser: Narcotics on Currency with AP-MALDI

    Matrix Matrix Heroin

    0.5 μL CHCA matrix on US Currency with doped heroin

  • RDX TNT

    Thermal: AP Thermal Desorption Ionization -

    Mass Spectrometry (APTDI-MS)

    Pseudoephedrine Methamphetamine Thermal wire rapidly heated

    without subsequent

    ionization technique of both

    liquids and solids

  • How do we evaluate APIMS Systems? - Standard

    Test Materials • Flexible – many different compounds

    • Rapid

    • Large dynamic range in mass

    • Quantifiable

    • Precise high

    • Accuracy approximately 5% depending on

    material and the ability to measure starting

    material purity

    Stability of drop size during ~2 hours of jetting

    0.2 %0.1260.5Volume, pL

    0.2 %0.1048.7Mass, ng

    0.2 %0.1260.5Volume, pL

    0.2 %0.1048.7Mass, ng

    mean SD RSDmean SD RSD

    500 m image field SIMS of single inkjet droplet

    of cocaine on silicon

  • Preliminary Quantification with Inkjet Printing

    Plasma: APGD of Cocaine

    Liquid: DESI of Cocaine and RDX

    y = 4496.7x + 29807 R² = 0.9994

    0.00E+00

    5.00E+05

    1.00E+06

    1.50E+06

    2.00E+06

    2.50E+06

    3.00E+06

    3.50E+06

    4.00E+06

    4.50E+06

    5.00E+06

    0 200 400 600 800 1000 1200

    Co

    un

    ts (a.u

    .)

    Mass (ng)

    y = 78806x + 129902 R² = 0.9992

    0.00E+00

    2.00E+07

    4.00E+07

    6.00E+07

    8.00E+07

    1.00E+08

    0 200 400 600 800 1000 1200

    Co

    un

    ts (a.u

    .)

    Mass (ng)

    Cocaine

    y = 7899.6x - 743.47 R² = 0.9993

    0.00E+00

    2.00E+06

    4.00E+06

    6.00E+06

    8.00E+06

    1.00E+07

    0 200 400 600 800 1000 1200

    Co

    un

    ts (a.u

    .)

    Mass (ng)

    RDX

  • Useful Yields for APIMS Analysis

    SIMS community have used for years, there is also growing interest in APIMS.

    But, how sensitive are these method of analysis? How does sensitivity

    vary between compounds, ion source type and instrument configurations?

    One method for evaluation is to measure the useful yield.

    Useful yield = number of molecules detected/molecules in analytical volume.

    The useful yield takes into account beam induced damage, ionization probability,

    instrument transmission and detector efficiency. It is the best measure of the

    analytical sensitivity for a given molecule under a given set of experimental

    conditions.

    SF5

    C60

    Useful yields of organic molecules under dynamic SIMS cluster

    bombardment, Greg Gillen, Christopher Szakal, Tim M. Brewer,

    Surf. Interface Anal. 43, 376. 2011

  • Useful Yield Calculations

    Compound Ion m/z DESI APGD LDTD DEFFI LTP APTDI

    Cocaine (M+H)+ 304 7.5x10-8

    1.8x10-8 2.5x10-11

    TNT (M-H)- 226 6.5x10-8 3.9x10-10

    7.7x10-7 3.1x10-12

    RDX (M+NO3)-

    (M+35Cl)- 284

    235

    2.5x10-8

    3.9x10-7 2.5x10-8 3.2x10-8

    3.5x10-7 5.2x10-12

    PETN (M+NO3)-

    (M+35Cl)- 378

    351

    6.8x10-8

    1.5x10-8 5.9x10-8 2.5x10-9

    6.5x10-8

    AN (NO3)- 62 1.5x10-10 7.0x10-7

  • Conclusions

    • Develop next generation technologies

    – Multi-source approach

    – Mixture analysis without chromatographic separation

    • Improved technologies for high throughput forensic analysis

    – Multi-source approach for API-MS of trace and forensic contraband materials allows for

    fast, chemical surface analysis of a wide range of materials on multiple substrates

    – Characteristic mass spectra for all molecules studied from multiple sampling media

    • Objectively evaluate the API sources by leveraging inkjet printing

    – A procedure and test materials have been developed to quantify the difference sources

    – A procedure and test materials have been developed measure useful yields of a range of organic compounds

  • Analysis and mechanisms of cyclotrimethylenetrinitramine ion formation in desorption electrospray ionization.

    Szakal C, Brewer TM., Anal Chem. 2009 Jul 1;81(13):5257-66

    Flow Visualization Techniques for the Evaluation of Non-Contact Trace Contraband Detectors,

    M Staymates, G Gillen and W Smith, ASME, 2010, 203-209,

    DESI Source Research -

    Schlieren imaging

    High speed videography,

    3000 frames per second

    20° incidence angle 65° incidence angle

    Recirculation zone formed from jet entrainment

    Work with Prosolia

  • 0.0E+00

    2.0E+05

    4.0E+05

    6.0E+05

    8.0E+05

    1.0E+06

    1.2E+06

    1.4E+06

    1.6E+06

    0 100 200 300 400 500

    Inte

    nsit

    y (a.u

    .)

    m/z

    *Hydrocodone – 301, 270, 242

    * *

    * MH+

    0.0E+00

    8.0E+04

    1.6E+05

    2.4E+05

    3.2E+05

    4.0E+05

    4.8E+05

    5.6E+05

    0 100 200 300

    Inte

    nsit

    y (a.u

    .)

    m/z

    *Methamphetamine – 150, 134, 58

    * MH+

    *

    *

    Plasma: APGD-MS Analysis of Illicit

    Drugs

    MW = 301

    MW = 149

    APGD-MS spectra of Hydrocodone and Methamphetamine. Plasma 75W and 1 L/min He and O 0.1 L/min

  • He Low Temperature Plasma

    • 20 KV peak-peak , 20-70 KHZ high frequency power supply

    • Automated x, y sample stage – lab view

    • Multiple gas flow controller

    • Heated gas jet

    • Sample rotation stage for 2000 RPM depth profiling

    • Integrated optical spectroscopy for beam characterization

    Atmospheric identification of active ingredients in over-the-counter pharmaceuticals and drugs of abuse by atmospheric

    pressure glow discharge mass spectrometry (APGD-MS)† Tim M. Brewer*, Jennifer R. Verkouteren, 2011.

    Dischar

    ge

    Gas Plasm

    a MS

    Inlet

    http://onlinelibrary.wiley.com/doi/10.1002/rcm.5136/abstract

  • APDTI-MS - Repeatability

    Cocaine Cocaine repeat analysis

  • APTDI-MS

    Pseudoephedrine Methamphetamine

  • APTDI-MS – solid mixture

    APTDI mass spectrum of Tylenol Allergy. a) is m/z 151,

    M+H+ for acetaminophen, b) is m/z 167, M+ for

    phenylephrine, and c) is m/z 256, M+H+ for

    diphenhydramine

    APTDI mass spectrum of m/z 151, M+H+ for

    acetaminophen