8
319

Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

319

Page 2: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

320

Fig. 1. Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal,sagittal and axial-intersection, grayscale manipulation is performed on theintersection plane.

Page 3: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

321

Fig. 2. Postprocessing using gray scalemanipulation. The initial intersectionplane shows the standard level of grayscale by auto gray scaling. The contrastresolution between the cortex andmedulla on initial intersection plane isnot better than that of bony algorithmon CT scan. On lowering level of grayscale, the contrast resolution betweenthe cortex and medulla is more im-proved than that on standard level ofgray scale.

Page 4: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

322

C D E F GFig. 3. 37-year-old woman (case No.10) with the fracture (arrow) of left posterior element of C6. The posterior views of 3D CT (A)and sagittal 2D CT scan (C) reveal no evidence of fracture. But, the fracture(arrow) is detectable only on posterior 3D volume (B)and sagittal intersection plane of 3D DRI (D). Axial bone setting window of CT (E) shows the fracture(arrow) suspiciously which isseen on the axial intersection with lower level of gray scaling (F) and standard volume (G) of 3D DRI.

A B

Page 5: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

323

Table 1. Classification of Fractures on Conventional Radiography, CT (2D or 3D) and 3D DRI

Case No. Fracture site Conventional Radiography CT (2D or 3D) 3D DRI

01 Tibial plateau Type IV Type IV Type IV02 Distal tibia Type III Type III Type III03 Pelvis,acetabulum Type A2,B Type A2,B Type A2,B04 Calcaneus Type E Type E Type E05 Lumbar spine Wedge compression Stable burst Stable burst06 Proximal ulna, coronoid & olecranon - Type II,Type I Type II,Type I07 Carpal,scaphoid - - Type II08 acetabulum Type C Type C Type C09 Cervical spine, odontoid process Type II Type II Type II10 Cervical spine,posterior element - - CE stage I11 Pelvis Type A2 Type A2 Type A212 Lumbar spine Unstable burst Unstable burst Unstable burst13 Cervical spine,odontoid process Type II Type II Type II14 Lumbar spine Unstable burst Unstable burst Unstable burst15 Lumbar spine Wedge compression Wedge compression Wedge compression16 Lumbar spine Wedge compression Wedge compression Wedge compression

Table 2. Detection, Characterization and Comparison ofFractures on Conventional Radiography, 2D or 3D CT and 3DDRI

Case No. Conventional RadiographyCT

3D DRI2D 3D

01 + ++ + +++02 + ++ 0 ++03 + + 0 ++04 ++ +++ + +++05 + ++ + +++06 0 + 0 +++07 0 0 0 +08 + ++ + +++09 + + 0 ++10 0 0 0 ++11 + + 0 ++12 + + 0 ++13 + + ++ +++14 + + + +++15 + + ++ +++16 + + ++ +++

0= poor visualization or disinterpretation+=ambiguous visualization,++=precise visualization+++=more precise visualization)

Page 6: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

1. Kode L, Lieberman JM, Motta AO, Wilber JH, Vasen A, Yagan R.Evaluation of tibial plateau fractures: efficacy of MR imaging com-pared with CT. AJR Am J Roentgenol 1994;163:141-147

2. Liow RY, Birdsall PD, Mucci B, Greiss ME. Spiral computed to-mography with two- and three-dimensional reconstruction in themanagement of tibial plateau fractures. Orthopedics 1999;22:929-932

3. Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA.Comparison between standard radiography and spiral CT with 3Dreconstruction in the evaluation, classification and management oftibial plateau fractures. Eur Radiol 2000;10:1227-1232

4. Lawler LP, Corl FM, Fishman EK. Multi- and single detector CTwith 3D volume rendering in tibial plateau fracture imaging andmanagement. Crit Rev Comput Tomogr 2002;43:251-82

5. Anxionnat R, Bracard S, Macho J, et al. 3D angiography. Clinicalinterest first applications in interventional neuroradiology. JNeuroradiol 1998;25:251-262

6. Missler U, Hundt C, Wiesmann M, Mayer T, Bruckmann H.Three-dimensional reconstructed rotational digital subtraction an-giography in planning treatment of intracranial aneurysms. EurRadiol 2000;10:564-568

7. Fahrig R, Fox AJ, Lownie S, Holdsworth DW. Use of a C-arm sys-tem to generate true three-dimensional computed rotational an-giograms: preliminary in vitro and in vivo results. AJNR Am JNeuroradiol 1997;18:1507-1514

8. Schueler BA, Sen A, Hsiung HH, Latchaw RE, Hu X. Three-dimen-sional vascular reconstruction with a clinical x-ray angiographysystem. Acad Radiol 1997;4:693-699

9. Grass M, Koppe R, Klotz E, et al. Three-dimensional reconstruc-tion of high contrast objects using C-arm image intensifier projec-tion data. Comput Med Imaging Graph 1999;23:311-321

10. Anxionnat R, Bracard S, Ducrocq X, et al. Intracranial aneurysms:clinical value of 3D digital subtraction angiography in the thera-peutic decision and endovascular treatment. Radiology 2001;218:799-808

11. Patel NH, Hunter J, Weber TG, Routt ML Jr. Rotational imaging ofcomplex acetabular fractures. J Orthop Trauma 1998;12:59-63

12. El-Sheik M, Heverhagen JT, Alfke H, et al. Multiplanar reconstruc-tions and three-dimensional imaging (computed rotational osteog-raphy) of complex fractures by using a C-arm system: initial re-sults. Radiology 2001;221:843-849

13. Liu RR, Rudin S, Bednarek DR. Superglobal distortion correctionfor a rotational C-arm x-ray image intensifier. Med Phys 1999;26:1802-1810

14. Fahrig R, Holdsworth DW. Three-dimensional computed tomo-graphic reconstruction using a C-arm mounted XRII: image-basedcorrection of gantry motion nonidealities. Med Phys 2000;27:30-38

15. Moret J, Kemkers R. 3D rotational angiography: clinical value inendovascular treatment. Medicamundi 1998;42:8-14

16. Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. TheToronto experience 1968--1975. Clin Orthop 1979;138:94-104

17. Mast JW, Spiegel PG, Pappas JN. Fractures of the tibial pilon. ClinOrthop 1988;230:68-82

18. Tile M. Acute pelvic fractures: I. causation and classification. J AmAcad Orthop Surg 1996;4:143-151

19. Letournel E, Judet R. Fractures of the acetabulum. New York:

324

Page 7: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

Springer-Verlag, 198120. Regan W, Morrey B. Fractures of the coronoid process of the ulna.

J Bone Joint Surg Am 1989;71:1348-135421. Canale ST. Campbell s Operative Orthopaedics. St.Louis: Mosby,

1998:232422. Canale ST. Campbell s Operative Orthopaedics. St.Louis: Mosby,

1998:2711-271223. Anderson LD, D Alonzo RT. Fractures of the odontoid process of

the axis. J Bone Joint Surg Am 1974;56(8):1663-167424. Leventhal MR. Fractures, dislocations, and fracture-dislocations of

spine. In Canale ST. Campbell s Operative Orthopaedics. 9th ed. St.Louis: Mosby, 1998:2704-2790

25. Murphy GA, Fractures and dislocations of foot. In Canale ST.Campbell s Operative Orthopaedics. 9th ed. St.Louis: Mosby, 1998:1924-1971

26. Greenspan A. Orthopedic Radiology. Philadelphia: LippincottWilliams & Wilkins, 1999:151-195

27. Scott WW Jr, Fishman EK, Magid D. Acetabular fractures: optimal

imaging. Radiology 1987;165:537-53928. Haveri M, Junila J, Suramo I, Lahde S. Multiplanar and 3D CT of

acetabular fractures. Acta Radiol 1998;39:257-26429. Kode L, Lieberman JM, Motta AO, Wilber JH, Vasen A, Yagan R.

Evaluation of tibial plateau fractures: efficacy of MR imaging com-pared with CT. AJR Am J Roentgenol 1994;163:141-147

30. Brophy DP, O Malley M, Lui D, Denison B, Eustace S. MR imag-ing of tibial plateau fractures. Clin Radiol 1996;51:873-878

31. Kotsianos D, Rock C, Wirth S, et al. Detection of tibial condylarfractures using 3D imaging with a mobile image amplifier(Siemens ISO-C-3D): comparison with plain films and spiral CT.Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002;174:82-87

32. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK.Three-dimensional volume rendering of spiral CT data: theory andmethod. Radiographics 1999;19:745-764

33. Chiras J, Depriester C, Weill A, Sola-Martinez MT, Deramond H.Percutaneous vertebral surgery. Technics and indications, JNeuroradiol 1997;24:45-59

325

Page 8: Fig. 1.Postprocessing using multipla- ulation. After ... · Fig. 1.Postprocessing using multipla-nar intersection with gray scale manip-ulation. After multiplanar-coronal, sagittal

326

Address reprint requests to : Min Hee Lee, M.D., Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan UniversitySchool of Medicine, 50 Ilwon-dong, Kangnam-gu, 135-710 Seoul, Korea.Tel. 82-2-3410-0511 Fax. 82-2-3410-0084 E-mail: [email protected]

Three Dimensional Digital Rotational Imaging in theEvaluation of the Fractures1

Semin Chong, M.D., Min Hee Lee, M.D.2, Hyon Joo Kwag, M.D., Young Rae Lee, M.D.,Shin-Ho Kook, M.D., Hae Won Park, M.D., Woo-Jin Moon, M.D.,

Seung Kwon Kim, M.D., Eun Chul Chung, M.D.

1Department of Radiology, Kangbuk Samsung Hospital, SungKyunKwan University School of Medicine2Department of Diagnostic Radiology, Samsung Medical Center, SungKyunKwan University School of Medicine

Purpose: To evaluate the usefulness and the application of three dimensional digital rotational imaging (3DDRI) by the evaluation of fractures.Materials and Methods: Sixteen patients with clinically diagnosed or suspicious fracture were involved in thisstudy. The lesion or suspicious sites of all 16 cases were spines (n=7), pelvis (n=3) and so on (n=6; knee, el-bow, ankle, wrist and foot). In all cases, conventional radiography, multiplanar 2D (slice thickness/pitch=3 or5 mm/1:1)and volume rendering 3D reconstructed single detector helical CT (HiSpeed Advantage, GE MedicalSystems, Milwaukee, WIS) scans and 3D DRI (Integris V-5000,Philips Medical Systems, The Netherlands)with multiplanar intersection and gray scaling as postprocessing technique were performed. 3D DRI was eval-uated and compared with conventional radiography, multiplanar 2D CT and volume rendering 3D CT.Results: 3D DRI provided more detail and additional information in 14 cases (88%), comparing with 2D and3D CT scans. Two fractures were revealed only on 3D DRI other than conventional radiography and CT scansand one case was revealed on 2D CT and 3D DRI. In all cases, we could acquired more detail and additionalinformation from 3D DRI than from 3D CT in the acquisition of 3D imaging. 3D DRI didn t change the classi-fication of fracture in 12 of 13 cases (92%),which revealed the fracture on the conventional radiography or CT. Conclusion: 3D DRI can diagnose and evaluate the fracture rapidly and easily with anatomical and spatial res-olution by acquisition of 3D imaging with postprocessing using DRI.

Index words : Bones, fracturesBones, CTComputed tomography (CT), three-dimensionalImages, three-dimensional