6
Force And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015

Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

  • Upload
    others

  • View
    3

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

Force And Motion I

Dr. Venkat Kaushik Phys 211, Lecture 8

Sep 15, 2015

Page 2: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

First Law

•  Newton’s First Law §  A body at rest remains at rest -- §  A body in uniform linear motion (constant velocity) continues

to move with the same velocity (ie, same magnitude and direction on that straight line) --

§  UNLESS ACTED UPON BY A FORCE •  Newton’s Laws do NOT hold good for all frames

§  need a reference frame does NOT accelerate (also called the inertial reference frame)

•  First Law defines Inertia of an object •  If the body is at rest OR in uniform linear motion

§  then the net (vector sum) of all the forces acting on the body is ZERO

Lecture 8

Page 3: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

Second Law

•  Newton’s Second Law §  If a net (non-zero) force acts on a body, it accelerates in the direction

of the net force. Acceleration of the object is proportional to the net force

§  If the object has a mass m and acceleration a, the net force is given by

•  If the acceleration is zero, then §  The net force is zero §  If there are say 5 forces, each may (or not) be zero, but their vector

sum is zero §  The body could be at rest OR the body could be in a uniform linear

motion §  F1, F2, F3 … FN are a SYSTEM of forces on that body

Lecture 8

T1 =

v0 sin ✓

g

H =

v20 sin2 ✓

2g

T =

2v0 sin ✓

g

R =

v20 sin 2✓

g

quantity 1D 2D 3D

position

#»r rx

ˆi rx

ˆi+ ry

ˆj rx

ˆi+ ry

ˆj + rz

ˆk

avg. velocity

#»r

�t

�rx

�tˆi

�rx

�tˆi+

�ry

�tˆj

�rx

�tˆi+

�ry

�tˆj +

�rz

�tˆk

inst. velocity

d #»r

dt

drx

dtˆi

drx

dtˆi+

dry

dtˆj

drx

dtˆi+

dry

dtˆj +

drz

dtˆk

avg. acceleration

#»v

�t

�vx

�tˆi

�vx

�tˆi+

�vy

�tˆj

�vx

�tˆi+

�vy

�tˆj +

�vz

�tˆk

inst. acceleration

d #»v

dt

dvx

dtˆi

dvx

dtˆi+

dvy

dtˆj

dvx

dtˆi+

dvy

dtˆj +

dvz

dtˆk

inst. acceleration

d2 #»r

dt2d2r

x

dt2ˆi

d2rx

dt2ˆi+

d2ry

dt2ˆj

d2rx

dt2ˆi+

d2ry

dt2ˆj +

drz

dt2ˆk

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

3

Page 4: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

#»r = x

ˆ

i+ y

ˆ

j ,

#»r 0 = 0

#»v 0 = v0 cos ✓

ˆ

i+ v0 sin ✓ˆ

j

#»a = �g

ˆ

j

#»r =

#»r 0 +

#»v 0t�

1

2

#»a t

2

) x

ˆ

i+ y

ˆ

j = v0t cos ✓ˆ

i+ v0t sin ✓ˆ

j � 1

2

gt

j

x = v0t cos ✓

y = v0t sin ✓ �1

2

gt

2

quantity 1D 2D 3D

position

#»r

r

x

ˆ

i r

x

ˆ

i+ r

y

ˆ

j

r

x

ˆ

i+ r

y

ˆ

j + r

z

ˆ

k

avg. velocity

#»r

�t

�r

x

�t

ˆ

i

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j +

�r

z

�t

ˆ

k

inst. velocity

d

#»r

dt

dr

x

dt

ˆ

i

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j +

dr

z

dt

ˆ

k

avg. acceleration

#»v

�t

�v

x

�t

ˆ

i

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j +

�v

z

�t

ˆ

k

inst. acceleration

d

#»v

dt

dv

x

dt

ˆ

i

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j +

dv

z

dt

ˆ

k

inst. acceleration

d

2 #»r

dt

2

d

2r

x

dt

i

d

2r

x

dt

i+

d

2r

y

dt

j

d

2r

x

dt

i+

d

2r

y

dt

j +

dr

z

dt

k

1

#»r = x

ˆ

i+ y

ˆ

j ,

#»r 0 = 0

#»v 0 = v0 cos ✓

ˆ

i+ v0 sin ✓ˆ

j

#»a = �g

ˆ

j

#»r =

#»r 0 +

#»v 0t�

1

2

#»a t

2

) x

ˆ

i+ y

ˆ

j = v0t cos ✓ˆ

i+ v0t sin ✓ˆ

j � 1

2

gt

j

x = v0t cos ✓

y = v0t sin ✓ �1

2

gt

2

quantity 1D 2D 3D

position

#»r

r

x

ˆ

i r

x

ˆ

i+ r

y

ˆ

j

r

x

ˆ

i+ r

y

ˆ

j + r

z

ˆ

k

avg. velocity

#»r

�t

�r

x

�t

ˆ

i

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j +

�r

z

�t

ˆ

k

inst. velocity

d

#»r

dt

dr

x

dt

ˆ

i

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j +

dr

z

dt

ˆ

k

avg. acceleration

#»v

�t

�v

x

�t

ˆ

i

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j +

�v

z

�t

ˆ

k

inst. acceleration

d

#»v

dt

dv

x

dt

ˆ

i

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j +

dv

z

dt

ˆ

k

inst. acceleration

d

2 #»r

dt

2

d

2r

x

dt

i

d

2r

x

dt

i+

d

2r

y

dt

j

d

2r

x

dt

i+

d

2r

y

dt

j +

dr

z

dt

k

1

T1 =

v0 sin ✓

g

H =

v20 sin2 ✓

2g

T =

2v0 sin ✓

g

R =

v20 sin 2✓

g

quantity 1D 2D 3D

position

#»r rx

ˆi rx

ˆi+ ry

ˆj rx

ˆi+ ry

ˆj + rz

ˆk

avg. velocity

#»r

�t

�rx

�tˆi

�rx

�tˆi+

�ry

�tˆj

�rx

�tˆi+

�ry

�tˆj +

�rz

�tˆk

inst. velocity

d #»r

dt

drx

dtˆi

drx

dtˆi+

dry

dtˆj

drx

dtˆi+

dry

dtˆj +

drz

dtˆk

avg. acceleration

#»v

�t

�vx

�tˆi

�vx

�tˆi+

�vy

�tˆj

�vx

�tˆi+

�vy

�tˆj +

�vz

�tˆk

inst. acceleration

d #»v

dt

dvx

dtˆi

dvx

dtˆi+

dvy

dtˆj

dvx

dtˆi+

dvy

dtˆj +

dvz

dtˆk

inst. acceleration

d2 #»r

dt2d2r

x

dt2ˆi

d2rx

dt2ˆi+

d2ry

dt2ˆj

d2rx

dt2ˆi+

d2ry

dt2ˆj +

drz

dt2ˆk

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

(1)

3

T1 =

v0 sin ✓

g

H =

v20 sin2 ✓

2g

T =

2v0 sin ✓

g

R =

v20 sin 2✓

g

quantity 1D 2D 3D

position

#»r rx

ˆi rx

ˆi+ ry

ˆj rx

ˆi+ ry

ˆj + rz

ˆk

avg. velocity

#»r

�t

�rx

�tˆi

�rx

�tˆi+

�ry

�tˆj

�rx

�tˆi+

�ry

�tˆj +

�rz

�tˆk

inst. velocity

d #»r

dt

drx

dtˆi

drx

dtˆi+

dry

dtˆj

drx

dtˆi+

dry

dtˆj +

drz

dtˆk

avg. acceleration

#»v

�t

�vx

�tˆi

�vx

�tˆi+

�vy

�tˆj

�vx

�tˆi+

�vy

�tˆj +

�vz

�tˆk

inst. acceleration

d #»v

dt

dvx

dtˆi

dvx

dtˆi+

dvy

dtˆj

dvx

dtˆi+

dvy

dtˆj +

dvz

dtˆk

inst. acceleration

d2 #»r

dt2d2r

x

dt2ˆi

d2rx

dt2ˆi+

d2ry

dt2ˆj

d2rx

dt2ˆi+

d2ry

dt2ˆj +

drz

dt2ˆk

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

(1)

3

T1 =

v0 sin ✓

g

H =

v20 sin2 ✓

2g

T =

2v0 sin ✓

g

R =

v20 sin 2✓

g

quantity 1D 2D 3D

position

#»r rx

ˆi rx

ˆi+ ry

ˆj rx

ˆi+ ry

ˆj + rz

ˆk

avg. velocity

#»r

�t

�rx

�tˆi

�rx

�tˆi+

�ry

�tˆj

�rx

�tˆi+

�ry

�tˆj +

�rz

�tˆk

inst. velocity

d #»r

dt

drx

dtˆi

drx

dtˆi+

dry

dtˆj

drx

dtˆi+

dry

dtˆj +

drz

dtˆk

avg. acceleration

#»v

�t

�vx

�tˆi

�vx

�tˆi+

�vy

�tˆj

�vx

�tˆi+

�vy

�tˆj +

�vz

�tˆk

inst. acceleration

d #»v

dt

dvx

dtˆi

dvx

dtˆi+

dvy

dtˆj

dvx

dtˆi+

dvy

dtˆj +

dvz

dtˆk

inst. acceleration

d2 #»r

dt2d2r

x

dt2ˆi

d2rx

dt2ˆi+

d2ry

dt2ˆj

d2rx

dt2ˆi+

d2ry

dt2ˆj +

drz

dt2ˆk

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

(1)

3

Third Law •  Defines “contact” force or the force of “interaction”

§  The forces of interaction between two bodies are equal in magnitude and opposite in direction.

§  Force of Action + Force of Reaction = 0 §  The two forces form an “action/reaction pair” §  1 = Bottom Surface of the box §  2 = Top surface of a table (for example) §  F12 = Force of 1 on 2 (Weight) §  F21 = Force of 2 on 1 (Normal Force)

Lecture 8

Page 5: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

Some Forces •  Force

§  due to Earth’s gravitational pull – weight §  due to surfaces in contact – normal force §  due to relative motion between surfaces of contact – friction §  due to rope/string holding (in suspension) a heavy object –

tension •  Setting up and solving problems

§  Identify all objects in the system §  Setup a reference frame §  Identify forces acting on each object using a Free Body Diagram

(FBD) •  remove/isolate the object from the system •  indicate forces acting ON the object due to all other objects

§  Apply Newton’s Laws (usually 2nd and 3rd laws) §  Solve for the unknown (forces, acceleration, mass etc)

Lecture 8

Page 6: Force And Motion I - USC Department of Physics & …boson.physics.sc.edu/~venkat/fall2015/Lecture08.pdfForce And Motion I Dr. Venkat Kaushik Phys 211, Lecture 8 Sep 15, 2015 First

Example 1

•  Assume §  Friction between contact surfaces can be ignored, rope is

massless and does not slip on the pulley, pulley’s mass is negligible compared to 1 and 2 and 2 is falling (moving downward) with an acceleration

Lecture 8

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»r = x

ˆ

i+ y

ˆ

j ,

#»r 0 = 0

#»v 0 = v0 cos ✓

ˆ

i+ v0 sin ✓ˆ

j

#»a = �g

ˆ

j

#»r =

#»r 0 +

#»v 0t�

1

2

#»a t

2

) x

ˆ

i+ y

ˆ

j = v0t cos ✓ˆ

i+ v0t sin ✓ˆ

j � 1

2

gt

j

x = v0t cos ✓

y = v0t sin ✓ �1

2

gt

2

quantity 1D 2D 3D

position

#»r

r

x

ˆ

i r

x

ˆ

i+ r

y

ˆ

j

r

x

ˆ

i+ r

y

ˆ

j + r

z

ˆ

k

avg. velocity

#»r

�t

�r

x

�t

ˆ

i

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j +

�r

z

�t

ˆ

k

inst. velocity

d

#»r

dt

dr

x

dt

ˆ

i

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j +

dr

z

dt

ˆ

k

avg. acceleration

#»v

�t

�v

x

�t

ˆ

i

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j +

�v

z

�t

ˆ

k

inst. acceleration

d

#»v

dt

dv

x

dt

ˆ

i

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j +

dv

z

dt

ˆ

k

inst. acceleration

d

2 #»r

dt

2

d

2r

x

dt

i

d

2r

x

dt

i+

d

2r

y

dt

j

d

2r

x

dt

i+

d

2r

y

dt

j +

dr

z

dt

k

1

#»r = x

ˆ

i+ y

ˆ

j ,

#»r 0 = 0

#»v 0 = v0 cos ✓

ˆ

i+ v0 sin ✓ˆ

j

#»a = �g

ˆ

j

#»r =

#»r 0 +

#»v 0t�

1

2

#»a t

2

) x

ˆ

i+ y

ˆ

j = v0t cos ✓ˆ

i+ v0t sin ✓ˆ

j � 1

2

gt

j

x = v0t cos ✓

y = v0t sin ✓ �1

2

gt

2

quantity 1D 2D 3D

position

#»r

r

x

ˆ

i r

x

ˆ

i+ r

y

ˆ

j

r

x

ˆ

i+ r

y

ˆ

j + r

z

ˆ

k

avg. velocity

#»r

�t

�r

x

�t

ˆ

i

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j

�r

x

�t

ˆ

i+

�r

y

�t

ˆ

j +

�r

z

�t

ˆ

k

inst. velocity

d

#»r

dt

dr

x

dt

ˆ

i

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j

dr

x

dt

ˆ

i+

dr

y

dt

ˆ

j +

dr

z

dt

ˆ

k

avg. acceleration

#»v

�t

�v

x

�t

ˆ

i

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j

�v

x

�t

ˆ

i+

�v

y

�t

ˆ

j +

�v

z

�t

ˆ

k

inst. acceleration

d

#»v

dt

dv

x

dt

ˆ

i

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j

dv

x

dt

ˆ

i+

dv

y

dt

ˆ

j +

dv

z

dt

ˆ

k

inst. acceleration

d

2 #»r

dt

2

d

2r

x

dt

i

d

2r

x

dt

i+

d

2r

y

dt

j

d

2r

x

dt

i+

d

2r

y

dt

j +

dr

z

dt

k

1

1

2 1

2

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4

#»rPA

=

#»rPB

+

#»rBA

#»vPA

=

#»vPB

+

#»vBA

#»aPA

=

#»aPB

iff #»aBA

= 0

v = 2⇡rN/T

#»F 1 +

#»F 2 + · · ·+ #»

FN

=

i=NX

i=1

#»F

i

=

#»F

net

= m #»a

#»F 12 +

#»F 21 = 0

T ˆi+ (N1 �m1g) ˆj = m1aˆi

(T �m2g) ˆj = �m2a ˆj

T = m1a , (N1 �m1g) = 0 , (T �m2g) = �m2a

) a =

m2g

(m1 +m2)T =

m1m2g

(m1 +m2)(1)

4