26
FEC and RDO in SVC Thomas Wiegand 1

FEC and RDO in SVC

  • Upload
    pierce

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

FEC and RDO in SVC. Thomas Wiegand. Outline. Introduction SVC Bit-Stream Raptor Codes Layer-Aware FEC Simulation Results Linear Signal Model Description of the Algorithm Experimental Results. Introduction. - PowerPoint PPT Presentation

Citation preview

Page 1: FEC and RDO in SVC

FEC and RDO in SVC

Thomas Wiegand

1

Page 2: FEC and RDO in SVC

Outline

• Introduction• SVC Bit-Stream• Raptor Codes• Layer-Aware FEC• Simulation Results• Linear Signal Model• Description of the Algorithm• Experimental Results

2

Page 3: FEC and RDO in SVC

Introduction• C. Hellge, T. Schierl, and T. Wiegand, “RECEIVER DRIVEN

LAYERED MULTICAST WITH LAYER-AWARE FORWARD ERROR CORRECTION,” ICIP 2008.

• C. Hellge, T. Schierl, and T. Wiegand, “MOBILE TV USING SCALABLE VIDEO CODING AND LAYER-AWARE FORWARD ERROR CORRECTION,” ICME 2008.

• C. Hellge, T. Schierl, and T. Wiegand, “Multidimensional Layered Forward Error Correction using Rateless Codes,” ICC 2008.

• M. Winken, H. Schwarz, and T. Wiegand, “JOING RATE-DISTORTION OPTIMIZATION OF TRANSFORM COEFFICIENTS FOR SPATIAL SCALABLE VIDEO CODING USING SVC,” ICIP 2008.

3

Page 4: FEC and RDO in SVC

SVC Bit-Stream

• Spatial-temporal-quality cube of SVC

4http://vc.cs.nthu.edu.tw/home/paper/codfiles/kcyang/200710100050/Overview_of_the_Scalable_Video_Coding_Extension_of_the_H.264.ppt

Page 5: FEC and RDO in SVC

RECEIVER DRIVEN LAYERED MULTICAST WITH LAYER-AWARE FORWARD ERROR CORRECTION

C. Hellge, T. Schierl, and T. Wiegand

ICIP 2008

5

C. Hellge, T. Schierl, and T. Wiegand, “MOBILE TV USING SCALABLE VIDEO CODING AND LAYER-AWARE FORWARD ERROR CORRECTION,” ICME 2008.C. Hellge, T. Schierl, and T. Wiegand, “Multidimensional Layered Forward Error Correction using Rateless Codes,” ICC 2008.

Page 6: FEC and RDO in SVC

SVC Bit-Stream

• Equal FEC

6

Page 7: FEC and RDO in SVC

Raptor Codes (1/2)

• Non-systematic Raptor codes

0

1

2

3

0

1

2

3

4

5

Gp

0

1

2

3

4

5

GLT

0

1

2

3

4

5

6

7

= =

7

precoding process LT coding process

SSs PSs PSs ESs

Page 8: FEC and RDO in SVC

Raptor Codes (2/2)

• Systematic Raptor codes

• Construction of pre-code symbols– GLT , Gp, and SSs.

– GpSys =

– Solving

0 0

k

n-1

Gp GLT = =

0 0

GpSys =0

p-1

0

k-1

0

k-1 p-1 p-1 k-1

… …

……

GLT’

GLT’’

k 0

p-1

p

s

k

0

k-1

?

=

8

unknown

unknown

Gp I

GLT’

s

k

k s

p

Page 9: FEC and RDO in SVC

Layer-Aware FEC (1/5)

• Example 1

• Example 2

9

Page 10: FEC and RDO in SVC

Layer-Aware FEC (2/5)

• Encoding process– Example 3

10

Page 11: FEC and RDO in SVC

Layer-Aware FEC (3/5)

• Decoding process– Example 4

11

Page 12: FEC and RDO in SVC

Layer-Aware FEC (4/5)

• GLayeredLT(m) = [G*LT0 | G*LT1 | … | GLTm]

12

GLayeredLT(m) =

PSs0

PSs1

PSs2

…PSsm

ESs0

ESs1

ESs2

…ESsm

Page 13: FEC and RDO in SVC

Layer-Aware FEC (5/5)

• GpSysLayered(m)

13

0

SS0

0

SS1

0

GpSysLayered(m) =

PSs0

PSs1

PSs2

…PSsm

0

ESs0 0

ESs1…

0

ESsm

Page 14: FEC and RDO in SVC

Simulation Results (1/2)

• QVGA (BL) and VGA (EL) resolution using SVC over a DVB-H channel.– JSVM 8.8– GOP size = 16

• Size of a transmission block = 186 bytes• Mean error burst length = 100 TBs

14

Page 15: FEC and RDO in SVC

Simulation Results (2/2)

15

Page 16: FEC and RDO in SVC

Joint Rate-Distortion Optimization of Transform

Coefficients For Spatial Scalable Video Coding Using SVC

M. Winken, H. Schwarz, and T. Wiegand

ICIP 200816

Page 17: FEC and RDO in SVC

Hybrid Video Decoding

17

1 2

3 4

5 6

7 8

s5

s6

s7

s8

s2

s3

½ (s2+s3)sx

u5

u6

u7

u8

s1

s2

s3

s4

s5

s6

s7

s8

0000c5

c6

c7

c8

s1

s2

s3

s4

000sx

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 ½ ½ 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0

s1

s2

s3

s4

s5

s6

s7

s8

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 ? ? ? ?0 0 0 0 ? ? ? ? 0 0 0 0 ? ? ? ?0 0 0 0 ? ? ? ?

= + +

= +

Motion compensatedvalues

Dequantized residual

Decoded pixel values

Motion vectors DeQuntized andiDCT parameters

Motion compensation iQ and iDCT Exception

Page 18: FEC and RDO in SVC

Linear Signal Model (1/6)

• Linear signal model for K inter frames– s = Ms + Tc + p

• s: A (KWH)1 vector of decoded signal• M: A (KWH)(KWH) matrix of motion parameters• T: A (KWH)(KWH) matrix of inverse quantization

and DCT parameters• c: A (KWH)1 vector of received transform coefficients• p: A (KWH)1 intra signal or motion parameters outside

s s11

…s1

WH

…sK

1

…sK

WH

s11

…s1

WH

…sK

1

…sK

WH

c11

…c1

WH

…cK

1

…cK

WH

p11

…p1

WH

…pK

1

…pK

WH

= + +1 K K+1

18

WH

W

H

WH

W

H

Page 19: FEC and RDO in SVC

Linear Signal Model (2/6)

• Optimal transform coefficients selection– Decoder receives MVs (M) and quantized

transform coefficients (c).– fixed motion parameters (M), quantization

parameters (T), and intra predictions (p).• Rate and distortion are mainly controlled by c.

– c’ = argminc{D(c) + R(c)}

subject to s = Ms + Tc + p• D(c) = ||x - s||2

2, R(c) = ||c||1

19

Page 20: FEC and RDO in SVC

Linear Signal Model (3/6)

• Optimal transform coefficients selection– Problem: MVs cannot be determined before the

transform coefficients are selected (trade-off)– Solution:

20

s11

…s1

WH

s21

…s2

WH

s31

…s3

WH

…sK

1

…sK

WH

c11

…c1

WH

c21

…c2

WH

c31

…c3

WH

…cK

1

…cK

WH

p11

…p1

WH

p21

…p2

WH

p31

…p3

WH

…pK

1

…pK

WH

= + +

s11

…s1

WH

s21

…s2

WH

s31

…s3

WH

…sK

1

…sK

WH

fixed

fixed

initial

initial

initial

initial

Page 21: FEC and RDO in SVC

Linear Signal Model (4/6)

• Optimal transform coefficients– Problem size: K W H

• Sliding window approach (Reduce problem size)– s = M s + T c + p

21

window size

step size

Page 22: FEC and RDO in SVC

Linear Signal Model (5/6)

• Extension for spatial scalability– s0 = M0s0 + T0c0 + p0

– s1 = M1s1 + T1c1 + p1 + Bs0 + RT0c0

H.264/AVC MCP & Intra-prediction

Hierarchical MCP & Intra-prediction

Base layer coding

Base layer coding

texture

motion

texture

motion

Inter-layer prediction•Intra•Motion•Residual

Spatial decimation

Multiplex Scalable bit-stream

H.264/AVC compatible coder

H.264/AVC compatible base layer bit-stream

22

Inter-layer motion prediction

Inter-layer residual prediction

Page 23: FEC and RDO in SVC

Linear Signal Model (6/6)

• Optimal transform coefficients in spatial scalability– c0’ D0(c0) + 0R(c0)

c1’ D1(c0,c1) + 1(R(c0)+R(c1))

subject to s0 = M0s0 + T0c0 + p0

s1 = M1s1 + T1c1 + p1 + Bs0 + RT0c0

c0’ (1-w)(D0(c0) + 0R(c0)) +

c1’ w(D1(c0,c1) + 1(R(c0)+R(c1)))

where = (W1H1)/(W0H0)

= argminc0’c1’

23

= argminc0’c1’

Page 24: FEC and RDO in SVC

Description of the Algorithm

• Determine M0, T0, M1, T1, B, p0, R, and p1 by encoding the first K pictures using SVC reference encoder model.

• Solve optimization to determine c0 of the base layer.

• Based on new c0, determine B and R again.

• Solve optimization problem for only the enhancement layer.

24

Page 25: FEC and RDO in SVC

Experimental Results (1/2)

• JSVM 9.9– IPPP– QCIF (base layer) and CIF (enhancement layer)– CABAC– QP difference: 3– Sliding windows size: 55 for base layer and

1010 for enhancement layer

25

Page 26: FEC and RDO in SVC

Experimental Results (2/2)

26