Folien_SFPS_5

Embed Size (px)

Citation preview

  • 8/10/2019 Folien_SFPS_5

    1/13

    Fig. 5.1

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.1

    5. Silo and bunker pressure calculations5.1 shaft pressures

    5.2 hopper pressures

    5.3 wall thickness of concrete and metal sheet silos

  • 8/10/2019 Folien_SFPS_5

    2/13

    Fig. 5.2

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.2

    Vertikal and Horizontal Pressures at Mass Flow Silo

    height level of flattened

    free bulk surface

    intersection between

    shaft and hopper

    height level of

    discharge opening

    filling

    discharging

    siloheightH

    silo pressures pv and ph

    pv

    pv

    ph

    ph

    pv

    ph

    radial stress field r

  • 8/10/2019 Folien_SFPS_5

    3/13

    Fig. 5.3

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.3

  • 8/10/2019 Folien_SFPS_5

    4/13

  • 8/10/2019 Folien_SFPS_5

    5/13

    Fig. 5.5

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.5

    positi

    ono

    factive

    sh

    ear

    pla

    ne

    Active and Passive Rankine's Stress State Limits

    Yield locus: = tan i+c= tan i( + Z)

    or R= sin i(M+ Z)

    ph,a

    activepassive

    shea

    rstress

    tensile

    strength Z

    cohesion c

    i

    2,a

    a=

    i

    4 2+

    iR,a

    2a

    pv

    1,a

    yieldlocus

    ph,p

    1,p

    p = i

    4-

    2

    M,p =1,p+ 2,p

    2

    positionofpassiveshearplane

    R,p=1,p 2,p

    2

    -

    active passive

    principal stresses

    lateral or

    horizontal

    stress ratio

    2,a= 1+ c1 - sin i

    1 + sin i

    2 cos i

    1 + sin i

    1,p= 2,p+ c1 + sin i

    1 - sin i

    2 cos i

    1 - sini

    lower limit for c= 0 upper limit for c= 0

    ph,p

    pv= = = tan2

    1 + sin i

    1 - sin i(

    4+

    i

    2

    p

    ph,a

    pv= = = tan2

    1 - sin i

    1 + sin i(

    4-

    i

    2a

    active

    i4 2

    +

    pv

    ph,a pv

    ph,p

    passive

    i4 2

    -

    pv

    ph,a

    pvph,p

    normal stress

    given: pv= 1= b.g y

    c, i

    searched: 2 stress states which meet the yield condition

    y

    x

    2,p

  • 8/10/2019 Folien_SFPS_5

    6/13

    Fig. 5.6

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.6

  • 8/10/2019 Folien_SFPS_5

    7/13

    Fig. 5.7

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.7

  • 8/10/2019 Folien_SFPS_5

    8/13

    Fig. 5.8

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.8

  • 8/10/2019 Folien_SFPS_5

    9/13

    Fig. 5.9

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.9

    storage time tL = 22 h

    mFill = 11,5 t

    b = 0,8 t/m3

    e = 33

    w = 23 steel sheet (CF)

    w

    = 18 steel sheet (MF)

    mass flow, switch load pn = (c4- c1) pn cos ,

    TGL 32274/09

    mass flow, switch load pn = b g (H or D),DIN 1055 part 6

    0 5 10 15 20 25 30 35 40

    wall normal pressures ph, pn in kPa

    0

    1

    2

    3

    4

    5

    heigh

    tH,

    H'inm

    mass flow (MF)

    core flowflow

    bondary

    silo

    G 807

    pn

    Wall Normal Pressures ph, pnof Wheat

    measured, filling

    measured, discharging

    calculated, filling

    calculated, discharging,

    load factors c1= 1,4, c4= 3,0

    calculated, DIN 1055 part 6

    c3= 1.8(CF)

    23

    30

    phD = 2,4 m

    measurements according to Scholz

  • 8/10/2019 Folien_SFPS_5

    10/13

    Fig. 5.10

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.10

    Maximum Normal Pressures (Discharging) versus

    Effective Angle of Internal Friction

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    w= 10

    boundariesrough wall

    w=10

    2030 4050

    0 10 20 30 40 50 60

    p*h shaft

    p*n hopper

    20

    30

    405060

    p*h

    ,max,

    p*n,max

    12

    e in deg

    Maximum Vertical Pressures (Filling) versus Effektive

    Angle of Internal Friction

    p*v,max

    0 10 20 30 40 50 60

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    w= 10

    20

    30

    40

    50

    boundary

    rough wall

    = 10 mass flow

    =0,725

    = 2,414

    AUHD

    shafthopper

    w

    =10

    2030 40

    50

    12

    13

    14

    e in deg

    Maximum Vertical Pressures (Filling) versus

    Wall Friction Angle

    0 10 20 30 40 50 60

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    e=30 4050

    12

    13

    isostatic pressure

    boundaryrough wall

    p*v,max

    14

    shaft

    hopper

    60

    w in deg

    Maximum Normal Pressures (Discharging)

    versus Wall Friction Angle

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    30

    4050

    0 10 20 30 40 50 60

    boundariesrough wall

    p*h,max

    ,

    p*n,max

    12

    13

    14

    60e

    =30

    w in deg

    605040

    p*h shaft

    p*n hopper

    Maximum Wall Friction Loads (Discharging)

    versus Effective Angle of Internal Friction

    0 10 20 30 40 50 60

    w=10

    20

    30

    40

    -50

    p*h

    shaft

    p*n hopper

    20

    10

    30

    20

    40

    50

    -10

    e=30

    1

    2

    1,5

    2,5

    0 0

    0,5

    0,6

    0,7

    0,4

    0,3

    0,2

    0,1

    p*

    w,max

    boundaries

    rough wall

    0,5

    60

    4050

    p*

    w,max

    e in deg

    p*

    w,max

    p*

    w,max

    Maximum Wall Friction Loads (Discharging) versus

    Wall Friction Angle

    e=3040

    50

    5040

    0

    0,5

    1

    1,5

    2

    2,5

    0

    0,5

    0,6

    0,7

    0,4

    0,3

    0,2

    0,1

    boundariesrough wall

    0 10 20 30 40 50 60

    60

    60

    e=

    30

    w in deg

    p*w shaftp*w hopper

    p* = p U

    bg A

    .. .

  • 8/10/2019 Folien_SFPS_5

    11/13

    Fig. 5.11

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.11

    1

    2

    3

    4

    5

    6

    78

    p*v,max

    9

    10

    11

    w= 10

    20

    30

    40

    50

    boundary

    rough wall

    = 30 core flow

    =0,725

    = 2,414

    A

    UH

    D

    shaft

    hopper

    w=10

    2030 40

    50

    0 10 20 30 40 50 60e in deg

    Maximum Vertical Pressures (Filling) versus Effektive

    Angle of Internal Friction

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    e=30 4050

    0 10 20 30 40 50 60

    12

    13

    shaft

    hopper

    isistatic pressure

    boundary

    rough wall

    p*v,max

    60

    w in deg

    Maximum Vertical Pressures (Filling)

    versus Wall Friction Angle

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11w= 10

    boundaries

    rough wall

    w

    =10

    2030

    4050

    0 10 20 30 40 50 60

    p*h shaft

    p*n hopper

    20304050

    60

    p*h,max,

    p*n,max

    60

    e in deg

    Maximum Normal Pressures (Discharging) versusEffective Angle of Internal Friction

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    e

    =30 40 50

    0 10 20 30 40 50 60

    e

    =30

    4050

    60

    60

    boundariesrough wall

    p*h,max,

    p*n,max

    w in deg

    p*h shaft

    p*n hopper

    Maximum Normal Pressures (Discharging)versus Wall Friction Angle

    e=30 40 50

    50

    40e=

    30

    0 0

    Ip*

    w,max

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0,4

    0,3

    0,2

    0,10,5

    1

    1,5

    2

    2,5

    3

    p*

    w,max boundaries

    rough wall

    0 10 20 30 40 50 60

    60

    60

    w in deg

    p*h shaft

    p*n hopper

    Maximum Wall Friction Loads (Discharging)

    versus Wall Friction Angle

    3

    w=10 20

    30

    40

    50

    20

    10

    30

    2030

    40

    50

    10

    e=60

    1

    2

    1,5

    2,5

    0

    0 10 20 30 40 50 600

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0,4

    0,3

    0,2

    0,1

    Ip*

    w,max

    boundaries

    rough wall

    0,5

    e in deg

    p*

    w,max

    p*h shaft

    p*n hopper

    Maximum Wall Friction Loads (Discharging)

    versus Effective Angle of Internal Friction

    p* = p U

    bg A

    .

    . .

  • 8/10/2019 Folien_SFPS_5

    12/13

    Fig. 5.12

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_SFPS_5Storage and Flow of Particulate Solids Silo pressure calculations Prof. Dr. J. Tomas 05.05.2014 Figure 5.12

    Necessary Steel Reinforcement of Concrete ASt

    Di,1

    pn

    ASt

    H

    Di

    Di,2

    pn

    Di= Di,1+ Di,2 2

    (1)

    (2)

    (3)

    (4)

    load factors according to TGL 32 274/09

    ( ) coscc1c14or3j +=

    cj= c1 or c3or c4

    with c1= 1,2 ... 1,6 c3= 1,7 ... 2,1

    c4= 2,1 ... 4,0

    hopper

    shaft

    dischargingcore flow

    mass flow

    H2cos/DHp0FStAin ==

    cos2

    cDpA

    StF,

    jsin

    St

    =

    = iwF

    StF,w

    js

    2

    ib

    StD

    H

    tan4exp1tan8

    cDg

    A

    and for the cylindrical shaft:

  • 8/10/2019 Folien_SFPS_5

    13/13