21
Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Fokkerij in genomics tijdperk

Johan van ArendonkAnimal Breeding and Genomics CentreWageningen University

Page 2: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Animal Breeding and Genomics Centre (WU)

Our Mandate: training and research on the role and sustainable utilisation of genetic variation in farm and companion animals.

Expertise in quantitative and molecular genetics. Staff: Scientists, 8 Postdocs and 25 PhD students

37%

26%

37%

Science Foundation University Industry and EU

Funding

• Strong scientific position

• Partnership with industry

• International orientation

Page 3: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

B

G

A

Genomics and bioinformatics

Statistical Genetics

Animal Breeding

Expertise

Animal Breeding and Genomics centre

BiodiversityProductivity, healthand welfare

Quality

Farm animalsAquatic species

Companionanimals Natural

populations

Jobs

Industry

Research

Extension

Page 4: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Breeding: utilizing genetic variation

Creating genetic change Selecting the best animals Using the best animals to produce next generation

Aim: produce animals that perform better

Challenges: Understanding the impact of genetic variation Developing tools to find the genetically best animals

Page 5: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Current breeding schemes

BLUP breeding values: Evolved from sire models to animal model From single to multiple trait analysis

Optimally combines phenotypic information

Emphasis on traits that can be recorded relatively easy (growth rate, milk production, longevity)

Page 6: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Application of Molecular genetics

Objective

Finding genes (QTL) that contribute to genetic variation

Molecular Markers

• Differences in DNA

•Can be measured

Page 7: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Principle QTL mapping

Sire AB

50% A 50% B

Difference: information on location and size of QTL

Genetic markers:make it possible to follow

transmission fromparent to offspring

bad good

Page 8: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

QTL mapping: central role in gene detection

QTL

Development of molecular tools

Phenotypes andGenotypes

Candidate genes:•Comparative Mapping•Data mining•Physiology•Gene expression

QTL analysis

Gene Identification

Page 9: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Genome sequence: increase in molecular tools

Large increase in number of markersChicken genome sequence: 2.8 million SNPs

identified based

Improvement of comparative mapOpportunity to exploit knowledge from other

species

Page 10: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Chicken – human comparative maps

Page 11: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Genomics and breeding for

product quality

Page 12: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Milk Genomics Initiative: started in 2004

Goal: Determine opportunities to change milk composition through breeding

Three activities

1. Measure milk composition of 2000 cows

2. Determine the amount of genetic variation

3. Mapping QTL/genes involved in some components

Partners:

Page 13: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Design of experiment

5 large

families

50 small

families

1000 heifers

50*20

1000 heifers

5*200

Collection of samples on 400 farms:

1. 3 milk samples

2. Blood sample for DNA analysis

Page 14: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Finding genes using molecular genetic information

Measure

performance

Analysis of DNA

Family structure Collection of information

Page 15: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Results on milk fat composition

Verschillen tussen koeien in C16:0

0

50

100

150

200

250

300

350

22 24 26 28 30 32 34 36 38 40 42 44

C16:0 gehalte van melkvet (in gewichtsprocenten)

aan

tal

koei

en

Verschillen tussen bedrijven in C16:0

0

10

20

30

40

50

60

70

80

90

22 24 26 28 30 32 34 36 38 40 42 44

C16:0 gehalte van melkvet (in gewichtsprocenten)

aan

tal

bed

rijv

en

1. Substantial variation in milk fat composition

2. Large genetic variation between cows

3. DGAT1: gene with a large contribution to genetic variation

Page 16: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Milk Genomics Initiative

Unique combination of: Disciplines: from dairy

science to genomics

Industry and University: science for impact

Partners in the chain: from cow to product

Milk Genomics Initiative=Team effort

Page 17: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Utilization of genomic information

1. Gene technology: production of GM animals Application to livestock hindered by many factors including

technology Break through needed to enable site-specific insertion

2. Use genomic information to better exploit natural genetic variation

Marker assisted selection Genomic selection Pedigree reconstruction (e.g. high health chip in pigs)

Page 18: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

High health chip

Pig production chain: no information on pedigree of finishing pigs

Large number of DNA markers: opportunity to trace line and father of origin

Opportunities to improve selection for improved health and carcass quality

Page 19: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Research infrastructure

Maintaining up-to-date research infrastructure

ABI 3730 sequencer Illumina BeadXpressX-tractor Gene

Large scale genotyping: outsourced (Utrecht) External funding essential

Page 20: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Successful collaboration with Industry

Long-term partnership important (no quick wins) Recognition of the interest of industry and

university (understand the driving forces) Contributes to publications in leading journals

Page 21: Fokkerij in genomics tijdperk Johan van Arendonk Animal Breeding and Genomics Centre Wageningen University

Thank you