46
1 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential 15.0 Release Lecture 2: RANS Turbulence Models in ANSYS Fluent Turbulence Modeling Using ANSYS Fluent

Fluent-Adv Turbulence 15.0 L02 Rans Models

Embed Size (px)

DESCRIPTION

flujos turbulentos

Citation preview

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 1/46

1 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Lecture 2:

RANS Turbulence Models in A

Turbulence Modeling Using A

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 2/46

2 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Overview

• RANS models in ANSYS-Fluent

 –

Spalart-Allmaras model – k -e family of models

 – k -w family of models

• Includes transition models (covered in L-3)

• Includes SAS model (covered in L-4)

 –Reynolds stress models

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 3/46

3 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Turbulence Models Available in ANSYS F

RANS based

models

One-Equation Model

Spalart-Allmaras

Two-Equation Models

Standard k –ε 

RNG k –ε 

Realizable k –ε 

Standard k –ω 

SST k –ω 

4-Equation v2f  *

Intermittency Transition Modelk  –kl  –ω Transition Model

Transition SST Model

Reynolds Stress Model

Scale-Adaptive Simulation

Detached Eddy Simulation

Large Eddy Simulation

Comp

P

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 4/46

4 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Spalart-Allmaras Model Equations

Modified turbulent viscosity

normal dist

the wall

damping functio

2

1

2

2~

1

~

 

~~

~1~~

~

    

 

  

 

d  f  c

 xc

 x xS c

 Dt  D ww

 j

b

 j j

b             

       

 

   

  

      

~,,~

3

1

3

3

11t  

cv

vv   f   f  

1

2222  11,

~~

v

vv f  

 f   f  d 

S S   

  

 

 

22

6

2

6/1

6

3

6

6

3~

~,g,

1

d S r r r cr 

 g  g  f   w

w

ww

cc

 

 

0~:     conditionboundaryWall

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 5/465 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Default definition uses rotation rate tensor only:

Alternative formulation also uses strain rate tensor:

− reduces turbulent viscosity for vortical flows

− more correctly accounts for the effects of rotation 

Spalart-Allmaras Production Term

  

  

i

 j

 j

i

 xU 

 xU S 

 

ijijij 2

1;2 

)-min(0,  ijij prodij     S C S 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 6/466 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Spalart-Allmaras Model• Spalart-Allmaras model developed for unstructured codes in

aerospace industry

 –

Increasingly popular for turbomachinery applications – “Low-Re” formulation by default 

 – can be integrated right down to the viscous sublayer

 – Fluent’s implementation can also use the wall function (law of the wal

 – Economical and accurate for:

 – wall-bounded flows

 –

flows with mild separation and recirculation

 – Weak for:

 – massively separated flows

 – free shear flows

 – simple decaying turbulence

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 7/467 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Two-Equation Models

• Two transport equations are solved, giving two independfor calculating

 

t

 –

Virtually all use the transport equation for the turbulent kinetic – Several transport variables have been proposed, based on dime

arguments, and used for second equation

 – Kolmogorov, w :

 t     k /w

l

 k 1/2  /  w k  e  /  w 

•w

 is specific dissipation rate

• defined in terms of large eddy scales that define supp

 – Chou, e :

 t     k 2 / e l  k 3/2  /  e 

 – Rotta, l :

 t     k 1/2 l e  k 3/2  / l

 – Boussinesq relation still used for Reynolds Stresses

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 8/468 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

e    e e 

 

  

e    e e 

e 2

2t1

t C S C k  x x Dt 

 D

 j j

 

  

 

Standard k -e Model Equations

production dissipation

inverse time scale

Empirical constants determined from benchmar

experiments of simple flows using air and water

k   –  transport equation

e

  transport equation

coefficients

Finally, turbulent viscosity

ijijt  jk  j S S S S  x

 x Dt 

 Dk 

2;

2t

 

 

 

 

  e   

 

   

2,,, e e e      C C ik 

     

2

 k 

C t  

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 9/46

9 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Closure Coefficients

• Simple flows render simpler model equations

 – Coefficients can be isolated and compared with experiment

 –e.g.,

• Uniform flow past grid

 – Standard k -e equations reduce to just convection and dissipati

• Homogeneous Shear Flow

• Near-Wall (Log layer) Flow

 x

 x

k U 

2

2

d

d;

d

d   e e e  e 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 10/46

10 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

• High-Reynolds number model

 – (i.e., must be modified for the near-wall region)

• The term “standard” refers to the choice of coefficie

• Sometimes additional terms are included

 – production due to buoyancy

• unstable stratification (g·T  > 0) supports k  production

 –

dilatation dissipation due to compressibility• added dissipation term, prevents overprediction of spreading rate in com

Buoyancy

production 

Di

Dis

 x g S 

 x

 x Dt 

 Dk 

it 

t it 

  jk 

  j

2Pr   

2

     

  

  e  

  

      

 

  

 

Standard k -e Model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 11/46

11 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -e Model Pros & Cons

• Strengths:

 – robust

 –

economical – reasonable accuracy for a wide range of flows

• Weaknesses:

 – overly diffusive for many situations• flows involving strong streamline curvature, swirl, rotation, separating flows,

 –

cannot predict round jet spreading rate

• Variants of the k -e model have been developed to addresdeficiencies

 – RNG and Realizable

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 12/46

12 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

RNG k -e Model Equations

• Derived using renormalization group theory

 – scale-elimination technique applied to Navier-Stokes equatequations to specific flow regimes)

• k   – equation is similar to standard k -e model

• Additional strain rate term in e - equation

 – most significant difference between standard and RNG k -e  models

• Analytical formula for turbulent Prandtl numbers

• Differential-viscosity relation for low Reynolds numbers

 – Boussinesq model used by default

  wheree    e e 

  e 

  e e e 

*

 2

2

 1eff  C S C 

k  x x Dt 

 Dt 

  j  j

k S 

C C 

 eff 

0

2

*

2

 ,

 

   

   

e  

  

e e 

coeare

e   transport equation

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 13/46

13 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

RNG k -e Model Pros & Cons

• For large strain rates:

 – where  > 0 e  is augmented, and therefore k  and  

t   are

• Option to modify turbulent viscosity to account for

• Buoyancy and compressibility terms can be included

• Improved performance over std. k -e model for

 –

rapidly strained flows – flows with streamline curvature

• Still suffers from the inherent limitations of an isotrviscosity model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 14/46

14 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Realizable k -e  Model: Motivation

• Standard k -e model could not ensure:

 – Positivity of normal stresses

 – Schwarz’s inequality of shear stresses 

• Modifications made to standard model

 – k  − equation is same; new formulation for t  and e 

 – C 

  is variable

 –  e  − equation is based on a transport equation for the mean

vorticity fluctuation

02 u 

  uuuu  22

2

        

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 15/46

15 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Realizable k -e Model: Realizability

• How can normal stresses become negative?

 – Standard k -e Boussinesq viscosity relation:

 – Normal component:

 – Normal stress will be negative if:

3

2 -

 

2

  ij

i

 j

 j

i

 ji   k  x

 x

U k C uu      

e       

 

  

 

 23

2

 

22

 x

U k 

C k u

e  

 3.73

 e    C  x

U k 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 16/46

16 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Realizable k -e Model: C 

 • C 

 is not a constant, but varies as a function of mean velocity field and

(0.09 in log-layer S k / e = 3.3, 0.05 in shear layer of S k / e = 6)

 contours for 2D backward-facing step

 along bottom-w

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 17/46

17 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Realizable k -e Model Equations

where

e transport equation

turbulent viscosity

e   e   

 

  

e   

e   

 

 

 

 

C S C 

 x x Dt 

 D

 j

 j

2

21 

0.1 ,/,5

,43.0max 21  

  C k S C    e   

 

e e 

      

k U  A A

C k 

 s

t  *

0

2

 

1,

W  A A  s 6cos3

1,cos6,04.4 1

0

    

ijij

ki jk ij

ijijijij   S S S 

S S S W S S U   

~,~ ,*

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 18/46

18 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Realizable k -e Model Pros & Cons

• Performance generally exceeds the standard k -e mo

• Buoyancy and compressibilty terms can be included• Good for complex flows with large strain rates

 – recirculation, rotation, separation, strong

P

• Resolves the round-jet/plane jet anomaly

 –

predicts the spreading rate for round and plane jets

• Still suffers from the inherent limitations of an isotroeddy-viscosity model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 19/46

19 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard and SST k -w Models

• k-w models are a popular alternative to k -e 

 – w  ~   e / k

 –

 

 t     k /  w 

• Can be used in the near-wall region without modificatio

• Wilcox’s original model was found to be quite sensitive tfar-field boundary values of w

• Latest version contains several refinements: – reduced sensitivity to boundary conditions

 – modification for the round-jet/plane-jet anomaly

 – compressibility effects

 – low-Re (near wall) effects

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 20/46

20 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w 

Model

• Standard k -w model in Fluent is Wilcox’ 1998 model 

 

 

 

 

 

  

 

 j

 j j

i

ij

 jk 

 j j

iij

 x x f  

 x

k  Dt 

 D

 x

 xk  f  

 x

 Dt 

 Dk 

 

  w      

w  

w   

 

  w        

w     

w   

  

2

*

*

*

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 21/46

21 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w 

Turbulent Viscosity  

• Turbulent viscosity is computed from:

• The dependency of * upon ReT  was designed to recovecorrect asymptotic values in the limiting cases. In particu

that:

w     

  k t 

*

0.1 ,Re,6

125

9,

3,

Re1

Re 

*

*

0

*

0**

 

  

 

 

  

    

  

  

k  R

 R

 R

T k 

ii

k T 

k T where

turbulent(fully   T Reas1* 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 22/46

22 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w Turbulent Kinetic Energ

• Note the dependence upon ReT  , M t  , andk  

• “Dilatation” dissipation is accounted for via M t  term

• The cross-diffusion parameter ( k 

 ) is designed to improve free shea

     

k of Diffusionk of ratenDissipatio

*

k of  production

*

 

  

 

 jk 

 j j

iij

 x

 xk  f  

 x

 Dt 

 Dk 

 

  w        

  

09.0 ,5.1 ,0.2

8,Re1

Re154

 1

**

4

4

**

***

    

    

     

  

  

  

i

t i

 R R

 R

 M  F   

d-cross

t t 

t t t t 

t t 

 f  

 RT a M a

k  M 

 M  M  M  M 

 M  M  M  F 

    

  

  

  

 

  

2

2

02

2

0

2

0

2

0

,0

4001

6801

01

,4

1,

2

0

*

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 23/46

23 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w Specific Dissipation Equa

• Note the dependence upon ReT  , M t  , and

• Vortex-stretching parameter (w

 )  designed to remedy the plane/rou

 

 

 

 

 j

 j j

iij

 x x

 f  

 x

k  Dt 

 D   w 

 

  w      

w  

w   

  

2

  

  

  

  

i

 j

 j

iij

i

 j

 j

iij

ki jk ij

i

ii

 xU 

 xU 

 xU 

 xU S 

S  f   M  F 

 R R

 R

 

*

3*

**

00

*

21,

21

5.1 ,,801

701,1

0.2,95.2,9

1,

25

13,

Re1

Re

 w   

    

   

  

      

    

 

  

w   

w w 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 24/46

24 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w Sub-models & Options (• “Low-Re Corrections” option  – Corresponds to all terms involving ReT  

terms in the model equations

 –Deactivated by default

 – Can benefit low-Re flows where the meshcan support good near-wall resolution

• “Compressibility Effects” option  – Takes effects via F(Mt  ) 

 –

Accounts for “dilatation” dissipation 

k k 

k d d  s

 x

u

 x

u

   e   e   e   e   

3

4,

 – Available with ideal-gas option only and is turned off  by defaul

 – Improves predictions for high-Mach number free shear flows −

reduces sprea

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 25/46

25 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Standard k -w Sub-models & Options (

• “Shear-Flow Corrections” option – activated by default

Controls both cross-diffusion and vortex-stretching terms

 –

Cross-diffusion term (in k − equation)

• Designed to improve the model performance for free shear flows without afflayer flows

 –Vortex-stretching term• Designed to resolve the round/plane-jet anomaly

• Takes effects for axi-symmetric and 3-D flows but vanishes for planar 2-D flo

3*,

801

701

w     

  

  w 

w   

  ki  jk ij   S 

  f  

    parameter diffusion-cross

  j  j

 x x

k   f  

  w 

w   

    

  

  

   3

2

21

,0

4001

6801

01

*

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 26/46

26 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w 

Model: Background

• Many people, including Menter (1994), have noted

 – Wilcox’ original k -w model is overly sensitive to the freestr

value (BC) of w, while k -e model is not prone to such probl

 – The k -w model has many good attributes and performs mu

better than k -e models for boundary layer flows 

 – Most two-equation models, including k -e models, over-pre

turbulent stresses in the wake (velocity-defect) region, whto poor performance of the models for boundary layers un

adverse pressure gradient and separated flows 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 27/46

27 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w Model: Main Compon

• The SST k -w model consists of

 – Zonal (blended) k -w / k -e equations (to address item 1 and 2

previous slide)

 – Clipping of turbulent viscosity so that turbulent stresses sta

is dictated by the structural similarity constant. (Bradshaw,

addresses item 3 in the previous slide

Inner layer

(sublayer, log-layer) Wilcox’ original k-w  model

e  

e  

23

Wall

Outer layer (wake and

outward)

k -w  model transformed

from standard k -e  model

Modified Wilcox k -w  model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 28/46

28 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w 

Model: Inner Layer  

• The k -w model equations for the inner layer  are tak

Wilcox original k -w 

model with some constants mo

 

  

 

 

  

 

  j

  j  j

iij

  jk 

  j  j

iij

 x x x

 Dt 

 D

 x

 xk 

 x

 Dt 

 Dk 

 

   w    

 

  w   

 

   w      

w 1

2

11

1

*

  41.0,,09.0

0.2,176.1,075.0

1

*2*

11

*111

             

    

w k 

 

 

 

 

 

w    

22

2

22

21

1

500,

09.0

2maxarg,argtanh

,amax

 y y

k  F 

 F 

k at 

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 29/46

29 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w 

Model: Outer Layer  

• The k -w model equations for the outer layer  are obtainetransforming the standard k -e equations via change-of-v

• Turbulent viscosity computed from:

  j  j

  j

  j  j

iij

  jk 

  j  j

iij

 x x

 x x x

 Dt 

 D

 x

 xk 

 x

 Dt 

 Dk 

 

  

 

 

  

 

w   

 

   w    

 

  w   

 

   w      

12 2

2

2

22

2

*

41.0,,09.0

168.1,0.1,0828.0

2

*2*

22

*

222

             

    

w k 

w      k 

t   

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 30/46

30 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w: Blending the Equatio

• The two sets of equations and the model constants are blended in su

the resulting equation set transitions smoothly from one equation to

 

 

 

 

*1

1

2max

maxminarg

tan

k CD

k

 F 

  

w  

ww 

       

   

    

w  ,,,where

1

1

2111

outer 

1

inner 

1

 F  F 

 Dt  Dk  F 

 Dt  Dk  F 

in

in

0

1

1

1

 F 

 F Wilcox’ original k-w  model

23

Wall

k-w  model transformedfrom std. k-e  model

Modified Wilcox k-w  model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 31/46

31 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w: Blended k -w Equatio

• The resulting blended equations are:

Wall

  j  j

  j

  j  j

iij

  jk 

  j  j

iij

 x x

k  F 

 x x x

 Dt 

 D

 x

 x

 x

 Dt 

 Dk 

 

  

 

 

 

 

 

w    

 

  w      

 

  w   

 

  w        

112

21

2

*

               w  ,,,,1 2111   k  F  F   

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 32/46

32 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w: Turbulent Viscosity• Honors the “structural similarity” constant for boundary layer

(Bradshaw, 1967)

• Turbulent stress implied by turbulence models can be written

 – In many flow situations (e.g. adverse pressure gradient flows), production TKE can be much larger than dissipation ( P k  >> e ), which leads to predicteturbulent stress larger than what is implied by the structural similarity con

 – Turbulent stress can be limited by clipping the turbulent viscosity such tha

1967(Bradshaw,11   ak 

vuk avu         

ε

 P k a

 y

U    k t t  1       

k at  1     

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 33/46

33 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w 

Model Clipping  t  

• Turbulent viscosity for the inner layer  is computed f

• Remarks – F 

2 is equal to 1 inside boundary layer and goes to zero far from the wall an

shear layers

 – The name SST (shear-stress transport) originates from this

 – Note that the vorticity magnitude is used (strain-rate magnitude could also

magnitude)(vorticity2 

500,

09.0

2maxarg,argtanh

,min,amax

 

22

2

22

2

1

21

1

ijij

 y y

k  F 

 F 

k ak 

 F 

k a

 

  

 

 

 

 

 

 

w   

w    

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 34/46

34 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Menter’s SST k -w: Submodels & Optio• SST k -w model comes with: – Low-Re Corrections option

(Off by default)

 –

Compressibility Effects option when ideal-

gas option is selected

(Off by default)

• The original SST k -w model in theliterature does not have any of these

options – These submodels are being borrowed from

Wilcox’ 1998 model - should be used withcaution

 – Do not activate any options to recover theoriginal SST model

d l d d

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 35/46

35 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

k -w Models: Boundary Conditions 

• Wall boundary conditions – The Enhanced Wall Treatment (EWT) is the sole near-wall optio

models. Neither the standard wall functions option nor the non

equilibrium wall functions option is available for k-w models inFluent• The blended laws of the wall are used exclusively

• w values at wall adjacent cells are computed by blending the wall-limiti→ 0 ) and the value in the log-layer

 – The k -w

 models can be used with either a fine near-wall mesh onear-wall mesh

• For other BCs (e.g., inlet, free-stream), the following relais used internally, whenever possible, to convert to and fdifferent turbulence quantities:

09.0, **    w   e    k 

d l &

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 36/46

36 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

k -w Models: Pros & Cons

• Use of w instead of e allows for better resolution of bounlayers, especially under adverse pressure gradients

• The Standard k-w model is sensitive to inlet and far field  – The SST k-w model does not suffer from this

• Sometimes more difficult to converge than any of the k-e

• The best RANS models for wall bounded aerodynamic flo

airfoils, compressors, turbines, and flows with separationadverse pressure gradient

 – Use SST to prevent boundary condition sensitivity

• Often the best models for heat transfer predictions

F lt i th B i A ti

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 37/46

37 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Faults in the Boussinesq Assumption

• Boussinesq: R i j  = 2 tS i j

 – Is simple linear relationship sufficient?

• R i j  is strongly dependent on flow conditions and history

• R i j  changes at rates not entirely related to mean flow processes

 – R i j  is not strictly aligned with S i j  for flows with:

• sudden changes in mean strain rate

• extra rates of strain (e.g., rapid dilatation, strong streamline curv

• rotating fluids

• stress-induced secondary flows

• Modifications to two-equation models cannot be generaarbitrary flows

R ld St M d l

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 38/46

38 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

• Starting point is the exact transport equations for th

transport of Reynolds stresses, R ij  

 –

six transport equations in 3D

• Equations are obtained by Reynolds-averaging the p

of the exact momentum equations and a fluctuating

• The resulting equations contain several terms that mmodeled

0)()( 

  i  j  ji   u NS uu NS u

Reynolds Stress Models

Reynolds Stress Transport Equations

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 39/46

39 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Reynolds Stress Transport Equations

ijk 

ijijij

ij

 x

 J  P 

 Dt 

 DR

  e 

Generation  

  

 

ik   j

  j

k iij x

U uu

 x

U uu P     

 

 

 

 

i

  j

  j

iij

 x

u

 x

u p

  j

iij

 x

u

 xu

   e  2

Pressure-Strain

Redistribution

Dissipation

Turbulent

Diffusion

(modeled)

(related to e)

(computed)

(incompressible fl

forces)

Reynolds Stress

Transport Eqns. 

   

(   ji

k   jiik   j  jk iijk    uu x

uuuu pu p J 

         

Pressure/velocity

fluctuations

Turbulent

transport

Molecular

transport

Di i ti M d li

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 40/46

40 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

• Dissipation rate is predominantly associated with sm

eddy motions

 –

Large scale eddies affected by mean shear – Vortex stretching process breaks eddies down into continual

scales

• The directional bias imprinted on turbulence by mean flow is gradually lo

• Small scale eddies assumed to be locally isotropic

•e

  is calculated with its own (or related) transport equation

• Compressibility effects can be included

Dissipation Modeling

e   e  ijij3

2

Turbulent Diffusion

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 41/46

41 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Turbulent Diffusion

• Most closure models combine the pressure diffusion

triple products and use a simple gradient diffusion h

 – Overall performance of models for these terms is generally i

based on isolated comparisons to measured triple products

 – DNS data indicate that above p   terms are negligible

   

 

 

 

  

 

lk  s

 ji

 jik ikjk  ji

k   uu

k C 

 xuu

 xuu

 puuu

 x   e    

  

'

 

 

 

k C 

 x  e  

 2

Or even a simpler model

Pressure Strain Modeling

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 42/46

42 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Pressure-Strain Modeling• Pressure-strain term of same order as production

• Pressure-strain term acts to drive turbulence towards an

isotropic state by redistributing the Reynolds stresses• Decomposed into parts

• Model of Launder, Reece & Rodi (1978)

i

 j

 j

i

i

 j

i

ii   x

u

 x

u

 x

uu

 x x

 p

21

  

 

  

 

  ij

m

l ml 

il   j

  j

l iijij x

U uu

 x

U uu

 x

U uucbc     

3

221

i

 

 j

i

ii   x

 x

u

 x x

 p

2

1 2

  

“Rapid” Part “Slow” Part 

ijbwhere

wijijijij   ,2,1,  

ij  p

Pressure Strain Modeling Options

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 43/46

43 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Pressure-Strain Modeling Options

• Wall-reflection effect

 – contains explicit distance from wall

 –

damps the normal stresses perpendicular to wall – enhances stresses parallel to wall

• SSG (Speziale, Sarkar and Gatski) Pressure Strain Mo

 –

Expands the basic LRR model to include non-linear (quadrati – Superior performance demonstrated for some basic shear flo

• plane strain, rotating plane shear, axisymmetric expansion/contr

Stress Model

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 44/46

44 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Stress-w Model

• Uses the w equation from the standard k -w model rae

  from the k -e model

• Selecting “Low-Re Corrections” in the viscous modelafter selecting “Stress-Omega” activates the same teactivated in the standard k -w model and also low Remodifications of the pressure strain model

• Potentially beneficial compared to other RSM optionwhere the viscous sublayer must be resolved in ordeproduce an accurate solution

 – Predictions of k -w models are generally superior to those ofsuch flows

Characteristics of RSM

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 45/46

45 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Characteristics of RSM

• Effects of curvature, swirl, and rotation are directly a

for in the transport equations for the Reynolds stres

 –

when anisotropy of turbulence significantly affects the meanconsider RSM

• More cpu resources (vs. k -e models) is needed

 –

50-60% more CPU time per iteration and 15-20% additional m

• Strong coupling between Reynolds stresses and the

 – number of iterations required for convergence may increase

Heat Transfer

7/18/2019 Fluent-Adv Turbulence 15.0 L02 Rans Models

http://slidepdf.com/reader/full/fluent-adv-turbulence-150-l02-rans-models 46/46

46 © 2014 ANSYS, Inc. April 23, 2014 ANSYS Confidential

Heat Transfer

• The Reynolds averaging process produces an additio

in the energy equation: (q

 is the fluctuating co

of static temperature) – Analogous to the Reynolds stresses, this is called the turbule

• It is possible to model a transport equation for the heat flux, but

common practice

• Instead, a turbulent thermal diffusivity is defined proportional to

turbulent viscosity – The constant of proportionality is called the turbulent Prandtl

 – Generally assumed that Pr t  ~  0.85-0.9

• Applicable to other scalar transport equations

q iu