Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, Allogenic Bone in Periodontal Intraosseous Defects

Embed Size (px)

Citation preview

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    1/7

    47

    Long-Term Maintenance of AlveolarBone Gain After Implantation ofAutolyzed, Antigen-Extracted,Allogenic   Bone in PeriodontalIntraosseous  DefectsThomas   F. Flemmig* Benjamin Ehmke* Katja Bolz* Norbert R.  Kühler,1Helge Kareh* Jürgen   F. Reuther,'' and  Bernd  Klaiber4

    This randomized controlled trial assessed the  long-term  maintenance of  alveolarbone  gain   after implantation  of  autolyzed,   antigen-extracted,  allogenic   (AAA)   bone.AAA   bone is   a   demineralized   freeze-dried   bone allograft processed  after previously

    described methods. In  each of  14 patients, AAA  bone was implanted into   the  intraos-seous   defect of   1   tooth  (test);   a   second   tooth with  an   intraosseous   defect was   treatedby   modified  Widman flap  surgery alone (control). All patients were offered supportiveperiodontal therapy  at   3- to   6-month   intervals  following treatment. Clinical measure-ments  were   taken prior  to   surgery,   6  months,   and   3   years  following   surgery.  Of   the14 patients   enrolled,   11 patients   completed   the   6-month   and   8   patients   the 3-yearexamination.   In   test   teeth,   bone gain   was   significantly  greater   compared   to   controlteeth at 6   months (2.2±0.5 mm   and   1.2±0.5  mm,  respectively)  and   3  years (2.3±0.7mm   and   1.1 ±0.8  mm,   respectively)   (P <  0.05).  Also,  more probing   attachment wasgained   in   test  compared   to   control   teeth   at   3   years   (2.0±0.7 mm   and 0.8±0.5  mm,respectively;   < 0.05). At   3   years,  Porphyromonas gingivalis  was   detected   in  3 testand   2   control   teeth by   Polymerase   chain reaction,  whereas  no  Actinobacillus actino-

    mycetemcomitans  was   found.   Due  to   the low   detection frequency,   there was no   clearcorrelation   between   the   maintenance of   alveolar   bone  during  supportive periodontaltherapy   and subgingival   infection with  P. gingivalis.   The   data   indicated that  alveolarbone  gain   after implantation  of AAA   bone   may  be   maintained over   a minimum of  3years   in patients receiving  periodontal supportive therapy. J Periodontal 1998;69:47-53.

    Key Words:   Alveolar   ridge  augmentation;   grafts,   bone;   periodontitis/therapy;  bone,demineralized;  bone, freeze-dried;   bone regeneration; periodontal   regeneration.

    In

    periodontal intraosseous

      defects,  regeneration of

     peri-odontal   tissues   may   be   achieved by   implantation of  au-togenous   or allogenic   bone   and/or  guided   tissue   regen-eration.1-3 Demineralized   freeze-dried   bone   allografts(DFDBA)   appear to  have high osteogenetic potential4 andhistologie   analysis   in   humans   has   indicated   that partialperiodontal regeneration;   i.e.,   alveolar   bone   and  cemen-timi   apposition,   and   formation   of   functionally   oriented

    *Department of   Periodontology,   Julius   Maximilian  University,  Würz-burg, Germany.'Clinic for  Oral  and Maxillofacial Surgery.'Institute  for Hygiene   and Microbiology.

    5Clinic for  Operative Dentistry   and Periodontology.

    periodontal ligament fibers,   may occur

    following implan-tation   of  DFDBA   in   intraosseous   defects.3   Controlledclinical   studies   have   repeatedly   demonstrated   that   im-

    plantation of DFDBA in periodontal  intraosseous   defectsresults in significantly greater   alveolar  bone  and/or prob-ing   attachment gain compared   to   open   debridementalone.56  This has  also   been  shown for autolyzed, antigen-extracted,   allogenic   (AAA)  bone.7-8

    AAA   bone is   a type of DFDBA processed accordingto   the  methods of Urist  et  al.9 with  minor  modifications.In comparison  to   DFDBA,   the procedure  of AAA   bonepreparation   includes   the  extraction of   cell-surface glyco-

    proteins   which  represent  major  antigens  responsible  for

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    2/7

    48   ALLOGENIC BONE GRAFTS IN  PERIODONTAL DEFECTSJ   Periodontol

    January   1998

    bone allograft  reactivity.  In addition,   the collagen matrixof AAA   bone  is   shrunk during preparation, allowing  bet-ter  diffusion of  bone morphogenetic proteins.10   The effi-cacy of AAA   bone has   been investigated   in   animals   andhumans.   It   has   been   demonstrated   that AAA   bone   mayinduce

    heterotopic  new   bone   formation   in   rodents10   and

    non-human primates." In  addition,  in  humans, AAA  bonehas  been clinically  applied for   the   treatment of  bone   de-fects resulting   from  excison of benign bone tumors,12  seg-mentai  defects of  long  bones,13  and to perform intertrans-verse process   spinal   fusion14   and cranioplasties.15

    To   evaluate   the   clinical   value   of   regenerative   tech-niques,   information  on   the long-term  maintenance of re-generated   periodontal   tissues   in periodontal   intraosseousdefects  appears  to  be   crucial. Following guided  tissue re-generation   using   expanded   polytetrafluoroethylene   (e-PTFE)   membranes   in periodontal   intraosseous   defects,

    probing attachment gain   1   year

     following periodontal sur-

    gery  has   been   shown   to   be  maintained in  some patients,while   lost in   others during   the subsequent  years.   Factorsinfluencing   the   maintenance   of periodontal   attachmentgain   include   oral hygiene,   frequency of  supportive  peri-odontal therapy,   subgingival   infection   with Porphyro-monas gingivalis,   and smoking.16-18

    Although there  are  case reports  indicating   that alveolarbone gain   after implantation  of DFDBA   in  combinationwith   ePTFE   membranes   may   be   maintained   for   up   to   5

    years,19   the   observation   time of   all  previous   randomizedcontrolled   trials   assessing  DFDBA   or AAA   bone   werelimited   to   a   maximum  of   1   year.  Therefore,   the presentrandomized   controlled  trial   assessed   the  maintenance ofalveolar  bone gain over  3  years following  implantation ofAAA   bone in periodontal   intraosseous defects.

    MATERIALS AND METHODSThe preparation of AAA   bone slightly   difffered   from   theoriginal AAA   bone procedure   described  by   Urist   et   al.9Briefly,   human  diaphyseal   cortical   bone  ground   in liquidnitrogen   to   a particle   size   less   than  2  mm  was   deminer-alized   and   acid-soluble matrix proteins  were   extracted in0.6 M hydrochloric   acid   at  4°C.  After  demineralization,the bone was   washed  in  distilled water at  4°C  for  30  min-

    utes. Autolytic digestion of  bone  cells was performed byincubation in  0.1  M phosphate buffer, pH  7.4,  containing3 mM N-ethylmaleimide  and 10 mM  NaN3 at  37°C   underagitation for  3 days.  The bone was   then washed   in stirred,de-ionized water for  6  hours  at  4°C.  Collagen   fibrils wereshrunk   and   high-molecular-weight   protein   Polysaccha-rides   were   extracted   in   6  M   lithium   chloride   and   low-

    molecular-weight protein  Polysaccharides  were   extractedby   incubation   in   0.3 M   calcium   chloride  for  24   hours  at4 °C in  the   presence of  3  mM  NaN3.  Thereafter,   the bonewas  washed extensively   in  deionized water at  4  °C for  12hours in   the presence of  10 mM  NaN3   and 3  mM  NEM.

    Lipids,  intracellular components as well  as  cell  membrane

    lipoproteins  were   extracted by   incubation in  chloroform-methanol   (1:1)   for   24   hours   at  room temperature. Afterthe chloroform-methanol was decanted,   the   bone was   airdried.   The   bone   was   then   washed   in   sterile,   deionizedwater   at  4°C   for   4   hours   and deep   frozen. Using   a  cen-

    trifugal mill, the   frozen  bone was

    ground in   the

      presenceof liquid nitrogen to   a  defined particle size of  250   to   500µ .  Thereafter,  the  particles were washed  with  95%  eth-anol for   1   hour   at room temperature   followed  by rinsingwith sterile deionized water at 4°C for   1 hour, deep frozen,lyophilized   for   10   days,   and finally   sterilized   in ethyl-eneoxide   after packing.10

    Study PopulationA   total  of   14   adult   patients  with radiographie   signs  ofinterdental periodontal   intraosseous   defects   and probingattachment   loss  of  more   than   6  mm  on   at   least   2   teethwere   enrolled   into   the

    study.  Patients  representing   a con-

    secutive sample  were   recruited   from   the Department  ofPeriodontology,  School of  Dental Medicine,   Bavarian Ju-lius Maximilian University, Würzburg, Germany.   Patientswith   any of the  following  conditions were  excluded  fromthe   study:   bleeding   disorders;   cardiovascular   diseases;agranulocytosis;   leukemia;   diabetes  mellitus;   use  of  ni-fedipine, phenytoin, cyclosporine A, or  non-steroidal  anti-inflammatory   drugs;   allergies   against  tetracycline,   neo-mycin,  or   local   anesthetics;   and/or  pregnancy.  Smokingwas   not   an   exclusion   criterion.  All   patients   signed   theinformed   consent approved  by   the   Ethics   Committee ofthe   Medical Faculty   of   Julius   Maximilian University,Würzburg.

    Periodontal  TherapyPeriodontal surgery. After completion of full-mouth scal-ing   and root planing   as well   as   oral hygiene instructions,1   tooth  with   a periodontal   intraosseous   defect   was   ran-domly assigned to  receive AAA   bone   (test),  and  a secondtooth  with   a periodontal   intraosseous   defect   was   treatedby open debridement  alone (control)  in  each patient.   Ran-domization was performed  using   a   randomization list  es-tablished  before   the beginning of  the study.

    In   test   teeth,   sulcular  incisions were   made   to   the crest

    of   the   alveolar   bone   and mucoperiosteal   flaps  were   re-flected.   After   removal  of  granulation   tissues,   the surgi-cally-exposed  root   surfaces were   scaled   and planed   withGracey curets  and/or fine  diamond burs with  40 µ grain.AAA   bone  was   reconstituted   in   a   solution  of   3250   LU.

    neomycinsulfate   and   250   LU.   bacitracin11   (1   ml)   andplaced into the   intraosseous  defect up to  the  alveolar crest.For  stabilization,   the implanted AAA   bone  was   coveredwith fibrinogen*1  and a periosteal pedicle flap prepared  aspreviously  described to ensure maximum graft coverage.20

    'Nebacitin,  Bocardes,  Heidelberg,  Germany.'Tissucol  Duo,   Immuno   GmbH,  Heidelberg,  Germany.

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    3/7

    Volume 69Number   1   FLEMMIG, EHMKE, BOLZ, ET  AL.   4

    The   buccal   and lingual   mucosal flaps  were   then reposi-tioned  using  horizontal mattress  sutures.   Control   teeth re-ceived open debridement; i.e.,   modified  Widman flap sur-gery,   alone.21 A periodontal dressing* was placed on  bothtest   and   control   teeth.   Periodontal   dressing   and   sutureswere  removed after  7

    days.Postoperative   medication.   Patients   were prescribed250   mg  tetracycline  q.i.d.   for   14 days   and   instructed   torinse with   15 ml  0.2%  Chlorhexidine digluconate  solutionb.i.d. for  4  weeks. In addition,  500 mg  paracetamole q.i.d.was prescribed  for patient's   comfort.

    Supportive periodontal   therapy.  All  patients   receivedsupportive periodontal therapy; i.e., full  mouth supra- andsubgingival scaling   as  well   as supragingival polishing,   3and   6   months   following  periodontal   surgery.  However,scaling at  3   months was limited to   the supragingival areain   test   and  control   teeth   to  prevent  damaging   the newlyformed periodontal   tissues.   Between   the   6-month   and 3-year examinations, patients were offered periodontal  sup-portive therapy   at   6-month   intervals.

    MeasurementsClinical parameters.   During   the   entire  study   all  clinicalmeasurements   were performed   by   the   same   examinerblinded  to   the  type of  surgical therapy   rendered.   The fol-lowing   clinical  measurements  were performed   at   6   sitesper tooth immediately prior to  and  at  3 months,  6 months,and  3   years following periodontal   surgery:  plaque index,gingival   index,22  probing   depth,   and   relative probing   at-tachment level.   Relative   alveolar   bone   level   was   also

    measured preoperatively   at   6   months   and   3   years   underlocal   anesthesia at  6  sites   per tooth; the periodontal probewas   advanced apically until  a  hard   resistance was  felt. Inaddition,  intraoperatively;   i.e.,  after  reflection of the  peri-odontal flap   and   soft   tissue  degranulation,   alveolar   bonelevel,   intraosseous defect  depth   from   the base of   the   de-fect   to   the crest of  the   alveolar bone,   and the  number of

    bony defect walls were assessed. Probing  attachment leveland  alveolar  bone  level were  measured using a   calibratedprobe**   and   a   customized   stent.   For reproducible mea-surements at the  same sites during  the course of the study,grooves were cut   into   the  stent at   the mesio-buccal, mid-

    buccal,  disto-buccal,  mesio-lingual, mid-lingual,   and dis-to-lingual of  test  and   control   teeth.

    Microbiological   analysis.   At   36   months,   subgingivalplaque  samples were   taken   from   the deepest  sites of testand   control   teeth.   Following   removal   of  supragingivalplaque,  subgingival plaque  was   harvested  using   a   sterilecuret.  Plaque samples were analyzed by polymerase chainreaction  (PCR) for Actinobacillus actinomycetemcomitansand P.  gingivalis with minor  modifications   as previouslydescribed.23-24   The  detection  limit of   the   PCR  for   A.   ac-

    *Coe  Pak,   GC  America Inc.,   Chicago, IL.

    **North   Carolina  Periodontal  Probe,  Hu-Friedy,  Chicago, IL.

    Table   1.   Mean  ±   SEM Periodontal  Parameters of  Test   and   Control  Teeth  at   Baseline of  8   Patients   Completing  the  36-Month Examination

    Test   Control

    Plaque   index   0.7 ±   0.2   0.7  ±  0.2Gingival   index   0.5  ±   0.1   0.7  ±  0.1

    Probing  depth  (mm)   5.3  ±   0.6   6.0 ±   0.5Defect depth (mm)   4.7  ±   0.7   5.3   ±   0.6

    tinomycetemcomitans and P. gingivalis was   101   CFU and102 CFU,   respectively.24-25 However,   since  only   15  µ othe   1   ml  plaque  suspension were analyzed,  the   detectiolimits   per ml suspension were approximaly   103 CFU/mand   104  CFU/ml   for   A.  actinomycetemcomitans   and   Pgingivalis,   respectively.   Precautions   as   described byKwok   and Higuchi25 were   used to  prevent  contamination

    Statistical

     AnalysisIn  each   tooth,   the   2 deepest   sites  of   the  periodontal   intraosseous   defect   were   used   for   analysis.   Correlatedpaired   f-test,  which adjusts  for   site-to-site dependencieswas used to   assess treatment  effects between test  and control   teeth   and long-term  changes   (from  6   to   36  monthswithin each group.26 As  a primary outcome variable,  bone

    probing   level   was   used.   Correlations   between   pre-   andintraoperative alveolar bone  level measurement as  well abetween plaque   and gingival   index   scores   and   maintenance  of  alveolar   bone   level  from   6   to   36   months  were

    assessed   using   Spearman's   correlation   coefficient.   Aldata are presented  as means ±   standard error of the mean

    RESULTS

    Study Population  and Periodontal   IntraosseousDefectsEleven  of   the   14 patients   enrolled   into   the study  completed  the   6-month  examination   and 8 patients (4  femaleand  4   males with   a  mean   age of  47.3  ±   4.1 years) werere-examined  at  36  months. There were no significant differences   in   the   clinical parameters  between   test   and control   teeth   at   baseline   (Table   1).  In   test   defects,   3   had  bony wall,   1   had 2  bony walls,   and 4   had  3 bony wallsin  control defects,   1   had  1 bony wall, 2  had 2  bony wallsand 5   had  3 bony   walls.

    Short-Term Clinical Treatment  Outcome FollowingImplantation of AAA   BoneIn   11 patients,   implantation of AAA   bone in periodontaintraosseous   defects   resulted in  significantly greater gaiof   alveolar   bone   level   (2.2±0.5  mm)  compared   to   opedebridement alone (1.2±0.5 mm)   at  6  months (P < 0.05(Fig.   1); compared to   the initial  intraosseous defect depthosseous defect fill in test  and control  teeth was 46.1%  an

    19.2%,   respectively.   The probing   attachment gain   wa

    also significantly higher in test (2.3 ±0.5 mm)  than in con

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    4/7

    50   ALLOGENIC BONE  GRAFTS  IN PERIODONTAL   DEFECTSJ   Periodontol

    January 1998

    n=ll   n=8   Test   Control

    ^ ( 

    BL

    36   months

    Figure   1. Mean alveolar bone   level (BL) changes in  test (T) and control(C)  teeth.  Error   bars   indicate   SEM  and  positive  values gain; * signifi-cant difference between   and C,   <  0.05.

    n=ll   n=8

    AL

    36   months

    PD

    Figure 2.   Mean  attachment level (CAL) and probing depth (PD) changesin   test (T)   and control   (C)  teeth.  Error   bars   indicate  SEM, positive  val-ues gain   and negative   values reduction; * significant difference  between  and  C,   <  0.05.

    trol   teeth   (0.8 ±0.3  mm)  at   3   months   (P < 0.05).  How-ever,  both   test   and control   teeth  demonstrated great   vari-

    ability   in   bone   level   and probing   attachment.   Althoughthere   was   a   trend   towards   greater   reduction   in probingdepth   in   test   compared   to   control   teeth,   the   differencebetween groups  did not  reach statistical significance (P   =0.09,  at  6  months)   (Fig.  2).

    Long-Term  Maintenance of Treatment  OutcomeFollowing Implantation of AAA   BoneIn  the  8  patients completing  the  study,  significantly great-er   alveolar   bone   gain   and probing   attachment gain  wasfound   in  test  (2.3±0.7 mm   and 2.0±0.7  mm,  respective-ly)   compared   to   control   teeth  (1.1±0.8  mm   and   0.8   ±0.5  mm,   respectively)   at  36   months   (P < 0.05).   From   6

    to  36 months, no significant changes in  alveolar bone lev-

    36   months7-P.g.-SmokerSmoker

    Figure 3.   Mean alveolar  bone   level changes in  each   individual test andcontrol   tooth,   indicates patient number;   "P.g." subgingival  detectionof P. gingivalis at  36  months;   and   "smoker"  an   active  smoking habit;-indicates 2 coinciding  values;^^^~indicates   4 coinciding  values.

    Test   Controln=ll   n=8

    36   months7-P.g.-Smoker

    3-P.g.3'6   monlhs

    7-P.g.-Smoker

    Figure 4.   Mean probing  attachment level changes in  each   individual testtooth, t   indicates patient  number;   "P.g."  subgingival  detection of P.gingivalis  at   36 months;   and   "smoker" an  active  smoking habit;-indicates  2 coinciding  values;^^^~indicates   4 coinciding   values.

    el, probing   attachment level,   and probing depth   occurredin  test or   control   teeth   (Figs.   1 through  5).

    Parameters Influencing Long-Term TreatmentOutcomeAt  36   months,   subgingival  P. gingivalis  was   found in   3test   and 2   control   teeth,   whereas  A.  actinomycetemcomi-tans  was  not   detected in   any of   the investigational   teeth.Subgingival   infection  with   P. gingivalis  did   not   have   aconsistent  influence on   the  maintenance of   alveolar  bonelevel in   test or   control   teeth (Figs.   3   and  4).

    Only   1 patient  (number 7) was an  active  smoker duringthe   course   of   the study   and   the only   patient   who lostalveolar   bone   level   in   the   test   tooth   after  6  months.  Al-though  the   alveolar  bone   level was  stable in   this patient'scontrol tooth  after 6 months,  there had been  alveolar boneloss immediately  after periodontal surgery. In  this patient,both   test   and   control   teeth  were   also   infected   subgingi-vally with   P. gingivalis   (Figs.   3   and 4).

    In test   and control  teeth, mean plaque   index  scores didnot  change significantly over  the course of  the study; i.e.,after completion of initial therapy. In addition,   there wasno significant   correlation  of   plaque   index   and gingivalindex  scores   at   6  or   36   months with   the   maintenance of

    alveolar  bone   level.

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    5/7

    Volume 69Number   1   FLEMMIG,  EHMKE, BOLZ, ET  AL.   5

    Test

    baseline   6  months   36  months

    Control

    baseline   6  months   36  months

    Figure  5.  Representative  radiographs  of intraosseous  defects   treated by  implantation of AAA   bone (test) ormodified  Widman flap  surgery  alone  (control) at  baseline  and   6  and 36   months following  therapy.

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    6/7

    52   ALLOGENIC   BONE GRAFTS IN  PERIODONTAL  DEFECTSJ   Periodontol

    January  1998

    Correlation Between Pre-   and IntraoperativeAlveolar   Bone Level Measurements

    Preoperative   alveolar   bone   level   measurements   showedhigh  correlation with   the  alveolar  bone   level  assessed in-traoperatively (r   = 0.97,   < 0.0001).

    Compliance With Supportive  Periodontal TherapyThe   8 patients completing   the study   attended  supportiveperiodontal therapies  with   an average   interval of  6.5 ±3months  and   a   range of  4  to   9   months.

    DISCUSSIONThe   short-term   results of   this study  confirm previous re-ports   indicating   that implantation  of AAA   bone  in peri-odontal   intraosseous   defects   may   result   in   significantlymore   alveolar   bone gain compared  to   open  debridementalone.  The  amount of osseous  defect fill  after implantationof AAA   bone fill;   i.e., 46%, was  similar to   that  found in

    other   studies   following   implantation   of  AAA   bone   orDFDBA  where   the defect fill ranged  from 48% to  65%.5-7Although   there was significantly more   alveolar bone gainfollowing  implantation of AAA   bone compared   to   opendebridement alone,   the mean  difference in   alveolar  bone

    gain between test  and control teeth was only 1.0 ±0.5 mm.A   risk-benefit  assessment   for   the   use  of AAA   bone   in

    periodontal regeneration   is  necessary   in light of potentialdisease   transmission by   allografts   which   is estimated  tobe   minimal   but not risk  free.27 In  addition, mean   alveolarbone gain   results were highly  variable,   ranging   from 0.5mm   to   4.5   mm,   indicating   a  low predictability of  treat-ment outcome. Highly   variable   results  have been also re-ported for  other  regenerative techniques;   e.g.,  guided   tis-sue regeneration.2829

    The long-term results of  this randomized controlled tri-al   demonstrated for   the   first   time   that   alveolar   bone   and

    probing  attachment gain   after  implantation of AAA   bonein periodontal   intraosseous defects   may   be   maintainedover   a   minimum   of   3   years   in patients   receiving   sup-portive periodontal therapy.  Maintenance of alveolar boneand probing  attachment levels was similar in both test  andcontrol defects.  This indicates that  the newly formed boneand periodontal   attachment   after implantation  of  AAA

    bone   may   react similarly   to   supportive periodontal   ther-apy   as non-grafted   defects   following   open   debridementand supports  previous  reports  demonstrating   a compara-ble   behavior of probing  attachment   levels in  sites   treatedby   GTR   and sites   treated conventionally during support-ive periodontal  therapy.18   Since   the   3 patients   not  com-plying  with   supportive periodontal  therapy   did  not  com-plete   the   36-month   examination,   it   remains   unknownwhether   the   short-term   treatment   outcome   after   implan-tation of AAA   bone can be  maintained without supportiveperiodontal therapy.

    Subgingival  detection of P. gingivalis   4   years follow-

    ing periodontal regeneration using  ePTFE  membranes has

    been previously   associated with   a significantly   increasedrisk for  probing   attachment   loss during  supportive  peri-odontal therapy.17   In   the present  study,   the  only patientdemonstrating   loss of   alveolar   bone  and  probing   attach-ment in   the test  tooth during  supportive periodontal   ther-apy   had subgingival   P. gingivalis   and   was   an   activesmoker.   Since no   other patient experienced  alveolar  boneloss   at   the   test   site,   the  statistical  power was   too low   to

    identify   any single   factor   that adversely  influenced  main-tenance of the short-term treatment outcome.  Another ma-

     jor risk   factor   associated  with probing   attachment   lossafter guided  tissue  regeneration (GTR);   i.e.,  high plaquescores, was absent in   this study;16   18 all patients performedgood   oral  hygiene during   the course of   the study   (meanplaque   index  of   0.9±0.3  or   less).  Thus,  gained   alveolarbone   and probing   attachment following   the   implantationof  AAA   bone   and following   GTR using   ePTFE  mem-branes   may be   maintained over  a long period in patientspracticing   good   oral   hygiene   and   receiving   supportiveperiodontal  therapy.18-30

    Bone   level  measurements  by  sounding   under   local  an-esthesia were found to  correlate highly with intraoperativebone   level  measurements   (r   = 0.97,   < 0.0001).   Thisfinding   indicates that re-entry procedures to   determine al-veolar   bone gain   after regenerative  procedures   may   beunnecessary,   thereby  facilitating  patient   recruitment   andcompliance   for   clinical   trials assessing   long-term   treat-ment   outcomes  of  regenerative   procedures.   In  addition,the risk of losing   bone resulting  from   the   reflection of  amucoperiosteal  flap31   may  be   avoided.   In   Class II   furca-

    tions, it  has been  reported   that gained   alveolar   bone fol-lowing   reconstructive  periodontal   surgery  was   lost afterre-entry  procedure.32-34

    The results of  this  study  indicated   that implantation  ofAAA  bone   in  intraosseous periodontal   defects may   resultin higher alveolar bone and  probing  attachment gain com-pared   to open   debridement   alone.   In patients   receivingsupportive  periodontal   therapy,   the   short-term  treatmentoutcome   may be   maintained over  a  minimum of  3   years.However,   due  to   the  low,   but   statistically   significant   in-cremental alveolar  bone and probing  attachment gain fol-lowing  implantation of AAA   bone compared to   open  de-

    bridement   alone,   the high  variability  of results,   and   theminimal   but potential  risk for   disease  transmission,   theclinical  relevance of   this regenerative technique needs   tobe  questioned.

    AcknowledgmentsThe   authors   are   indebted   to   C.   Kopp for   excellent   tech-nical   assistance,   Dr.   I.   Haubitz for   conducting   the   statis-tical   analysis,   and   D.M.S. Flemmig   for reviewing   themanuscript.

    REFERENCES1.   Hiatt WH,  Schallhorn RG,  Aaronian  AJ.  The   induction of new bone

    and cementum

      formation.   IV. Microscopic  examination of  the   per-

  • 8/16/2019 Flemmig1998- Long-Term Maintenance of Alveolar Bone Gain After Implantation of Autolyzed, Antigen-Extracted, A…

    7/7

    Volume 69Number   1   FLEMMIG,  EHMKE, BOLZ, ET AL.   53

    iodontium following   human   bone   and marrow   allograft,   autografiand nongraft   periodontal   regenerative  procedures.   J   Periodontol1978;49:495-512.

    2.   Cortellini   P,   Pini   Prato  G,   Tonetti MS. Periodontal regeneration  ofhuman infrabony   defects.  III.   Re-entry  procedures   and   bone   mea-surements. J  Periodontol   1993;64:261-268.

    3.   Bowers GM,   Chadroff B,   Carnevale  R,   et  al. Histologie  evaluation

    of new   attachment apparatus formation   in   humans.   Part   IH. J  Per-iodontol   1989;60:683-693.

    4. Mellonig  JT,  Bowers GM,   Cotton  WR.   Part II.   New  bone formationwith autografts   and   allografts:  A  histological   evaluation.  J  Perio-dontol   1981;52:297-302.

    5.   Meadows  CL,   Gher ME,   Quintero   G,  Lafferty  TA.  A comparisonof polylactic   acid granules   and  decalcified   freeze-dried   bone   allo-grafts   in  human periodontal  osseous defects.  J   Periodontol 1993;64:103-109.

    6. Mellonig  JT.  Decalcified  freeze-dried bone_  allografts   as   an implantmaterial in  human periodontal defects. Int  J Periodontics RestorativeDent   1984;4:41-55.

    7.   Blumenthal  ,   Steinberg   J.   The   use  of collogen  membrane barriersin conjunction with   combined   demineralized bone-collagen gel im-

    plants  in  human infrabony  defects.  J   Periodontol  1990;61:319-327.8. Flemmig   TF,   Ehmke  B,  Kiibler  N,   Bolz  ,   Reuther  J,  Klaiber  .Implantation   von autolysiertem,   Antigen-extrahiertem,   allogenemKnochen   zur   Rekonstruktion   vertikaler   Alveolarknochendefekte.

    Dtsch Zahnaerztl   1995;50:395-399.9.   Urist  MR,  Mikulski   A,   Boyed   SD.  A   chemosterilized antigen  ex-

    tracted autodigested   alloimplant  for   bone   banks.  Arch Surg   1975;110:416-428.

    10.   Kubier  ,   Reuther   J,  Kirchner  ,   Priessnitz  ,   Sebald   W.   Osteo-induetive,  morphologic,   and   biochemical properties   of   autolyzed,antigen-extracted,   allogenic   human   bone.   J   Oral  Maxillofac   Surg1993;51:1346-1357.

    11. Ripamonti   U. Bone   induction   in   nonhuman primates—an experi-mental study  on   the  baboon.   Clin Orthop   1991;269:284-294.

    12.   Iwata H,

      Hanamura H,

     Kaneko M,

      et   al.   Chemosterilizedautolyzedantigen-extracted allogenic  (AAA)   bone   matrix gelatin   for repair of

    defects   from   excision of  benign  tumors:   a preliminary report.  ClinOrthop  1981;154:151-155.

    13.   Johnson  EE, Urist  MR,   Finerman  GAM.   Resistant nonunions   and

    partial or complete   segmental   defects of long   bone—treatment withimplants   of   a composite   of   human   bone morphogenetic   protein(BMP)   and autolyzed, antigen-extracted,   allogenic   (AAA)   bone.Clin Orthop   1992;277:229-237.

    14.   Urist MR,   Dawson  E.   Intertransverse  process   fusion with  the   aid ofchemosterilized autolyzed,  antigen-extracted, allogenic (AAA) bone.Clin Orthop   1981;154:97-113.

    15.   Kübler  ,   Michel  C,  Zöller  J,  Bill  J, Mühling  J,   Reuther  J. Repairof   human   skull   defects using   osteoinductive   bone alloimplants. / 

    Craniomaxillofac Surg  1995;23:337-346.

    16. Weigel  C,  Brägger U,  Hämmerle CHF,  Mombelli A, Lang NP. Main-tenance of  new   attachment   1   and   4   years following   guided   tissue

    regeneration  (GTR).  J  Clin Periodontol   1995;22:661-669.17.   Cortellini   P,   Pini-Prato   G,   Tonetti   M.   Periodontal regeneration  of

    human infrabony   defects   (V).  Effect of   oral hygiene  on long-termstability.   J  Clin Periodontol   1994;21:606-610.

    18.   Cortellini   P,   Pini-Prato  GP,  Tonetti   MS. Long-term  stability of clin-ical   attachment following   guided   tissue regeneration  and   conventi-onel therapy.   J   Clin Periodontol  1996;23:106-111.

    19.   McClain   PK,   Schallhorn   RG. Long-term   assessment of   combinedosseous composite  grafting, root conditioning, and guided   tissue re-

    generation. Int  J   Periodontics Restorative Dent   1993;13:9-27.20.   Flemmig TF,  Bolz  , Jung  . Lappenoperationen  zur rekonstruktiv-en Therapie   interdentaler   Knochendefekte. Parodontologie   1994;4:277-289.

    21. Ramfjord  SP,  Nissle   RR.   The   modified  Widman flap. J Periodontol1974;45:601-607.

    22.   Löe  H. The gingival   index,   the plaque   index   and the   retention indexsystem. J  Periodontol   1967;38:610-614.

    23.   Bodinka  A,   Schmidt  H,   Henkel  ,  Flemmig   TF,   Klaiber  B,  Karch . Polymerase chain reaction for  the   identification of Pophyromonasgingivalis collagenase genes.   Oral Microbiol   Immunol  1994;9:161-165.

    24. Flemmig   TF,  Rüdiger   S,   Hofmann  U,   et   al.   Identification of Acti-nobacillus  actinomycetemeomitans  in subgingival  plaque by PCR. JClin Microbiol  1995;33:3102-3105.

    25.   Kwok   S,  Higuchi   R. Avoiding   false positives  with   PCR.  Nature1989;339:237-238.26.   Eliasziw  M,   Donner A.  Application of  matched pair procedures   to

    site specific   data   in periodontal   research.   J Clin  Periodontol  1991;18:755-759

    27. Mellonig   JT,   Prewett   AB,  Moyer  MR  HIV   inactivation   in   a   boneallograft.  J   Periodontol   1992;69:979-983.

    28.   Handelsman   M, Davarpanah   M,   Celletti   R.   Guided   tissue   regener-ation   with   and without citric   acid  treatment in  vertical  osseous   de-fects.  Int  J   Periodontics Restorative Dent  1991;11:350-363.

    29.   Laureil L,   Falk H,  Fornell  J,   Johard  G,  Gottlow   J.  Clinical  use of  abioresorbable  matrix   barrier  in guided   tissue  regeneration  therapy.Case report.  J Periodontol  1994;65:967-975.

    30.   Becker W,  Becker  BE.  Treatment of 3-wall intrabony  defects by flapdebridement   and expanded  polytertrafluorethylene   barrier   mem-

    branes. Long-term  evaluation of  32   treated   patients. J  Periodontol1993;64:1138-1144.31.   Wood DL,  Hoag FM,   Donnenfeld OW,   Rosenfeld ID. Alveolar crest

    reduction following  full   and partial   thickness flap.  J   Periodontol1972;43:141-144.

    32.   Garrett  S, Martin  M,  Egelberg  J.   Treatment of periodontal  furcationdefects. Coronally positioned flaps versus   dura mater  membranes inclass II  defects. J   Clin Periodontol  1990;17:179-185.

    33. Games B, Martin M,  Garrett S, Egelberg  J.  Treatment of periodontalfurcation defects   (II).   Bone regeneration  in   mandibular class II   de-fects. J   Clin Periodontol  1988;15:232-239.

    34. Haney   JM,   Leknes   KN,   Gantes  BG,  Wikesjö   UME.   4   to   5-yearclinical follow-up  of   mandibular   class   II   furcation   defects   treatedwith citric   acid  and  coronally  positioned flaps. J Periodontol  1991;62:801 (Abstr.).

    Send reprint requests to:   Dr.   Thomas  F.  Flemmig, Department of  Per-iodontology, Pleicherwall  2,  97070 Würzburg, Germany;   fax:   +49-931-201-7268;   e-mail: [email protected]

    Accepted   for publication  May   19,   1997.