11
This article was downloaded by: [University of Oklahoma Libraries] On: 09 April 2013, At: 13:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Applicable Analysis: An International Journal Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gapa20 Fixed points of mixed monotone operators with applications Dajun Guo a a Department of Mathematics, Shandong University, People's Republic, Jinan, Shandong, China Version of record first published: 02 May 2007. To cite this article: Dajun Guo (1988): Fixed points of mixed monotone operators with applications, Applicable Analysis: An International Journal, 31:3, 215-224 To link to this article: http://dx.doi.org/10.1080/00036818808839825 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Fixed points of mixed monotone operators with applications

  • Upload
    dajun

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

This article was downloaded by: [University of Oklahoma Libraries]On: 09 April 2013, At: 13:38Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International JournalPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/gapa20

Fixed points of mixed monotone operators withapplicationsDajun Guo aa Department of Mathematics, Shandong University, People's Republic, Jinan, Shandong, ChinaVersion of record first published: 02 May 2007.

To cite this article: Dajun Guo (1988): Fixed points of mixed monotone operators with applications, Applicable Analysis: AnInternational Journal, 31:3, 215-224

To link to this article: http://dx.doi.org/10.1080/00036818808839825

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyoneis expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

Applicable Analysis, Vol. 31. pp. 215-224 Reprints available directly from the publisher Photocopying permitted by license only 0 1988 Gordon and Breach, Science Publishers, Inc Pr~nted in Great Britain

Fixed Points of Mixed Monotone Operators with Applications Communicated by R . P. Gilbert

DAJUN GUO Department of Mathematics, Shandong Univers i ty , J inan , Shandong, People ' s Republic of China.

AMS(M0S): 47H

Abstract Existence and uniqueness theorems of f ixed p o i n t s f o r some mixed monotone ope ra to r s a r e inves- t i g a t e d and a p p l i c a t i o n s t o ord inary d i f f e r e n t i a l equat ions a r e given.

KEY WORDS: Cone and partial ordering, mixed monotone operators, coupled fixed points and fixed points.

(Received for Publication 1 August 1988)

INTRODUCTION

This paper i s cont inua t ion of uuo & ~akshmikantham' . Let t he r e a l L3anach space E be p a r t i a l l y ordered by a cone P

of E, i.e. x s y i f f y-x€P. Let DCE. Operator A:DXD+E is s a i d t o be mixed monotone i f A(x,y) i s nondecreasing

i n x and nonincreesing i n y. Poin t (x* ,yY ~ ~ D X D is c a l l e d

a coupled f i xed po in t of A i f A(x*,yi) = x* and A(y*,x*) = y*. Element x * ~ D i s c a l l e d a f i xed po in t of A i f

A(x*,x*) = x*.

Recal l t h a t cone P is s a i d t o be s o l i d i f t he i n t e r -

i o r $ of P i s nonempty, and P is s a i d t o be normal i f t h e r e e x i s t s a p o s i t i v e cons tan t ti such t h a t O S x S y

imp l i e s ~ B ~ ( c N Iwll ( see Guo & I,akshmikantham2). I f y-x€p, we wr i t e x a y .

In t h i s paper , we f i r s t g ive ex i s t ence and unique- nes s theorems of f ixed p o i n t s f o r some mixed monotone ope ra to r s , and then o f f e r a p p l i c a t i o n s t o t he i n i t i a l value problems of ord inary d i f f e r e n t i a l equat ions.

MA I N THEOREMS

215

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

216 DAJUN GUO

Theorem 1 Le t P be s o l i d and normal, and A : B x L fi be a mixed monotone o p e r a t o r . Suppose t h a t t h e r e e x i s t s O b a

1 such t h a t

Then A h a s e x a c t l y one f i x e d p o i n t x i n and, c o n s t r u c t - i n g s u c c e s s i v e l y sequences

xn= A ( X , , ~ ,Y, ,~ 1, Y,= A ( Y , - ~ , x ~ - ~ ("=I ,2, ( 2 )

f o r any i n i t i a l we have

with convergence r a t e

where 0 < r < 1 and r depends on (xo, yo). Moreover, f o r any

coupled f i x e d p o i n t (.ji,y)e6xP of A , i t must be 37=y=x*.

Proof From h y p o t h e s i s ( 1 ) we know f i r s t

and s o

L e t zoek be a r b i t r a r i l y given. S ince A(zo ,z0) th , we can choose 0 4 to< 1 s u f f i c i e n t l y s m a l l such t h a t

Le t uo= t t z o , vo= t,fzo an.

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

FIXED POINTS OF OPERATORS 217

C l e a r 1 y,

u 0 , v o ~ ~ , U O < V O , u0= t0vo (6 1

and, by v i r t u e o f ( 1 ) , ( 5 ) and t h e mixed monotone proper ty o f A , we have

Now, i t is e a s y t o show by i n d u c t i o n t h a t

an n ~f u r, to vn, then vn s tGa u, and n

a -a n n+ 1 u ,+~= A(un,vn) & A ( t o v n , t o u n ) A(vnyun)

hence, by (8) and i n d u c t i o n , we g e t n

u,zt: vn ( n = O , l , . - . ) .

From ( 9 ) and (10) we f i n d n n

O C U ~ + ~ - u,+vn- u n + ( l - t ; ) v n d ( l - t ; )Vo,

and consequent ly n

I I U , + ~ - ~416 N ( 1 -t: ) I!v& which i m p l i e s t h a t {un] converges ( i n norm) t o some u*e E,

S i m i l a r l y , we can prove t h a t {vnj a l s o converges t o some V*&E and, by (y ) ,

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

21 8 DAJUN GUO

Hence u*,v*ch. Now, ( 1 1 ),(9) and (10) imply

and the re fo re u*= v*. Let x*= u = v . On account of (11 ),

Taking l i m i t a s n+clo, we ge t

hence, A(x*,x*) = x*, i .e. x* is a f ixed poin t of A.

For any coupled f ixed poin t ( T E , J ) C ~ & of A , l e t t l= s u p l o c t c l l t x * ~ ~ ~ t - ~ x " , t x * ~ ~ ~ t - l x * j . c l e a r l y , 0 < t l + 1 and t l x * ~ ~ ~ t ~ l x * , t lx*+ ~ l t ; ' x * . II O c t l < I ,

then by v i r t u e of ( 1 ) and ( 5 ) , we have

s i m i l a r l y , we g e t

(13) and (14) con t r ad i c t the d e f i n i t i o n of t l , s ince t y > t , . Hence t l = 1 and = 7 = x* . This a$ t he same time proves the uniqueness of f ixed poin t of A i n $.

We remain t o show t h a t (3) and (4 ) hold. Let (xo,yo) 0 P$ be given. We can choose t 0 ( o < t o < I ) s o small t h a t

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

and, s i m i l a r l y , y n z u n , yngvn . Hence, by induct ion ,

Now, from

i t fol lows t h a t

I n the same way, we g e t

F ina l ly , (16) and (17) imply ( 4 ) with r = to, and there- fo re (3) holds. The proof i s complete.

Theorem 2 Let P be s o l i d and normal, and A:fix8+; be a mixed monotone opera tor . Suppose t h a t t h e r e e x i s t s O S a t 1 such t h a t ( 1 ) holds. Let x t be t he unique s o l u t i o n i n $ of the equat ion

Then x: i s continuous with r e spec t t o t , i.e. UX~-X~,II-+O

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

220 DAJUN GUO

a s t + t o ( t o > 0 ) . I f , i n add i t i on , 0 6 a c * , then x; i s s t rong ly decreas ing with r e spec t t o t , i.e.

(19)

and

1 x * = 0 t384 = +" . t++m t (20)

Proof Since opera tor t" A s a t i s f i e s a l l condi t ions of - Theorem 1 , equat ion (18) has exac t ly one s o l u t i o n x; i n 8 . Given t2 p t l 2 0 a r b i t r a r i l y and l e t so= s u p i s ;. 0 I X;~%SX; , X;~&SX; 3 . Clear ly , 0 < soc+oo and

2 1

x ; ~ * s x* t2 , xi2& . (21

It i s easy t o see from (21) t h a t so 5 1 i s impossible. Hence 0 < so<l. ~3y (1 ) and (21 ), we f ind

=t

Consequently

Observing the d e f i n i t i o n of so and t2ty1 st > s o , we con- clude t t;'st s so, and so

so & ( t l / t 2 ) l / ( l - a ) . (23)

I t fol lows from (21 ) and (23) t h a t

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

FIXED POINTS OF OPERATORS 22 1

I n e q u a l i t i e s (24) and (251, t oge the r with t he normal i ty

of cone P, imply

Hence, t he c o n t i n u i t y of x: with r e s p e c t t o t ( t > 0 ) i s

proved.

Now, assume Od a c*. By v i r t u e of (22) and (23 ) , we

have

which imp l i e s (19) s i n c e

L e t t i n g t l = 1 and t2= t i n (26 ) , we f ind

and s o

which imp l i e s )(xEll-t 0 a s t+ +co . On the o t h e r hand,

l e t t i n g t l = t and t2= 1 i n (2b ) , we g e t

and t he re fo re

which imp l i e s IIX;~I + +w a s t+ +O. Hence, (20) ho ld s

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

222 DAJUN GUO

and our theorem is psoved. Remark I t should be pointed out t h a t i n Theorems 1 and 2 we do no t r equ i r e ope ra to r A t o be continuous,

APPLICATIONS

In t h i s s ec t ion we give a p p l i c a t i o n s of Theorems 1 and 2

t o i n i t i a l value problem

where J = [O,Tl (T>O) , O < r i K 1 , O * s j < l ( i=1,2,*.- ,n; J = 1,2,...,m), xo > 0 , ai ( t ) a r e nonnegative bounded measur- a b l e func t ions (on J ) and b ( t ) a r e nonnegative measurable func t ions such t h a t

j

i n f 2 b j ( t ) > 0 . trJ jat

The s e t of a l l abso lu t e ly continuous func t ions from J i n t o R' i s denoted by ACCJ,R'J . A func t ion x ( t ) on J is s a i d t o be a s o l u t i o n of the i n i t i a l value problem (27) i f x ( t ) O A C I J , R 1 ] and s a t i s f i e s (27).

Theorem 3 Under condi t ions mentioned above, i n i t i a l value problem (27) has e x a c t l y one p o s i t i v e s o l u t i o n x* ( t ) . Moreover, cons t ruc t ing success ive ly sequence of func t ions

1 f o r any i n i t i a l p o s i t i v e funct ion X ~ ( ~ ) ~ C [ J , R ) , t he sequence of func t ions [ x n ( t ) ) converges t o xi( t ) uniformly on J. Proof It is c l e a r , X ( ~ ) € A C ( J , R ~ J i s a p o s i t l v e s o l u t i o n

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

FIXED POINTS OF OPERATORS 223

of (27) i f and only i f x ( ~ ) ~ c [ J , H ~ I is a p o s i t i v e s o l u t i o n of the fol lowing i n t e g r a l equat ion

L e t E = C [ J , R ~ I and P = f X C C [ J , R ? ~ ~ ( ~ ) 30,tiJj . hen P

is a normal s o l i d cone i n E and the equat ion (29) can be w r i t t e n i n t he form

where A(x,y) = A l ( x ) + A2(y),

It 1s c l e a r t h a t A l : P+ b i s nondecreasing and A2:;+ P i s nonincreasing, and the re fo re A : h & i s a mixed monotone opera tor . Moreover, f o r x,ycF and O< t < 1 , i t 1s easy t o see

where rO= maxfrl ,- .*,rnj , so= maxfsl ,-..,sm j , LI < ro< 1 ,

0 < so< 1 . And the re fo re

where r = max{ro,so), 0 < r c 1. Hence, by Theorem 1 , we conclude t h a t A has e x a c t l y one f i xed po in t x* i n 8 and, f o r any i n i t l a 1 xoeb,

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13

224 DAJUN GUO

where

xn = A ( K - ~ , X ~ - , ) (n=1,2,...).

The proof i s complete. Using Theorem 2, we g e t s i m i l a r l y t h e fo l lowing

Theorem 4 Let t h e hypotheses of 'Sheorem 3 be s a t x s f i e d .

Denote by x;( t ) t h e unxque p o s i t i v e s o l u t i o n of t h e i n i - t i a l va lue problem

Then x:(t) converges t o x* ( t ) u n i r o

formly on t€J a s r+ ro

( r O > 0 ) . I f , i n a d d i t i o n , 0 c r i < 3 , O c s . ci (i=1,2,..;n; 3

j=1,2,- .*,m), then

a x x ; ( t ) + 0 a s r + + w , max x;(t)-r+oo a s r - c + U . & J t C J

REFERENCES

1 . Dajun Guo & V.Lakshmikantham, Coupled f i x e d p o i n t s of n o n l i n e a r o p e r a t o r s with a p p l x c a t i o n s , Nonlxnear Anal. TMA, 11 623-632 ( 1967 1.

2. Dajun Guo & V.Lakshmikantham, Nonl inear problems xn a b s t r a c t cones, Academic Press , Inc . , Boston & New Y 0 r k - 7 (m

Dow

nloa

ded

by [

Uni

vers

ity o

f O

klah

oma

Lib

rari

es]

at 1

3:38

09

Apr

il 20

13