193
Ferrous Applications II 1 Ferrous Applications II

Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 1

Ferrous Applications II

Page 2: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 2

Contents

Application examples Slide #

Slag liquidus temperature changing with an additional slag component 3

Dissolution mechanism of inclusions into molten slag 11

Non-metallic inclusion formation: oxide metallurgy 14

Inclusion control in Mn/Si killed steel 18

Reoxidation of steel - inclusion modification 27

Deoxidation diagram / Inclusion stability diagram 39

Inclusion in Al-killed Ti-bearing steel 45

Refractory dissolution in molten slag (RH degasser) 57

Ladle glaze formation 62

Thermal stability of refractory 65

Refractory / Liquid inclusion interaction 69

Refractory / Steel interaction 73

Desulfurization of hot metal and sulfide capacity calculation 79

Heat evolution during slag cooling and heating: Enthalpy diagram 132

New private compound database 140

Addition of ideal solution (private solution) 144

Addition of new component into slag (Henrian solution) 147

V2O3 addition to liquid slag (Henrian solution: optimization of parameter) 152

Zn galvanization: control of oxidation in annealing furnace 164

Zn galvanization: - remelting and oxidation of Zn galvanized steel

- interface reaction between liquid Zn and solid steel

- oxidation reaction of Zn coating

179

Carburization and de-carburization of steel 185

Viscosity of slags: Einstein-Roscoe equation for semi-liquid state 190

Page 3: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 3

The effect of SiO2/MgO and FeO and Al2O3 in

slag on the liquidus temperature of the slag Phase Diagram / Equilib

Page 4: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 4

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

Actually, the SiO2/MgO ratio of laterite is almost same as that of the slag

produced

The main system of the FToxid-SLAG phase is SiO2-MgO-Al2O3-FeO

Fe-saturation condition

Page 5: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 5

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

Select pure solid and liquid Fe

for Fe-saturation condition

Page 6: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 6

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

Page 7: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 7

Ternary phase diagram

of FeO-MgO-SiO2

at constant Al2O3

with Fe-saturation

Add small

amount of Fe

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

Page 8: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 8

Using

‘superimpose’

function,

liquidus lines of

the ternary

system can be

drawn.

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

MgO FeOmass fractions /(SiO2+FeO+MgO)

SiO2

MgO FeOmass fractions /(SiO2+FeO+MgO)

ASlag-liq + Fe(s)

ASlag-liq + AOlivine + Fe(s)

ASlag-liq + Fe(s) + SiO2(s6)

ASlag-liq + AMonoxide + Fe(s)

ASlag-liq + AMonoxide + AOlivine + Fe(s)

SiO2

MgO FeOmass fractions /(SiO2+FeO+MgO)

SiO2

MgO FeOmass fractions /(SiO2+FeO+MgO)

SiO2

MgO FeOmass fractions /(SiO2+FeO+MgO)

1500 o

C1600 o

C1700 o

C1800 o

C

SiO2/MgO = 1

SiO2/MgO = 2

SiO2/MgO = 3

SiO2/MgO = 4

SiO2 - FeO - MgO - Al2O3 - FeAl

2O

3/Z (g/g) = 0, Fe/Z (g/g) = 0.00001,

Z=(SiO2+FeO+MgO),

Impossible to use ‘O’

option because the system

always has Fe(s) or Fe(I)

with slag, that is always

more than 2 phases

Page 9: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 9

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

With varying 0 to 8 wt% of

Al2O3 at constant

SiO2/MgO=1

at Fe-saturation

Page 10: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 10

Phase diagram of SiO2-MgO-Al2O3-FeO-Fe

Al2O3 = 0 wt%

Al2O3 = 3 wt%

Al2O3 = 8 wt%

SiO2 - MgO - Al2O3 - FeO - FeSiO

2-1MgO/Z (g/g) = 0, 100Al

2O

3/Z (g/g) = 0, 100Fe/Z (g/g) = 1,

Z=(SiO2+MgO+Al

2O

3+FeO+Fe), 1 atm

100FeO/(SiO2+MgO+Al2O3+FeO+Fe) (g/g)

T(C

)

0 10 20 30 40 50 60 70 80

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Page 11: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 11

Dissolution of Inclusions into Molten Slags

A l

M 1 M 3M 2 4M 2 3M 2 2M 2 1

C P

C a

M g

S i

Park, Jung and Lee: ISIJ Inter. No. 11, 2006

Phase diagram between slag and inclusions to understand the

inclusion dissolution mechanism

Page 12: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 12

Dissolution of Inclusions into Molten Slags

10

20

30

40

50

60

70

80

90

102030405060708090

10

20

30

40

50

60

70

80

90

(CaO)0.525(SiO2)0.475

Al2O3 MgOweight percent

M24L+MgO

L+MgAl2O4+MgO

L+MgAl2O4

MgAl2O4

M23

M22

M21

M 2 2M 2 1M 1

M 3M 2 4M 2 3

F ig .8

M23

Park, Jung and Lee: ISIJ Inter. No. 11, 2006

Page 13: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 13

Dissolution of Inclusions into Molten Slags

M 2 2M 2 1M 1

M 3M 2 4M 2 3

F ig .8

M3

10

20

30

40

50

60

70

80

90

102030405060708090

10

20

30

40

50

60

70

80

90

(CaO)0.58(SiO2)0.42

Al2O3 MgOweight percent

L + MgO + MgAl2O4

L + MgAl2O4

L + Ca2SiO4

L + MgO

MgAl2O4

M3

Park, Jung and Lee: ISIJ Inter. No. 11, 2006

Page 14: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 14

- Evolution of non-metallic inclusions: Formation of acicular ferrite -

• Non-metallic inclusions: nucleation sites for acicular ferrite

• Acicular ferrite: enhances the strength of steel

Applications to oxide metallurgy (Inclusion control)

Page 15: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 15

Evolution of Non-metallic Inclusions

Morphologies of typical inclusions found in Fe-C-Mn-Si-O-S-Ti-Mg-Al-N

M n /S i

M n /S i

+ T i

M n /S i

/T i

+ M g

M n /S i

/T i/M g

+ A l

M n S

M g -T i-A l-O

M g O

1㎛

M g -T i- (A l) -OM n S

M g O

1㎛

M n S

M g -A l- (T i) -O

M g O

2㎛

M g O

M g A l2O

4

M n

S

1㎛

M g A l2O

4M n S

1㎛

T i-M g -M n -O

M n S 2㎛

M n SM g -T i-M n -O

1㎛ 1㎛

M g -T i-M n -O

M n S

M g O

M g O

M n S

M g O

1㎛

2㎛

M n -S i-O

M n S

2㎛

M n -T i-O

M n -S i-O

M n S2㎛

M n -T i-O

M n -S i-O

M n S 1㎛

T i-M n -O

M n S1㎛

T i-O

M n S

(a )

( f ) (h ) ( i)

( j) (k ) ( l) (m ) (n )

C o n c e n tr a t io n o f a d d it io n a l a llo y in g e le m e n t

(d )(b ) (c ) (e )

(g )

M n /S i

M n /S i

+ T i

M n /S i

/T i

+ M g

M n /S i

/T i/M g

+ A l

M n S

M g -T i-A l-O

M g O

1㎛

M g -T i- (A l) -OM n S

M g O

1㎛

M n S

M g -A l- (T i) -O

M g O

2㎛

M n S

M g -A l- (T i) -O

M g O

2㎛

M g O

M g A l2O

4

M n

S

1㎛

M g A l2O

4M n S

1㎛

T i-M g -M n -O

M n S 2㎛

T i-M g -M n -O

M n S 2㎛

M n SM g -T i-M n -O

1㎛

M n SM g -T i-M n -O

1㎛ 1㎛

M g -T i-M n -O

M n S

M g O

1㎛

M g -T i-M n -O

M n S

M g O

M g O

M n S

M g O

1㎛

M g O

M n S

M g O

1㎛

2㎛

M n -S i-O

M n S

2㎛

M n -S i-O

M n S

2㎛

M n -T i-O

M n -S i-O

M n S2㎛

M n -T i-O

M n -S i-O

M n S 1㎛

T i-M n -O

M n S1㎛

T i-O

M n S

(a )

( f ) (h ) ( i)

( j) (k ) ( l) (m ) (n )

C o n c e n tr a t io n o f a d d it io n a l a llo y in g e le m e n t

(d )(b ) (c ) (e )

(g )

Fe-0.1C-0.0035S-1.45Mn-0.1Si

-0.015Ti-0.0025O-0.03N+Mg

Page 16: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 16

Evolution of Non-metallic Inclusions

(PB) (IL)

(MgO/Sp) (Sp)

(MgO)

Mg=2ppm 4

16

52

35

Thermodynamic calculations

• Accurate prediction of inclusion phases

• Application to high strength steel design

Page 17: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 17

Inclusion evolution with temperature: Mn/Si/Ti steel

MS-c

SLAGA#1

SLAGA#1

SLAGA#1

ILMEA#1

ILMEA#1

Rhod

OlivA

PSEU

98.2769 Fe + 0.1 C + 1.5 Mn + 0.1 Si +

c:\Workshop\Equi0.res 3May11

T(C)

wt

pp

m

1000 1100 1200 1300 1400 1500 1600

0

100

200

300

400

500

600

Select all phases (pure solids and

solutions) with amount > 0

FToxid : oxide inclusions

FTmisc: FeLq, MnS solid (MS_c)

FSStel: solid steel phases (fcc, bcc)

Page 18: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 18

Wire

Inclusion (ex., alumina)

Crack Initiation

• Undeformable inclusion should be removed

• Liquid phase is desirable at process

temperature (~1200oC)

Application to Tire-Cord Steel (Mn/Si deoxidation)

Tire-Cord Steel

Thin Sheet

Inclusion (ex., alumina)

Crack Initiation

Surface Quality Fe-36%Ni Invar Steel

0.15~0.38mm diameter

150µm thickness

Mn/Si Deoxidation

Page 19: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 19

MnO-Al2O3-SiO2 Phase Diagram

Target inclusion

composition

M n O A l2O

3

W e ig h t %

1 8 9 0

1 1 9 4

1 2 4 9

1 2 3 9

1 5 2 7

1 5 9 5

1 1 8 0

1 1 5 6

1 1 3 5

1 1 1 9

1 4 6 5

1 1 4 3

1 1 6 6

1 3 2 8

1 2 5 1

1 2 9 3

1 4 6 5

M n 2S iO 4

M n S iO 3

M n A l2O 4

A l6S i2O 1 3

M n 2A l4S i5O 1 8

M n 3A l2S i3O 1 2

C o ru n d u m

18

00

1 7 0 0

1 6 0 0

1 5 0 0

1 4 0 0

1 3 0 0

2 0 0 0

19

00

18

001

70

016

00

15

00

1 4 0 0

1 3 0 0

12

00

14

00

13

00

G a la x ite

M a n g a n o s ite

2 L iq u id s

M u llite

R h o d o n ite

T e p h ro ite

1 7 6 9

1 7 0 2

1 7 0 2

(1 7 2 3 )

(2 0 5 4 )(1 8 4 2 )

1600

T r id ym ite

S p e ssa r t it e

(1 8 9 0 )(1 3 4 7 )

M n O /S iO2 = 0 .5

M n O /S iO2 = 1 .0

M n O /S iO2 = 2 .0

1 1 5 0

S iO2

L o w l iq u id u s

te m p e r a tu r e r e g io n

(1 1 0 0o

C ~ 1 2 0 0o

C )

Cr is

tob a l i t

e

C ris to b a lite : S iO 2

T rid ym ite : S iO 2

R h o d o n ite : M n S iO 3

S p e ssa rt ite : M n 3 A l2 S i3 O 1 2

T e p h ro ite : M n 2 S iO 4

M a n g a n o s ite : M n O

G a la x ite : M n A l2 O 4

C o ru n d u m : A l2 O 3

M u llite : A l6 S i2 O 1 3

M n O A l2O

3

W e ig h t %

1 8 9 0

1 1 9 4

1 2 4 9

1 2 3 9

1 5 2 7

1 5 9 5

1 1 8 0

1 1 5 6

1 1 3 5

1 1 1 9

1 4 6 5

1 1 4 3

1 1 6 6

1 3 2 8

1 2 5 1

1 2 9 3

1 4 6 5

M n 2S iO 4

M n S iO 3

M n A l2O 4

A l6S i2O 1 3

M n 2A l4S i5O 1 8

M n 3A l2S i3O 1 2

C o ru n d u m

18

00

1 7 0 0

1 6 0 0

1 5 0 0

1 4 0 0

1 3 0 0

2 0 0 0

19

00

18

001

70

016

00

15

00

1 4 0 0

1 3 0 0

12

00

14

00

13

00

G a la x ite

M a n g a n o s ite

2 L iq u id s

M u llite

R h o d o n ite

T e p h ro ite

1 7 6 9

1 7 0 2

1 7 0 2

(1 7 2 3 )

(2 0 5 4 )(1 8 4 2 )

1600

T r id ym ite

S p e ssa r t it e

(1 8 9 0 )(1 3 4 7 )

M n O /S iO2 = 0 .5

M n O /S iO2 = 1 .0

M n O /S iO2 = 2 .0

1 1 5 0

S iO2

L o w l iq u id u s

te m p e r a tu r e r e g io n

(1 1 0 0o

C ~ 1 2 0 0o

C )

Cr is

tob a l i t

e

C ris to b a lite : S iO 2

T rid ym ite : S iO 2

R h o d o n ite : M n S iO 3

S p e ssa rt ite : M n 3 A l2 S i3 O 1 2

T e p h ro ite : M n 2 S iO 4

M a n g a n o s ite : M n O

G a la x ite : M n A l2 O 4

C o ru n d u m : A l2 O 3

M u llite : A l6 S i2 O 1 3

Jung et al., Metall. Mater. Trans. B, 2004, vol. 35B, pp. 259-268

Page 20: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 20

Inclusion composition with steel composition

Jung et al., Metall. Mater. Trans. B, 2004, vol. 35B, pp. 259-268

Kang and Lee, ISIJ Inter., 2004.

10

20

30

40

50

60

70

80

90

102030405060708090

10

20

30

40

50

60

70

80

90

SiO2

MnO Al2O3Weight %

wt%Mn / wt%Si = 9

10

52

1

0.5

0.2

0.1

wt%Mn / wt%Si = 1

wt%Mn / wt%Si = 0.1

T =1550oC

Liquid Oxide

L + MnO L + MnAl2O4

L + Al2O3

L + Mullite

L + SiO2

MnO/SiO2 = 1.0

Mn + Si = 1wt%

Page 21: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 21

Inclusion calculation in Mn/Si deoxidation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

MnO Al2O3mass fraction

ASlag-liq + AMonoxide ASlag-liq + MnAl2O4(s)

ASlag-liq + M2O3(corundum)

ASlag-liq + Mullite

ASlag-liq + SiO2(s6)

MnO - Al2O3 - SiO2

1600oC

Page 22: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 22

Inclusion calculation in Mn/Si deoxidation

Calculation of the inclusion trajectory using Equilib

The compositions of Mn and Si are set based on the target Mn/Si ratio and Mn+Si content

Oxygen content should be controlled reasonably. If O is too high, Mn and Si will be largely

changed from original target composition after reaction with oxygen.

Page 23: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 23

Inclusion calculation in Mn/Si deoxidation

Mn + Si + Al + O (Mn,Si,Al) oxide inclusion

After deoxidation, Mn ~ 0.5 and Si ~ 0.5

(Target steel composition: Mn/Si = 1 and Mn+Si = 1)

Extraction of slag composition

Page 24: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 24

Inclusion calculation in Mn/Si deoxidation

Slag #1

(stable slag) Slag #2

(metastable or same as #1

except in case of stable miscibility gap)

Composition from Slag #1

A corner = wt%SiO2/100

B corner = (wt%MnO+Mn2O3+FeO+Fe2O3)/100

C corner = wt%Al2O3/100

Page 25: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 25

Inclusion calculation in Mn/Si deoxidation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

MnO Al2O3mass fraction

ASlag-liq + AMonoxide ASlag-liq + MnAl2O4(s)

ASlag-liq + M2O3(corundum)

ASlag-liq + Mullite

ASlag-liq + SiO2(s6)

MnO - Al2O3 - SiO2

1600oC

10

20

30

40

50

60

70

80

90

102030405060708090

10

20

30

40

50

60

70

80

90

SiO2

Al2O3

Mn/Si = 10

5.0

2.01.0

0.5

Fe Liquid

[%Mn] + [%Si] = ~1.0

T = 1600oC

1.0

Kang and Lee [35]

SiO2

Al2O3

1200oC

liquidus

SiO2

MnO(+FeO) Al2O3

0.2

0.1

0.35

0.52

1.1

0.50

11.1

9.9

Ohta and Suito[34]

weight percent

Slag composition is slightly

different from phase diagram

because the actual slag contain

FetO and Mn2O3 as well.

According to calculations,

mullite and Al2O3 form

subsequently after slag

Page 26: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 26

Inclusion calculation in Mn/Si deoxidation

Al2O3(SLAGA#1)

SiO2(SLAGA#1)

FeO(SLAGA#1)

Fe2O3(SLAGA#1)

MnO(SLAGA#1)

98.995 Fe + 0.5 Mn + 0.5 Si + <A> Al +

c:\Workshop\Equi0.res 3May11

weight % Al_FeLQ

we

igh

t %

0 0.0002 0.0004 0.0006 0.0008 0.001

0

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Soluble Al vs. inclusion composition

Page 27: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 27

Re-oxidation and inclusion modification in the tundish – Ca-treated steel

Page 28: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 28

Reoxidation and inclusion modification in the tundish

The target for Ca treatment

Page 29: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 29

Al-killed steel

Fe+100ppm O

MgO based refractory

+?Mg

+ 600ppm Al

At 1550oC

Reoxidation and inclusion modification in the tundish

+ <50ppm Ca + <100ppm SiO2

+? inclusion

+ ? Inclusion + ? Slag

Reoxidation: assuming mainly due to SiO2-based slag

+ ? Inclusion + ? Slag

Ca treatment: liquid slag

`

Page 30: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 30

Reoxidation and inclusion modification in the tundish

Al-killed steel

Fe+100ppm O

MgO-based refractory

+?Mg

Page 31: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 31

Only save liquid Fe as stream file for next step

MgO-based refractory

Reoxidation and inclusion modification in the tundish

Page 32: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 32

+ 600ppm Al

+? inclusion

Al-killed steel

Reoxidation and inclusion modification in the tundish

Page 33: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 33

Save all phases as a stream file for next step Alumina inclusions cause nozzle clogging

Formation of spinel phase

Reoxidation and inclusion modification in the tundish

Page 34: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 34

+ <100ppm Ca

+ ? Inclusion + ? Slag

Ca treatment: liquid slag

Reoxidation and inclusion modification in the tundish

Page 35: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 35

Reoxidation and inclusion modification in the tundish

Page 36: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 36

+ <100ppm SiO2

Reoxidation: assuming mainly due to SiO2-based slag

+ ? Inclusion + ? Slag

`

Reoxidation and inclusion modification in the tundish

Page 37: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 37

Reoxidation and inclusion modification in the tundish

CaAl4O7

In this condition,

SiO2 is reduced by Al during the reoxidation (instead of Ca).

Page 38: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 38

Slag composition after Ca treatment (30 ppm Ca)

Reoxidation direction

Reoxidation and inclusion modification in the tundish

Page 39: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 39

Inclusion diagram: Fe-Al-O, Al deoxidation

(1): draw rectangular diagram

Page 40: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 40

Inclusion diagram: Fe-Al-O, Al deoxidation

(2): change X- and Y-axis lower limit.

(3): change linear scale to log scale.

(3): change linear scale to log scale.

(2): change X- and Y-axis lower limit.

“After changing the axes to log

scale, move all curves to +2 in

linear scale“

Page 41: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 41

Inclusion diagram: Fe-Al-O, Al deoxidation

Fe-liq + M2O3(Corundum)

Fe-liq

Fe - Al - O

1600oC

log [wt% Al]

log

[w

t% O

]

-4 -3.5 -3 -2.5 -2 -1.5 -1 -.5 0

-4

-3.5

-3

-2.5

-2

-1.5

-1(4) Editing of title of x- and y-axis

Page 42: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 42

M2O3(corundum) + Fe-liq

Fe-liq

Fe - Al - O - Ti

1600oC, mass O/(Fe+Al+O+Ti) = 5E-6

wt% Al

wt%

Ti

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-3

-2.7

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

log wt% Al

log w

t% T

i

Inclusion diagram: Fe-Al-Ti-O, Al/Ti deoxidation

Fe-liq + M2O3(Corundum)

Fe-liq

Fe - Al - O

1600oC

log [wt% Al]

log

[w

t% O

]

-4 -3.5 -3 -2.5 -2 -1.5 -1 -.5 0

-4

-3.5

-3

-2.5

-2

-1.5

-1

Page 43: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 43

M2O3(corundum) + Fe-liq

Fe-liq

Fe-liq

Pseudobrookite + Fe-liq

Pseudobrookite + Fe-liq

BIlmenite + Fe-liq

Fe - Al - O - Ti

1600oC, mass O/(Fe+Al+O+Ti) = 10E-6

log wt% Al

log w

t% T

i

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-3

-2.7

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

Al2O3

Ilmenite (Ti2O3-rich phase)

Ti3O5

56[wt ppm O]

201512

10

50

30

20

1512

80

30

810 =4.5 ppm

50T = 1600

oC

Liquid

log [wt% Al]

log

[w

t% T

i]

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

M2O3(corundum) + Fe-liq

Fe-liq

Fe - Al - O - Ti

1600oC, mass O/(Fe+Al+O+Ti) = 5E-6

wt% Al

wt%

Ti

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-3

-2.7

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

log wt% Al

log w

t% T

i Inclusion diagram: Fe-Al-Ti-O, Al/Ti deoxidation

1) Change oxygen content and calculate similar diagram

2) Superimpose all the diagrams together

3) Calculate the phase boundaries from Equilib (or simply

connect boundaries in the calculated diagram)

Iso oxygen 5ppm line

Page 44: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 44

Inclusions after Mn/Si deoxidation

Page 45: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 45

Al-killed Ti-bearing steel

Page 46: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 46

Al-killed Ti-bearing steel

Page 47: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 47

Reoxidation of Al-killed Ti-bearing steel

“Recycle all streams”

• You don’t have to save the streams one by one. But the

results will be used only one time because it is not saved

under a special stream name.

• Convenient option when you want to do just one calculation

Page 48: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 48

Reoxidation of Al-killed Ti-bearing steel

Addition of oxygen to simulate

reoxidation phenomena.

Actual source of oxygen could be

high-SiO2 slag or refractories

Page 49: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 49

Reoxidation of Al-killed Ti-bearing steel

SLAGA#1

SLAGA#1

SLAGA#1

CORU#1

CORU#1

CORU#1

CORU#1

100% [Rc_Fe-liq] + 100% [Rc_M2O3(Corundum)] + <A> O2

C:\Slag-Steel-Inclusions\Equi0.res 25Sep12

Alpha

gra

m

0.00 0.01 0.02 0.03 0.04 0.05

0.00

0.05

0.10

0.15

0.20

+ 0.12253 gram ASlag-liq#1

(0.12253 gram, 1.1558E-03 mol)

(1600 C, 1 atm, a=1.0000)

( 33.379 wt.% Al2O3 FToxid

+ 0.17724 wt.% SiO2 FToxid

+ 0.83830 wt.% FeO FToxid

+ 1.1051E-03 wt.% Fe2O3 FToxid

+ 1.9943 wt.% MnO FToxid

+ 40.135 wt.% Ti2O3 FToxid

+ 23.475 wt.% TiO2 FToxid

+ 1.0928E-03 wt.% Mn2O3 FToxid)

This calculation shows that a mixed inclusion of Al2O3(s) and liquid (Al2O3-TiO2-Ti2O3)

can be formed by the reoxidation of Al-killed Ti-bearing steel.

Nozzle clogging.

Page 50: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 50

TiN formation in Al-killed and Ti-bearing steel

Original steel composition at 1600C: high N and high Ti may form TiN

Page 51: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 51

TiN formation in Al-killed and Ti-bearing steel

TiN(s)

CORU#1CORU#1CORU#1CORU#1

100% [Rc_Fe-liq] + 100% [Rc_M2O3(Corundum)]

C:\Slag-Steel-Inclusions\Equi0.res 25Sep12

T(C)

gra

m

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600

0.00

0.05

0.10

TiN(s) CORU#1CORU#1CORU#1CORU#1

BC

C

FeL

Q

100% [Rc_Fe-liq] + 100% [Rc_M2O3(Corundum)]

C:\Slag-Steel-Inclusions\Equi0.res 25Sep12

T(C)

gra

m

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600

0

10

20

30

40

50

60

70

80

90

100

Liquid steel

+ BCC Liquid steel

During the solidification,

a large amount of TiN can be formed.

Page 52: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 52

Nozzle Clogging in Ti-bearing Al-killed steel

• Kawashima et al., CAMP-ISIJ (1991)

– Liquid Al-Ti-O (reoxidization) attached to Al2O3 inclusions

• Basu et al. ISIJ Int. (2004)

Significant difference in nozzle clogging of Ti-bearing steel from that of Ti-free

steel is the existence of Al-Ti-O inclusions covering Al2O3 core oxides.

Reoxidation in tundish (high-SiO2 slags) causes the nozzle clogging.

Page 53: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 53

Inclusions generated by reoxidation process

RH process after Ti addition (POSCO)

Doo et al. (2007)

Al2O3

Ti-Al-O hole

Reoxidation in Tundish

(high SiO2 slags)

Park et al. (2004)

Reoxidation in Tundish

Basu et al. (2004)

Ti/Al of outer layer = 1.0~1.5

Page 54: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 54

Inclusion causing nozzle clogging in Al-killed Ti-bearing steel

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

mole fraction

corundum

TiO2 + L

ilmenite + Ti3O5

Ti3O5 + L

co

run

du

m +

L

+ ilmenite + L

ilmenite + Llo

g P

O2 =

-11

-12

-13

-14

Al2O3

Ti2O3 TiO2

+ A

l2 T

iO5 +

LAl2TiO5 + L

Al2O3

Ti2O3 TiO2

Al2O3

Ti2O3 TiO2

Al2O3

Ti2O3 TiO2

Al2O3

Ti2O3 TiO2

Al2O3

Ti2O3 TiO2

Al2O3

Ti2O3 TiO2

T = 1600oC

-10

Liquid

Magneli + L

coru

ndum

-9.0

1) Drawing the phase diagram of the Al2O3-

Ti2O3-TiO2 system.

2) Drawing the same diagram with fixed PO2 and

superimposing them.

Page 55: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 55

Calculated inclusion composition in Fe-Al-Ti-O liquid at 1600oC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Al2O3

Ti2O3TiO2 + FeOmole fraction

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

Al2O3

Ti2O3

corundum

L

ilmenite + Ti3O5 + LTi3O5 + L

corundum + L+ ilmenite + L

ilmenite + LT

i = 1

0p

pm

50

100

500

1000

Similar to Mn/Si

deoxidation calculations

1) Drawing the phase diagram of the Al2O3-Ti2O3-TiO2

system.

2) Calculating equilibrium inclusion (Al2O3-T2O3-TiO2)

composition in liquid Fe containing small amounts of O

with certain fixed amounts of Ti. Then, plotting the

inclusion compositions on the phase diagram.

Page 56: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 56

Newly calculated inclusion diagram of Fe-Al-Ti-O system

Al2O3

Ti2O3

Ti3O5

56[wt ppm O]

20

15

12

10

50

30

20

15

12

80

30

810 =4.5 ppm

50T = 1600

oC

Liquid

log [wt% Al]

log

[w

t% T

i]

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0Existence of Liquid Al2O3-Ti2O3-TiO2

phase at 1600oC

Al deoxidation + Ti addition

Reoxidation

(Nozzle Clogging)

Page 57: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 57

RH Vessel Refractory

Snorkel

RH Vessel

Ladle

O2 Lance

RH OB

• High amount of oxygen blowing

• Increase of ferro-alloy (Al, Si, Mn, etc) addition

→ More severe local corrosion of RH vessel refractory

Normal corrosion

Abnormally severe corrosion

Flow pattern in RH

CFD model

Page 58: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 58

Quite enough thermodynamic database

(gas, molten steel, slag, refractory, etc…)

Write kinetic process using Macro :

input/output to Excel spread sheet

Reaction zone 1

Reaction zone 2

Reaction zone 3

Heat & Mass balance !!

…… Van Ende et al: ‘A Kinetic Model for the Ruhrstahl Heraeus (RH)

Degassing Process’, Metall. Mater. Trans. B, 2011, p. 477

Concept for RH process simulation modeling

Page 59: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 59

RH Vessel Refractory

Predicted slag composition in RH

vessel from RH process simulation

M.-K. Cho, M.-A. Van Ende, T.-H. Eun and I.-H. Jung, “Investigation of slag-refractory interactions for the

Ruhrstahl Heraeus (RH) vacuum degassing process in steelmaking”, J. Eur. Ceram. Soc., 2012, 32,1503-1517.

Experimental and calculation conditions

F1,F2 C1,C2

Page 60: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 60

Refractory finger tests at 1600oC

Page 61: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 61

Thermodynamic Calculations: Refractories – Slag Interactions

Page 62: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 62

Ladle glaze formation

Dipping time: 120 sec CaO SiO2 Al2O3 MgO

54.06 10.47 26.24 9.23

Slag composition (wt.%)

CaO SiO2 Al2O3 MgO

2.35 0.76 88.06 8.35

Refractory composition (wt.%)

As-received Dipped for 120 sec

Page 63: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 63

Glazed Refractory

Glaze

Page 64: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 64

Glaze (Reaction product of slag and refractory)

Slag

Spinel

CaAl12O19

CaAl4O7

Al2

O3

x slag + (1-x) refractory

ph

ase

dis

trib

uti

on

(w

t%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

60

70

80

90

100

Al2O3

CaO

SiO2

MgO

x slag + (1-x) refractory

sla

g c

om

po

siti

on

(w

t %

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

60

70

spinel islands

Glaze composition (glass)

CaO SiO2 Al2O3 MgO

35.8 6.6 51.1 6.5

Glaze area: glass + spinel

Original refractory Ladle slag

Page 65: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 65

Equilibrium stability of 20MgO-78Al2O3-2CaO refractories

Equilibrium stability calculations with temperature: refractories

Page 66: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 66

CaAl4O7(s)

CaAl4O7(s)

CaMg2Al16O27(s) CaMg2Al16O27(s) CaMg2Al16O27(s)

CaMg2Al16O27(s)

SPINA SPINA SPINA

SPINA

SLAGA#1SLAGA#1

2 CaO + <A> MgO + <98-A> Al2O3

c:\FactSage\casestudy\Equi0.res 22May09

T(C)

gra

m

1200 1300 1400 1500 1600 1700 1800

0

10

20

30

40

50

60

70

80

90

Equilibrium stability calculations with temperature: refractories

The refractory is mechanically unstable above 1600oC:

- considerable volume change due to the significant change in phase distribution

The refractory cannot be used above 1690oC:

- significant amount of liquid phase formation

Page 67: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 67

Thermal Stability Test of Refractories

wt% REF-1 2 3 4 5 6

Al2O3 88 60 11 4 0.5 0.5

MgO 9 38 58 61 89 75

CaO 2 2 0.9 0.7

Cr2O3 20 29

Fe2O3 8.8 4.8

SiO2 1.6 0.4 0.5 1.2

C 7 17

Al 2 4

MgO

Spinel

SlagCa3MgAl4O10

(gram) 60 Al2O3 + 38 MgO + 2 CaO

Temperature (C)

ph

ase

dis

trib

uti

on

(w

t%)

1200 1300 1400 1500 1600 1700 1800 1900

0

10

20

30

40

50

60

70

80

90

Spinel

CaMg2Al16O27

Al2O3

Ca2Mg2Al28O46

CaAl12O19

(gram) 88 Al2O3 + 9 MgO + 2 CaO

Temperature (C)

ph

ase

dis

trib

uti

on

(w

t%)

1200 1300 1400 1500 1600 1700 1800 1900

0

10

20

30

40

50

60

70

80

90

REF-1 REF-2

Page 68: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 68

Thermal Stability Test of Refractories

CaMgSiO4

Mg2SiO4

Slag

Spinel

MgO

(gram) 11 Al2O3 + 58 MgO + 0.9 CaO + 20 Cr2O3 + 8.8 Fe2O3 + 1.6 SiO2

Temperature (C)

ph

ase

dis

trib

uti

on

(w

t%)

1200 1300 1400 1500 1600 1700 1800 1900

0

10

20

30

40

50

60

70

80

90

Slag

Spinel

MgO

a-Ca2SiO4a'Ca2SiO4

(gram) 4 Al2O3 + 61 MgO + 0.7 CaO + 29 Cr2O3 + 4.8 Fe2O3 + 0.4 SiO2

Temperature (C)

ph

ase

dis

trib

uti

on

(w

t%)

1200 1300 1400 1500 1600 1700 1800 1900

0

10

20

30

40

50

60

70

80

90

C

MgO

Al4C3Spinel

(gram) 0.5 Al2O3 + 89 MgO + 0.5 SiO2 + 7 C + 2 Al

Temperature (C)

ph

ase

dis

trib

uti

on

(w

t%)

1200 1300 1400 1500 1600 1700 1800 1900

0

10

20

30

40

50

60

70

80

90

REF-5

REF-3 REF-4

Depending on the refractory compositions,

the refractory components can vary drastically.

Formation of liquid

Stability of refractory

Change in MgO/Spinel fraction

Mechanical wear resistance

Volume change

Page 69: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 69

Refractory – Liquid Inclusion Interactions

Stopper Head

SEN Collar

Inner side/mouth

of SEN

Stopper (Al2O3-C)

Corroded area

Inner side of SEN

SEN (submerged entry nozzle)

melt

M.-K. Cho and I.-H. Jung, “Corrosion of nozzle refractories by liquid inclusion in high oxygen steels”,

ISIJ Inter. 2012, vol. 52, pp. 1289-1296.

Page 70: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 70

Refractory – Liquid Inclusion Interactions P

lease s

ee t

he d

eta

ils in t

he I

SIJ

paper

Page 71: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 71

Refractory – Liquid Inclusion Interactions

Please see the details in the ISIJ paper

Page 72: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 72

Refractory – Liquid Inclusion Interactions P

lease s

ee t

he d

eta

ils in t

he I

SIJ

paper

Relative stability of the refractories against liquid MnO-SiO2 type inclusions

Page 73: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 73

Refractory-Steel Interaction

Page 74: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 74

Refractory-Steel Interaction

FeLQ FeLQ FeLQ FeLQ

SPINA#1

SPINA#1

SPINA#1

SPINA#1

MeO_A

MeO_A

MeO_A

CO

RU

#1

95 Fe + 4 Mn + Si + <100-100A> MgO +

C:\Slag-Steel-Inclusions\Equi0.res 24Sep12

Alpha

gra

m

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

Mn_FeLQ Mn_FeLQ Mn_FeLQ Mn_FeLQ

Si_FeLQ Si_FeLQ Si_FeLQ Si_FeLQ

Al_FeLQAl_FeLQ Al_FeLQ Al_FeLQMg_FeLQ Mg_FeLQ Mg_FeLQ Mg_FeLQO_FeLQ O_FeLQ O_FeLQ O_FeLQ

95 Fe + 4 Mn + Si + <100-100A> MgO +

C:\Slag-Steel-Inclusions\Equi0.res 24Sep12

Alpha

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Change in steel composition

Change in the amount of phases

<A> Al2O3 + <1-A> Al2O3

<A> Al2O3 + <1-A> Al2O3

Page 75: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 75

85%Mn-15%Fe melt

Refractories

1g Mn-Fe melt + 1g refractory (MgO-Cr2O3)

Melt / refractory reactions simulation

Liquid

Spinel (MgCr2O4-MnCr2O4)

(MgO-MnO)

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Cr2O3

<A> MgO + <1-A> Cr2O3

gra

m

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

1.2

MgO

MnO

Cr2O3

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Cr2O3

<A>MgO + <1-A>Cr2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Cr2O3 MgCr2O4 MgO

(Spinel)

(MgO-MnO)

MgCr2O4

MnCr2O4

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Cr2O3

<A> MgO + <1-A> Cr2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Fe

MnCr

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Cr2O3

<A> MgO + <1-A> Cr2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Steel

High Mn-Fe melt storage for TWIP steel production

Page 76: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 76

LIQU

(MgO-MnO)

Corun

dum

(Al2

O3)

Spinel (MgAl2O

4-MnAl2O

4)

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Al2O3

<A> MgO + <1-A> Al2O3

gra

m

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

MgO

MnO

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Al2O3

<A> MgO + <1-A> Al2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Fe

Mn

Al

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Al2O3

<A> MgO + <1-A> Al2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

MgAl2O4

MnAl2O4

Al8O12

0.15 Fe + 0.85 Mn + <A> MgO + <1-A> Al2O3

<A> MgO + <1-A> Al2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Al2O3 MgAl2O4 MgO

MgO

Spinel Steel

1g Mn-Fe melt + 1g refractory (MgO-Al2O3)

High Mn-Fe melt storage for TWIP steel production

Page 77: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 77

Fe

Mn

Al

<77.9B> Fe + <20B> Mn + <1.5B> Al + <0.6B> C +

<A> MgO + <1-A> Al2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Liquid

MgO

Al2 O

3

MgAl2 O

4 -MnAl2 O

4

<77.9B> Fe + <20B> Mn + <1.5B> Al + <0.6B> C +

<A> MgO + <1-A> Al2O3g

ram

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

Twip steel

Refractories

Refractory for TWIP steel: Fe-20%Mn-1.5%Al-0.6%C

T = 1500oC

Steel

MgO-Al2O3 type: Very stable refractory

Page 78: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 78

Twip steel

Refractories

Refractory for TWIP steel: Fe-20%Mn-1.5%Al-0.6%C

T = 1500oC

Steel

MgO-Cr2O3 type: less stable

Cr pickup

Al loss

Fe

Mn

Cr

<77.9B> Fe + <20B> Mn + <1.5B> Al + <0.6B> C +

<A> MgO + <1-A> Cr2O3

we

igh

t %

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

Steel

MgC

r2 O

4 -MnC

r2 O

4M

gO-M

nO-s

mall C

r 2O 3

MgAl2O4-MnAl2O4

Cr

2 O3 -A

l2 O3

<77.9B> Fe + <20B> Mn + <1.5B> Al + <0.6B> C +

<A> MgO + <1-A> Cr2O3

gra

m

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

Page 79: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 79

Desulphurization

Desulphurization of hot metal in the De-S station,

Desulphurization of steel during ladle treatment

and calculating sulphide capacity

More examples can be found in:

http://in-ho-group.mcgill.ca/publicfiles.php#

Page 80: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 80

Desulphurization of Hot Metal

• The hot metal tapped out of the blast furnace typically contains 0.04-0.07% S.

• To reduce the amount of sulphur in the hot metal between the blast furnace

and the oxygen converter, desulphurization is usually performed at a De-S

station such as KR using flux (CaO, CaC2, Mg, …)

• In secondary steelmaking (recently in LF unit), de-S can occur between slag

(CaO-rich) and steel due to strong agitation.

Blast Furnace (BF) Basic Oxygen Furnace

(BOF)

0.04-0.07% S

~ 0.01% S

Torpedo Car

KR ~ 0.001% S

Ladle Furnace

(LF)

Page 81: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 81

Desulphurization of Hot Metal

The following reactions have been proposed to reduce the sulphur content in hot

metal:

In the following pages, it will be shown how FactSage could be used to calculate

the efficiency of each desulphurizing agent.

It will then be shown how the exact amount of desulphurizing agent can be

selected to achieve the desired sulphur content.

Page 82: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 82

Desulphurization of Hot Metal using Mg

1. Double-click on units…

2. … to select the

desired units

3. Enter the hot metal composition

and put <A> for the

desulphurizing agent amount

4. Click on “Data Search”…

6. Click “Next”

5. … and select the FTmisc database

This example can be found

in EquiCase2-1.dat

Page 83: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 83

Desulphurization of Hot Metal using Mg

3. We need to select each phase only once, so we will have

to “suppress duplicates”

1. Right-click on “pure solids”

2. The selection

contains data from both

FTmisc and FactPS.

Some of the data are

overlapping (highlighted

in red as “Duplicates”)

Page 84: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 84

Desulphurization of Hot Metal using Mg

1. Left-click on “suppress duplicates”

4. Press “apply” – Now the number of solids selected should be inferior to

that selected in the beginning.

3. Press “OK”

2. Then enter the

database names in the

order they should be

prioritized.

Here, FTmisc was given

priority over FactPS

Page 85: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 85

Desulphurization of Hot Metal using Mg

1. Left-click to select the liquid steel solution phase

3. Enter the desired

equilibrium

temperature.

2. If you don’t see the available

solution phase, click “show all”

4. We will vary the

amount of

desulphurizing

agent from 0 to 1 g

in steps of 0.01g

5. Press “Calculate”

Page 86: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 86

Desulphurization of Hot Metal using Mg

Now we want to see how the amount of sulphur in the hot metal decreases with the

addition of magnesium.

1. Press “Output”

→ “Plot” → “Plot

Results…”

2. Press “Axes”

3. This window will

pop-up

Page 87: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 87

Desulphurization of Hot Metal using Mg

1. Press “Y-variable”

2. Select “weight %” in

“log10(Y)” scale

4. In the same way,

select alpha as the X-

variable

3. Select the maximum, minimum

and incremental value for the graph

Page 88: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 88

Desulphurization of Hot Metal using Mg

Now we can see that the axes have

been selected. We just need to

choose sulphur as the species.

3. Press “OK” 2. Select S(FeLQ) – sulphur in

the liquid steel solution.

1. Press “Select” species

Page 89: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 89

Desulphurization of Hot Metal using Mg

1. Now we can see

that both the axes

and the species have

been selected.

2. The “Plot” button is

now activated. Click it!

Page 90: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 90

Desulphurization of Hot Metal using Mg

1. It can be seen

that after the

addition of 0.1g

Mg, the

desulphurization is

not so effective.

2. If our target was

0.001% S, we can

read off the graph

that this sulphur

level will be

achieved after

adding

approximately

0.05g Mg.

3. However, there

is a better way.

Page 91: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 91

Desulphurization of Hot Metal using Mg: Composition target

1. Right-click on the

Ftmisc-FeLQ selection 3. This

window will

pop-up

2. Click on

“composition

target”

Page 92: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 92

Desulphurization of Hot Metal using Mg: Composition target

1. Select “element

composition”

3. Enter the desired

value (here –

0.001%)

2. Choose

element S

4. Press “OK”

Page 93: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 93

Desulphurization of Hot Metal using Mg: Composition target

1. Now “C” indicates that we have selected a

composition target for this calculation

3. Press “Calculate”.

Note that only one

calculation will be

performed. 2. We must leave

the <A> field blank,

because <A> is

what we want to

calculate.

Page 94: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 94

Desulphurization of Hot Metal using Mg: Composition target

1. The <A> value for reducing sulphur content to 0.001% is 0.0494g.

2. The mass fraction of S is

exactly what we want it to be.

Page 95: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 95

Desulphurization of Hot Metal using CaC2

In the same manner, we can calculate the desulphurization ability of CaC2

We will keep the same hot metal

composition, the only thing we will

change is the desulphurizing agent This example can be found

in EquiCase2-2.dat

Page 96: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 96

Desulphurization of Hot Metal using CaC2

The same conditions are selected

Page 97: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 97

Desulphurization of Hot Metal using CaC2

After addition of

0.14g of CaC2, the

amount of S in the

hot metal becomes

so small that the

reaction does not

proceed and CaC2 is

precipitated as a

solid phase.

Page 98: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 98

Desulphurization of Hot Metal using CaC2

This can also be

seen on the graph –

after <A>=0.14, the

sulphur level

remains constant.

1. In order to

compare this graph

with the graph for

Mg

desulphurization,

we should save this

figure.

2. But first, to differentiate this curve

from the others, we will change the

labels.

Page 99: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 99

Desulphurization of Hot Metal

It can now readily

be seen that Mg

and CaO+Mg are

the most effective

hot metal

desulphurizing

agents.

Page 100: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 100

Desulphurization of Hot Metal

It is also convenient to compare the amounts obtained using “Composition Target”

Page 101: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 101

Desulphurization of Steel using Slag

We will now apply the same calculations for the desulphurization of steel in the

ladle.

The starting steel contains 0.01% S and it needs to be reduced down to 0.001% S

We will also assume that a slag is present in the ladle. It consists of 40% CaO,

40% Al2O3, 10% MgO and 10% SiO2. The ratio of slag to metal is 1/10

Page 102: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 102

Desulphurization of Steel using Slag

1. Enter the metal and slag composition

2. In “Data Search” select

FTmisc and FToxid

This example can be found

in EquiCase2-7.dat

Page 103: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 103

Desulphurization of Steel using Slag

1. Enter the <A>

and temperature

2. Select liquid steel and

SlagA as the solutions

3. Note that the slag phase

is selected with possible

immiscibility

4. Press “Calculate”

Page 104: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 104

Desulphurization of Steel using Slag

Results show a

slag phase and a

metal phase

Solid periclase

(MgO) appears as

<A> is increased

We can plot the

results in the same

way as was done

for the hot metal

desulphurization in

the previous slides

Page 105: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 105

Desulphurization of Steel using Slag

A constant

decrease in metal

sulphur content is

observed

Page 106: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 106

Desulphurization of Steel using Slag

Another useful way to visualize these results, is the sulphur partition coefficient:

Ls=(Sin slag)/[Sin metal]

1. Press “Output” →

“Save or Print” → “Save

or Print As …”

2. Select “Open Text

Spreadsheet”

3. Press “Spreadsheet

Setup”

Page 107: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 107

Desulphurization of Steel using Slag

1. Select “Alpha” as the

property column

2. Select “wt%” as the

Species properties

3. Select the desired species

Page 108: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 108

Desulphurization of Steel using Slag

1. Select sulphur from

liquid steel and all

elements from the slag

2. Press “OK”

Page 109: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 109

Desulphurization of Steel using Slag

1. Press “OK” on

this window and

the next one

Page 110: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 110

Desulphurization of Steel using Slag

2. It is convenient to copy the

whole table and paste it into Excel.

1. A spreadsheet with the

composition of slag and metal at

each <Alpha> value will appear.

Page 111: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 111

Desulphurization of Steel using Slag

2. The last column was

used to calculate the

sulphur partition

coefficient Ls.

1. All unnecessary columns

were deleted keeping only

the sulphur content in the

steel and the slag.

3. Plotting Alpha against log(Ls)

Page 112: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 112

Calculating Slag Sulphide Capacity

A good way of comparing the ability of a slag to absorb sulphur is the sulphide

capacity calculated in the following manner:

CS=(Sin slag)*(PO2/PS2)1/2

In the following

slides, the

sulphide

capacity of four

different slags

will be calculated

Page 113: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 113

Calculating Slag Sulphide Capacity

1. Enter the amount and species for

the first slag

2. Select FactPS and FToxid

databases

Page 114: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 114

Calculating Slag Sulphide Capacity

1. Select gas and SlagA as possible products

2. We will calculate

the sulphide

capacity at three

temperatures: 1580,

1600 and 1620°C 3. Press “Calculate”

Page 115: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 115

Calculating Slag Sulphide Capacity

It is now possible to calculate the sulphide capacity

using these results.

In the next slides,

two ways of

calculating sulphide

capacity will be

demonstrated.

Page 116: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 116

Calculating Slag Sulphide Capacity

The first way is to use Excel 1. Save the results

in a spreadsheet

2. Press

“Spreadsheet setup”

Page 117: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 117

Calculating Slag Sulphide Capacity

1. Set T(C) as the

system property

3. Select the species

2. We need wt%S and the activity of

O2 and S2 in the gas, so select “wt%”

and “a” as the species properties.

Page 118: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 118

Calculating Slag Sulphide Capacity

1. Select O2(g),

S2(g) and all

Elements in SlagA

2. Press “OK” on all

three screens

Page 119: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 119

Calculating Slag Sulphide Capacity

1. All the needed results (and even more) appear in the spreadsheet.

3. Calculate the sulphide capacity in a separate column.

2. Copy the results in Excel and delete the unnecessary columns

4. Plot log(Cs) versus temperature

Page 120: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 120

Calculating Slag Sulphide Capacity

Another way to plot the sulphide capacity is to use

the function builder tool coupled with Fact-XML

1. Press “Edit/Create

functions” under the Fact-

Function-Builder Menu

Page 121: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 121

Calculating Slag Sulphide Capacity

1. We need to select wt%S as one

variable

2. Select “Amount/Composition”

under “Variable selection”

3. Select “wt%”

4. Right-click on S(total) in slag

and add it to variables list

Page 122: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 122

Calculating Slag Sulphide Capacity

1. The amount of S now appears

in the variables list.

2. Right-click on the variable and

rename it “wtS”

3. Partial pressure and activity of a

gas is the same thing, so we need

to select activity of O2 and S2 in

the gas as the two other variables.

Page 123: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 123

Calculating Slag Sulphide Capacity

1. Select “Activity” under “Variable

Selection”

2. Right-click on O2 and S2 and

add them to the variable list

3. Rename the

variables to

aO2 and aS2

accordingly

Page 124: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 124

Calculating Slag Sulphide Capacity

1. Enter the function for log(Cs)

2. Press “preview results”

3. Note that the

results are the

same as for the

Excel

calculation

Page 125: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 125

Calculating Slag Sulphide Capacity

1. Save the function as

“Sulphide_Capacity”

2. Close the window

Page 126: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 126

Calculating Slag Sulphide Capacity

1. Go back to the “Results”

window, and select the

“Sulphide_Capacity” function

group

3. Click “Refresh Results …”

2. Check “Always

calculate function

groups”

Page 127: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 127

Calculating Slag Sulphide Capacity

1. A separate

“Functions” tab will

appear with the

results of the

calculations

2. Each tab will

have information

on the function

along with the

calculated

equilibrium.

Page 128: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 128

Calculating Slag Sulphide Capacity

1. In order to plot the sulphide capacity as a function of

temperature, press the XML button

2. Then select

“Graph” → “Setup”

3. Import the

“Sulphide_Capacity” function

Page 129: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 129

Calculating Slag Sulphide Capacity

1. Select “Functions” as the Y-Axis 2. Select “Temperature” as the X-axis

3. Adjust the min and max

values, the step, etc.

4. Press “Draw”

Page 130: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 130

Calculating Slag Sulphide Capacity

The figure is then

obtained

Page 131: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 131

Calculating Slag Sulphide Capacity

Repeating the same procedure for the other slag compositions, it is

possible to compare the sulphide capacities of the different slags.

Page 132: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 132

Slag cooling and heating

(Enthalpy diagram)

• When slag forms from pure oxides, a certain amount of heat

(enthalpy) is needed.

• When slag is cooled down, a certain amount of heat should be

extracted.

• FactSage Phase diagram: Enthalpy diagram

Page 133: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 133

Heat required to form and increase temperature of slag

Pure FeO(s) is not in the FToxid compound database

(Strictly speaking, FeO is a non-stoichiometric

compound so it is in the FToxid MeO solution)

Initial condition

FactSage can use two variables, <A> and <B>

<A> can actually be varied but <B> should be constant

H = Hfinal – Hinitial

So initial conditions(phase,T,P) should be defined

Page 134: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 134

Final condition

H = Hfinal – Hinitial

This is the heat we add to increase the

temperature up to 1600oC.

That is, H = Hslag at 1600C – Hinitial oxides at 25C

This is the enthalpy of the final

products at 1600oC

Heat required to form slag and increase the temperature of slag

Page 135: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 135

Heat required to form slag and increase the temperature of slag

<A> MgO + <1-A-B> FeO + <B> SiO2

Alpha

De

lta

H(J

)

0.0 0.1 0.2 0.3 0.4 0.5

1475

1525

1575

1625

1675

1725

1775

1825

1875

1925

Fe(s) Fe(s) Fe(s) Fe(s)

SLAGA#1 SLAGA#1

SLAGA#1

SLAGA#1

MeO_A

OlivA

OlivA

<A> MgO + <1-A-B> FeO + <B> SiO2

C:\Slag-Steel-Inclusions\Equi0.res 23Sep12

Alpha

gra

m

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

slag

Sla

g+

Oliv

ine

Sla

g+

Oliv

ine+

MeO

Oliv

ine+

MeO

Page 136: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 136

Enthalpy diagram: phase change with H

Page 137: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 137

• Only X-Y type diagram allowed.

• Y axis should be Enthalpy (H-HTmin).

• Hinitial (HTmin) is the enthalpy of products stable at Tmin. For example, Fe2SiO4

(fayalite_olivine) and SiO2 are stable at 0% MgO and 30% SiO2 rather than FeO

and SiO2.

30%SiO2

Tinitial

Iso-Temperature

Enthalpy diagram option

Enthalpy diagram: phase change with H

Page 138: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 138

Enthalpy diagram: phase change with H

If we increase the temperature of the mixture of (monoxide + olivine) at 20 wt % MgO and 30 wt % SiO2

from 25 oC to 1625 oC, liquid slag is formed and the amount of heat required for this is about 2250 J/g.

125 oC

225 oC

325 oC

425 oC

525 oC

625 oC

725 oC

825 oC

925 oC

1025 oC

1125 oC

1225 oC

1325 oC

1425 oC

1525 oC

1625 oC

1725 oC

1825 oC

2025 oC2125

oC2225

oC2325

oC2425

oC

AMonoxide + AMonoxide#2 + AOlivine

AMonoxide + AOlivine

ASlag-liq + AMonoxide + AOlivine

ASlag-liq + AOlivine

ASlag-liq

ASlag-liq + AMonoxide

AOlivine + SiO2(s)

AOlivine + SiO2(s2)

AOlivine + SiO2(s4)

MgO - FeO - SiO2

SiO2/(MgO+FeO+SiO

2) (g/g) = 0.3, 1 atm

MgO/(MgO+FeO+SiO2) (g/g)

H -

H25 C

(J/g

)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

500

1000

1500

2000

2500

3000

If w

e h

ea

t t

he

mix

ture

of (m

on

oxid

e +

oliv

ine

) a

t 3

0 w

t %

Mg

O a

nd

30

wt

% S

iO2

fro

m 2

5 o

C b

y a

dd

ing

15

00

J/g

,

the

mix

ture

be

co

me

s a

mix

ture

of (liq

uid

sla

g +

oliv

ine

) a

t

ab

ou

t 1

42

5 o

C.

Page 139: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 139

Enthalpy diagram: phase change with H

125 oC

225 oC

325 oC

425 oC

525 oC

625 oC

725 oC

825 oC

925 oC

1025 oC

1125 oC

1225 oC

1325 oC

1425 oC

1525 oC

1625 oC

1725 oC

1825 oC

1925 oC2025

oC2125

oC2225

oC2325

oC

Orthopyroxene + AOlivine

AMonoxide + AOlivine

ASlag-liq + AOlivine

ASlag-liq

ASlag-liq + AOlivine + SiO2(s4)

ASlag-liq + AClinopyroxene + AOlivine

AOlivine + SiO2(s4)

ASlag-liq + AMonoxide + AOlivine

MgO - FeO - SiO2

SiO2/(MgO+FeO+SiO

2) (g/g) = 0.4, 1 atm

MgO/(MgO+FeO+SiO2) (g/g)

H -

H25 C

(J

/g)

0 0.1 0.2 0.3 0.4 0.5

0

500

1000

1500

2000

2500

3000

Page 140: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 140

Application: Addition of new compounds and

solutions (user defined) in calculations

MnCr2O4-MnAl2O4 ideal solid solution

• New stainless steel production: high

Mn stainless steel 400 grade. High

MnO formation in AOD / VOD refining

process

• MnCr2O4-MnAl2O4 inclusion

formation in Mn- and Cr-containing

steels

Page 141: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 141

User Compound Database

(2) Select “mixer”

(1) Type the compounds

(3): add the MnO and Cr2O3 from known database

(4): select your own database (INHOBASE) and copy the result

Creating user compound database: MnCr2O4 from MnO and Cr2O3

Page 142: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 142

User Compound Database

Go(cubic-MnCr2O4) = Go(MnO) + Go(Cr2O3) + Hf − TSf

Hf = -51 kJ/mol, S = 0 J/mol-K

Before Hf and Sf

after Hf and Sf

Page 143: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 143

User Compound Database

Add H298, S298 and Cp

Creating user compound database:

MgCr2O4 from H298, S298 and Cp

Page 144: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 144

Ideal solution between compounds

Database selection

Priority of database

Page 145: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 145

Ideal solution between compounds

MnCr2O4-MgCr2O4 ideal sol’n: (Mg,Mn)Cr2O4

Both MnCr2O4 and MgCr2O4 are selected as ideal

solution #1 with no activity coefficients entered (ideal)

Page 146: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 146

Ideal solution between compounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

CaO Cr2O3mass fractions /(CaO+SiO2+Cr2O3)

Liqiud

Liquid + Ideal #1

O2 - CaO - SiO2 - Cr2O3 - MnO - MgO1700

oC, p(O

2) = 10

-11 atm, MnO/Z (g/g) = 0.1,

MgO/Z (g/g) = 0.05, Z=(CaO+SiO2+Cr

2O

3)

Ideal solution of

MgCr2O4-MnCr2O4

Liquid

Page 147: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 147

Application: Addition of a new component in slag

V2O3 into molten slag for V distribution calculations

(Henrian solution)

Page 148: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 148

New component in slag: Henrian activity coefficient

V2O3 containing slag // Liquid Fe-Al steel

All V goes to liquid Fe ??

(because no V oxide in slag yet)

Page 149: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 149

New component in slag: Henrian activity coefficient

Setting activity coefficient

of V2O3 in slag

Page 150: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 150

New component in slag: Henrian activity coefficient

Page 151: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 151

New component in slag: Henrian activity coefficient

V in FeLq = 0.577 wt%

V2O3 in slag = 0.134 wt%

The distribution of V between slag and metal can

be varied depending on the activity coefficient.

(evaluated from experimental data)

Page 152: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 152

Vanadium partition coefficient in

Steel/Slag melts based on literature data

(BOF condition)

FINAL REPORT for MIME572

• By Jonathan Spring

• Undergraduate student

McGill University

V distribution between steel and slag

More details can be found in:

http://in-ho-group.mcgill.ca/publicfiles.php#

Page 153: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 153

Background • Partition coefficients used to quantify solute concentrations in

steel/slag

• Partition coefficient, Lv, = (wt% V) / [wt% V]

• No known expression to predict vanadium distribution coefficient

Henry’s Law • We are dealing with dilute solutions

• (V2O3) ~ 3 wt%

• 2 V + 3 O = V2O3

• Keq = AV2O3 / (AV2*AO

3)

• Activity = ϒV2O3xV2O3

• log10(ϒV2O3) = A/T + B

V distribution coefficient between steel and slag

Page 154: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 154

Literature Search

• Found ~ 20 articles with data on vanadium partition coefficients in

slag/steel melts

• 3 of those contained tables of raw data with slag compositions (Zhang,

Shin and Inoue) and 2 were performed at similar temperatures (Shin and

Inoue). These 2 were used initially.

• Shin’s article dealt with slag containing Al2O3. His experiments were

performed without proper control of the oxygen partial pressure and the

partition coefficients for V he found were drastically different than in Inoue’s

article. His results are therefore unreliable. Furthermore, the initial V

partition coefficient model had trouble fitting Shin’s data. It was decided

after my presentation to redo the model using only Inoue’s data.

• Total data points: 63

V distribution coefficient between steel and slag

Page 155: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 155

• 1550 °C: 15 data points

• 1600 °C: 28 data points

• 1650 °C: 18 data points

• Slag

– x SiO2

– x CaO

– x FeO

– x Fe2O3

– x MgO

• Lv for each data point

V distribution coefficient between steel and slag

Page 156: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 156

Data from Inoue’s Article Slag (wt%)

T (C) (CaO) (SiO2) (FeO) (Fe2O3) (MgO) (V) Lv

1650 27 28 21 2 19 1 410.1

1650 19 22 36 4 16 1 751.4

1650 29 15 36 6 10 1 1087.6

1650 8 13 52 4 22 1 850.6

1650 25 7 47 11 8 2 1510.0

1650 17 3 58 12 7 2 1439.3

1650 1 4 71 6 16 1 1142.9

1650 1 15 50 3 29 1 705.9

1650 19 28 29 2 20 1 522.1

1650 28 22 30 4 13 1 761.7

1650 37 14 31 8 8 2 1174.2

1650 21 13 46 6 11 2 937.9

1650 31 7 40 13 7 2 1495.1

1650 0 1 82 6 8 2 1006.2

1650 1 7 71 5 14 1 900.7

The amount of V in the slag was not considered. The same fixed amount of V was

used for all equilibrium calculations and the subsequent calculation of Lv.

Ref: R. Inoue and H. Suito, Trans. ISIJ, vol. 22, p 705 (1982).

V distribution coefficient between steel and slag

Page 157: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 157

• Databases: FToxid, Ftmisc (FeLQ), FactPS

• Equilibrium

– x SiO2

– x CaO

– x FeO

– x Fe2O3

– x MgO

– 300 g Fe

– 2 g V

100 g

3:1 metal to slag ratio

V distribution coefficient between steel and slag

Page 158: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 158

• Assume V in slag exists as V2O3

Solid V2O3 was considered because solid V2O3 is stable at these temperatures.

V distribution coefficient between steel and slag

Page 159: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 159

• Change “A” value, “B” assumed to be 0

V distribution coefficient between steel and slag

Page 160: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 160

[Wt% V]

Lv = (Wt% V) = 68.6

•Calculate equilibrium

•Calculate Lv

•Compare to measured Lv

•Go back and try new <A>

value

•Trial and error

•More negative <A> value

creates a smaller Lv

Slag (wt%)

T (C) (CaO) (SiO2) (Fe2O3) (MgO) (FeO) Lv

1650 37 15 18 22 4 12.6

Page 161: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 161

<A> Value to Activity Coefficient

log10(ϒV2O3) = A/T + B

log10(ϒV2O3) = -1025/1923

ϒV2O3 = 10^(-1025/1923)

ϒV2O3 = 0.293

Slag (wt%)

T (C) (CaO) (SiO2) (FeO) (Fe2O3) (MgO) (V) Lv A ϒ

1650 27 28 21 2 19 1 410.1 -1025 0.29

1650 19 22 36 4 16 1 751.4 -1200 0.24

1650 29 15 36 6 10 1 1087.6 -2175 0.07

1650 8 13 52 4 22 1 850.6 -1100 0.27

1650 25 7 47 11 8 2 1510.0 -2750 0.04

1650 17 3 58 12 7 2 1439.3 -2300 0.06

1650 1 4 71 6 16 1 1142.9 -1300 0.21

1650 1 15 50 3 29 1 705.9 -750 0.41

1650 19 28 29 2 20 1 522.1 -1000 0.30

1650 28 22 30 4 13 1 761.7 -1475 0.17

A more negative <A> value indicates a smaller activity coefficient.

V distribution coefficient between steel and slag

Page 162: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 162

• The regression using slag basicity, A = aCaO/SiO2 + bMgO/SiO2 + c(FeO + Fe2O3), was discarded because the fit was not as good as for the regression using each slag component.

• The regression using each slag component was poor nonetheless. Another regression, using all slag components and the slag temperature, was introduced.

• Option #1 A = aCaO + bSiO2 + c(FeO + Fe2O3) + dMgO

• Option #2 (Option #1 including temperature) A = aT(K) + bCaO + cSiO2 + d(FeO + Fe2O3) + eMgO

• Option #3 (Option #2 including Constant) A = aT(K) + bCaO + cSiO2 + d(FeO + Fe2O3) + eMgO +

Constant

V distribution coefficient between steel and slag

Page 163: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 163

• Regression #3 is best

– Slope of measured vs predicted <A> and

measured vs predicted Lv is closest to 1

– Smaller residuals

– Residuals are randomly distributed

• A = - 7 * Temperature (K) - 51 * wt% CaO +

133 * wt% SiO2 + 31 * (wt% FeO + wt% Fe2O3)

- 37 * wt% MgO + 10,100

• Need to test against more data!

V distribution coefficient between steel and slag

Page 164: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 164

Zn Galvanizing process

Reduction furnace: selective oxidation

Galva-annealing: Zn melting and oxidation

Page 165: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 165

Oxygen partial pressure control using dew-point control

N2-5%H2

Ice(H2O(s)), T= -30°C

PO2=?

Oxidation ?

H2 + 1/2O2 = H2O

Annealing T= 800°C

Hot Dip galvanizing

Cold worked at 300 °C

Dew point

Page 166: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 166

We should select real gas to obtain

accurate Gibbs energy and volume

fraction of gas at low temperature

and high pressure.

N2-H2 gas with -30oC dew point

Page 167: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 167

We will heat this gas at 800°C using

a stream file.

N2-H2 gas with -30oC dew point

Page 168: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 168

Creating stream file

N2-H2 gas with -30oC dew point

Page 169: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 169

Final partial pressure of oxygen

N2-H2 gas with -30oC dew point 800oC

Page 170: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 170

Dew Point = 0

o C

-10o C -20

o C-30

0 C-40

o C-50

0 C

TemperatureoC

log

PO

2, b

ar

500 600 700 800 900 1000 1100 1200

-35-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

Dew points – PO2/T Relationship

95%N2,5%H2

Dew Point 0o C

-100 C

-20o C

-30o C

-40o C

-500 C

Temperature0C

log p

O2,b

ar

500 600 700 800 900 1000 1100 1200

-35-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-1590%N2,10%H2

Page 171: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 171

Phase diagram PO2 – T: Oxidation of Fe-1%Mn-1%Si

Page 172: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 172

BCC_A2

BCC_A2 + FCC(c,n)

FCC(c,n)

Rhodonite + BCC_A2 + SiO2(s2)

Rhodonite + BCC_A2 + SiO2(s)

Rhodonite + BCC_A2 + SiO2(s4)

Rhodonite + FCC(c,n) + SiO2(s4)

AOlivine + BCC_A2

AOlivine + BSpinel

Rhodonite + BCC_A2

Rhodonite + BCC_A2

O2 - Fe - Mn - Si

mass Mn/(Fe+Mn+Si) = 0.01, mass Si/(Fe+Mn+Si) = 0.01

T(C)

log

10(p

(O2))

(atm

)

500 600 700 800 900 1000

-40

-36

-32

-28

-24

-20

Page 173: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 173

FCC + BCC

FC

C +

BC

C +

SiO

2

FCC + BCC + SiO2 + MnSiO3

FCC + BCC + MnSiO 3

FCC + BCC + Mn2SiO4

FCC + BCC + MnSiO3 + Mn2SiO4

Fe - C - Mn - Si - O2

800oC, p(O

2) = 10

-27.5 bar, C = 0.1%

wt% Mn

wt%

Si

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Drawing of the diagram:

1) Collect all blue/red/green lines at different PO2 and superimpose them in one diagram.

2) The boundary of each colored line (different phase) is the phase boundary of the primary

oxide phases in the diagram.

EX17-3. Primary oxide formation diagram

Page 174: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 174

Fe-Mn-Si at PO2=10-28atm, T=800°C

Page 175: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 175

Boundaries for oxide phases

Page 176: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 177

<BCC + SiO2>

<BCC

+ MnSiO3>

wt %Mn

wt

%S

i

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

<BCC +FCC

+ MnSiO3>

<BCC +FCC

+ Mn2SiO4>

(A)(B)

(C)

Mn = 0.5

Si = 1.5

Primary oxidation Secondary oxidation

Mn = 0.5

Si = 1.0

SiO2 formation

Si depletion

in metal

SiO2+MnSiO3 formationSiO2

MnSiO3

<BCC + SiO2>

<BCC

+ MnSiO3>

wt %Mn

wt

%S

i

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

<BCC +FCC

+ MnSiO3>

<BCC +FCC

+ Mn2SiO4>

(A)(B)

(C)

Mn = 0.5

Si = 1.5

Primary oxidation Secondary oxidation

Mn = 0.5

Si = 1.5

SiO2 formation

Si depletion

in metal

SiO2+MnSiO3 formationSiO2

MnSiO3

Primary and Secondary Oxidation

Page 177: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 178

Oxidation phase diagram of Fe-0.002%C-Mn-Si steel at 800oC

Oxidation phase diagram

Page 178: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 179

Remelting and oxidation of Zn galvanized steel

Zn

Fe-1%Mn-0.5%Cr

Air

2. Oxidation reaction

Zn (liquid)

Fe-1%Mn-0.5%Cr

Air

1. L/S Interfacial reaction

Reheating

(900 oC)

air

Original metal

Oxid

e layer

Oxidation Calculation

Log P(O2)

By controlling the partial pressure,

different layer oxides can be

calculated. But the partial pressure

does not decrease linearly with depth

of oxide layer. So this type of

calculation shows quantitative

oxidation behavior

Page 179: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 180

FTlite database contains

reasonable Zn bath data for Zn-

galvanizing. So, this is chosen

instead of FSStel.

Interface reaction between liquid Zn and steel

Page 180: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 181

Original steel:

Fe-1%Mn-0.5%Cr

Reaction products:

Zn-rich Liquid

Reaction products:

BCC + FCC

We need this liquid Zn for the

oxidation reaction

Save it as a stream

Interface reaction between liquid Zn and steel

Page 181: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 182

Oxidation of liquid Zn

(1)

(2)

(2)-a

(1)-a

(1)-b

(1) Setting oxygen partial pressure:

activity or log activity can be fixed

(2) Remove duplicate compounds

Give a priority in database

Typically “FToxid > any metallic database > FactPS”

Page 182: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 183

Oxidation of liquid Zn

Setting X-asix

Page 183: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 184

Oxidation of liquid Zn

Liqu#1

BCC#1

SPINASPINA

SPINA

MeO_A MeO_A

ZNITAZNITA

ZNITA

TSpi

100% [Zn-liquid] + 0 O2

C:\FactSage\Equi0.res 1Oct12

log10(activity) O2(g)

gra

m

-30.0 -20.0 -10.0 0.0

0

10

20

30

40

50

BCC#1

SPINA

SPINA

MeO_A MeO_ATSpi

100% [Zn-liquid] + 0 O2

C:\FactSage\Equi0.res 1Oct12

log10(activity) O2(g)

gra

m

-30.0 -20.0 -10.0 0.0

0

01

02

03

04

05

air

Spinel + liquid Spinel +Monoxide + liquid

Zincite + BCC

Original metal

Oxid

e layer

Zincite + Spinel

It is hard to predict the thickness of each layer

ZnCr2O4

MnO-rich monoxide

ZnO-rich Zincite

Page 184: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 185

Carburization and Decarburization of Steel

CO / CO2 is variable

Page 185: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 186

Carburization and Decarburization of Steel

Page 186: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 187

An amount of carbon in FCC phase (Fe)

wei

gh

t %

<Alpha>

Carburization and Decarburization of Steel

Page 187: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 188

Composition Target:

“ How to calculate optimum amount of

CO2 to reduce C in steel to a targeted

composition”

Carburization and Decarburization: Composition target

Page 188: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 189

wei

gh

t %

<Alpha>

Carburization and Decarburization: Composition target

Page 189: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 190

Viscosity Calculation: S+L mixtures (Einstein-Roscoe Eq.)

Einstein-Roscoe Equation (one of the most well-accepted

equation of viscosity for solid+liquid mixtures)

Viscosity (solid+liquid mixture) Viscosity(liquid) (1 solid fraction)-2.5

Original Einstein-Roscoe equation used ‘volume fraction of

solid’ instead of ‘solid fraction’ and a correction term for

morphology, but all these values are not very well-known for

general solids. We can simply use the solid fraction (wt fraction)

for this equation as an approximation.

This value can be calculated using the “Equilib” module at

a given system composition and temperature (Step-1).

Viscosity of liquid slag can be

calculated from “Viscosity”

module from slag composition

calculated from “Equilib” (Step-2)

Page 190: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 191

Viscosity calculations “Step-1”: Composition of liquid slag

Page 191: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 192

Viscosity calculations “Step-2”: Viscosity of liquid slag

Composition of liquid

slag from Equilib

Take these results

for next step

“Melts” database is for liquid slag

Page 192: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 193

Viscosity calculations “Step-3”: Liquid + Solid mixture

Amount

of slag

Amount of solids

(100-amount of liquid)

Step-2

Einstein-Roscoe

Eq.

Page 193: Ferrous applications II - Polytechnique Montréal · Refractory dissolution in molten slag (RH degasser) 57 Ladle glaze formation 62 Thermal stability of refractory 65 Refractory

Ferrous Applications II 194

Thanks to FactSage Steelmaking Consortium Members

Developments of

• Thermodynamic database

• Process simulation model

Training for FactSage and Process simulation