20
FLUID MECHANICS: AMME2261 summary DON’T FORGET TUTE QUESTIONS AVAILABLE THURSDAY FOR THE NEXT TUTE!!!!!!!!!!!!!!!!!!!!!!!!!!!! Week 1 Contents Module 1: Introduction to fluid properties ............................................................................................ 5 Definition of fluids: ............................................................................................................................. 5 Methods of analysing fluids: ............................................................................................................... 5 Methods of analysis: ........................................................................................................................... 5 Control mass: .................................................................................................................................. 5 Control volume: .................................................................................................................................. 5 Way to answer questions: ...................................................................................................................... 6 Idealised 1 dimensional fluid flow .......................................................................................................... 6 Continuity equation: ........................................................................................................................... 6 Reference frames: Lagrangian ................................................................................................................ 8 Eulerian: .................................................................................................................................................. 8 Pressure, density and continuum ........................................................................................................... 8 Viscosity: ................................................................................................................................................. 9 Dynamics viscosity .................................................................................................................................. 9 Kinematic viscosity: ......................................................................................................................... 9 Surface tension: .................................................................................................................................... 11 gases: .................................................................................................................................................... 12 Standard atmosphere: .......................................................................................................................... 12 Mamometers: ................................................................................................................................... 13 Hydrostatic force on a submerged surface ........................................................................................... 14 Submerged plane surface ................................................................................................................. 14 Centre of pressure ................................................................................................................................ 15 Moment areas of standard shapes ....................................................................................................... 16 Hydrostatic forces on submerged surfaces .......................................................................................... 18 Example ......................................................................................................................................... 18 Buoyancy: .............................................................................................................................................. 19 Example ............................................................................................................................................. 19 Trapezoidal rule: ............................................................................................................................... 20 Stability analysis .................................................................................................................................... 21

FLUID MECHANICS: AMME2261 summary - StudentVIP

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FLUID MECHANICS: AMME2261 summary - StudentVIP

FLUID MECHANICS: AMME2261 summary DON’T FORGET TUTE QUESTIONS AVAILABLE THURSDAY FOR THE NEXT TUTE!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Week 1

Contents Module 1: Introduction to fluid properties ............................................................................................ 5

Definition of fluids: ............................................................................................................................. 5

Methods of analysing fluids: ............................................................................................................... 5

Methods of analysis: ........................................................................................................................... 5

Control mass: .................................................................................................................................. 5

Control volume: .................................................................................................................................. 5

Way to answer questions: ...................................................................................................................... 6

Idealised 1 dimensional fluid flow .......................................................................................................... 6

Continuity equation: ........................................................................................................................... 6

Reference frames: Lagrangian ................................................................................................................ 8

Eulerian: .................................................................................................................................................. 8

Pressure, density and continuum ........................................................................................................... 8

Viscosity: ................................................................................................................................................. 9

Dynamics viscosity .................................................................................................................................. 9

Kinematic viscosity: ......................................................................................................................... 9

Surface tension: .................................................................................................................................... 11

gases: .................................................................................................................................................... 12

Standard atmosphere: .......................................................................................................................... 12

Mamometers: ................................................................................................................................... 13

Hydrostatic force on a submerged surface ........................................................................................... 14

Submerged plane surface ................................................................................................................. 14

Centre of pressure ................................................................................................................................ 15

Moment areas of standard shapes ....................................................................................................... 16

Hydrostatic forces on submerged surfaces .......................................................................................... 18

Example ......................................................................................................................................... 18

Buoyancy: .............................................................................................................................................. 19

Example ............................................................................................................................................. 19

Trapezoidal rule: ............................................................................................................................... 20

Stability analysis .................................................................................................................................... 21

Page 2: FLUID MECHANICS: AMME2261 summary - StudentVIP

Unstable: ........................................................................................................................................... 21

Unconditionally/neutral stable ......................................................................................................... 21

G above B: ......................................................................................................................................... 22

Example ......................................................................................................................................... 23

Fundamentals of fluid dynamics ........................................................................................................... 24

Integral form of fluid dynamics: ........................................................................................................ 24

Conservation of mass ............................................................................................................................ 24

Special forms of flow: ....................................................................................................................... 24

Volume flow rate: ............................................................................................................................. 25

Mass flow rate: ................................................................................................................................. 25

Example ......................................................................................................................................... 25

Conservation of linear momentum ....................................................................................................... 25

Special forms of flow: ....................................................................................................................... 26

Example ......................................................................................................................................... 26

Conservation of angular momentum .................................................................................................... 27

Differential forms of flow ...................................................................................................................... 28

Conservation of mass/ continuity equation ..................................................................................... 28

Cylindrical coordinates: ................................................................................................................. 28

Conservation of linear momentum ................................................................................................... 28

Shear stress in 3D: ......................................................................................................................... 29

Naviar stokes equation: ........................................................................................................................ 29

Fully developed flow: ........................................................................................................................ 29

Euler equation, inviscid fluids: (easier to solve) ................................................................................... 29

Dimensional analysis ............................................................................................................................. 31

Buckingham pi theorem: ....................................................................................................................... 31

To determine pi groups:.................................................................................................................... 32

Significant Ξ  groups: ......................................................................................................................... 32

Reynolds number: ................................................................................................................................. 32

Euler number: ....................................................................................................................................... 33

Froude number: .................................................................................................................................... 33

Weber number: ..................................................................................................................................... 33

Flow similarity: ...................................................................................................................................... 33

Incomplete similarlity: .......................................................................................................................... 33

Inviscid flow .......................................................................................................................................... 35

Euler equation ................................................................................................................................... 35

Inviscid flow over wings: ............................................................................................................... 35

Page 3: FLUID MECHANICS: AMME2261 summary - StudentVIP

Euler equation along a streamline: ................................................................................................... 35

Streamline: .................................................................................................................................... 35

Euler equation along streamline steady flow: .............................................................................. 36

Bernoulli equation ............................................................................................................................ 37

Example ......................................................................................................................................... 37

Static, stagnation and dynamic pressure .......................................................................................... 38

Static pressure ...................................................................................................................................... 38

Stagnation pressure: ......................................................................................................................... 38

Measuring velocity: ........................................................................................................................... 38

Module 5: potential flow theory ........................................................................................................... 39

Stream function: ............................................................................................................................... 39

Definition of stream function ........................................................................................................... 39

Stream function in polar coordinates: .......................................................................................... 40

Potential function: ................................................................................................................................ 42

Definition of Potential function πœ™π‘₯, 𝑦, 𝑑: .......................................................................................... 42

Potential function polar coordinates ............................................................................................ 42

Laplave’s equation: ............................................................................................................................... 42

Laplace equation: .............................................................................................................................. 42

Example: ........................................................................................................................................ 43

Elementary plane flow: ......................................................................................................................... 43

Uniform flow: .................................................................................................................................... 43

Source flow: ...................................................................................................................................... 43

Sink: ................................................................................................................................................... 44

Irrotational vortex: ............................................................................................................................ 45

Doublet ............................................................................................................................................. 45

Superposition of elementary plane flows: ............................................................................................ 45

Direct method (simple approach) ..................................................................................................... 46

Flow past a bluff body: ...................................................................................................................... 46

Rankine body (source, sink, uniform) ............................................................................................... 47

Example: flow over a cylinder ....................................................................................................... 47

Turbomachinary of inviscid fluids ......................................................................................................... 48

Pumps/fans/ blowers/compressors: ............................................................................................. 48

Positive displacement pumps: .......................................................................................................... 48

Dynamic pumps: ............................................................................................................................... 49

Comparison of pump types ........................................................................................................... 50

Euler turbomachine equations: ........................................................................................................ 50

Page 4: FLUID MECHANICS: AMME2261 summary - StudentVIP

Torque: .......................................................................................................................................... 50

Power: ........................................................................................................................................... 51

Head rise/drop: ............................................................................................................................. 51

Radial flow turbomachiary: ............................................................................................................... 51

Viscous flow: ......................................................................................................................................... 52

Internal flow development: .............................................................................................................. 52

For laminar flow: ........................................................................................................................... 53

Turbulent flow: ............................................................................................................................. 53

Transition to turbulence: .............................................................................................................. 53

Fully developed laminar flow in a pipe: ............................................................................................ 53

Laminar pipe flow equations: ........................................................................................................... 54

Reduced naviar stokes: ................................................................................................................. 54

Velocity distribution: ..................................................................................................................... 54

Shear stress: .................................................................................................................................. 54

Volumetric flow rate: .................................................................................................................... 54

Pressure gradient: ......................................................................................................................... 54

Mean velocity: ............................................................................................................................... 54

Max velocity: ................................................................................................................................. 54

Introduction to external viscous flow: .............................................................................................. 56

Pitch, roll, yaw/side,lift,drag ......................................................................................................... 57

Coefficient of lift and drag ................................................................................................................ 57

Drag: .................................................................................................................................................. 57

Drag force ...................................................................................................................................... 58

Drag on a sphere: .......................................................................................................................... 58

Steamlining: ...................................................................................................................................... 59

Common drag coefficients: ............................................................................................................... 60

Lifting bodies: Wing .......................................................................................................................... 62

Lift and drag as a function of angle of attack.................................................................................... 63

Flaps .............................................................................................................................................. 63

Page 5: FLUID MECHANICS: AMME2261 summary - StudentVIP

Module 1: Introduction to fluid properties

Definition of fluids: - A solid can resist shear stresses, and will undergo static deflection (up to a point) if a stress is

applied

- A fluid cannot resist shear stress, and will translate (move) if stress applied

o Liquids: are incompressible and will retain their volume

o Gases: can be compressed and will take the volume of their container

o Fluids are not elastic, but have viscosity

Methods of analysing fluids: 1. Analytical analysis

o Uses equations such as:

Conservation of mass

Newton’s equations

Conservation of angular momentum

1st and 2nd laws of thermodynamics

To analysis and give exact answers to fluid analysic

2. Computational/numerical (CFD)

3. Experimental

o Partial image velocimetry

o Streak/smoke lines

Methods of analysis: 1st step: define the system involved (boundaries, forces, ect)

Usually either control mass or control volme:

Control mass: - Fixed mass of fluid, fluid mass does not cross boundaries, mass doesn’t change, volume can

- Eg: piston is control mass

Control volume: - Fixed volume, mass can change but volume constant; mass flux across boundaries

- Eg: pipe junction

Page 6: FLUID MECHANICS: AMME2261 summary - StudentVIP

-

Way to answer questions: 1. Diagram, labelling control surface, control volume/mass, inlets/outlets, forces ect

2. Write assumptions: eg constant densit

3. Start with fundamental equations

4. Simplify, finally add numbers

Idealised 1 dimensional fluid flow

Continuity equation: If flow is a β€˜continuum’ (the difference between the fluid little volumes is β€˜smooth’, can be called a

continuum

𝜌1𝐴1𝑉1 = 𝜌2𝐴2𝑉2

Eg 1.1:

Page 7: FLUID MECHANICS: AMME2261 summary - StudentVIP

ANSWER:

π΄π‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›π‘ : π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 (π‘€π‘Žπ‘‘π‘’π‘Ÿ 𝑖𝑠 π‘’π‘ π‘’π‘Žπ‘™π‘™π‘¦ π‘Ž π‘”π‘œπ‘œπ‘‘ π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘–π‘ )

οΏ½Μ‡οΏ½1 = οΏ½Μ‡οΏ½2 (π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘šπ‘Žπ‘ π‘  π‘“π‘™π‘œπ‘€ π‘Ÿπ‘Žπ‘‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘π‘œπ‘–π‘›π‘‘ 1 π‘Žπ‘›π‘‘ 2)

πΆπ‘œπ‘›π‘–π‘›π‘’π‘–π‘‘π‘¦ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›:

𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑉2

∴ 𝑉2 =𝐴1𝑉1

𝐴2 (𝜌1 = 𝜌2 (π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›))

=πœ‹ (

𝐷12

4 ) 𝑉1

πœ‹ (𝐷2

2

4 )

(π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’)

= (𝐷1

𝐷2)

2

𝑉2

= (50

30)

2

(2.5)π‘š

𝑠

= 6.9 π‘šπ‘ βˆ’1

Average speed: is the average speed of all the particles along the inlet/outlet (speed of 0 in contact

of pipe, higher speed in centre)

2 1

Control system

Control volume 𝑣2 𝑣1

Page 8: FLUID MECHANICS: AMME2261 summary - StudentVIP

Reference frames: Lagrangian

- Considers elemental globs of fluid (control masses), and forces are solved for each glob

- - Moving reference frame

-

- This is very time costly though, solving βˆ‘οΏ½βƒ—οΏ½ = π‘šοΏ½βƒ—οΏ½; π‘‘π‘œ 𝑔𝑒𝑑 οΏ½βƒ—βƒ—οΏ½(𝑑) π‘Žπ‘›π‘‘ π‘Ÿ(𝑑) for every particle.

- Can be used to analyse discrete phases (eg- a water spray)

Eulerian: - Fixed reference frame

- Make a grid, and monitor the flow through each section of grid

οΏ½βƒ—βƒ—οΏ½ = 𝑉(π‘Ÿ, 𝑑 )

Pressure, density and continuum Fluids are aggregations of molecules, and the distance between molecules can be very large

compared to molecular diameter

- Density on a small scale does not have much meaning, due to microscopic uncertainty.

- Microscopic uncertainty diminishes when you increase the volume and is large compared to

molecular spacing β‰ˆ 10βˆ’9π‘š (most problems will be above microscopic uncertainty)

- For very large observations, there can be smooth variations in density too, called

macroscopic uncertainty (eg: density difference in a room, slightly higher on the floor than

the ceiling)

Page 9: FLUID MECHANICS: AMME2261 summary - StudentVIP

- This fluid is called a continuum, where the variation in fluid property is smooth enough to

perform calculus on. (at very low pressure (eg- atmosphere renty), the molecular spacing

can become too large, as the spacing is comparable to the system size, and so molecular

theory of rarefied gas flow must be used)

Viscosity:

Dynamics viscosity - Measure of a fluid’s resistance to shear stress

- If a stress of 𝜏 is applied, in Newtonian fluids, there is a linear relationship between shear

and resulting strain rate. The top surface moved 𝑑𝑒, and the bottom surface is static

𝜏 βˆπ‘‘πœƒ

𝑑𝑑 =

πœ‡π‘‘πœƒ

𝑑𝑑

∴

∴ 𝝉 = ππ’…πœ½

𝒅𝒕= 𝝁

𝒅𝒖

π’…π’š

(𝑒 = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑖𝑛 π‘ π‘‘π‘Ÿπ‘’π‘ π‘  π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›; 𝑦 𝑖𝑠 π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 β„Žπ‘’π‘–π‘”β„Žπ‘‘) π‘€β„Žπ‘’π‘Ÿπ‘’ πœ‡ 𝑖𝑠 π‘‘π‘¦π‘›π‘Žπ‘šπ‘–π‘π‘  π‘£π‘–π‘ π‘π‘œπ‘ π‘–π‘‘π‘¦

πœ‡ 𝑖𝑠 𝑖𝑛: π‘˜π‘”. π‘šβˆ’1. π‘ βˆ’1 π‘œπ‘Ÿ π‘ƒπ‘Ž. 𝑠

Kinematic viscosity: Ratio of dynamics viscosity to density

Page 10: FLUID MECHANICS: AMME2261 summary - StudentVIP

𝜈 =πœ‡

𝜌, 𝑖𝑠 𝑖𝑛

π‘š2

𝑠

Example 1.2

π΄π‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›π‘ : π‘π‘œπ‘’π‘’π‘‘π‘‘π‘’ π‘“π‘™π‘œπ‘€ (π‘Žπ‘  𝐷 ≫ β„Ž, 𝑖𝑑 π‘π‘Žπ‘› 𝑏𝑒 π‘šπ‘œπ‘‘π‘’π‘™π‘™π‘’π‘‘ π‘Žπ‘  π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘›π‘” β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™π‘™π‘¦)

𝜏 = πœ‡π‘‘π‘’

𝑑𝑦= πœ‡

𝑒

β„Ž

π‘Žπ‘  πΆπ‘œπ‘’π‘’π‘‘π‘‘π‘’ π‘“π‘™π‘œπ‘€: π‘’π‘π‘π‘’π‘Ÿ π‘π‘™π‘Žπ‘‘π‘’ π‘šπ‘œπ‘£π‘–π‘›π‘”, π‘π‘œπ‘‘π‘‘π‘œπ‘š 𝑖𝑠 π‘ π‘‘π‘Žπ‘–π‘‘π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘‘π‘œ 𝑖𝑑

𝑒 = πœ” (𝐷

2) = (

2πœ‹πœ”

60) (

𝐷

2) =

πœ‹πœ”π·

60

∴ 𝜏 =πœ‡ (

πœ‹πœ”π·60 )

β„Ž

𝜏 =𝐹

𝐴=

(𝑇𝐷2

)

𝐴

𝑇 = 𝜏𝐴 (𝐷

2) = 𝜏(πœ‹π·πΏ) (

𝐷

2) =

1

2πœ‹πœπ·2𝐿

𝐷

2

β„Ž

π‘ˆπ‘₯

π‘ˆπ‘₯

Page 11: FLUID MECHANICS: AMME2261 summary - StudentVIP

=1

2(

πœ‡ (πœ‹πœ”π·

60 )

β„Ž ) πœ‹π·2𝐿

=πœ‹2πœ‡πœ”π·3𝐿

120

Non newtonima fluids do not have linear relationships between 𝜏 and deformation rate

𝜏 = πœ‚π‘‘π‘’

𝑑𝑦; πœ‚ = π‘Žπ‘π‘π‘Žπ‘Ÿπ‘’π‘›π‘‘ π‘£π‘–π‘ π‘π‘œπ‘ π‘–π‘‘π‘¦

Surface tension: Fluid behaves like elastic membraine in tension: between a fluid and another fluid or solid

πΉπ‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘‘π‘’π‘›π‘ π‘–π‘œπ‘›: 𝐹𝑑 = 𝜎(𝑙)

𝜎 = π‘“π‘œπ‘Ÿπ‘π‘’ π‘π‘’π‘Ÿ 𝑒𝑛𝑖𝑑 π‘™π‘’π‘›π‘”π‘‘β„Ž; 𝑙 = π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘π‘œπ‘›π‘‘π‘Žπ‘π‘‘ π‘Žπ‘Ÿπ‘’π‘Ž 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘–π‘›π‘’π‘Ÿπ‘“π‘Žπ‘π‘’

Page 12: FLUID MECHANICS: AMME2261 summary - StudentVIP

fluid statics:

dP

dz= βˆ’Οg = βˆ’Ξ³ (specific weight)

P βˆ’ P0 = βˆ’Οg h

gases:

𝑃 = 𝑃0π‘’βˆ’π‘”β„Žπ‘…π‘‡

Standard atmosphere:

Page 13: FLUID MECHANICS: AMME2261 summary - StudentVIP

Pressure is function of depth, and does not depend on geometry

Hydrolic jack:

𝐹1

𝐹2=

𝐴1

𝐴2

Mamometers:

𝑃3 = π‘ƒπ‘Žπ‘‘π‘š + πœŒπ‘”β„Ž

𝑃4 = π‘ƒπ‘Žπ‘‘π‘š + 𝜌𝐻20π‘”β„Ž βˆ’ πœŒπ‘Žπ‘–π‘Ÿπ‘”β„Ž2

Page 14: FLUID MECHANICS: AMME2261 summary - StudentVIP

π‘Š = 𝑃1𝐴 = πœŒπ‘”β„Ž

∴ πΉπ‘œπ‘Ÿπ‘π‘’ π‘Žπ‘π‘π‘™π‘–π‘’π‘‘ = 𝑃2𝐴 βˆ’ π‘Š = πœŒπ‘”(β„Ž2 βˆ’ β„Ž1)

Hydrostatic force on a submerged surface

Submerged plane surface

𝐹𝑅 = ∫ 𝑑𝐹𝐴

= ∫ 𝑃𝑑𝐴𝐴

= ∫ (𝑃0 + πœŒπ‘”β„Ž)𝑑𝐴 = ∫ (𝑃0 + πœŒπ‘”π‘ π‘–π‘›πœƒπ‘¦)𝑑𝐴

= 𝑃0𝐴 + πœŒπ‘” π‘ π‘–π‘›πœƒ ∫ 𝑦𝐴

𝑑𝐴

(∫ 𝑦𝐴

𝑑𝐴 = 𝑦𝑐𝐴 = 1𝑠𝑑 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Žπ‘Ÿπ‘’π‘Ž)

Page 15: FLUID MECHANICS: AMME2261 summary - StudentVIP

𝐹𝑅 = (𝑃0 + πœŒπ‘”π‘ π‘–π‘›πœƒπ‘¦π‘)𝐴 = 𝑃𝑐𝐴 (𝑃𝑐 = π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π‘Žπ‘‘ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘)

Note: if air was on both sides of the surface (eg, at a gate): 𝑃𝑐 =

πœŒπ‘”π‘ π‘–π‘›πœƒπ‘¦π‘

Eg:

πΉπ‘Ÿ = βˆ«π‘π‘‘π΄π΄

= βˆ«πœŒπ‘”(𝐷 + πœ‚ sin 30)π‘€π‘‘πœ‚π΄

(π‘›π‘œπ‘‘π‘’: π‘ƒπ‘Žπ‘‘π‘šπ‘π‘Žπ‘›π‘π‘’π‘™π‘  π‘Žπ‘  π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 π‘œπ‘“ π‘”π‘Žπ‘‘π‘’)

= ∫ πœŒπ‘”(𝐷 + πœ‚ sin 30)π‘€π‘‘πœ‚πΏ

0

= πœŒπ‘” (π·πœ‚ +πœ‚2

4)

0

𝐿

Centre of pressure Even though 𝐹𝑅 is calculated with

𝑦𝑐 (π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘œπ‘“ π‘Žπ‘Ÿπ‘’π‘Ž), 𝐹𝑅 π‘Žπ‘π‘‘π‘  π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž 𝑦′ (π‘π‘’π‘›π‘‘π‘Ÿπ‘’ π‘œπ‘“ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’)

To find centre of pressure:

βˆ‘π‘€0 = 0

∴

𝑦′𝐹𝑅 = ∫ 𝑦𝑃𝑑𝐴𝐴

=

Page 16: FLUID MECHANICS: AMME2261 summary - StudentVIP

= ∫ 𝑦(𝑃0 + πœŒπ‘”β„Ž)𝑑𝐴𝐴

= ∫ 𝑦(𝑃0 + πœŒπ‘”π‘¦π‘ π‘–π‘›πœƒ)𝑀𝑑𝐿𝐴

= 𝑃0 ∫ 𝑦𝑑𝐴𝐴

+ πœŒπ‘”π‘ π‘–π‘›πœƒ ∫ 𝑦2𝑑𝐴𝐴

(1𝑠𝑑 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Žπ‘Ÿπ‘’π‘Ž) + (2𝑛𝑑 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Žπ‘Ÿπ‘’π‘Ž π‘Žπ‘π‘œπ‘’π‘‘ π‘₯: 𝐼π‘₯π‘₯)

𝑀𝑒 π‘π‘Žπ‘› π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝐼π‘₯π‘₯π‘–π‘›π‘‘π‘œ π‘Ž π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘Žπ‘π‘œπ‘’π‘‘ π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘œπ‘“ π‘Žπ‘Ÿπ‘’π‘Ž 𝑖𝑛𝑠𝑑𝑒𝑒𝑑 π‘œπ‘“ π‘Žπ‘π‘œπ‘’π‘‘ 𝑂

∴ 𝐼π‘₯π‘₯ = 𝐼�̂��̂� + 𝐴𝑦𝑐2

…

∴ 𝑦′ = 𝑦𝑐 +πœŒπ‘”π‘ π‘–π‘›πœƒπΌπ‘₯π‘₯

πΉπ‘Ÿ

Moment areas of standard shapes

Page 17: FLUID MECHANICS: AMME2261 summary - StudentVIP
Page 18: FLUID MECHANICS: AMME2261 summary - StudentVIP

Hydrostatic forces on submerged surfaces 𝑑𝑭 = βˆ’π‘ƒπ‘‘π‘¨

𝑭𝑹 = βˆ’ ∫ 𝑃𝑑𝑨𝒙𝑨𝒙

βˆ’ ∫ π‘ƒπ‘‘π‘¨π’šπ‘¨π’š

βˆ’ ∫ 𝑃𝑑𝑨𝒛𝑨𝒛

𝑭𝑹 = 𝐹π‘₯π’Š + 𝐹𝑦𝒋 + πΉπ‘§π’Œ

the resultant:

𝐹𝑅 = 𝐹𝑣 + 𝐹𝐻

Example

↻ +∢ βˆ‘π‘€0 = 0 (𝑖𝑓 π‘”π‘Žπ‘‘π‘’ 𝑖𝑠 π‘π‘™π‘œπ‘ π‘’π‘‘)

∴ πΉπ‘Žπ‘™ βˆ’ 𝐹𝐻𝑦′ βˆ’ 𝐹𝑉π‘₯β€² = 0

𝐹𝐻 = 𝑃𝑐𝐴 = πœŒπ‘”π·

2Γ— 𝐷𝑀 = 396 π‘˜π‘

𝑦′ = π‘¦π‘βˆ— +

𝐼π‘₯οΏ½Μ‚οΏ½

π΄π‘¦π‘βˆ—

Page 19: FLUID MECHANICS: AMME2261 summary - StudentVIP

=𝐷

2+

𝑀𝐷3

12

𝐷𝑀𝐷2

= 2.67π‘š

∴ 𝑦′ = 4 βˆ’ 𝑦′ = 1.33

𝐹𝑣 = π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ 𝑓𝑙𝑒𝑖𝑑 = πœŒπ‘” ∫ (𝑃 βˆ’ 𝑦)𝑀𝑑π‘₯

𝐷2

4

0

= πœŒπ‘”π‘€

π‘₯β€² = 1.2

Buoyancy:

Buoyancy is the net vertical pressure acting on the object

𝑑𝐹𝑏 = πœŒπ‘”(β„Ž2 βˆ’ β„Ž1)𝑑𝐴 = πœŒπ‘”π‘‘β„Žπ‘‘π΄

𝑑𝐹𝑏 = πœŒπ‘”π‘‘π‘‰

𝐹𝑏 = πœŒπ‘”π‘‰ (π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑉 𝑖𝑠 π‘‘β„Žπ‘’ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘‘ π‘£π‘œπ‘™π‘’π‘šπ‘’)

Example A hot air balloon is to lift a basket and payload weighing 270 kg. The balloon may be approximated

as a sphere of diameter of 16 m. To what temperature must the air be heated in order to achieve

lift-off?

𝐹𝑏

π‘Šπ‘”π‘Žπ‘  π‘Šπ‘π‘Žπ‘ π‘˜π‘’π‘‘

Page 20: FLUID MECHANICS: AMME2261 summary - StudentVIP

If in equilibrium:

𝐹𝑏 = π‘Šπ‘ + π‘Šπ‘”

∴ πœŒβ„Žπ‘œπ‘‘ π‘Žπ‘–π‘Ÿπ‘”π‘‰ = π‘šπ‘π‘Žπ‘ π‘˜π‘’π‘‘π‘” + π‘šπ‘”π‘Žπ‘ π‘” = 𝑔(π‘šπ‘ + πœŒπ‘Žπ‘‘π‘šπ‘‰)

πœŒβ„Ž = πœŒπ‘Žπ‘‘π‘š +π‘šπ‘

𝑉

As ideal gas:

𝜌1𝑉1

𝑇1=

𝜌2𝑉2

𝑇2

∴ 𝑇2 =𝜌2𝑇1

𝜌1

In ship design and operation, buoyancy is a critical parameter. Will the ship float? How much more

load can be added? Ships’ hulls are rarely nice simple shapes. There is a tradition of designing ships

with β€œfair lines” for hydrodynamic (e.g. drag) and aesthetic reasons. Example lines plan on the next

page, and example table of offsets is on the next after that. It is generally not possible to analytically

integrate the buoyancy force over the irregular shaped volume that is floating. Numerical integration

(quadrature) is required. Simple quadrature methods are Simpson’s Rule and the Trapezoidal Rule.

Trapezoidal rule:

πΌπ‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β‰ˆ β„Ž (𝑓(π‘₯0)

2+ 𝑓(π‘₯1) + β‹― + 𝑓(π‘₯π‘›βˆ’1) +

𝑓(π‘₯𝑛)

2)