9
日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス, 2016/9/22 田中 阪大理 原子ニュートリノ観測のための 誘電体導波路中のQED過程の解析 1 共同研究者: 笹尾 (岡山大基礎研), 津村浩二(京大理), 吉村太彦(岡山大基礎研)

原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス, 2016/9/22

田中 実阪大理

原子ニュートリノ観測のための誘電体導波路中のQED過程の解析

1

共同研究者: 笹尾 登(岡山大基礎研), 津村浩二(京大理),

吉村太彦(岡山大基礎研)

Page 2: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA 2

Radiative Emission of Neutrino Pair (RENP) A.Fukumi et al. PTEP (2012) 04D002; arXiv:1211.4904

Λ− |e⟩ → |g⟩ + γ + νiνj νi

|e⟩ → |g⟩ + γ + γ ×|p⟩

|e⟩ → |g⟩ + γ + νiνj

|e⟩ →|g⟩ + νiνj

|e⟩> 1

γ νi , i = 1, 2, 3

ωij =ϵeg

2− (mi + mj)2

2ϵeg.

ϵab = ϵa − ϵb |a⟩ , |b⟩mi

(mi + mj)2/(2ϵeg) ∼ 5 mi + mj = 0.1 ϵeg = 1

ω ≤ ω11

metastable

-

4.1560 4.1565 4.1570 4.15750.00

0.02

0.04

0.06

Ω !eV"Sp

ectru

mI#Ω$

Threshold behavior #Dirac case$

m0

132 136

2.5 × 1019 /cm3

1.1 × 1020 /cm3

> 1019 /cm3

∼ 102 s−1

1 × 104 s−1

O(0.1) µs

5p5(2P3/2)6p 6p

5p5(2P3/2)6p 2[3/2]2 5p5(2P3/2)6p 2[5/2]2

Λ6s [3/2]2 6s [3/2]1

6s [3/2]1

λtp λ6sJ−6p

A6sJ←6p

5p5(2P3/2)6p 2[3/2]2

Xe, Dirac, NH, IH

m0 = 2, 20, 50meV

valence spin current

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura, PLB719(2013)154; arXiv:1209.4808

Rate enhancement by macrocoherence

Confirmed by PSR experiments1018 amplification

|p

|e

|g

Page 3: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA

QED backgrounds

3

|ei ! |gi+ + ijMacrocoherent amplification of RENP

Macrocoherent amplification of QED processesMcQ3|ei ! |gi+ 0 + 12

Ex. Xe

1 Introduction

With the advent of successful macro-coherent amplification (more than 1015) of QED rare processes [2],

namely the macro-coherent paired super-radiance (PSR) [3], the atomic project of neutrino mass spec-

troscopy [4] has gained a new stage of potentiality to explore important neutrino properties yet to be

measured and to ultimately detect the relic neutrino of temperature 1.9 K [5].

In the present work we address the problem of quantum electrodynamic (QED) backgrounds and propose

a scheme of QED background-free RENP (Radiative Emission of Neutrino Pair). Usual higher order QED

processes, when they occur spontaneously, are not at all serious backgrounds to macro-coherently amplified

atomic neutrino pair emission (RENP) if experiments of the neutrino mass spectroscopy are designed with a

repetition cycle sufficiently faster than the decay lifetime. (Even a repetition scheme slower than the decay

rate is conceivable if the dead time is not too large.) The macro-coherently amplified QED process may

however become a serious source of backgrounds, since their rates are much larger, as is made evident below.

We shall term macro-coherently amplified QED process of order n as McQn for brevity. The case of n = 2

corresponds to PSR. Since RENP process occurs with parity change, the main backgrounds are odd McQn.

Our proposal for the QED background rejection is to use either wave guides [6] or some type of pho-

tonic crystals [7] to host a target. A promising host is Bragg fiber consisting a hollow surrounded by two

periodically arranged dielectrics of a cylindrical shape [8], [9]. For brevity we call these hosts as host guides

in the present work. After we show below how QED backgrounds are rejected, we shall calculate spec-

tral rates of RENP (stimulated single photon emission) |e⟩ → |g⟩ + γ0 + νν in which no background of

McQ3 |e⟩ → |g⟩ + γ0 + γ1γ2 exists. Rejection of McQ5 and so on is then automatically guaranteed. The

background-free RENP rate is, to a good approximation, found to be a shifted (to the higher energy side)

spectrum in free space.

Parities of two states, |e⟩, |g⟩, for RENP are different. A good example of candidate de-excitation is from

the Xe excited state of JP = 1− of configuration 5p56s(8.437 eV) (the decay rate being ∼ 300 MHz) to the

ground state of 0+ of 5p6.

We show a part of Feynman diagrams (despite of the use of the non-relativistic perturbation theory

based on bound state electrons) in Fig(1). RENP diagrams are based on the nuclear monopole contribution

of [10]. Relevant Xe energy levels are shown in Fig(2).

! !!

e6s 6p 6s 5pA

!

e6s 7s 5p

""

Figure 1: A part of Feynman diagrams for Xe 3P1(8.437eV) RENP in the left and for McQ3 in the right.

Dashed red line in the left is for Coulomb excitation between nucleus A and a valence electron.

2

|ei |gi

M. Yoshimura, N. Sasao, MTPTEP (2015) 053B06; arXiv:15010571

serious BG though reducible

cf.

(McQ3) 1020 Hz

n

1020/cm3

3 V

cm3

3(t)

103

(RENP) 1 mHz

n

1020/cm3

3 V

cm3

!(t)

103

Page 4: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA

Radiation in waveguide/cavity

4

Purcell, Phys. Rev. 69, 681 (1964)

depends on environment

Emission rate (of single mode) / density of states

=P

PFSRatio of powers (classical)

Purcell factor

Fp :=

FS=

DoS

DoS in Free Space

(quantum)

Rate suppressionFp < 1

Page 5: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA

Band structure of photonic crystal

5

z

x

...... ......n1n2

a2a1

n1n2

a2a1

FieldE(x)ei(kz!t)

a = a1 + a2

TMTE

n1 = 4.6, n2 = 1.6, a2/a1 = 2

!a

ka-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Allowed bands of Bloch wave: TE left, TM right

E. Yablonovitch, PRL58, 2059 (1987)S. John, ibid., 2486 (1987)

band

cf. electronic band structure in solid

Periodic dielectric structuremanipulating photon propagation

complete Bragg reflectionWinn et al., Opt. Lett. 23, 1573 (1998)

Page 6: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA

Bragg fiber

6

Yeh, Yariv, Marom, J. Opt. Soc. Am. 68, 1196 (1977)Fink et al., J. Lightwave Technol. 17, 2039 (1999)

Similar band structureas the slab

!a

ka

n1 = 4.6, n2 = 1.6

Purcell factor

a2/a1 = 2, rc/(a1 + a2) = 2

Np = 5

hollow core fiber

Confinement of light by Bragg reflection

Page 7: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA

McQ3 rate in Bragg fiber

7

trigger|ei ! |gi+ 0(!0) + 1(!1) + 2(!2)

Rate suppression factor

rBF/FS(!0) :=1

FS(!0)

Zd!1

dFS

d!1Fp(!1, k1)Fp(!2, k2)

1 2 3 410-15

10-11

10-7

0.001

10.000

[eV]

Fp

Purcell factor (TM), Np=5,10,15

!max

= !eg/2 ' 4.22 eVn1 = 5.5, n2 = 1.3a = 0.126 µm, rc = 2a

6s 3P1 ! 5p 1S0Xe

a2a1

=

pn21 1p

n22 1

= 6.51

!0 = 0.95!eg/2

Page 8: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA 8

1 2 3 4

10-10

10-6

0.01

100

[eV]d

/d

Diff. rate, Np=0(FS),5,10,15

dFS

d!1Fp1Fp2

(4.8,1.3)

(5.5,1.6)

(5.5,1.3)

10 20 30 40 50 60 70

10-40

10-30

10-20

10-10

1

# of layer pairs

BF/

FS

Rate suppression factor

rBF/FS / exp(cNp)

Page 9: 原子ニュートリノ観測のための 誘電体導波路中のQED ...kabuto.phys.sci.osaka-u.ac.jp/~tanaka/talk/JPS201609.pdf日本物理学会2016秋季大会 @ 宮崎大学木花キャンパス,

Minoru TANAKA 9

Suppression of QED process in Bragg fiber

◼ Photonic crystal ~ periodic dielectric structure Band gap ~ vanishing DoS

◼ Purcell factor

Exponential rate suppression in the band gapfor large index contrast

Rate suppressionFp < 1

Fp = DoS/(DoS in free space)

forBF/FS 1025 n1 = 5.5, n2 = 1.3, Np = 40

◼ To do

Rate of McQ4 or higherIs necessary?n1 & 4.8 or 5.5