Fem Garlekine Method

Embed Size (px)

Citation preview

  • 8/8/2019 Fem Garlekine Method

    1/67

    NBCR Summer Institute 2006:

    Multi-Scale Cardiac Modeling withContinuity 6.3

    Wednesday:Finite Element Discretization and

    Anatomic Mesh Fitting

    Andrew McCulloch and Fred Lionetti

  • 8/8/2019 Fem Garlekine Method

    2/67

  • 8/8/2019 Fem Garlekine Method

    3/67

    The Finite Element Method

    Solution is discretized using a finite number of functions

    Piecewise polynomials (elements) Continuity across element boundaries ensured by

    defining element parameters at nodes with associatedbasis functions,

    12 13

    14 15

    21 22

    23 24

    FE equations are derived from the weak form of thegoverning equations

    R = 0

    Finite differences:

    Finite elements:

    R = 0

  • 8/8/2019 Fem Garlekine Method

    4/67

    The Finite Element

    Method Integrate governing equations in each element Assemble global system of equations by adding

    contributions from each element

    1 2

    5 6

    7 8

    3 4

    Element equationsk k k k k k k k

    k k k k k k k k k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    u

    uu

    u

    u

    u

    u

    u

    11 12 13 14 15 16 17 18

    21 22 23 24 25 26 27 28

    31 32 33 34 35 36 37 38

    41 42 43 44 45 46 47 48

    51 52 53 54 55 56 57 58

    61 62 63 64 65 66 67 68

    71 72 73 74 75 76 77 78

    81 82 83 84 85 86 87 88

    1

    2

    3

    4

    5

    6

    7

    8

    L

    N

    MMMMMMMMMMM

    O

    Q

    PPPPPPPPPPP

    L

    N

    MMMMMMMMMMM

    O

    Q

    PPPPPPPPPPP

    =

    L

    N

    MMMMMMMMMMM

    O

    Q

    PPPPPPPPPPP

    f

    ff

    f

    f

    f

    f

    f

    1

    2

    3

    4

    5

    6

    7

    8

    12 13

    14 15

    21 22

    23 24

    Global equations

    L

    N

    MMMM

    MMMMMMMMMMMMMMMMMMMMMM

    MMMMMMMMMMMMMMMMMMM

    O

    Q

    PPPP

    PPPPPPPPPPPPPPPPPPPPPP

    PPPPPPPPPPPPPPPPPPP

    L

    N

    MMMM

    MMMMMMMM

    MMMMMMMMMMMMMM

    MMMMMMMMMMMMMMMMMMM

    O

    Q

    PPPP

    PPPPPPPPPPPPPPPPPPPPPP

    PPPPPPPPPPPPPPPPPPP

    L

    N

    MMMM

    MMMMMMMMMMMMMMMMMMMMMM

    MMMMMMMMMMMMMMMMMMM

    O

    Q

    PPPP

    PPPPPPPPPPPPPPPPPPPPPP

    PPPPPPPPPPPPPPP

    =

    PPPP

  • 8/8/2019 Fem Garlekine Method

    5/67

    Consider the strong form of a linear partial differential

    equation, e.g. 3-D Poissons equation with zero boundaryconditions:

    0

    ),,(2

    2

    2

    2

    2

    2

    =

    =

    u

    zyxfz

    u

    y

    u

    x

    uOn region R

    on boundary S

    Strong Form Lu= f

    Variational Principle, e.g. minimum potential energy

    =Rv

    vfLvu Vd)2(min

    Weighted Residual (weak) form, e.g. virtual work

    0Vd)( = R

    wfLu

    Integral Formulations

  • 8/8/2019 Fem Garlekine Method

    6/67

    0

    ),(2

    2

    2

    2

    =

    =

    u

    yxf

    y

    u

    x

    uOn region S

    on boundary C

    Weak form

    =

    SSyxwfyxw

    y

    u

    x

    udddd

    2

    2

    2

    2

    Integrate by parts

    d d d d d dS C C S

    u w u w u u x y w x w y f w x y x x y y y x

    + =

    Where, u and w vanish at the boundary

    0 0

    Weak Form for 2-D Poissons Equation

  • 8/8/2019 Fem Garlekine Method

    7/67

    Choose a finite set of approximating (trial) functions,

    i(x,y), i = 1, 2, , N

    Allow approximations to uin the form

    U(x,y) = U11 + U22 + U33 + + UNN(that can also satisfy the essential boundary conditions)

    Solve N discrete equations for U1, U2, U3, , UN

    ( ) ij

    jij

    si

    S

    iNN

    iNN

    FUK

    yxf

    yxyy

    Uy

    Uxx

    Ux

    U

    =

    =

    ++

    +

    ++

    dd

    dd...... 111

    1

    Galerkins Method for 2-D Poissons Equation

  • 8/8/2019 Fem Garlekine Method

    8/67

    yxfF

    Kyxyyxx

    K

    Sii

    jiS

    jijiij

    dd

    dd

    =

    =

    +

    =

    [K]U = F

    [K] is the stiffness matrix and F is the load(RHS) vector

    [K] is symmetric and positive definite

    Galerkins Method for 2-D Poissons

    Equation

  • 8/8/2019 Fem Garlekine Method

    9/67

    Galerkin is more general than Rayleigh-Ritz. If we add u/x, symmetry& the variational principle are lost, but Galerkin still works

    Ifwis chosen as Dirac delta functions at N points, weighted residualsreduces to the collocation method

    Ifwis chosen as the residual functions Lu-f, weighted residuals reduces

    to the least squares method

    By choosing wto be the approximating functions, Galerkins method

    requires the error (residual) in the solution to be orthogonalto theapproximating space.

    The integration by parts (Green-Gauss theorem) automatically

    introduces the Neumann (natural) boundary conditions

    The Dirichlet (essential) boundary conditions must be satisifed explicitly

    when solving [K]U=F Since discretized integrals are sums, contributions from many elements

    are assembledinto the global stiffness matrixby addition.

    The Ritz-Galerkin FEM finds the approximate solution that minimizes the

    error in the energy

    Comments on Galerkins Method

  • 8/8/2019 Fem Garlekine Method

    10/67

    1. Formulate the weighted residual (weak form)2. Integrate by parts (or Green-Gauss Theorem)

    reduces derivative order of differential operator

    naturally introduces derivative (Neumann) boundary

    conditions, e.g. flux or traction. Hence called that

    naturalboundary condition

    3. Discretize the problem

    discretize domain into subdomains (elements)

    discretize dependent variables using finite

    expansions of piecewise polynomial interpolating

    functions (basis functions) weighted byparameters

    defined at nodes

    Steps in the Finite Element Method

  • 8/8/2019 Fem Garlekine Method

    11/67

    4. Derive Galerkin finite element equations substitute dependent variable approximation in

    weighted residual integral

    Choose weight functions to be interpolating

    functions the Galerkin assumption (Galerkin,

    1906)

    5. Compute element stiffness matrices and RHS

    integrate Galerkin equations over each element

    subdomain

    integrate right-hand side to obtain element load

    vectors which also include any prescribed Neumann

    boundary conditions

    Steps in the Finite Element Method (contd)

  • 8/8/2019 Fem Garlekine Method

    12/67

    6. Assemble global stiffness matrix and load vector Addelement matrices and RHS vectors into global

    system of equations

    Structure of global matrix depends on node ordering

    7. Apply essential (i.e. Dirichlet) boundary conditions at least one is required (essential) for a solution

    prescribed values of dependent variables at specified

    boundary nodes, e.g. prescribed displacements

    eliminate corresponding rows and columns from

    global stiffness matrix and transfer column effects of

    prescribed values to Right Hand Side

    the constraint reducedsystem

    Steps in the Finite Element Method (contd)

  • 8/8/2019 Fem Garlekine Method

    13/67

    8. Solve global equations

    for unknown nodal dependent variables

    using algorithms for Ax = b or Ax = x

    9. Evaluate element solutions interpolate dependent variables

    evaluate derivatives, e.g. fluxes

    derived quantities, e.g. stresses or strain energy

    graphical visualization;post-processing

    10.Test for convergence

    refine finite element mesh and repeat solution

    Steps in the Finite Element Method (contd)

  • 8/8/2019 Fem Garlekine Method

    14/67

    =

    ==

    2

    2d 2d

    (1) 0

    (4) 9

    ux

    u

    u

    solution

    u x x( ) ( )= 1 2

    1 2 3 4U1=0

    2

    4

    6

    8

    x

    u

    U4=9

    U3 =?

    U2=?

    Galerkin FEM: Simple 1-D Example

  • 8/8/2019 Fem Garlekine Method

    15/67

    0xd)( = R wfLu

    2. Integrate by parts (or Green-Gauss Theorem)

    0xd24

    12

    2

    =

    ww

    dx

    ud

    0xd2

    4

    1

    4

    1 =+ wdxdu

    wdx

    dw

    dx

    du

    1. Formulate the weighted residual (weak) form

  • 8/8/2019 Fem Garlekine Method

    16/67

    4 globalnodal parameters U1, U2, U3, U4

    3 linear elements each with 2 elementnodal

    parameters u1, u2.

    Adjacent elements share global nodal parameters,e.g., global parameter U2 is element parameter u2 of

    element 1 and u1 of element 2.

    Two (linear) element interpolation functions for each

    element, i(x), i = 1, 2

    Allow element approximations to uin the form

    u(x) = u1 1 + u2 2 = ui i i=1,2

    3. Discretize the problem

  • 8/8/2019 Fem Garlekine Method

    17/67

    0 0.5 1

    0

    0.5

    1

    x

    2 1

    element basis functions

    Element Basis Functions

  • 8/8/2019 Fem Garlekine Method

    18/67

    [ ] 0xd2

    xd2xd2

    4

    1

    4

    3

    3

    2

    2

    1

    =+

    +

    +

    wdx

    duwdx

    dw

    dx

    du

    wdx

    dw

    dx

    duwdx

    dw

    dx

    du

    In each element, let

    u(x) u1 1 + u2 2 = ui i (x)

    and

    w(x) i (x)

    4. Derive Galerkin equations for each element

  • 8/8/2019 Fem Garlekine Method

    19/67

    ( )i

    jjij

    2

    1

    2

    1

    2

    2

    1

    1

    fuk

    d2dd

    d

    d

    d

    d

    d

    ==

    xxxxuxui

    i

    e.g. forElement 1 (no derivative boundary conditions):

    [k] = [(kij)] is the element stiffness matrix

    f = (fi) is the element load vector

    4. Derive Galerkin equations for each element ( contd)

  • 8/8/2019 Fem Garlekine Method

    20/67

    x

    x

    xxd2f

    kdk

    ii

    jiij

    ji

    =

    =

    =

    [k]u = f

    Element stiffness matrix, [k] and load(RHS) vector, f

    12

    :1Element

    2

    1

    ==

    xx

    =

    =

    =

    11

    11

    d11

    11

    )1ele(

    2

    1

    2

    1)1ele(

    [k]

    [k]xx

    xxx

    5. Compute element stiffness matrices

  • 8/8/2019 Fem Garlekine Method

    21/67

    xd2f ii

    =

    1

    2

    :1Element

    2

    1

    =

    =

    x

    x

    =

    =

    =

    =

    1

    1

    )21()44(

    )14()48(

    2

    4d

    22

    24

    )1ele(

    2

    22

    1

    2

    1)1ele(

    f

    fxx

    xxx

    x

    x

    In this problem, each element is the same size and thus:

    [k](ele1) = [k](ele2) = [k](ele3)

    and:

    f(ele1) = f(ele2) = f(ele3)

    5. Compute element RHS matrices

  • 8/8/2019 Fem Garlekine Method

    22/67

    =

    =

    11001210

    0121

    0011

    111111

    1111

    11

    [K]

    =

    +

    +

    =

    1

    2

    2

    1

    1

    11

    11

    1

    F

    6.Assemble global stiffness matrix and load vector

  • 8/8/2019 Fem Garlekine Method

    23/67

    =

    =

    1

    2

    2

    1

    1100

    1210

    0121

    0011

    4

    3

    2

    1

    U

    U

    U

    U

    F[K]U

    u U

    u U

    ( )

    ( )

    1 0

    4 9

    1

    4

    = =

    = =That leaves global equations 2 and 3

    + =

    + =

    2 3

    2 3

    0 2 2

    2 9 2

    U U

    U U

    7. Apply essential(i.e. Dirichlet) boundary conditions

  • 8/8/2019 Fem Garlekine Method

    24/67

    + = = + = =

    2 3 2

    2 3 3

    0 2 2 12 9 2 4U U U

    U U UExact!

    8. Solve global equations (constraint-reduced)

  • 8/8/2019 Fem Garlekine Method

    25/67

    Representing a One-Dimensional Field

    Polynomials are convenient, differentiated and integrated readily For low degree polynomials this is satisfactory If the polynomial order is increased further to improve the accuracy,

    it oscillates unacceptably Divide domain into subdomains and use low orderpiecewise

    polynomials over each subdomain called elements

    2 3Use a polynomial expression ( ) ...

    and estimate the monomial coefficients a, b, c and d

    u x a bx cx dx = + + + +

  • 8/8/2019 Fem Garlekine Method

    26/67

    Making Piecewise Polynomials Continuous

    constrain the parameters to ensure continuity ofu

    across the element boundaries

    or better, replace the parameters a and b in the firstelement with parameters u1 and u2, which are the

    values ofuat the two ends of that element:

    where is a normalized measure of

    distance along the curve

    u u u( ) ( ) = +1 1 2 ( )0 1

  • 8/8/2019 Fem Garlekine Method

    27/67

    u = u(x)

    +

    +

    ++

    + ++

    + + ++

    +

    +

    x

    u

    u = a + bx u = c + dx u = e + fx

    ++

    +++ +

    ++ + +

    +

    +

    +

    x

    u

    u1

    u2

    u3

    u4

    0

    1

    u=(1- ) u1+ u2

    element 1 element 2 element 3

    nodes

  • 8/8/2019 Fem Garlekine Method

    28/67

    u

    u1

    u2

    u=(1- )u1+u2

    0 1

    0 1

    1

    0

    1

    1

    1 = 1-

    2 =

    Linear Lagrange Interpolation

  • 8/8/2019 Fem Garlekine Method

    29/67

    Global-Element Mapping

    Associate the nodal quantity un with element node n Map the value U defined at global node onto local node n ofelement e by using a connectivity matrix (n, e),

    u Un n e= ( , )

    Thus, in the first element

    u u u( ) ( ) ( ) = +1 1 2 2

    withu1=U1 and u2=U2..

    In the second element uis

    interpolated by

    u u u( ) ( ) ( ) = +1 1 2 2

    Withu1=U2andu2=U3.

  • 8/8/2019 Fem Garlekine Method

    30/67

    We haveu ( ) but to defineu (x) we needx ( ).

    Definexas an interpolation of nodal values, e.g.

    u u

    x x

    n n

    n

    n n

    n

    ( ) ( )

    ( ) ( )

    =

    =

    Isoparametric Interpolation

    u

    x

    u1

    u2

    x2

    x1

    1

    1

    u1

    u2

    u

    x2x1x

  • 8/8/2019 Fem Garlekine Method

    31/67

    Quadratic Lagrange Basis Functions

    Use three nodal parametersu1, u2 and u3

    are the quadratic Lagrange basis functions.

    ( ) ( ) ( ) ( )

    ( ) ( )

    ( )( )

    1 1 2 2 3 3

    1

    2

    3

    where

    2 1 0.5

    4 1

    2 0.5

    u u u u

    = + +

    =

    = =

    0 0.5 1.0

    1.0

    0 0.5 1.0

    1.0

    0 0.5 1.0

    1.0

    1 2

    3

  • 8/8/2019 Fem Garlekine Method

    32/67

    Cubic Hermite Basis Functions

    1

    1

    1

    1

    1

    1

    0

    0

    0

    0

    ( ) 3211 231 +=

    ( ) ( ) 23212 =

    ( ) ( ) 221 1=

    ( ) ( )1222 =

  • 8/8/2019 Fem Garlekine Method

    33/67

    Scaling Factors

    =0 =1 =0 =0s1 s2 s3

    ( ) ( )

    ( ) ( ) ( )

    n e n,e

    n en e n,e i

    i i i(no sum on i)

    =

    =

    U U

    U U s

    s

    Global to local mapping:

    Scaling Factors arc lengths

    arc length

  • 8/8/2019 Fem Garlekine Method

    34/67

    Two-Dimensional

    Tensor-Product Elements

    1 1 2 1 1 1 2 1 2

    2 1 2 2 1 1 2 1 2

    3 1 2 1 1 2 2 2 2

    4 1 2 2 1 2 2 1 2

    ( , ) ( ) ( ) (1 )(1 )

    ( , ) ( ) ( ) (1 )

    ( , ) ( ) ( ) (1 )

    ( , ) ( ) ( )

    = =

    = =

    = =

    = =

    u( 1 , ) ( , ) ( , ) ( , ) ( , )2 1 1 2 1 2 1 2 2 3 1 2 3 4 1 2 4= + + +u u u uBilinear interpolation can be constructed

    where

    Bili T P d B i F i

  • 8/8/2019 Fem Garlekine Method

    35/67

    1

    0 1 1

    2

    1

    1

    1

    2

    u

    y

    x

    1

    x=nxn

    u=nun

    y=nyn0

    Bilinear Tensor-Product Basis Functions

  • 8/8/2019 Fem Garlekine Method

    36/67

    A Six-Noded

    Quadratic-Linear Element

    1

    3

    5

    ( , ) ( ) ( )

    ( , ) ( )

    ( , ) ( )

    1 2 1 1 2

    1 2 1 1 2

    1 2 1 1 2

    2 11

    21

    21

    2

    1

    21

    4 1

    = FHIK

    = FHIK FH

    IK

    =

    2

    4

    6

    ( , ) ( )( )

    ( , )

    ( , )

    1 2 1 1 2

    1 2 1 1 2

    1 2 1 1 2

    4 1 1

    2 11

    2

    2 12

    =

    = FHIK

    = FH IK

    b g

    1

    21.0

    1.000

    0.5

  • 8/8/2019 Fem Garlekine Method

    37/67

    Three-dimensional Linear Basis Functions

    e.g. trilinear element has eight nodes with basis functions:

    ( ) ( ) == 21 ;1

    1

    2

    3

    4

    5

    6

    7

    8

    1

    2

    3

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ).,,

    ;,,

    ;,,

    ;,,

    ;,,

    ;,,

    ;,,

    ;,,

    3222123218

    3222113217

    3221123216

    3321113215

    3122123214

    3122113213

    3121123212

    3121113211

    =

    =

    ==

    =

    =

    =

    =

    ( )=

    =8

    1

    321 ,,i

    ii uu

  • 8/8/2019 Fem Garlekine Method

    38/67

    1

    2

    3

    5

    6

    7

    1

    2

    3In each node we define:

    221

    3

    32

    2

    31

    2

    321

    2

    21

    ,,

    ,,,,,

    uuu

    uuuu

    u

    Tri-Cubic Basis Functions

  • 8/8/2019 Fem Garlekine Method

    39/67

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( )

    +

    +

    +

    +

    +

    +

    +++= =

    321

    3

    321

    8

    32

    2

    321

    7

    31

    2

    321

    6

    3

    321

    5

    21

    2

    321

    4

    8

    1 2

    3213

    1

    3212

    3211

    321

    ,,,,

    ,,,,,,

    ,,,,,,,,

    ii

    ii

    ii

    ii

    ii

    i

    ii

    iiii

    uu

    uuu

    uuuu

    ( ) ( ) ( ) ( )

    8,...2,1,;2,1,,,,,

    ;,, 321321

    ==

    =

    jirqnmlk

    r

    q

    n

    m

    l

    k

    j

    i

    Tri-Cubic Basis Functions (Contd)

  • 8/8/2019 Fem Garlekine Method

    40/67

    Scaling Factors

    =0 =1 =0 =0s1 s2 s3

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( )

    n e n,e

    n en e n,e i

    i i i

    n e n e n en,e2 i j

    i j i j i j

    n e n,e3

    i j k i j k

    (no sum on i)

    (no sum on i,j)

    =

    =

    =

    =

    U U

    U U s

    s

    U U s ss s

    U U

    s s s

    ( ) ( ) ( )n e n e n ei j k

    i j k(no sum on i,j,k)

    s s s

    Global to local mapping:

    Scaling Factors arc lengths

    arc length

  • 8/8/2019 Fem Garlekine Method

    41/67

    Coordinate Systems

    Rectangular Cartesian global reference

    coordinate system Orthogonal curvilinear coordinate

    system to describe geometry and

    deformation Curvilinear local finite element

    coordinates

    Locally orthonormal body coordinatesdefine material symmetry and

    structure, related to the

    finite element coordinates by a rotation

    about the -normal axis through

    the "fiber angle" ,

    1 2 3{ }Y ,Y ,Y

    1 2 3{ }, ,

    1 2 3{ }, ,

    1 2 3{ }X ,X ,X

    1 2( , ) 1

    From Costa et al, J Biomech Eng 1996;118:452-463

    C iliA) Rectangular Cartesian Coordinates: { A}=(X Y Z)

  • 8/8/2019 Fem Garlekine Method

    42/67

    Curvilinear

    World

    Coordinates

    R

    Y1

    Y2

    Y3

    A) Rectangular Cartesian Coordinates: { A} (X,Y,Z)

    C) Spherical Polar Coordinates: { A}=(R,,)

    Y1 = R cos cos

    Y2 = R cos sinY3 = R sin

    B) Cylindrical Polar Coordinates: { A}=(R,,Z)

    Y1 = R cosY2 = R sinY3 = Z

    Y3=ZY2=Y

    Y1=X

    Y1

    R

    Y2

    Y3=Z

    +

    Y2

    Y1

    Y3

    d=focus

    = d cosh cos= d sinh sin cos= d sinh sin sin

    Y2

    Y1

    Y3

    D) Prolate Spheroidal Coordinates ( ,, )

  • 8/8/2019 Fem Garlekine Method

    43/67

    Fiber/Sheet Coordinates

    State of

    B d I di C di t

    Covariant

    B V t

    Covariant

    M t i T

  • 8/8/2019 Fem Garlekine Method

    44/67

    Coordinate

    System

    Notations

    * Represents a Lagrangian description of the deformation from B to B .

    Body Indices Coordinates Base Vectors Metric Tensors

    A) rectangular Cartesian reference coordinates

    B R,S RY Re R,S

    B r,s Ry re r,s

    B) curvilinear world coordinates

    B A,B A ( )

    R

    A RA

    Y =

    G e ( )

    R R

    AB A B

    Y YG

    =

    B , ( )

    r

    ry

    =

    g e

    ( )r ry y

    g

    =

    C) normalized finite element coordinates (Lagrangian)

    B K,L K ( ) ( )K AK

    =

    G G ( ) ( )A B

    KL ABK LG G

    =

    B *( ) ( )K K

    =

    g g *( ) ( )KL K L

    g g

    =

    D) locally orthonormal body/fiber coordinates

    B I,J IX ( ) ( )

    K

    xI KIX

    = G G ( ) ( )

    K Lx

    IJ KL IJI J

    G GX X

    = =

    B i,j ix ( ) ( )

    Kx

    i Kix

    =

    g g ( ) ( )

    K Lx

    ij KL iji jg g

    x x

    = =

    B *( ) ( )

    Kx

    I KI

    x

    X

    =

    g g *( ) ( )

    K Lx

    IJ KLI J

    x xg g

    X X

    =

  • 8/8/2019 Fem Garlekine Method

    45/67

    Fitting with Linear Lagrange 1-D Elements

    Two linear Lagrange elementsfit the data witha root-mean-squared-error (RMSE) of 0.614892.

    Result of twice refining the mesh (yielding 8

    elements) andre-fitting: RMSE = 0.0930764

    Least Squares Fitting

  • 8/8/2019 Fem Garlekine Method

    46/67

    ( ) ( )

    ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )

    2

    1,

    2 2

    1 2

    1 2

    2 2 22 2 2

    3 4 52 2

    1 2 1 2

    d

    d d d

    d D

    d d d d

    d d d d d d

    F

    d

    =

    = +

    + + + +

    X X X

    X X X X

    X X X X X X

    The least squares fit minimizes the objective function:

    dX

    ( )dX

    i

    d

    where is measured coordinate or field variable;

    aresmoothingweights

    is the interpolated value at

    Least Squares Fitting

    d are weights applied to the data points

    ( ) ( ) ( )i id dN

    d j j N

    N

    jN

    j

    0 a linear system of equations for nodal parameters

    X X

    FX

    X

    = =

    =

    X

  • 8/8/2019 Fem Garlekine Method

    47/67

    Fitting a Coronary Vascular Tree with Quadratic Lagrange

    1-D Elements

  • 8/8/2019 Fem Garlekine Method

    48/67

    anesthetized & ventilated NewZealand White rabbit

    heart arrested in diastole,

    excised

    pulmonary vessels removed,aorta cannulated

    heart suspended in Ringers

    lactate, perfused in unloaded

    state with buffered formalin at

    80 mm Hg for 4 minutes

    heart cast in polyvinylsiloxane

    plunger

    tube

    knife

    heart cast in rubber

    Rabbit Ventricular Anatomy

  • 8/8/2019 Fem Garlekine Method

    49/67

    plunger

    knife

    Rabbit Ventricular Anatomy

    BASE

    APEX

  • 8/8/2019 Fem Garlekine Method

    50/67

  • 8/8/2019 Fem Garlekine Method

    51/67

    2

    1

    data point

    projects onto

    surface at

    ( d, d, )

    Bicubic Hermite

    isoparametric interpolation

    ( 1, 2) = { ii1i=

    4

    ( 1, 2) +

    i

    1i

    2( 1, 2) +

    i

    2i

    3( 1, 2) +

    2 i

    1 2i

    4( 1, 2)}

    1

    x = d cosh cos y = d sinh sin cos

    z = d sinh sin sin

  • 8/8/2019 Fem Garlekine Method

    52/67

  • 8/8/2019 Fem Garlekine Method

    53/67

  • 8/8/2019 Fem Garlekine Method

    54/67

  • 8/8/2019 Fem Garlekine Method

    55/67

    endo >0

    epi

  • 8/8/2019 Fem Garlekine Method

    56/67

    8,351 geometric

    points 14,368 fiber angles

    36 elements 552 geometric DOF

    RMSE = 0.55 mm 184 Fiber angle DOF

    RMSE = 19

    Anatomic Model

    Vetter & McCulloch Prog Biophys & Mol Biol69(2/3):157 (1998)

  • 8/8/2019 Fem Garlekine Method

    57/67

    Strain Analysis

    X2, longitudinal

    X1, circumferential

    X 3, radial

    Xc , crossfiber

    X f , fiber

    X r , radial

    ( )T122 2 1

    2

    =

    d d

    i i kij i j i j i j

    j k j

    ij i j

    x xF

    X X

    s S E dX dX

    = = =

    =

    F e e e e e e

    E F F I

  • 8/8/2019 Fem Garlekine Method

    58/67

    A/P View Lateral View

    Reconstructed

    3D Coordinates

    Transform

  • 8/8/2019 Fem Garlekine Method

    59/67

    Baseline 2 minutes ischemia

    End-Systolic Circumferential Strain

    0.04

    0.00

    -0.04

    -0.07

    ( ) ( )x2

    F = +X X X

  • 8/8/2019 Fem Garlekine Method

    60/67

    ( ) ( )

    ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )

    x

    x x

    x x xx

    1,

    2 2

    1 2

    2 2 22 2 2

    2

    2 2

    1 2 1 2

    d

    d d d

    d D

    d d d d

    d d d d d d

    F

    dx

    =

    = +

    + +

    + +

    X X X

    X X X X

    X X X X X X

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    RMS

    Fitting

    Error(mm

    )

    10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

    Smoothing Weight

    10-2 0 032

  • 8/8/2019 Fem Garlekine Method

    61/67

    0.018

    0.02

    0.022

    0.024

    0.026

    0.03

    0.028

    10-6

    10-5 10-4 10-3 10-2

    10-6

    10-5

    10-4

    10-3

    10 0.032

    Fiber Strain Cross-fiber StrainMyocardial Blood Flow

  • 8/8/2019 Fem Garlekine Method

    62/67

    y

    Contr o

    l

    LAD

    Occlu

    sion

    -0.05 0.00 0.050.0 1.5 3.0mL/min/

  • 8/8/2019 Fem Garlekine Method

    63/67

    3 th t

  • 8/8/2019 Fem Garlekine Method

    64/67

    SEP

    TAL

    LATE

    RAL

    3months post-surgeryPre-surgery

  • 8/8/2019 Fem Garlekine Method

    65/67

    Base Bead

    Apex Bead3 Columns ofradiopaque beads

  • 8/8/2019 Fem Garlekine Method

    66/67

    C

    L

    R

    Undeformed

    state

    Deformed

    state

  • 8/8/2019 Fem Garlekine Method

    67/67

    Three-Dimensional Strain Analysis