Fiber.optics.tutorial

Embed Size (px)

Citation preview

  • 7/31/2019 Fiber.optics.tutorial

    1/46

    Fiber Optics For BroadcastVideo Applications

    Eric FankhauserV.P. Advanced Product Development

  • 7/31/2019 Fiber.optics.tutorial

    2/46

    Fiber Optics

    Need for Fiber Optics technology isconstantly increasing

    Driven by increasing data rates

    Declining implementation cost

    Many advantages

    Extremely High Data Carrying Capacity

    Low signal attenuation

    Free From Electromagnetic Interference Lightweight

  • 7/31/2019 Fiber.optics.tutorial

    3/46

    Presentation Overview

    Technologies / Building blocks available Lasers

    Receivers

    Fiber Multiplexing

    Switching

    System Design Considerations Application Examples

  • 7/31/2019 Fiber.optics.tutorial

    4/46

    Technologies Available

    Transmitters (Light Sources) LEDs - 850/1310nm

    Used with MMF up to 250Mb/s

    Short distances

  • 7/31/2019 Fiber.optics.tutorial

    5/46

    FP and DFB Laser Spectrum

    FP laser Emits multiple evenly spaced wavelengths

    Spectral width = 4nm

    DFB laser Tuned cavity to limit output to single oscillation / wavelength

    Spectral width = 0.1nm

    O

    pticalOutput

    Power(mW)

    FWHM=4nm

    O

    pticalOutput

    Power(mW)

    FWHM=0.1nm

    Wavelength(nm)

    Wavelength(nm)

    FP Laser Output DFB Laser Output

    A B

  • 7/31/2019 Fiber.optics.tutorial

    6/46

    Which Laser Type is Better?

    Fabry Perot Ideal for low cost pt-pt

    MMF or SMF

    Not suitable for WDMdue to +/- 30nm variation

    Dispersion is a seriousissue at Gb/s rates

    Distributed Feed Back Used in wavelength

    division multiplexingsystems

    Less susceptible todispersion than FP laser

    Used for medium andlong haul applications

  • 7/31/2019 Fiber.optics.tutorial

    7/46

    Technologies Available

    Receivers (Detectors) PIN Photodiodes

    Silicon for shorter s (eg 850nm)

    InGaAs for longer s (eg 1310/1550nm) Good optical sensitivity

    Avalanche Photodiodes (APDs)

    Up to 50% more sensitivity than PIN diodes Primarily for extended distances in Gb/s rates

    Much higher cost than PIN diodes

  • 7/31/2019 Fiber.optics.tutorial

    8/46

    Multi-Mode

    50/62.5um core, 125um clad

    Atten-MHz/km: 200 MHz/km

    Atten-dB/km: 3dB @ 850nm

    MMF has an orange jacket

    Single-Mode

    9um core, 125um cladding Atten-dB/km: 0.4/0.3dB

    1310nm/1550nm

    SMF has a yellow jacket

    Laser

    Laser

    Muliti Mode

    Single Mode

    Core

    Cross section

    Cladding

    LED

    Laser

    Muliti Mode

    Single Mode

    Core

    Cross section

    Cladding

    CoreCladding

    Fiber Types

  • 7/31/2019 Fiber.optics.tutorial

    9/46

    Degradation In Fiber Optic Cable

    Attenuation Loss of light power as the signal travels

    through optical cable

    Dispersion Spreading of signal pulses as they travel

    through optical cable

  • 7/31/2019 Fiber.optics.tutorial

    10/46

    Attenuation Vs. Wavelength

  • 7/31/2019 Fiber.optics.tutorial

    11/46

    Light Propagation

    Light propagatesdue to total internalreflection

    Light > critical anglewill be confined tothe core

    Light < critical anglewill be lost in thecladding

  • 7/31/2019 Fiber.optics.tutorial

    12/46

    Bending Loss

    Bends introduce an interruption in thepath of light causing some of the opticalpower to leak into the cladding where it

    is lost Always keep a minimum bending radius

    of 5cm on all corners

    When bundling fibers with tie wrapskeep them loose to avoid introducingmicro bending into the fiber

  • 7/31/2019 Fiber.optics.tutorial

    13/46

    Dispersion - Single-Mode

    FP and DFB lasers have finite spectral widths andtransmit multiple wavelengths

    Different wavelengths travel at different speeds over fiber

    A pulse of light spreads as it travels through an opticalfiber eventually overlapping the neighboring pulse

    Narrower sources (e.g DFB vs. FP) yield less dispersion

    Issue at high rates (>1Ghz) for longer distances (>50Km)

    Time

    Transmitter Receiver

  • 7/31/2019 Fiber.optics.tutorial

    14/46

    Dispersion - Multi-Mode Fiber

    Modal Dispersion

    The larger the core of the fiber, the morerays can propagate making the dispersion

    more noticeable

    Dispersion determines the distance asignal can travel on a multi mode fiber

  • 7/31/2019 Fiber.optics.tutorial

    15/46

    Advances in Fiber Optic cable

    SMF Reduction in the water peak

    Reduction in loss per Km

    Corning SMF28e Lucent AllWave

    MMF Higher bandwidths

    Most manus going to 50um, graded indexfiber

  • 7/31/2019 Fiber.optics.tutorial

    16/46

    Optimizing Fiber Usage

    Multiplexing

    TDM Time Division Multiplexing

    WDM Wave Division Multiplexing

  • 7/31/2019 Fiber.optics.tutorial

    17/46

    Multiplexing - TDM

    Done in the electrical domain

    Can TDM Video+Audio+Data OR Many

    Videos, Audios, Datas Increases efficiency of each wavelength

    Max # of signals based on max link rate

    TDMMultiplexed signal

    Signal 1

    Signal 2

    Signal 3

    Signal 4

    TimeDivisionMultiplex

    Signal 1

    Signal 2

    Signal 3

    Signal 4

    TimeDivision

    De-multiplexSingle-mode Fiber

  • 7/31/2019 Fiber.optics.tutorial

    18/46

    Multiplexing - TDM

    Latest developments in TDM No synchronization required between signals All

    signals 100% independent

    Low latency (

  • 7/31/2019 Fiber.optics.tutorial

    19/46

    Wavelengths travel independently

    Data rate and signal format on eachwavelength is completely independent

    Designed for SMF fiber

    Signal 1

    Signal 2

    Signal 3

    MUX

    Signal 1

    Signal 2

    Signal 3

    DEMUX

    WDMMultiplexed signal

    Single-mode Fiber

    Signal 4 Signal 4

    Multiplexing - WDM

  • 7/31/2019 Fiber.optics.tutorial

    20/46

    Multiplexing - WDM

    WDM

    Wave Division Multiplexing Earliest technology

    Mux/Demux of two optical wavelengths

    (1310nm/1550nm) Wide wavelength spacing means

    Low cost, uncooled lasers can be used

    Low cost, filters can be used

    Limited usefulness due to low muxcount

  • 7/31/2019 Fiber.optics.tutorial

    21/46

    Multiplexing - DWDM

    DWDM

    Dense Wave Division Multiplexing Mux/Demux of narrowly spaced wavelengths

    400 / 200 / 100 / 50 GHz Channel spacing

    3.2 / 1.6 / 0.8 / 0.4 nm wavelength spacing Up to 160 wavelengths per fiber

    Narrow spacing = higher cost implementation

    More expensive lasers and filters to separate s

    Primarily for Telco backbone Distance

    Means to add uncompressed Video signals toexisting fiber

  • 7/31/2019 Fiber.optics.tutorial

    22/46

    Multiplexing - CWDM

    CWDM

    Coarse Wave Division Multiplexing Newest technology (ITU Std G.694.2)

    Based on DWDM but simpler and more robust

    Wider wavelength spacing (20 nm) Up to 18 wavelengths per fiber

    Uses un-cooled lasers and simpler filters

    Significant system cost savings over DWDM DWDM can be used with CWDM to increase

    channel count or link budget

  • 7/31/2019 Fiber.optics.tutorial

    23/46

    CWDM Optical Spectrum

    20nm spaced wavelengths

  • 7/31/2019 Fiber.optics.tutorial

    24/46

    DWDM vs. CWDM Spectrum

    1470 1490 1510 1530 1550 1570 1590 1610

    Wavelength

    dB

    1.6nm Spacing

  • 7/31/2019 Fiber.optics.tutorial

    25/46

    Optical Routing - Definitions

    Optical Routers Optical IN , Optical OUT Photonic Routers Optical IN & OUT but

    100% photonic path

    OOO- Optical to Optical to Optical switching Optical switch fabric

    OEO- Optical to Electrical to Optical

    conversion Electrical switch fabric

    Regenerative input and outputs

  • 7/31/2019 Fiber.optics.tutorial

    26/46

    Photonic Technologies

    MEMS (Micro Electro-Mechanical System)

    Liquid Crystal

    MASS (Micro-Actuation and Sensing

    System )

    http://www.lucent.com/pressroom/images/Lambda3.jpg
  • 7/31/2019 Fiber.optics.tutorial

    27/46

    MEMS Technology

    Steer the Mirror Tilted mirrors shunt light in various directions

    2D MEMS Mirrors arrayed on a single level, or plane

    Off or On state: Either deployed (on), not deployed (off)

    3D MEMS Mirrors arrayed on two or more planes, allowing light to

    be shaped in a broader range of ways

    Fast switching speed (ns)

    Photonic switch is 1:1 IN to OUT (i.e. no broadcastmode)

    http://www.lucent.com/pressroom/images/Lambda3.jpg
  • 7/31/2019 Fiber.optics.tutorial

    28/46

    Liquid Crystal Technology

    Gate the light No Moving Parts

    Slow switch speed

    Small sizes (32x32) Operation based on polarization:

    One polarization component reflects off

    surfaces Second polarization component transmits

    through surface

  • 7/31/2019 Fiber.optics.tutorial

    29/46

    MASS Technology

    Steer the fiber

    Opto-mechanics uses piezoelectric actuators

    Same technology as Hard Disk Readers and

    Ink Jet Printer Heads

    Small-scale opt mechanics: no sliding parts

    Longer switch time (

  • 7/31/2019 Fiber.optics.tutorial

    30/46

    OE EOOE EOOE EOOE EO

    OE EOOE EOOE EOOE EO

    OE EOOE EOOE EOOE EO

    OE EOOE EOOE EOOE EO

    X

    EQEQEQEQEQEQ

    EQEQEQEQ

    EQEQEQEQ

    EQEQ

    CPUMonitoring

    Interface

    LocalIndication

    Fiber

    Inputs

    ElectricalInputs

    FiberOutputs

    Electrical

    Outputs

    OEO Technology

    High BWElectrical

    XPNT

  • 7/31/2019 Fiber.optics.tutorial

    31/46

    OEO Routing

    Optical Electrical conversion at inputs/outputs Provides optical gain (e.g. 23 dB)

    High BW, rate agnostic electrical switching at core

    SD, HD, Analog Video (digitized), RGBHV, DVI Fast switching (

  • 7/31/2019 Fiber.optics.tutorial

    32/46

    Regeneration - Optical vs Photonic

    Photonic is a lossy device that provide nore-amplification or regeneration

    Signal coming in at23dBm leaves at

    25dBm OEO router provides 2R or 3R (re-amplify,

    reclock, regenerate)

    Signals come in at any level to25dBm Leave at7dBm (1310nm) or 0dBm (CWDM)

  • 7/31/2019 Fiber.optics.tutorial

    33/46

    Applications - Design Considerations

    Types of signals Signal associations

    Fiber infrastructure

    Distance/Loss

    Redundancy

    Remote Monitoring

  • 7/31/2019 Fiber.optics.tutorial

    34/46

    Types of Signals

    SDI

    HDSDI

    ANALOG

    DVB-ASI

    RGB

    RS232/422/485

    GPI/GPO

    10/100 ETHERNET

    GBE

    FIBER CHANNEL

    70/140 MHz I/F

    L-BAND

    CATV

    SONET OC3/12

    T1/E1

    DS3/E3

    AES

    ANALOG

    DOLBY E

    INTERCOM

    OPTICAL

    ROUTING

    WDM

    CWDM

    DWDM

    VIDEO

    AUDIO

    CONTROL

    DATACOM

    RF

    TELECOM

    MULTI

    WAVELENGTH

    MULTI

    FIBERORFacilityLINK - Fiber Optics Platform

    SPLITTERS

    +

    PROTECTION

    SWITCHING

  • 7/31/2019 Fiber.optics.tutorial

    35/46

    Design Considerations

    Signal associations Video, audio, data

    Together or separate - Issues

    Fiber infrastructure MMFor SMF Many fibers or one fiber

    Single clean run for your use (e.g. put in for you)

    Leased fiber (multiple patches, fusion splices)

    Distance/Loss Total path loss = (fiber+connectors+passives)

    Distance can be deceiving - patches, connections,fusion splices

  • 7/31/2019 Fiber.optics.tutorial

    36/46

    Design Considerations

    Fault Protection Protection against fiber breaks

    Important in CWDM and DWDM systems

    Need 2:1 Auto-changeover function withswitching intelligence

    Measurement of optical power levels on fiber

    Ability to set optical thresholds Revert functions to control restoration

  • 7/31/2019 Fiber.optics.tutorial

    37/46

    Remote monitoring is key due to distance issues Monitor

    Input signal presence and validity

    Laser functionality and bias

    Optical Link status and link errors

    Pre-emptive Monitoring

    Input cable equalization level

    CRC errors on coax or fiber interface

    Optical power monitoring

    Data logging of all errord events

    Error tracking and acknowledgment

    Design Considerations

  • 7/31/2019 Fiber.optics.tutorial

    38/46

    Diagnostics Interface

  • 7/31/2019 Fiber.optics.tutorial

    39/46

    Design Examples Single Link

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/sHD OE

    Dispersion

    40 Kms

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/sHD EO

    SD OE40 Kms

    SD EO-7dBm @ 1310nm

    -23dBm

    -32dBm

    Loss Budget

    -7dBm @ 1310nm

    SD HD HD

    FP DFB

    TX Power (dBm) -7 -7 0

    RX Sens (dBm) -32 -23 -23

    Available Budget 25 16 23

    Distance (Km) 40 40 40

    Fiber Loss(0.35dB/km@1310)

    14 14 14

    Connectors 4 4 4

    Connector Loss 1 1 1

    Total Loss 15 15 15

    Headroom 10 1 8

    SD HD HD

    FP DFP

    FP Line width (nm) 4 4 0.2

    Dispersion (ps/nm.km) 2 2 2

    Distance (km) 40 40 40

    Dispersion (ps) 320 320 16

    RX Jitter Tolerance (UI) 0.4 0.4 0.4

    RX Jitter Tolerance (ps) 1480 270 270

    Headroom (ps) 1160 -50 254

  • 7/31/2019 Fiber.optics.tutorial

    40/46

    Post House Facility link - Legacy

    E to O

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/s

    HIPPI @

    1.2Gb/s

    E to O

    O to O

    O to O

    O to E

    Location #1 Location #2

    O to ERS422

    2 Kms

    1510

    WDM

    1530

    1550

    1570

    1510

    1530

    1550

    1570

    SDI @270Mb/s

    HDSDI @

    1.485Gb/s

    HIPPI @

    1.2Gb/s

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/s

    HIPPI @

    1.2Gb/s

    O to E

    E to O

    E to O

    O to O

    O to O

    1510

    1530

    1550

    1570

    1510

    1530

    1550

    1570

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/s

    SONET OC3

    @155Mb/s

    HIPPI @

    1.2Gb/s

    E to ORS4221310

    1310

    SONET OC3

    @155Mb/s

    SONET OC3

    @155Mb/s

    SONET OC3

    @155Mb/s

    1310

    1310

    1310

    1310

    1310

    1310

    CWDM M4 CWDM D4

    CWDM M4 CWDM D4

    WDM

    O to E

    ATM

    Switch

    ATM

    Switch

    ATM

    Switch

    O to E

    ATM

    Switch

  • 7/31/2019 Fiber.optics.tutorial

    41/46

    Post House Facility Link New

    AES

    E to O

    O to E

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/s

    E to O

    O to E

    Mux + EO

    OE+Demux

    O to E

    E to O

    Location #1 Location #2

    RS422RS422

    2 Kms

    SDI @

    270Mb/s

    HDSDI @

    1.485Gb/s

    GBE

    AES

    Gbe

    RS422 RS422

    Analog VideoAnalog Audio

    1310

    CWDM

    M16

    CWDM

    D16

    Gbe

    O to E

    E to O

    Demux+OE

    EO + Mux

    Analog Video

    Analog Audio

    Mux + EO

    OE+Demux

    Analog Video

    Analog Audio

    Demux+OE

    EO + Mux

    10/100 10/100

    Mux +EO

    Demux +OE

    10/100 Mb/s

    Ethernet

    Demux +OE

    Mux + EO

    Analog Video

    Analog Audio

    10/100 Mb/s

    Ethernet

    GBE

    Fib STL

  • 7/31/2019 Fiber.optics.tutorial

    42/46

    Coax to Fiber

    Coax to Fiber

    Coax to Fiber

    Coax to Fiber

    CH 1

    CH 2

    CH 3

    CH 4

    AudioMux

    SDIVideo

    with

    Embedded Audio

    6 AES

    Audio

    for

    Radio

    Fiber to Coax

    Fiber to Coax

    Fiber to Coax

    Fiber to Coax

    NTSC Enc

    NTSC Enc

    NTSC Enc

    NTSC Enc

    AudioDemux

    Analog

    Video

    and

    Audio

    Fiber STLMonitoring

    Points

    6 AES

    Audio

    for

    RadioMonitorin

    g and

    Control

    Cat 5 to Fiber Fiber to Cat 5

    BROADCAST CENTER CN TOWER

    X

    http://www.evertz.com/proddesc/7765AVM-4(FS).html
  • 7/31/2019 Fiber.optics.tutorial

    43/46

    RF Over fiber optics -Applications

    Typical Satellite Application With SNMP Monitoring

    LB EO LB OE

    LB OE

    SatelliteReceiver

    Vertical

    Horizontal

    LNBPower

    L-Band Downlink (950Mhz 2250Mhz)

    IF OEC or Ku

    Up ConvIF EO

    Video Mod

    IF Uplink (70/140Mhz)

    HPA

    LB EO

    RemoteSNMP

    Monitoring& Control

    SatelliteReceiver

    SatelliteReceiver

    SatelliteReceiver

    SatelliteReceiver

    BPX-RF DA8-RFRouter

    SatelliteReceiver

    SatelliteReceiver

    DA-RF

    BPX-RF

    Video Mod

    DA-RF

    BPX-RF

    Ethernet/ SNMP

    Ethernet/ SNMP

    Ethernet/ SNMP

  • 7/31/2019 Fiber.optics.tutorial

    44/46

    Large Video MAN Fully protected

    RSK

    Pac TV

    RSH

    OneWilshire

    VideoMan Nodes Layout

    DT11/17/03

    25 mi

    25 mi

    KNBC KRCAKVEA

    BT

    DirectTV

    KCBS CNN9 Net

    Australia

    Intelsat

    JapanTelecom

    FoxSports

    VYVXFiber

    KSCI

    KTTV

    RSE

    Fox

    NCTC

    4 mi

    0.5

    10.5

    10.5

    1.5

    0.5

    0.8

    Extra 2.3

    2.3 2.92.3

    7.3

    Ent ..Tonight

    KTLA

    CBS2.1

    1.5 1.1 1.11.1

    2.7

    E!

    0

    0.5

    6.2

    0.7

    Globesat

    0.75KMEX

    7.25

    8 mi

    5.5 mi

    11 mi

    13.5 mi

    9.8 mi

    KABCProspect

    8 mi5.5 mi

    LA Zoo

    TVGaming 7.25 Dodger

    Stadium2.5

    5.75

    7.5

    KABCCircle seven

  • 7/31/2019 Fiber.optics.tutorial

    45/46

    Summary

    Fiber is an ideal transport medium

    No magic involved in using fiber

    optics Many solution options available

    Proper upfront system design

    upfront prevents many headaches

  • 7/31/2019 Fiber.optics.tutorial

    46/46

    Questions

    Eric [email protected]

    www.evertz.com

    mailto:[email protected]:[email protected]