22
FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

  • View
    221

  • Download
    1

Embed Size (px)

Citation preview

Page 1: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

FLOW RATE CONTROL SYSTEM

SECOND ORDER PLUS DEAD TIME MODEL

April 20, 2006

U.T.C

Engineering 329

Page 2: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Yellow Team

• Jimy George

• Jeff Lawrence

• Taylor Murphy

• Jennifer Potter

Page 3: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Outline

• Flow System Background

• SOPDT System Theory

• Model Results

Page 4: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Outline

• Proportional Controller

• Comparison of FOPDT & SOPDT results

• Conclusion

Page 5: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Flow System Setup

Page 6: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Block Diagram

Page 7: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Laplace Domain

R(s) C(s)

Page 8: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Time Domain

1)()(

1

12

2)(

1

12

10

02

01

tttt

eettUAKtc

Page 9: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Modeling ObservationsExperimental Versus Model For Step Up Response

66

70

74

78

82

86

90

24 25 26 27 28Time (s)

Inp

ut (

%)

15

16

17

18

19

20

21

Output (lb/min)

Experimental Input

Model InputExperimental Output

Model Output

Page 10: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Parameters involved

A = 15Input Baseline = 70

Output Baseline = 16K = 0.24t0 = 0.4

tau1 = 0.22tau2 = 0.18

Page 11: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Modeling Observations RecapExperimental Versus Model For Step Up Response

66

70

74

78

82

86

90

24 25 26 27 28Time (s)

Inp

ut (

%)

15

16

17

18

19

20

21

Output (lb/min)

Experimental Input

Model InputExperimental Output

Model Output

tau1 = 0.22tau2 = 0.18

Page 12: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Negative Feedback Loop

Kc

R(s) M(s) C(s)

Page 13: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Closed Loop Transfer Function

111

11

21

21

0

0

ss

eKK

ss

eKK

CLTFst

c

st

c

Page 14: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Characteristic Equation

01222220

2102

210

20

130

21

KKs

tKK

ts

tts

tcc

Page 15: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Characteristic Equation

For

024.01048.06.012.00079.0 23 cc KsKss

K = 0.24t0 = 0.4

tau1 = 0.22tau2 = 0.18

Page 16: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Solving CE for Kc

Direct Substitution

Set s = iωU

Set like terms equal to zero

Imaginary part:

[0.0079 ωU3-(0.6 +0.048Kcu) ωU]i=0i

Page 17: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Direct Substitution (cont’d)

Real part:

0.24Kcu - 0.12 ωU2 + 1 = 0

ωU = 5 => fu = 0.8

Kcu = 8.3 %/(lb/min)

Page 18: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Corresponding Frequency Experiment

Response at 0.8Hz frequency

65

70

75

80

85

90

95

10 11 12 13 14 15

Time(sec)

Inpu

t(%

)

15

16

17

18

19

20

21

Out

put

Input Value(%)

Output(lb/min)

Page 19: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Observations

• Phase Angle = -1800

• Amplitude Ratio = 0.12

• Kcu calculated = 8.3

Page 20: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Comparison of fu

SOPDT

Bode Plots Luyben MethodRouth/Direct

Substitution MethodsDirect Substitution

Method

0.87 0.67 1.2 0.8

fu HzFOPDT

Page 21: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Comparison of Kc

SOPDT

Bode Plots Luyben MethodRouth/Direct

Substitution MethodsDirect Substitution

Method

10 9.6 10 8.3

FOPDTKc (%/(lb/min))

Page 22: FLOW RATE CONTROL SYSTEM SECOND ORDER PLUS DEAD TIME MODEL April 20, 2006 U.T.C Engineering 329

Conclusion

• Kc = 8.3 %/(lb/min)

• SOPDT more accurate than FOPDT

• Always scope for improved results