178
FEASIBILITY STUDY OF Pb. Sn Te CHARGE COUPLED DEVICES FOR INFRARED IMAGING APPLICATIONS Alan Jeffrey Doshier

Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

FEASIBILITY STUDY OF Pb. Sn Te CHARGE

COUPLED DEVICES FOR INFRARED IMAGINGAPPLICATIONS

Alan Jeffrey Doshier

Page 2: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Library

Naval Postgraduate School

Monterey. California 93940

Page 3: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

(I If (I I

ti \; n L ml f ' haw L

Monterey, California

THESISFeasibil ity Study o f Pb Sn Te

1-x XCharge Coupled

jl

Devices for Inf 1-ared Imaging Appl ications

by

Alan Jeffrey Doshier

Advisor: T. F. Tao

March 1973

Approved £oh. pubtic h.oJLQjxk<L; cLU&uhatlon unlimited.

Page 4: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 5: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Feasibility Study of Pb Sn Te Charge Coupled Devices

for

Infrared Imaging Applications

by

Alan Jeffrey Doshier

Ensign, United States NavyB.S.E.E., Southern Methodist University, 1971

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF. SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLMarch 1973

Page 6: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 7: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Library

Naval Postgraduate SchoolMonterey, California 93940

ABSTRACT

The purpose of this thesis is to examine the feasibility of narrow-

gap semiconductor charged coupled devices for infrared imaging applica-

tions. The semiconductors considered are PbTe for a three to five micron

imager and Pb__Sn_ .Te for an eight to 12 micron imager, both operated. 7b .24

at a temperature of 85°K. Theoretical calculations of signal current and

storage time are made based on the metal-insulator-semiconductor theory-

developed for silicon M-I-S devices. For a 0.1°K temperature resolution

_c n

of a 300°K scene, signal currents are 4.8x10 A/cm for PbTe and

-2 23.2x10 A/cm for Pb^Sn. .Te at a clocking frequency of 1 MHz.

.7b .24_ r _ C

Storage times of 5.7x10 seconds for PbTe and 1.27x10 seconds for

-7PL.Sn Te are calculated using a minority lifetime of 10 seconds.

. /b . 24

Therefore, clocking frequencies higher than 1 MHz are recommended.

Experimental studies of Pb n Sn Te M-I-S were made which demonstrated1-x x

that accumulation, depletion, and inversion layers can be controlled by

gate voltage, following the general behavior of silicon M-I-S devices.

A PbTe CCD infrared imager seems feasible. Feasibility of Pb r7tSn .Te. /b . 24

CCD's will require significant improvements in material and fabrication

technology to increase storage time and reduce dark current.

Page 8: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 9: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

TABLE OF CONTENTS

I. INTRODUCTION 7

A. THE CHARGE COUPLED DEVICE PRINCIPLE 7

B. PARAMETERS AFFECTING CCD OPERATION 7

C. THE INFRARED CCD 10

II. METAL-INSULATOR-SEMICONDUCTOR THEORY 11

A. THE IDEAL M-I-S STRUCTURE 11

B. THE NON-IDEAL M-I-S STRUCTURE 20

1. Interface States 20

2. Metal Work Function 22

3. ' Charges in the Insulator 22

III. ANALYSIS OF THE IDEAL M-I-S STRUCTURE 24

A. CAPACITANCE - VOLTAGE VARIATIONS WITH 24MATERIAL PARAMETERS

1. Semiconductor Doping 2 5

2. Insulator Thickness 2 5

3. Temperature 2 5

4. The "Best Case" Values 34

B. CHARGE STORAGE AND SIGNAL CURRENT 34

C. STORAGE TIME 40

IV. EXPERIMENTAL METHODS 45

A. HIGH FREQUENCY CAPACITANCE-VOLTAGE CURVES 45

B. CAPACITANCE-TIME CURVES 46

Page 10: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 11: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

V. METAL-INSULATOR-SEMICONDUCTOR FABRICATION 49

A. SEMICONDUCTORS 49

B. INSULATOR 50

C. METAL 51

VI. EXPERIMENTAL RESULTS 52

VII. CONCLUSIONS 64

COMPUTER OUTPUT 67

COMPUTER PROGRAM 75

BIBLIOGRAPHY 82

INITIAL DISTRIBUTION LIST 84

FORM DD 1473 85

Page 12: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 13: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

LIST OF ILLUSTRATIONS

1. A 3-PHASE CCD 8

2. THE M-I-S STRUCTURE 11

3. IDEAL M-I-S BAND DIAGRAM AT ZERO BIAS 12

4. BAND DIAGRAMS AT (a) ACCUMULATION (b) DEPLETION 13

(c) INVERSION

5. IDEAL M-I-S CAPACITANCE-VOLTAGE CURVES (a) LOW 15

FREQUENCY (b) HIGH FREQUENCY (c) DEEP DEPLETION

6. VARIATION IN C-V CURVE DUE TO INTERFACE STATES 20

7. HYSTERISIS EFFECT 22

8. Pb„ cSn 0/1 Te IDEAL C-V CURVES 26,7b . 24

9. Pb^ cSn 0/1 Te IDEAL C-V CURVES 27,7b . 24

10. Pb r7rSn 0/1 Te IDEAL C-V CURVES 28. /b . 24

11. Pb^Sn^Te IDEAL C-V CURVES 29,7b .24

12. Pb r7rSn 0/,Te IDEAL C-V CURVES 30.76 .24

13. Pb^Sn 0y1 Te IDEAL C-V CURVES 31,7b .24

14. Pb r?rSn 0/,Te IDEAL C-V CURVES 32.76 .24

15. PbTe IDEAL C-V CURVES 33

16. ESTIMATION OF Q 35storage

17. C-V TEST CIRCUIT 47

18. Ct TEST CIRCUIT 48

19. SEMICONDUCTOR SAMPLES 49

20. M-I-S SAMPLES 51

21. EXPERIMENTAL SILICON M-I-S C-V CURVE 53

Page 14: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 15: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

22. EXPERIMENTAL SILICON M-I-S Ct CURVE 54

23. EXPERIMENTAL Pb„ rSn „Te M-I-S C-V CURVE 59.7b ,z4

24. EXPERIMENTAL Pb onSnonTe M-I-S C-V CURVE 60. oU . Z(j

25. EXPERIMENTAL PbTe M-I-S C-V CURVE 61

26. EXPERIMENTAL PbonSn_ nTe M-I-S C-V CURVE 62. oU . Zu

27. EXPERIMENTAL PbTe M-I-S C-V CURVE 63

Page 16: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 17: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

I. INTRODUCTION

A. THE CHARGE COUPLED DEVICE PRINCIPLE

The basic CCD concept consists of storing electrons (or holes) in

potential wells created at the surface of a semiconductor and moving

these charges as a unit across the surface by varying the depth of the

potential well. This is accomplished by first applying a voltage to metal

electrodes on an insulated surface of the semiconductor (a metal-insulator-

semiconductor or M-I-S structure) to deplete the semiconductor surface

of majority carriers. Then charges, representing a signal, can be intro-

duced either electrically or optically into the depletion region under one

of the electrodes. If a second electrode is sufficiently close, the charges

may be transferred by applying a larger voltage to the second electrode,

thus creating a deeper potential well. A simple three-level pulse sequence

applied to the electrodes can be used to move a train of charge packets

along the device in either direction [171 .

B. PARAMETERS AFFECTING CCD OPERATION

For the CCD concept to be realized, several factors of the materials

involved must be considered. The depletion region formed in the semi-

conductor must be deep enough to be able to store a useful amount of

signal charge. This is related to the deep-depletion capacitance and

inversion capacitance of the semiconductor, which in turn are determined

Page 18: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 19: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

STORAGE

3-PHASE CHARGE COUPLED DEVICE

TRANSFER

A 3-phase CCD

Figure 1

by the doping concentration, the dielectric constants of both the in-

sulator and semiconductor, insulator thickness, and the temperature of

operation.

After a charge is introduced into the depletion region under an

electrode, the charge must remain there a sufficient time for the transfer

to be accomplished. The length of time required for a transfer is the

period of the clocking signal. The dark currents of the M-I-S structure

determines the charge storage time in the depletion region. Thus the

storage time must be long enough to allow the use of a reasonable

clocking frequency.

Another key feature that determines the usefulness of a charge

transfer device is whether the complete signal charge packet is transferred

8

Page 20: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 21: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

along the device. Interface states at the semiconductor-insulator inter-

face is the prime factor governing the amount of charge transferred. As

each charge packet passes along the device, it fills the interface states

almost instantaneously and then when it moves on, the states empty-

much more slowly. Some of the charges emitted from the interface states

return to the correct packet but others empty into succeeding packets.

This gives rise to a blurring effect in the signal, thus reducing its

quality. The primary effect of interface states can be overcome by

passing a background charge along the device. This is the so called

"fat zero" operation. The background charges should completely fill

the exposed interface states so that additional signal charge will not

appreciably change the situation. However, this background charge

takes up a portion of the storage capabilities of the device, reducing the

amount of signal that can be transferred.

Factors relating to the use of a CCD in a production-type system

can also be considered. The doping concentration of the semiconductor

must be one that is realistically attainable. The thickness of the in-

sulating material must be large enough to permit ease of manufacture

with a relatively high yield. The amplitudes of the pulse sequence for

transferring the signal must be low enough to prevent device breakdown,

yet be effective in manipulating the depth of the depletion region. The

temperature of operation should be in the range that does not require

undully expensive and heavy cryogenic equipment.

Page 22: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 23: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

C. THE INFRARED CCD

CCD structures have been extensively studied using silicon. These

devices have many applications, including digital and analog memory

and visible imaging. However, little work has been done to extend the

CCD principle to infrared imaging. For use at infrared, the semiconductor

in the CCD must be sensitive to infrared energy. That is, the band gap

of the semiconductor must be narrow enough for the lower energy infrared

photons to excite electrons from the valence band to the conduction band.

The energy of a photon is related to its wavelength by

1 24E(eV)= ^ (1)

where A is the wavelength in microns. Two very useful infrared radi-

ation spectra are in the three to five micron and eight to 14 micron ranges.

These are two of the so-called atmospheric "windows" where the radiation

is not severely attenuated by the earth's atmosphere. Thus the energy

gap of an infrared-sensitive semiconductor must be less than 0.24eV for

three to five micron use and less than 0.09eV for eight to 14 micron use.

The compound PbTe has an energy gap of .219eV at 85°K making it suitable

for three to five micron infrared applications, while the alloy Pb_ rSn Te. / b . Z4

has an energy gap of .102eV at 85°K, making it useful in the eight to

12 micron range.

10

Page 24: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 25: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

II. METAL-INSULATOR-SEMICONDUCTOR THEORY

The building block for a CCD is the metal gate on the insulated

surface of a semiconductor. This is an M-I-S structure. Therefore, it

is appropriate to study the characteristics of a single M-I-S device to

determine its feasibility for use in an infrared CCD.

A. THE IDEAL M-I-S STRUCTURE

The M-I-S structure is formed by depositing an insulator on the

surface of a semiconductor, then a metal pad or gate is deposited on to

the insulator.

v

Q

METAL

I '...<..

1

SEMICONDUCTOR

xx•OHMIC CONTACT

. The M-I-S Structure

Figure 2

An ideal M-I-S structure, whose energy-band diagram at zero

applied voltage is shown in Fig. 3, is defined as follows. First, there

is no energy difference between the metal work function and the semi-

conductor work function, or

Cj> =<h-(X+E/2- Y J = for n -type (2)ms Y m g q ' B

^ms=

^m " ( X +E/2 + J^J = for p-type (3)g q B

11

Page 26: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 27: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

where is the metal work function, X is the semiconductor electronin

affinity, E is the energy of the lower edge of the conduction band, E

is the energy of the upper edge of the valenoe band, Eg

is the band gap,

q is the charge of an electron, and / is the potential differenceD

between the Fermi level E„ and the intrinsic Fermi level E.. In otherF 1

«*

EF 7

m

7777?

METAL

QX

— <J—

INSU-

|LATOR

•g/2

tE,

7777777777777777.**

SEMICONDUCTOR

(a)

q<*m

77777/.

METAL

qx

INSU-LATOR

rEg/2

±<^

c

- E F

7777777777777777 **

SEMICONDUCTOR

(b)

An Ideal M-I-S Band Diagram at Zero Bias

Figure-3

12

Page 28: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 29: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

words, the bands are flat when there is no applied voltage. Secondly,

the only charges that can exist in the structure under any biasing con-

ditions are those in the semiconductor and those with equal but opposite

sign on the metal surface adjacent to the insulator. Finally, there is no

carrier transport through the insulator under dc biasing conditions, or the

resistivity of the insulator is infinite [20] .

When an ideal M-I-S device is biased with positive or negative

voltages, there are basically three cases which may exist at the

P-TYPE n-TYPE

K

*3pV<0

A

. "-v E

XI

v>oJ^y

,

A

V>0

• F^

z:E,

/+ * •

E F

V>0

vv7/.

(a)

E CEf

-E,

ef yrvV<01

(b)

Ec•E FE,

K

F^P7

V<0

(c)

^ ' ' - E C-; Ef

E,k

Band Diagrams at (a) accumulation (b) depletion (c) inversion

Figure 4

13

Page 30: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 31: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

semiconductor surface. These cases are illustrated in Fig. 4. First

consider the p-type semiconductor. When a negative voltage is applied

to the metal gate, the top of the valence band bends upward and is closer

to the Fermi level. For an ideal M-I-S device there is no current flow in

the structure, so the Fermi level remains constant in the semiconductor.

Since the carrier density depends exponentially on the energy difference

(E -E ) , this band bending causes an accumulation of majority carriers

(holes) near the semiconductor surface. This is the "accumulation" case.

When a small positive voltage is applied, the bands bend downward, and

the majority carriers are depleted. This is the "depletion" case. When

a larger positive voltage is applied, the bands bend even more downward

such that the intrinsic level E at the surface crosses over the Fermii

level E . Beyond this point the number of electrons (minority carriers)

at the surface is larger than the number of holes, the surface is thus in-

verted and this is the case of "inversion." Similar results can be obtained

for the n-type semiconductor, however, the polarity of the voltages should

be reversed [15]

.

This voltage dependence of the M-I-S device can be characterized

by the capacitance vs. bias voltage relationships in the structure. For

charge neutrality in the system to be maintained, the charge per unit

area on the metal Q must equal the total charges per unit area in the

semiconductor Q for all bias voltages. The applied voltage will appear

partly across the insulator and partly across the semiconductor. Then

the potential across the insulator is given by

14

Page 32: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 33: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

v. =1

Q d QM(4)

where C. is the capacitance per unit area due to the insulator. The

capacitance due to the semiconductor C is voltage dependent, determined

by the charge distribution in the semiconductor. Thus the M-I-S device

can be modeled as two capacitances in series, one constant and one

voltage dependent.

A qualitative description of the ideal M-I-S capacitance-voltage

curve is now possible. Again consider a p-type semiconductor. In the

accumulation region (negative voltage) , there is an accumulation of holes

at the semiconductor-insulator interface and therefore a large capacitance.

Thus the total capacitance is approximately equal to the insulator capaci-

tance. Reduction of the negative bias leads to a reduced hole density

10

0.8

^cox /^ cox

C FB ( FLAT- BAND —

J

CAPACITANCE)Vlo)

X

o 06 .

vu _ (b)

04 C MIN*"*"

\

(c)

\'min

0.2 -

SEMICONDUCTOR JT n.

BREAKDOWN s v v

I i

-VV (VOLTS)

V

Figure 5. Ideal M-I-S Capacitance-voltage Curves

(a) low frequency

(b) high frequency

(c) deep depletion

15

Page 34: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 35: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

and finally to the formation of a depletion layer. The depleted surface

region contains practically no carriers and acts as a dielectric in series

with the insulator. Thus the total capacity drops. The curve then goes

thru a minimum and increases again as an inversion layer of electrons

(minority carriers) forms at the surface. This increase is dependent upon

the ability of the electron concentration to follow the applied signal. If

the signal frequency is high, the electrons cannot follow the variations

and the electrons will not appear at the surface, thus the capacitance

remains low. In the positive voltage region under non-equilibrium con-

ditions the capacitance continues to decrease [201. This case of deep

depletion will be discussed in greater detail below.

To obtain a more quantitative view of the ideal M-I-S C-V curve,

the equations describing the capacitance must be developed. A differen-

tial capacitance associated with the semiconductor space charge region

is defined by

Cs = 3 V

(5 »

s

The total charge per unit area in the semiconductor is given by

Q = / p (x)dx (6)s '

where

p = q(p - n + ND- N

A ) (7)

and the point x = corresponds to the insulator-semiconductor interface.

The quantity (N - N.) is the doping level within the semiconductor.

The free carrier concentrations are given by

16

Page 36: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 37: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

p = n. EXP (U - U) (8)

n = n. EXP (U - U ) (9)

where U g <fr .

kTis the normalized electrostatic potential measured

from the intrinsic Fermi level. N - N may be calculated to yieldJ—/ f\

N - N = 2 n. SINH |U

J

(10)

The charge in the depletion layer and in the inversion layer as a function

of surface potential requires the integration of the one-dimensional

Poisson equation giving

Qs= " 2

|UJqn

i

LD K<COSH(U - UJ

s F

- COSH U,, + U SINH U^J s 1-3j

1/2(ID

where

LD

=kT€

s_

„ 22q n.

1/2

(12)

Uis the intrinsic Debye length and the factor ,—

, insures a physicallyI si

meaningful sign. Now the part of Q which is due to the electrons

within the inversion region can be calculated by a second integration of

Poisson's equation giving

UQ = - 77~\ q n. L

EXP(U-Up

) du

n U IDU,

j2[COSH(U-UJ-COSH U +U SINH 1^1)

(13)

1/2

17

Page 38: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 39: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Now Q can be written in terms of Q and an effective depletion widths n

X, asd

Q=Q„ +q(N - N )X (14)s n D A a

Returning to the definition of the semiconductor space-charge capacitance,

the total system capacitance can now be obtained, but three cases must

be considered.

At low enough measurement frequencies the minority carriers as

well as the majority carriers will be able to reach equilibrium and follow

the variation of the measurement signal. In this case the semiconductor

capacitance can be calculated on the basis of equilibrium theory by dif-

ferentiating equation (11) with respect to the surface potential yielding

C = £ q(p - n + ND

- NA )

(15)s s Q

s

When the signal frequency is higher than the minority carrier gen-

eration rate, only the majority carriers will be able to follow the variations

of the measurement signal and therefore the equilibrium theory cannot be

applied. Instead, the space charge capacitance is obtained by differen-

tiating equation (14), keeping the charge of the electrons in the inversion

region constant or :r -r = 0. This yields

^s

C = €s (16)

Xd

Note, however, that this is valid only in depletion and inversion regions.

In the accumulation region, the same equation as developed for the low

frequency case is applied.

18

Page 40: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 41: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Recall that the total capacitance of the M-I-S device is modelled

as the series combination of the insulator capacitance and the semicon-

ductor capacitance as

Ci

Cs (17)

C. + C1 s

This equation is usually normalized to the insulator capacitance to yield

a=

c./c +

1

(18)

1 1 s

If the capacitance is measured under such conditions that minority

carriers cannot accumulate near the surface in the inversion case, the

capacitance-voltage relationship will be much like that of a reverse

biased p-n junction. This situation is encountered if the dc bias is

switched rapidly from accumulation to inversion and the capacitance is

measured before minority carriers can accumulate near the surface. Thus,

this analysis corresponds to the transient case. The capacitance will

again be given by equation (16), but since Q =0, the depletion width

relationship is derived from

Qs= q(N

D- HA) X

d(19)

Integrating Poisson's equation twice and substituting into equation (18),

the normalized capacitance is given by

C.i

2 -2K. f

i o1+2

VA

q(ND - V KsXo

(20)

1/2

19

Page 42: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 43: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

In this case, the overall capacitance keeps decreasing with increasing

bias due to the unlimited increase in the depletion width which takes

place if minority carriers cannot accumulate near the surface [51 .

B. THE NON-IDEAL M-I-S STRUCTURE

The fabrication of M-I-S devices and the physical parameters of

the materials involved introduce factors that cause deviations from the

ideal behavior. To compare experimental and ideal results requires a

knowledge of these factors and their influences. The most common of

these are discussed below.

1 . Interface States

An interface state is defined as an allowed energy level

within the forbidden gap at the surface . There are two types of interface

states, namely donor states and acceptor states. A donor state can have

Variation in C-V Curve due to Interface States

Figure 6

20

Page 44: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 45: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

two states of charge. It can be neutral, or it can become positive by

giving up an electron. Its state of charge is controlled by the Fermi

level. It is always in its more positive state when it is above the Fermi

level. An acceptor state, which follows the same rule, changes its

charge from neutral to negative. When there is band bending in an

M-I-S due to the external bias, the surface state levels will move with

the valence and conduction bands, while the Fermi level remains fixed.

A change of charge in the interface state occurs when it crosses the

Fermi level. This change of charge contributes to the M-I-S capacitance

and can alter the ideal curve. This change, pictured in Fig. 6, shows

a threefold effect. The interface states give an additional capacitance,

they cause a frequency dispersion, and they change the voltage axis by

changing the dependence of the surface potential on the applied bias

[201.

21

Page 46: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 47: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

2. Metal Work Function

For an ideal M-I-S structure it was assumed that the metal-

semiconductor work function difference was zero. If the value of 4> ms

is not zero, the experimental capacitance-voltage curve will be displaced

from the ideal theoretical curve by an amount equal to <£> . This devia-ms

tion is not a serious drawback because the displacement can be calculated

easily and it does not deform the shape of the curve.

3 . Charges in the Insulator

There are basically two types of charges found in the insulator,

namely fixed charges and mobile ions. Both types are introduced during

the fabrication of the M-I-S device. The fixed charge is located near

or at the semiconductor surface and is immobile under an applied electric

Hysterisis Effect

Figure 7

22

Page 48: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 49: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

field. Thus a portion of the bias voltage will be required to neutralize

the effect of the fixed charge, causing a parallel voltage shift in the CV

curve. However, no distortion of the curve is introduced. The mobile

ions will tend to follow the variation of the applied bias, but more slowly

than the carriers. This will give a hysterisis effect to the curve (as

shown in Fig. 7). That is, a curve generated by a negative to positive

sweep of the bias will be shifted from one generated with a positive to

negative sweep.

23

Page 50: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 51: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

III. ANALYSIS OF THE IDEAL M-I-S STRUCTURE

A group at Westinghouse [14] developed a computer program to

generate ideal high frequency and low frequency capacitance-voltage

data for the Al-SiCL-Si M-I-S structure. This program was generalized

to make it suitable for the analysis of all M-I-S systems, especially

those for infrared applications. The program was also modified to com-

pute the deep-depletion capacitance data and several other quantities

related to CCD studies. A graphical output routine was added to allow

quicker interpretation of and comparison with experimental curves. With

the aid of this program and data obtained from other research efforts, an

attempt was made to determine the optimum material parameters for the

feasibility study of an infrared CCD.

A. CAPACITANCE-VOLTAGE VARIATION WITH MATERIAL PARAMETERS

To obtain the optimum combination of material parameters, the

semiconductor doping density, the insulator thickness, and the tempera-

ture are varied independently. Comparison of their results will provide

a qualitative estimate of each parameter that is best suited for CCD use.

Then choosing exact values on the basis of manufacturing feasibility,

quantitative information is obtained for the "best case." The criteria for

comparison is the amount of charge storage at the same bias voltage.

This data is obtained from the computer output by the method explained

24

Page 52: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 53: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

in paragraph (B) of this section. Many cases were considered but only

two representative cases of each parameter are presented for brevity.

1 . Semiconductor Doping

Figures 8 and 9 show the ideal capacitance-voltage curves

1 6 — 3for p-type Pb_ cSn Te with the semiconductor doping N = 1.0x10 cm

. 7 b . ZA. A17 -3

and N. = 1.0x10 cm respectively. The temperature is 85°K and a*\

o

100A thick Al insulator is used in each case. Comparison (see

pages 67-74 for computer output) of Q at an applied bias ofstorage

,57V reveals that the lower doping density creates a storage capability

approximately 10 times greater than the higher doping density. This

indicates that a low doping density is more attractive to CCD applications

2 . Insulator Thickness

Figures 10 and 11 present the CV curves for a p-type

o o

Pb r7CSn 0/1 Te with a 100A and 300A thick Al o o insulator respectively.. / b . Z4 Z 6

1 fi — "^

Doping density N. = 1.0x10 cm and the temperature is 85°K in each

case. Comparison of the storage capacity at a bias of ,23V reveals that

the thinner insulator has a storage capacity approximately 30 times

larger. The indication is that a thin insulator is more appropriate for

infrared CCD's.

3 . Temperature

Figures 12 and 13 give the capacitance-voltage curves for

p-type Pb__Sn_.Te at temperatures of 85°K and 150°K respectively. The. / b . Z4

doping concentration N is 1.0x10 cm and the Al insulator

o

thickness is 100A in each case. At a bias voltage of .46V, the charge

25

Page 54: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 55: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

_Ju u. Q._ n: lU

>

o<O 1

o 1

CO r—

1

1

CD 1

£ w3 o

J

U LO I

00u J> II

r-H H 1

ro • /

CD Vh /

-a <° O 1

1—1 r-i 4->I

O fd /

05 H i—

i

J

"f oCNJ

CO

C

CO CO /

to II o 1

-Q * _* r«N 1

c ,-h 1

Cm S </

;

1

/CD/

; <d /j-/

3/

Cn /

-, /

1 */

/

\/

1--

*

v^/

y*

o|o }^ """'

_____-—^—

-

—SJ»—

CTt &nc toe zac

26

Page 56: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 57: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

27

Page 58: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 59: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

u-

u3:

V

o<OoCO i-h

CD

3 oO LO

O II

-. H(0

CD *"

-a <°f-H r-l

oV r-l

O4->

ro—

i

P 1

"* oCMC • rHCOCO ||

CO

G1-4

(

|

Figure

1C

Ho|o v_ J^

______I^^-=——*"'

DTt

cBGC 60C 2GC CoC

28

Page 60: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 61: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

-

>

OoCO CO0)

£ w3 oo m> °°

O II

-8 «a) 2^ oCM

i-.

o-M10

1—

1

3to

C

COto ||

COoCM

i—

I

<•

r—

1

r-l

'

Figure

•r-4

u|o

V^_J/'

DTE z' eat sec tec ZK GC

29

Page 62: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 63: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

30

Page 64: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 65: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

31

Page 66: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 67: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

32

Page 68: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 69: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

::

u

o <£ool—t

oLO

CO co

(D ||

3 Ho> 2U o

r-H

CD °T3 *

O*->

fO—

I

p

crH

CD II

s <Oh S

LOi—

1

CM—

1

3

S-.

-r-l

y__——

£rtt ^-""""eCC snq tCC 2~n cc_

33

Page 70: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 71: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

storage available for the 150°K case is approximately 50 times greater

than for the 85°K case. Higher temperature operation is desirable for

CCD use.

4. The "Best Case" Values

The present state of the art in narrow gap semiconductor

"If- _ o

fabrication yields doping densities in the mid 10 cm range at best.

In the near future an N of 1x10 cm will likely become realistic.

If- _ o

For this reason a best case value of N = 1x10 cm is chosen. Easy

fabrication with relatively high yield requires insulators with a thickness

o o

on the order of 500A or greater. For laboratory research, however, 100A

is feasible. To achieve comparable values of storage capacity with

larger insulator thickness, other materials with higher dielectric constants

(e.g. , Ti0o/ K. & 100) might be considered . Using Al o 0„ (K =8.8)2 ins 2 3 ins

o

a thickness of 100A is used as the best case. The temperature of opera-

tion is chosen as 85°K so that energy gaps of PbTe and Pb„_Sn 0/) Te will. 7o .14

have values that respond to the infrared energy in consideration. The

"best case" ideal capacitance-voltage curves for a p-type Pb _Sn Te

and p-type PbTe are presented in Figures 14 and 15 respectively.

B. CHARGE STORAGE AND SIGNAL CURRENT

In a charge coupled device, the semiconductor is depleted by a

voltage pulse, then the signal is injected as minority carriers and moved

before the background minority carriers appear at the surface. Thus it

is possible to estimate the maximum amount of signal charge that can be

accommodated by noting the difference between the high frequency

34

Page 72: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 73: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

capacitance and the depletion capacitance at a particular bias voltage,

as shown in Fig. 16. Since charge is given by

Q = CV (21)

the charge that can be stored is

Qstorage

AC Vbias

(22)

A c.

co

4 4C

HighFreq

DeepDepl

V

Estimation of Qstorage

Figure 16

in units of coulombs per square centimeter. The storage capacity in

units of charges per square centimeter, is obtained by dividing by the

electronic charge. The computer program calculates this Q forstorage

35

Page 74: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 75: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

several values of bias voltage. From the "best case" curve for p-type

12 2Pb^Sn^Te Q =5.32x10 charges/cm for a bias of 3 .46V. For.76 .24 storage

12 2p-type PbTe, the "best case" value of Q is 3.79x10 '

J

charges/cm. storage

at a bias of 3.57V. These bias voltages were chosen because they are

o

the largest values before the breakdown field strength of 100A thick in-

sulator is reached.

In use as an infrared imager, a device must be able to differentiate

a signal that is near the temperature of the earth background. First it

is necessary to determine the amount of photons emitted by the earth

background up to the semiconductor cut-off wavelength /} . The cut-

off wavelength in microns is given by

> _ 1-24" c E(eV)

(23)

For PbTe at 85°K the energy gap is .219eV and for Pb^ rSn n>,Te at 85°K. /b .Z4

the energy gap is . 102eV. Thus

}) (PbTe) = 5.66X

^c(P1

?76S?24

Te) = 12 - 16^

(24)

(25)

The number of background photons is calculated from

No - >

N- *

.

No-~NO - oo

Nwhere

from

0- *

(26)

N0-

is obtained from a table [lOJ and N is calculated

N-

= 15.1 C (27)

36

Page 76: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 77: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

where C = 1.43879 cm °K and C is the speed of light. Assuming that

the earth's ambient temperature is 300°K, it is found that the number of

background photons is

N„ . rr = 3.3xl016

PH/cm sec (28)- 5 . 66A

N n ,„ nr = 8.52xl017

PH/cm2sec (29)

- 12.1 6/^

If each of these photons creates a hole-electron pair in the semiconductor

it is seen that the earth background radiation will overwhelm the charge

storage capabilities for both the case of PbTe and the case of Pb Sn Te.. 7b . ^4

However, this assumes the semiconductor is exposed to the background

radiation for a full second. If some sort of shutter were used to block

the radiation except for a short period of time, fewer background photons

would be able to reach the semiconductor. Consider the case if the scene

— fi

was viewed for 10 seconds. Then

N0- 5.664= 3 - 3xl ° 10pH/cm2 (30)

N0- 12.16*= 8.5xl0

nPH/cm

2(3!)

The difference in the storage capacities and these background charges

gives the amount of useful signal charge that can be accommodated.

Q . . (PbTe) =3.76xl012

CH/cm2

(32)signal

Q . . (Pb^SnTe) = 4.468xl012 CH/cm

2(33)

signal .76 .24

If these charges are moved out of the CCD at a clocking rate of 1MHz

(which is often used in silicon CCD's), the signal current is

37

Page 78: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 79: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

I . (PbTe) = .602 A/cm2

(34)sig

I. (Pb^ cSn .Te) = .716 A/cm2

(35)sig .76 .24

However, this assumes that all of the charge storage available is filled

by signal photons. This will not be the case if the target is viewed for

— fi

only 10 seconds

.

Consider the case where the target is .5°K warmer than the earth

background. Using equation (2 6) the following values are obtained

N A r rr = 3.34xl016

PH/cm2sec (36)0-5. 66//

N nc = 8.6xl017

PH/cm2sec (37)

- 1 1 . 1 b/<

The difference between this number of photons and 300°K earth background

photons is the number of signal photons A N

4 N (PbTe) = 4.3xl014

PH/cm2sec (38)

4N (Pb^_Sn .Te) = 8.0xl015

PH/cm2sec (39)

.76 ,z4

— KAgain using a shutter to expose the semiconductor to the scene for 10

seconds, and assuming each photon creates one hole-electron pair then

Q .(PbTe) = 4.3xl0

8CH/cm

2(40)

sig

Q .(Pb SnTe) = 8.0x1

9CH/cm

2(41)

If the signal packet is moved along the CCD with a clocking frequency

of 1MHz, the signal current is

38

Page 80: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 81: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

I . (PbTe) = mjuk/cm (42)sig

I . (Pb r?rSn Te) = 1.28mA/cm2

(43sig ,/b .z4

Tables I and II show the values of signal current for various temperature

resolutions for PbTe and Pb__Sn Te respectively.,7b . Z4

AT(°K) .1 .5 1.0 5.0

I 4.8xl0"6

6.88xl0~5

1.62xl0_4

9.11xl0~4

Sig2,

(A/cm )

TABLE I

AT(°K) .1 .5 1.0 5.0

I .

sig9

(A/cm )

3.2xl0~4

1.28xl0"3

2.56xl0~3

1.28xl0~2

TABLE II

Though it was assumed that these temperature differentials are warmer

than the background, cooler temperatures of the same magnitude will

give the same values. The overall signal will be in the form of a dc

current proportional to the background, with variations (either plus or

minus) corresponding to target photons.

Note that the signal currents given in Tables I and II are in units

of Amperes per square centimeter. Thus to obtain the actual signal

current it is necessary to multiply by the gate area of the CCD. These

39

Page 82: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 83: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

- fi 2areas are usually on the order of 10 cm for silicon devices. This

-9would give signal currents in the 10 Ampere range.

It is worthwhile to summarize the assumptions used to arrive at

these signal current values for later reference. First the earth background

was assumed to be a uniform 300°K. Then it was assumed that a shutter

— fi

mechanism would limit the exposure time to 10 seconds. Each photon

was assumed to create one hole-electron pair. Finally, it was assumed

that the clocking frequency of the CCD would be 1MHz.

C. STORAGE TIME

When signal charge is introduced into the depletion region of a

CCD, a non-equilibrium condition exists. With increasing time, however,

the system will move toward equilibrium by means of the thermal genera-

tion of minority carriers. This is called dark current. Thus it is possible

to estimate the storage time Tc of the CCD by

Q_ storage , . ASTQ = ~ *-

(44)S l

D

where Q is the storage capacity of the device and L is the darkstorage D

current.

There are four principle dark current components that must be con-

sidered. One is the current arising from minority carriers generated in

the depletion region given by

T 1 q n.W , .

JD " 2 -$- (45)

40

Page 84: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 85: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

where W is the depletion layer width and T is the minority carrier life-

time. A second component of dark current is due to generation of minority

carriers in the semiconductor bulk. It is given by

2q n

*b = n^F L (46)

where L is the diffusion length

1/2

(47)kT ? 1/2

and/<^ is the mobility. A third component of the dark current arises from

surface generation by those surface states within a few kT of midband

[f] . However, this current is assumed small compared to the others

since the success of making Schottky-barrier lasers using Pb, Sn Te

indicate a small capture cross-section for these surface states. The

fourth component of dark current is tunneling between the valence and

conduction bands at very high bias voltage. This tunneling current is

also quite small compared with the other mechanisms of dark current

unless the depletion layer width is on the order of few hundred angstroms

Ql2] . Thus the total dark current is

ID « Ib

I

d(48)

Numerical values of I, and I. for PbTe and Pb„_Sn .Te were obtained byb d .76 .24

use of the best case data from the computer program and information

from other research Q.1] . The data used for these calculations is shown

in Table III. From this data and equation (45), (46), and (47) it is found

for PbTe that

41

Page 86: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 87: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

L = 1.2 8x106A/cm

2(49)

b

I, = 1.06xl0~2A/cm

2(50)

d

and for Pb„-Sn .Te that. /b . Z4

T = 1.16x102A/cm

2(51)

b

I. = 6.6xl0_1

A/cm2

(52)d

PbTe P^76

S?24

Te

r (sec) 10-7 10-7

n.(cm )

i

1.447x10L2 14

1.375x10

w(cm) 9.13x10"-3

5.99xl0~3

Qstorage

3.8x1012

5.32xl012

(CH/cm 2)

2jx (cm /V sec)

42x10

42x10

NA(cm"

3)

'

IxlO16

IxlO16

TABLE III

Note that in both cases the dark current component of depletion layer

generation is the dominant factor. Application of equation (48) yields

ID (PbTe) - 1.02xl0~2A/cm

2(53)

1^ (Pb^ cSn 0/1 Te) = 6.72xl0_1

A/cm2

(54)U . /b . Z4

Then from equation (44)

42

Page 88: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 89: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

T (PbTe) = 5.7x105sec (55)

o

T (Pb^^Sn.Te) = 1.27xl0~6sec (56)

b ,7b .24

When these values are compared with the period of the 1MHz

clocking signal that was used in the preceding section, it is seen that

difficulties arise for Pb„_Sn_ .Te. For PbTe, the ratio of storage time to,7b .24

the period of the clocking signal is approximately 60, which is acceptable

in that it allows a margin for variation introduced in fabrication. However,

the ratio for Pb_.Sn .Te is approximately unity. This indicates borderline. /b .^4

performance at best, with no margin for error. Thus for a CCD to be

feasible, methods for improving this ratio must be considered.

Examination of the equation for depletion-layer generation reveals

that the only parameters that could be improved with a significant effect

on T are intrinsic carrier concentration and minority carrier lifetime.

The intrinsic concentration is determined by the temperature, which is

approximately 85°K for infrared imaging. The minority carrier lifetime

could be increased by improving the quality of semiconductor, but a

theoretical limit of radiative recombination lifetime of approximately 10

seconds exists [11] . This yields a one order of magnitude improvement

in the storage time over the value obtained using presently available

materials. This is still borderline performance. Consideration of

equation (44) indicates a decrease in the capacitance due to the insulator

will increase storage time. However, this would also result in a decrease

in the amount of charge storage. An increase in the clocking frequency,

43

Page 90: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 91: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

though it will not effect the storage time, can be used to improve the

ratio of storage time to clocking signal period. A 5MHz clocking fre-

quency combined with a minority carrier lifetime of 10 seconds yields

a storage time to clocking period ratio on the order of 75 for Pb^-Sn. .Te,7b .z4

This indicates that the feasibility of narrow gap semiconductor CCD

requires advances in the fabrication of narrow gap semiconductors.

44

Page 92: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 93: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

IV. EXPERIMENTAL METHODS

The analysis presented in the preceding section was based upon

idealized theory developed by the silicon device industry. To verify

that it is applicable to the narrow-gap semiconductor in this study, ex-

perimental data must be obtained. The test configurations for obtaining

capacitance-voltage curves at high frequency and capacitance-time curves

are presented in this section.

A. HIGH FREQUENCY CAPACITANCE-VOLTAGE CURVES

The Boonton Model 72A Capacitance Meter was the basic element

for the high frequency CV measurement. It provides a direct capacitance

reading by generating a 1MHz signal and measuring its phase variations

due to the capacitance of the device under test. The Boonton Model 72A

also has provisions for external dc bias and an output to drive an X-Y

recorder.

The M-I-S device was mounted in an insulated container to allow

immersion in liquid nitrogen for obtaining low temperature data. A

mechanical probe was situated on the outside of the insulated container

to make electrical contact at various points on the M-I-S structure.

A Wavetek Model 142 Function Generator was used in the sawtooth

mode to provide the varying dc bias. A Hewlett-Packard Model 7004B

X-Y Recorder completed the instrumentation. It gave the capacitance-

45

Page 94: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 95: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

voltage curve for the M-I-S under study in a form suitable for comparison

to the computer-generated ideal curve. The schematic for the test set

up is pictured in Fig. 17.

B. CAPACITANCE-TIME CURVES

The capacitance-time data required to verify the ideal storage time

calculations was obtained from an experimental setup similar to that used

for the capacitance-voltage measurements. Again the Booton 72A Capaci-

tance Meter was employed. Since the M-I-S must be switched rapidly

from accumulation to deep depletion, the Wavetek Function Generator

was used in the square wave mode for the C-t measurement. The expected

storage time was on the order of microseconds, so a Tektronics Type 422

Oscilloscope was used to observe the response instead of an X-Y recorder.

The experimental schematic is pictured in Fig. 18.

46

Page 96: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 97: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

3OV-i-i-i

owCD

H>

I

o

CD

P

47

Page 98: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 99: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

"o,

£, >

>H

WC/D

Hg + *-

^£ i ©-

u•-I

OCO

CD

H+->

I

o

00

CD

48

Page 100: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 101: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

V. METAL-INSULATOR-SEMICONDUCTOR FABRICATION

' A brief summary of the fabrication processes and materials of the

M-I-S devices used in the experimental investigation is presented in this

section. The semiconductors were deposited in the Naval Postgraduate

School Solid State Laboratory under the direction of Dr. T. F. Tao. The

insulators and metal gates were deposited by Dr. N. Bottka at the Naval

Weapons Center, China Lake, California.

A. SEMICONDUCTORS

Thin films of Pb, Sn Te semiconductor were evaporated onto half-1-x x

inch diameter substrates of CaF and BaF . The compositions (x values)

1-1/2" _|.

SUBSTRATE

SEMICONDUCTOR

OPTICAL

HALL

Semiconductor Samples

Figure 19

49

Page 102: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 103: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

of zero, .2 , and .24 were used . Two types of masks were used, Hall

and optical, so that the samples could be utilized for other research

projects. The thickness of the semiconductor material ranged from two

microns to 10 microns. Evaluations using the Hall technique showed

17 — 13 19 —3carrier concentrations ranging from low 10 cm to low 10 cm

X-ray Laue photographs indicated that both single crystal and poly-

crystalline samples were obtained.

B. INSULATOR

The semiconductor samples were cleaned with trichloroethylene,

then methanol, and finally with de-ionized water. They were then masked

and mounted in a vacuum station. The system was pumped down to approx-

-17imately 3x10 Torr. The deposition was then performed using the

electron-beam method. The thickness of the insulator deposition was

monitored with a Sloan Model DTM-4 Thickness Monitor.

The Model DTM-4 gives a frequency reading that is proportional

to the thickness of the deposit by beating a stable oscillator frequency

with the frequency of a crystal that is proportional to its mass. As the

deposit builds up on the crystal, its frequency changes proportionally.

The thickness is then obtained from

DTA f = *f (57)

3where D is the density of the material deposited in gm/cm and T is the

3thickness in Angstroms. Two A1

?(D = 4 gm/cm ) and one SiO

50

Page 104: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 105: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

(D = 2 . 5 gm/cm ) deposits were made. The insulator thickness obtained

are given in Table IV.

INSULATOR THICKNESS (A)

A1 2°3 — 100

A1 2°3 ~300

sio2

~450

TABLE IV

C . METAL

The insulator-semiconductor samples were masked to expose various

sized circular areas, then Ni was deposited on them by the resistive-

heating method. The two types of completed M-I-S devices are pictured

in Fig. 20.

INSULATOR SEMICONDUCTOR

METAL

M-I-S Samples

Figure 20

51

Page 106: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 107: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

VI. EXPERIMENTAL RESULTS

The first step in the experimental investigation of the M-I-S devices

was to verify that the test circuits of Section IV were functioning properly.

For this purpose, an Al-SiO -Si M-I-S device with a known high frequency

capacitance-voltage curve was obtained from Stanford University, Stan-

ford, California. The capacitance-voltage results are shown in Fig. 21.

The close agreement of this curve and the one obtained at Stanford indi-

cated that the CV test procedures would yield reliable results. A capaci-

tance-time measurement was also made on the Al-SiO -Si sample. These

results are shown in Fig. 22. Though there was no standard with which

to compare this curve, it followed that the general shape of curves

presented in other papers [8]. Therefore, the C-t test circuit was assumed

to be functional. With the test circuits functioning properly, the next

task was to obtain high frequency capacitance-voltage curves from the

Pb. Sn Te M-I-S devices, and examine if the theory developed for1-x x

silicon M-I-S devices apply equally well for these narrow gap semicon-

ductors .

Measurements made with the probe touching various Ni gates on

several of the samples yielded either no capacitance variation or an

unusual reaction from the Boonton Capacitance Meter. For example, the

Boonton would give a full-scale deflection on the 300pF scale, but would

read zero on the lOOOpF scale-setting. Using standard capacitors, the

52

Page 108: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 109: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

. - <m

(X

O o oID

O O

+^~^

Cn-i-i

U-,

CMI

cou«r—

1

.—

1

Irn 3

(

)

i

10 >(D

1

OCO

l-l 1

<u nui

2

4- ^

CDI

Page 110: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 111: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

C(pF)

50

40

30

20

Figure 22. Experimental Silicon C-t Curve

t (sec)

54

Page 112: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 113: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Boonton was checked and found to be operating properly. This indicated

that the devices were the source of the erroneous readings. The con-

clusion was that due to its very thin the insulator contained many pin

holes, thus the metal gate was making direct contact to the semiconductor,

To decrease the probability of finding a pin hole under the gate, it was

decided to reduce the gate area. This was accomplished by using the

tip of the probe as the gate, touching it directly to the insulator. Results

obtained in this fashion, however, were little better than those described

above. The cause was thought to be that the pressure of the probe was

great enough to break through the thin insulator layer. To alleviate this

possibility, a small amount of Hg was placed on the metal probe which

was lowered to the point where the mercury just made contact with the

insulator.

Using this method the results shown in Fig. 2 3 thru Fig. 2 7 were

obtained. However, the results were not consistent. The resistance of

the insulating layer was measured and it varied from 50 ohms to approxi-

mately 2 K ohms. To determine the effect of leakage on the C-V result,

the silicon sample, with a variable shunt resistor connected, was

measured. For a leakage resistance of 100 K ohms, the silicon M-I-S

CV curve showed some noticeable distortion. For a leakage of 5 K ohms,

there was no capacitance variation at all. By comparing the value of

leakage at which distortion of the CV curve was first observed to the ac

impedence given by

|z| = ^V (58)

55

Page 114: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 115: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

where C is the maximum capacitance of the M-I-S and W is 2 tk times

the measurement frequency, it was determined that for reliable C-V

results the insulator resistance must be at least 250 times greater than

the ac impedence of the M-I-S.

This indicated that the results obtained were distorted by the leak-

age of the M-I-S device. This precluded the use of these curves for

accurate numerical analysis to determine the surface state density, carrier

concentration, or insulator charge. However, the general shape of the

curves can be used to substantiate that the Pb, Sn Te M-I-S devices1-x x

follow qualitatively the capacitance-voltage variations of silicon M-I-S

devices.

Attempts to make CV measurements with the M-I-S device immersed

in liquid nitrogen gave inconclusive results. The expected result was a

sharper curve, that is the transition from accumulation to inversion would

take place over a smaller voltage range. Also expected was that the

percentage change from accumulation capacitance to inversion capacitance

would be greater than at room temperature. In the few measurement

attempts which yielded C-V data (one is shown in Fig. 2 7) the capacitance

variation did occur over a smaller voltage range, however, the percentage

of change in capacitance was smaller than in the room temperature case.

It was also noted that the actual capacitance values were much lower at

reduced temperatures. This could be caused by the fact that the Hg probe

solidified at liquid nitrogen temperature ( ~ 77°K), resulting in a smaller

gate area. Another problem encountered in low temperature measurements

56

Page 116: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 117: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

was the presence of jitter in the CV curve. The source of the jitter was

thought to be the boiling of the liquid nitrogen which shook the probe

during measurement. Another inconsistency was the variation of the

accumulation capacitance with temperature. In some samples the accumu-

lation capacitance decreased with decreasing temperature while in other

cases the reverse was true. Theoretically accumulation capacitance

should remain constant (approximately equal to insulator capacitance)

for all temperatures.

In an effort to determine the effect of illumination of the capacitance-

voltage curves, measurements were made under various lighting conditions,

The expected result was a higher value of capacitance in the inversion

region for higher light intensities, due to the added number of minority

carriers produced by the light photons. However, no noticeable effect

was observed in the C-V curves. Some low frequency C-V measurements

were attempted using a Princeton Applied Research Model 124 Lock-in

Amplifier (LIA) , though few useful results were obtained due to the LIA's

sensitivity to leakage resistance. Also due to this leakage problem,

capacitance-time measurements did not yield any conclusive results on

charge storage time.

In general, the percentage of capacitance variation was much

greater in experimental data than in theoretical calculations. In many

cases, hysterisis and/or drift were observed. This was expected since

insulators usually contain mobile charges. The voltage range over which

the capacitance variation took place was considerably larger than in

57

Page 118: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 119: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

theoretical calculations. In many cases, especially at low temperature,

there were some unexpected capacitance variations: the change from

accumulation capacitance to inversion capacitance was not smooth

(see Fig. 26 and Fig. 27).

To summarize, mainly due to the leakage in the insulator layer the

C-V results were distorted. Thus they were not suitable for quantitative

analysis. However,- the general shape of the curves can be used to infer

the general behavior of narrow-gap semiconductor M-I-S devices and

the feasibility of their applications as infrared CCD's.

58

Page 120: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 121: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

C(pF)

Figure 23. Experimental

P^76

S?24

Te

C-V Curve

100A Al insulator

T = 300°K

15 -10 -5 V

59

Page 122: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 123: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

O+»to

oCD

V. co OCD O ^ o <a oo •> oXX)*' inw a. U ^

o oooro

60

Page 124: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 125: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

A >

LOI

S-.

O-Mfd—

i

PCD

LO

- £C-.—i

B a COc O o wCD .

S-4

03 oi-H

< OO<D CD O <J CO

a h oII

X X! ow a. 1—

<

H•

lo<M

CDuPtn

o-i

I

LOi—

1

I

P-.

61

Page 126: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 127: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

u.

o4->

X! fO

o 1—

1

s-> p> a

c• t-to o

1—

1

£fO a> CO

cCD

£

Ho +J

ro

w

• oCn) w

CMo

1—

1

< oS-. CO <D

-i—

i

o<D o

Io< CO

a 00 oIIX ,Q • 3 o

1—

1

ow a, O CO E-i

A>

62

Page 128: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 129: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

CM

63

Page 130: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 131: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

VII. CONCLUSIONS

The theoretical analysis of Pb, Sn Te M-I-S devices indicated1-x x

that signal currents comparable to those obtained in silicon CCD's are

realizable. With a temperature differential of 0.1°K, which is desirable

-6 , 2for high resolution infrared imaging, signal currents of 4.8x10 A/cm

-4 2for PbTe and 3.2x10 A/cm for Pb_Sn. .Te were calculated. These

. /o .24

values were obtained by assuming that the device viewed the scene for

— fi

only 10 seconds. This poses a limitation since present mechanical

choppers and shutters that operate with this speed are not available.

Other methods of reducing background photons, such as spectral filters,

would reduce the requirements placed on the mechanical shutter speed.

Further study on the effect of spectral filters in limiting background

photons is suggested as an alternative to the high frequency choppers

presently considered.

Another limitation to the signal current which has not been con-

sidered in detail in this thesis is the effect of noise current, which should

be studied. This would allow a prediction of the signal to noise ratio for

comparison to that obtained in other infrared imagers.

Charge storage times obtained from the theoretical analysis are

significantly shorter than those in silicon charge coupled devices. For

PbTe Tc = 5.7x10"° seconds was obtained, and for Pb^.Sn-.Teo . / b . Z4

_ c

T_ = 1.2 7x10 seconds. The storage time for PbTe compared to the

64

Page 132: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 133: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

period of a 1MHz clocking signal indicates that the length of storage

time is satisfactory for CCD applications. However, this is not true

for Pb„^Sn 0/,Te. Methods of increasing the storage time are required.76 .24

before a CCD will be feasible using this material at the 1MHz clocking

frequency. Increased clocking frequencies could be a possible improve-

ment without increasing storage time, but a limit exists on the clocking

frequency. This limit is imposed by the requirement of interface with

available display systems. Methods of limiting dark current by varying

material parameters such as doping concentration also require further

study.

All of the theoretical analysis of Pb, Sn Te devices was based1-x x

on the assumption that the theory developed for silicon M-I-S was

applicable. Preliminary experimental investigation has been carried out

to examine this assumption. After initial instrumentation problems were

overcome, the C-V data obtained showed qualitatively the typical be-

haviors of accumulation, depletion, and inversion in an M-I-S. Capaci-

tance-voltage curves showed a definite transition from accumulation

capacitance to inversion capacitance, but there were two basic deviations

from theoretical calculations. First the percentage change in capacitance

from the accumulation region to the inversion region was greater than

that in theoretical calculations. One possible explanation of this is that

the value of the relative dielectric constant for Pb, Sn Te used in1-x x

theoretical calculation (K = 400) is too high. Accurate data for the di-o

electric constant is not available at present, thus more extensive

65

Page 134: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 135: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

experimentation using CV method of Pb Sn Te M-I-S could provide an

alternate means of measuring the dielectric constant. Another deviation

from the theoretical curves noted in the experimental investigation was

that the transition from accumulation to inversion was not smooth. This

was possibly due to interface states in the M-I-S structure.

In general, all of the experimental data suffered from the leakage

through the insulator. Experiments on silicon and germainium devices

with a simulated leakage indicated that the C-V variations were distorted.

Experimentation using better insulators is necessary for quantitative

analysis of Pb., Sn Te M-I-S. It is suggested that other insulators,

especially those with higher dielectric constants, such as TiO , be con-

sidered to meet the production requirement for thicker insulating layers.

With better fabricated devices, storage times can be accurately deter-

mined also.

The conclusions of this thesis can be summarized as follows.

First, Pb n Sn Te M-I-S devices do show controllable depletion and1-x x

inversion behaviors qualitatively similar to the Si M-O-S theory.

From the storage time and storage capacity points of view, charge

coupled device infrared imagers using PbTe are feasible without extensive

improvements of material and fabrication technology. Devices using

Pb_Sn_ .Te will require more extensive material advances to increase. 7b .<c4

the storage time. Finally it is suggested that more experimental inves-

tigation be carried out for quantitative study of the Pbn

Sn Te M-I-S.1-x x

66

Page 136: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 137: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

UJu><a.

ay-

a 1

oooPfNJ

! —4ii oo

z: ii

O(TLLI

(JO

u-t<->oOUJ<o^a•oolo<

CUJCCZ-Qi-

I—<:

<KJZPd.

UJ<o~<KCllJJ

u.

0O«-«'H.*<MfMf\INnflf*>rCl

UJUUUjUJUIUJUJlLiUJUJ'XlUJUlm m* eoo <* <no •-< o> •«• in *•o

»» h«—<fsi •* -*N* oo -<cm «-> cf>

fi •*"• ITi <M <D -4 >o <0 •-< an —4 1!*>

,0 r"»»<iohn* ir> nO fimm C>•OM %0* "f^ <M *~ *M 00 •#— Of

• •#»•••••«••»ooooQoooooooO

fsj -jo o- oo rs. .»m ^o —i (mmo r» in <mc r- •» -« a* «©i0m 4-M —iQO •-« <M fl •$" -O h- 1* COC <?>O —1nj <N 1*1

ooooonoooooooonoo—<-<-i-iOOOOOcJI I III I I

VU1<l-

X|• --

ujOo5 j

IIo

OOOOOOOOOOOOOOOO

.£) *0O *0 *.6 -O^ «£> »fl >0 *£ *0 £oooooooooooooI I I I I I I I I I I I I

;UJUJUJlLUJUJuJllJl'.u-lUJuiUi

I|-^l/\riMt,MI<1U'-tJ5^^

! »©!»1<\i—«m.»co^ <%)>£;*> cr©; noo>n^ o^-coo*o,-cmjnom<*i v»-mj*vir mmininmrnvO

ooooooooooooo

I

I

f—0^004 ^o(\iOm-oor«-

CO («1 f- .0 jr . -4- J- r-l !•>(>

tnin-J'-T-i-^j-sr-J'^^r^-f

ooooooooooooo

o-i<oa-(sj-fm^-sj-(M^-sT'nrsi-o-<conmeoo(MOx t\u-

• r^fsiminm^cofmn—(mOinrvjcorxi^Nj-^-f^-orfi0^comoin>0(Mr>jtw —rfcC'^i<3r^mmf^-OcoiMj^r^

ctoc*'7, a*cr, aor— ^ol^ip^ncoo' a* ct cr j* 3*c s

UL][••«•• It • » • . 1 • ••**••••• •ooooqoooooqooqooooooooo

II aifiO-<—o -

r 00am •

1mm :

a^-coi/iro

UJOa. 11 11 +

>U-t-O. UJ—ZXf01- 4j

H-mf^*^o^^*t"(NimcoorN4h*c% rfiox C^f^»ommsor^_io (ni -a <sj—o ooo—1 —1 —< —> ai (nj r^vm 00 ei—< -j- -o

><\i-*oo00ooooo00o oooo —«m rimI 1 1 1 I I

I '

I 1

Page 138: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 139: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

'!

I I

|I

tutli tulutuuj uj uj hi ill iliuj iuujUJ

)*NfflNOffl"IO.iO-i*MOO

"</><*,Mco^eooou*>'*icoe>*fn^o coM *• -< rvi >o•*f> £> •« cu •*•

c5 f*- P"> to VfN —< •# "-" l»"l •*O »J- CO LT. —i

^f- ^- f- i0 jj -0 xO irv <*•Mm ru rsi —

i

t • • • • • a • t • • • • «OOoOOOQOOOoOOoO-J

I

UJ< \-

o«- !

<L_<\i.-<oe>cD'--*Ln<cf-coooo-o-«h- j- -<co-0(*o com rjOu. ZO in< «m •*<oo r-< <\j f\ ~f -j- i/m— oo c>o —• —« im fi *i- •* i/n .© r-OlUJOOOOOOOOOOOOOOOO—J-'rf-w— rfnL- .................. , ,

B- I I I I T I

I

a:i/>iua:>-iu

_JUJ

0_>-luo

3

>OnO06U.JUJUMft

r<->ir\

0>OuJ »0*0'0'0>C>'JO'00«*>>0oooooooooooooI I I I I I I I I I ! !

UJ LU UJ u, UJ LU LU LL. LU LL. LU IL LU^.r-isir-j-coo-^-LOOfMsOO''<OOCOLTirSlf--H-J)-^ir~COCOOO*0<I>OO_4—jrvJrvjfNjfNJCvjfNjrsi-*-***cgrsjr\jr\jr\ir\j<sjrg<\jrNj

ooooooooorsooooo

II

-OO -O IT.n J- LTiO C- ,-\i vT r* >—mono.-i u^ a"> :u ~« o —'o^-nCip^lo

^fv.r-f~ooo-o~oj)-ooo-o>o

ooooooooooooooo

ooo• COo-o

00>OII —io

! — (LUI l/» .f\J

Z II CT

O f-

l_)0 •-zo(OK II

I-l~(-v/5—<—

.

ujloujlOlu^ljOZQ.•OOi/lO—II t-ZLU

<o-OLUfflZOI-LL.

I-.<_

ZCLL-o

<\J

inOH-.© .

oou. •

lAlf.

CsJ^f^lNif*- >f <NJU"\LnG0U'>C0.-ICO-O*f LOO^f —TOCO—4~<-H,0ifsjrg—icoOcoo^f^-OLOO^mOLTwj-coo—*O>j'r«"i>0rg^s0-*>co>0(Njp-tCD^-iLO-0^corsi^(-H-or— >j>—^a^iA^*o>rri o f*-cocv

JO^C^Ov CO>D'>J'O^JJ(\)<7^r^^LrM*OrO'-JCOf*,i^DcOCOCT*Gv t?v CT, Ox

OQOOOOOOOOOOOOOOOOOOOOOOOO

lu i :

oII

u- 1o—'LriLn>c-<-J'-T.-''^fMrsi',--<0(Mr-Ln~-^yh«r <3>0-<»t^rNjO^cocofri^^o—irsi ,*vJ^rr> rr'^'^1 LOin'uco—«y0inOLr»r*--Ao • •>(01hOOOOoOOOOOOOOOOO-i-'NJ;COs

I I I I I I ~"<

oII * —

>i-Q-uj

—mo 68

L

Page 140: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 141: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

UJ

o<O

o

> o~< _«U«M(M <\j <vfnm ro rh

UJ UJUJ UJ U.I UJ UJ u.'UJ U.IUJ UJ UjlA^aOO^mo^O^vfinr-O•*uv*<0~<0©f-o j-ivi^>oCOOP* —«^^©*t, C3rri<D-*»»4

r»N-"*rM-f —<pg<r 03»j<Mtr\w•w r

2;

o

It 4" •"« in<MW -< <0O ••« 00 —. UAeo •*•«vrg —< h-om f» —« O* «f r»

^ fMO >» -m r-m *• «M oo •»—oin ir>•*•*+ f>m <N is* -*-*—>ot • t • * t • • t • • • iooooooooooooO

I

S2<>-(M—"OCT- 00 f4.^-lA^^i(Mf^O Kit (MC>f- >»'-<»' >0u.z o in <* <s/—•oo

m ro •# -o r- f- oo a- c-o —< <\i <\imKUJOOOOObOOOOOOOOOOO-H^^-i

woooooooooooooooooooooooa. I I I I i I

or </>

UJCC>-UJ

-JX|o.»-UlOO*-

OOOOOOOOOOOOOI I I I I I I I I I I I I

UJUJUJujUJUJUjUjIUUJUjujLAJ

«onn -<m ^ oo h- ft1 -o co a~o

p"> m<f in ir\ir\inm iTi inmm vo

OOOOOOOOOOOOO

e>>£!*-O.J/-^C0ff-«^O<,--i0N *-

i^acM»^-o> oiN.O'jioor~

CO r '. f— -O in -J" >J-m ^i^ m c~, r^mu"i**">J'«j/>t,

.}'*j->Jp

-r-l'»t-i/

OOOOOOOOOOOOO

I

oO'

0(NI

II cooI- I— »UJ

V> NZU C*O NoruiKOo «-zo

KS-< M

tO>-i—unnos:OUJ<0ozo.

• OOl/lo—XCCt

iit-ruJ<o-ua

ZCKU.I .-< —<XjCZ pu. H

<o• ro

OvJ"UJO^orcr

HI

~°-.o •

oo

I

toM II

-*•

>v-O-Uj

4-

<m -rin ,$ ^m ^ .$• ui isj -o —' oo itm <uo <\j a* fsi .$•

(Minirim>ocOr^m-HroO*/N<sjcor\)>j-^-^^f^ >or^coi.iOin'OMNN^a^-oMninr-OcoNi.'M^cot—mof*imr-ooost , <*"i^'^o*$, ^cocoCN o*»c?s

C7*0"1 ,, 0''COf*-0>Omin*Of~X3> 0's Ox C7*a<Cs ON U'

oooooooooooooooooooooo

Kif\r--^o> ro^i\imooo (MKO% rfios os KoininvOf<>_jOf\|sQf\j-^oooo—«—*-^^^tvi fNjr-iiAcom—<^j-<co ...,••>I\J—iOOOOOOOoOOOOOOOO—KNlmm

I I I I I I

69

Page 142: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 143: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

I I

DO

; «1T1

H —

I

i

&

ZnDarojt->o-Z

r~-s:<

(/>»-

UJU0(_)

OUJ<oza

o.-IDII KZ

<Oujtr)2CKI -.<<X_J2 F

UJ|

<!

Pi

Cl<

J I

i uiuJiumdjuiaiujtuujiL!

i o>N -Ohio -oca .©com.*-; r»dm 03 woi/>»9-* **!•«•

m<i-

"<< i

rvj(F

-JCO 04

I

OJ-

• «

oa

I

^ 0> f*\ r~ r^ f>- ri od cm a>

-« f- ffi <\j inKo in <sj c*

oooooooaoo

o<-U-Zocuj

a.

0©a003>OOoOOOO©OOo-<--< -*-*-*•

DOaoooooooQOO0ooooooooIII

lijC'

VUU<»-

X_1X

ujOiQ—

!

a;<!O• I

anUJ

oaooI I I I

UJUJU.UJP— & vO .-

<NJCXC*I\Ifi i*i .* ir>

• t • •

oooooooooo

jOOOI I

U iU-

<iA-rco

DOQI I I

'.'j Ul

COCTOmm in

ooeb1

'!

« '-• ^oeoC"ocro-O

* t «ooo

' O >2"O •£) iTi -4 Loo^»j6>i'0'O^Hkno(V)f- .* >0 >}• rm—< r\j a- a- r^- C in Ki

a

oooOOOOOOOOOO

i

<5o

No*inin•

o M" ^KlO+i-»-jo :•

s: opoui •

[inin I

Or--cD I

>}--<-oO(J-iniriiN)Of-«M/> -o—' >c <m =o •-«» . —

<

O^O«J"tDfMMC0r0lAO-J'—'u'NOtT-mOirVLTv—i-O—Ifsl-OCD^OrvJjj^-com^-O—«J~rO'O^CD(r

Cl:oc^o^(^c^0~c^a)c3co^-'ycoff'c^a> c^c^c, c^a, c,

j_ ......... . tt.'.

0(0a-o-CO"

OOOOOOOOOOOOOOOOOOOOO©

UJ

<-sr-<ir\-*ur\©,t-cio'"ri(Jv t>v*ifioOi-ir»-*o'"ri<N_i co f"N a;)f\ —io—i rsj <\i <M fi .}•m r-o in r^ co (M —< -D

lO1 Otitic

> r- fi -ioooooooooooo—< —< rsi <*» ~oo -o

i i I I i Ii

a. .

UJOa ii ii t-

>u_»— Cli4_'-zr»0"uj(i>

e -

70

! I

L>

Page 144: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 145: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

in

UJUJUJuliUUUJ

r-r-.-1rv <«'•-•

(UUJuAUUJUUUJ

—^•^sOOf^l1^M.fCO-HCMmO'

'

I

co* <M <Si »* ^"om p- «~< cy« r-

O*M^*t~**- pv>K' fN'cO'*"--'0x

u\ui *>!•.*• «"> tfs fsi <sj-« •-<•«•o• » • >t«*«»t*>«ooooooooooopo

< »- »\J—<© O- ec f~ <* «Ti >£> -<M COO f- VA *M 0" *-* •"" 0>OU. JT <fi UM >*• fVJ HIOO «-<N I'M «f C H- f- CO (r- O"O—KM <Ni "»UluOOOOOOOOOOOOOOOOO-"-w-iWrsi- .«....• i i » ..>.i.... . , ,wooooooooooooooooooooopo

octnwarVUJ

Jr

-IZ

se

II

ooooooooooooot i i T i i i i i i i i i

LLIU.UJUJUJUJ uJu..uJujU-UJuj

ooooooooooooo

o;oo• 0>

iOiM

~t«0II COOM I

;

-« «UJ! l/) <N

I Z M C7>

o ir-

uu •hZOt~Y< N I O

i/i—<-~-jO •

iLitooa; ooOUJ<OLL> »Ozo. it\lTi

•-•i<:<0*~cotOOl/lfl0~ -.

IiQo; • nII t-HLUO I

<a II » —oujco i >ZO— u-- CL UJ

| -<-ZI

<X_JC— UjO?Cu,OU^U.

5

a.

<

i

*

UJO*

O•xDF

cr>>or-0*t-*'«r>ov *ro<\ja'f--h-O^'0C>^0> O<Nl9'J^^)O^->-i-00, i.o.$-mO,o^'ir\.'-<~<0

4 • m\ • • t t « » • • •

ooooooooooooo

(VJl/MninOCOr^Ln —-lr<")Oin(\JC0(\JsJ-Nf—T-\Of*lCO 10O in <i r\j iv f— —i co 1*1 <C r- in in^a as <nj iA f-

C7«C«00>COr>-OO^in^O^-COOx C>0N 0>Jv 3,'0>0N

OOOOOOOOOOOOOOOOOOOOO

of-m f~—< a- i*i< njm oooM r^ o" ro o o f~ o i/\^^ ro_j <0<\l>C<M—'0000-j.-j— ~i(\j<NJr'Mncor\ -***••£c • • • • •

>(\i—ioooooooooooooooo—KMrftmI I I I

71

Page 146: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 147: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

II

I

!'

-4-* fsj (M <V| rv4 r'lm tr\ r> .«p*-4.<«*« —I —I -< f-<^ —4'1JUJ JUJL'JL

-op

ujujUJUiujujiLiumjin^^toocoO-J*—

Ooj'mficom-^-OeoMint's «r<#, j-f'--OrrimmeoO-Oox-rfO^un

w r\JoMO (fiO* rg f- co fi

COOcOCM-OO-tOO'NJO'"-

I l} I I'l ••••••ooooooooooao

I

-OO-Jrsinjr'w^inofi-OcXvj^eo-i-tr-.O»^ o> h- in <n—<o—• c># vo >o co 7-oMw •# -O

j^oooOooooaoooo-j-i---*-"lOQOO'

I I I I

cpoooooooOoooooo

Lua:>-UJ<It-_JLU

-II

OOOOOOOOOOOOI I I I I I I I I I I I

IM f-Q CO —If*- —* r- * fM 0*O

rtwrtiflm^-t •* -* J- •# •*

OOOOOOOOOOOO

OLU

U.

Xp

«MCm*$-co.»-*f*>m-*(\/*Oco*l--3--no-?in<vcocg,o>ooininrnngP^omeOsO^r^c**^n'.^nMrjGOOOO <t*-*C-Ninminminmminm o.,«..• c i •.. • oOOOOOOOOOOOO —

'

I

Oi

• c»

COOII CMO

- ,LUi 1/1 it\l I

2IICI

Ia r-OT LUh-uu •

"HO i•-•

r~s.< ii n«-iwi^ sOO-*

(jn»«—-<0 •

luwor OOOLU<OUJ •

OZCL COO-|ji:<atMr•OOl/IO—

I

O— roXOor • ii

II (-Z"JO '

<Q- II II—

Olucq, >ZChlLH 0_LU

I —<—TT~-<X_|C-UjOKOl-Ol-H-uj

c•a

u-0

.in0<\jUJCT>

K0-

-jjino-oco^moo-t^mfi-fmino^r—,*r»-r\j<\jf~r-^>j">r\j—'Oo—"^m-r-"^^gv h»incoinm(\j'>jo>'H^*t\jCOvf^ONfvO

goo^ r*- a* ~*a-Ou*%mcr<'riinr*-coox c*0N

CT,ls > CD^-^-->0 r~^COCOON O> O^0N Cj

K 3A Jv

ooooooooooooooooooo

t-iA-4f"oi:-CrginoirwHjjooinNf~0_iinr-ooj--jooO'-<^iNj(»i^j-r--jr-a3Ln-J-

>PhOOOOOOOOOOOO-i-iM^SI I I I I I

• cw LU

I

Z KI i/i h-c oUJ— ct_l_tsOU Ci-

•* .1?*-~OOLU

CflOLlJ3- a.cmo.< LO

•P F72

!_

Page 148: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 149: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Ii

<a:o

<

O.UJQ

ooooaooi-j^HNNNi^ffififo

LUaiLULUU-JUJU.'Lt.UJU'UjaJn.juJLuuiUJuJmiriov u*>-3njo>'"cj-cotno-, Qcooc>c>'-*& CO 0>«~\ —' •* l/> >•*< «3 •-< I

s- O IN eOO •«* — f>

m rslO O" 03 COO f» 1*1 <o SO f<l h- o„© f^ f»

i

«f rsjf-m «* (ri pri *t p- co cd oo 00 o-oO in*I t«-if\^ooO^ONCicocoi/>rooco-*-Or-e>inOm (M «« _< f\j asoV nj «3 <Mm .0 (V roOw •-<o 0"1 cd r- <o .«• .•• rg —c co in -< f- >< —4 oo

• «#•*•••••»•«#•»•«! ooooaoooooooaooooo

i i

uj< •!

<v-rvj^OC^oorw^^^>f^coc>Oa4<\ir^vttrior^eOfri--«iAmoh-'»rfVic»'<0LL ZO in »*• <\l ~i©O—i (M f* sCm f- CD oo a-O -< (M f\ •*• <o <*• t~ oo a1oQ •-• n} <\i f>amOOOOOOOOOOaOOeOOi—<H^-«^-^-iNr\JNlMNfgr>>- *...... c

WODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ. I I I I I J

cc<s»

VUJ<»~-JUJ,

X•—I

UJQO—

OoOOI I I I

UJUJU.UJ-*0-*--0fA J-f\JCBf-.-fincoin,oo.c>

oooI I I

UJojUJ

Mincor-f-r-

I

©ooI I I

LUUJUJI*. r«">in

CJ-C0infvj-S"-0

co com

oeoaI I I I

U I' LU,;

in r^^ rsj

MOOOOOOOcoco ex c*

OOOOI I I I

U-lU-uj'-Uor^oco(F^Clf"!

OOOOOOOOOODOOOOOOO

! !

Ii

f\JCO***f">-***"v«*mo,'.*'ijOO~(lA^^COC1

r^r^O-OOtj^OOXr^-j-m^oiNJOf^1 -^CM inO r*- .0 .n *a r^ ao vj- f~> ^ . m .» r*! r\j rg f.j

*try-'Cf'K^sj.', o-j> •i-rr>er\ i^m^ ^>i-^^ >?• •* fi ro i-im r*l -ir^.r^.^frimf^.^mrri

OOOOOOOOOOOOOOOOOO

oor-l

o.a

OlNJ

zmDOTUJ

•-Z

a.<

a-*UJ(J>

OtC*

OUj<o

o>-

<£OU-JCOZOKI -<!

Zf3"-

II «<INOINI

—.—'O •

s: ooOLU •

i^-m]

o~rcoI

<Sft

:: • li

UJOQ. ll II

—>

U.K0-UJ

O—UJOl|UI-l(j

<M ^ in •* «rC "-i -" fO in ro 0^ f- —<O -^m vrv >! co ^ r~O •} f~ -0o u> r*- -j -frgu^inino^^^f^ f,*J'^r^-^0^'ir<>r^as,^Nt-r^cjs inr-co^-i^<oo f*->ocnccinoinocNi'^-0-OcOco-*'-J"r\iinor~f---4--<'C<N/f\iaoo-OOco<viiniv-cOh^inOirim^om—<co-0-j-.j"sj'-'vco oo-nncrcD^JcoajOtj'Cf'Js C>Ov C7'CDIfc^<>v0inin.j-^-^-^-sJ-^rn-"^ir^rnin^^-CO011 Cr C^Cy v 7N Cv ^

oooooooooooooooooooooooooooooooo

Oi<

I— in^»^^C7s r^^rsiinoo-^fOOOOOOC\j^'.o^-, C>-^^'OCOr*,iiNION co>Ou>r»-fri

^jNOfM^jiN—.oooo-*-*—<^^'vj^\ifNjr\iPsj'Mrvjf,^*^^i'^>5-inocrsfMm ffc-

o. ••••*• •

> inj -jooooooooooooooooaoo©oooooo -• oj <»Mn

I I

73

!

L

Page 150: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 151: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

I9

<

I

~*I

""""*""*

—I

UJUJUi U.' UJ UJ UJ IU UJlU 111 UJ UJlit •-• ooo+ if\ >© mio •*• in »>*o•^m***—'OO^eO^M.*©•-<O f> <t COO mi& -O -C O <*l *">

fmr**miFJ-fmitV*f<Dmityj\ftQk

"••'r

fi .* "^ (A fsj oo •-> >oo mi oo—imeo^ cm ru—« h-om f- -« Cr •* r-

.6(NKJ^— ^» f\J h- IN 05* —<Oir»m -y «*• •* fOfird<si.4i-i«i>o

OOOQOOOOOOOOO

UJ<«->-

u-zo£u>

i/>01 1.

<\J —<oo op h- •* in >o —I <s) roO ^»m <m 0* t— * -J cf >o<OlTI^<\l*

—oocoocI

<Oo •- IM i*1 -* >0 *> f- oo C CTO mi r\J rym300©OOOOoOOOOOOO>-< -»-*.-*«-*

• «• ><•!!•. •»•jooooooooooooooooooao

I I I I

LlUor

StJUJ

sr

iliOot-

!*

oooooI I I I I

UJUjU-UjUjr~*mm f-

samr^m4\x>

I • • » •

ooooo

OOOOOOOOI I I I I I

^LUOJli-'UiUJ

-j-cof-rvioeocrofihco^^cr CfOmmUMTHAUMA -o

OOOOOr;00I

OopHOO-M

i— «LU

i l/> <M1 Z n<7>

;o r-

. ctiw—l_)U •

.2:0t-T< II

r#UJfct

U-I

Xp

tucooOlb<oza

o—10vt-z

<

I—

<

<X-JZOu,

a

0.rtu

0*• P0

OsJ-Ujctoca-

1°~^—^o •

s; 00i_>w »

at If.

Or-- co1/>P<1 ,

r--oc's ct>*croiNJC> ,j^s0Of~-/0(M/>-flf>O^MN„<—

O

CO r^ r^ C-'\j»J"flt,i' f^'^'^mm .$• -^ .* -j- «r ~f -* -* ^ -J- *

0000000000000

(Nj^-in^-^-iNjj-^-i/MNjo—<cor"'i-">eoOrMcr'M^rNjinininocor^in —'-nOiniMcnrvj^j-N*- — h-^mcOinOino'N<N'*--^aoro Jj'^ininr^.Ocor\iijrtr-as r»- ino m in >- O °9 -t ci rn r"1 ^- o co toO 0~ o<r>c>'CK o-cor^o-o vna". -o r"-aocrcf> o~OoK !7

, j,Lr'

oooooooooaoooooooooooo

U'OI

q. 11 (—

I— Q-U,Zi-cjuituj

DI

>^--^CTrfi^f'sJmcoocNjK-chf^o,> o-^ ,Omin^fn5 r\J ^1M—<o OoO —<_<—1—< rsi im fim aa ra—<-} £>

-lOOOOOOOOOOOOOOOO-<'Mrr\mI I I

II

74

Page 152: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 153: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

a __,_

> M OO z—I t-

, < UJ hUJ h- —

Ot—

1

UJ <f_J DC" »_,

< UJ <UJ I H «.

o H < z ^f—

<

zCC

t—

1

O>*

U- »—

1

< H «*«

o 3 < Q00 O O CC X

ZUJ LU •>

o> (/) Z UJ »-»

t—tcc Z> < h- Ot-Z) >—

1

z •+<o 00 OO 1—

1

—_J UJ 00 U_-~DLL) _J O UJ -0OO CQ < (j.: —0_J<t <t or O 3 0—

I

<»-- >—1 CD h- •*—O-J a: h-a: Z>- <t — CMo <r 00 zd ce- oe o>

oc> > DH re e- ••

o 1 o< z < — .«U-UJ UJ Z-J 000 3 00o X ro moo -<i—

1

O vtO5:z h- vi- V. o<^> II- «--H<< hhZcx: h-<r Z OwCCH- UJ 2: ss-ho 00 CC < »Ho»—

'

2 ouizuijj o- h-ZO l-H —>iD^> »—

»

Zm O0U_< —iULU 00 O *Qi< u_ ZO>Z O-J z e~ 00 <t—CO. UJ *-• CC _JM IJ_ X) DQZ 3 —O< OUJ Oh-

^

LU>-< <r OOct:o ocq:z>-.n^ • zz Hoo -r-4

UJ OO 0005T Oh<M f^OuT —.—H a H-(— *-• ooZ;2H- h-s* CC 0(MZ> cc OOI—ZUJO<OOUJ hO<U- o-xCL <r 33<MUJOhZl UJ Z H- U_ w ••— W*v51 QOff. CC WOH OUJ DZ<W or-.^-— • „ » UJO ZZhMOttZU ZO hQZ 00 0— _J*- _JO h- OOZWUJUJQ O << h- O ed —»Oluooou_u_o_c\J h-

^ UUUJLUQmUOI- H-h- ^_)U.w O'-'Or-l7JILU-I •-« t •>

UJ HM(JZ 0. •—' > »-'_l S<OH H ^—z~ -4 O'-' SH i^ Osit/iiS:£;2:*:2:a:oa:LuUJ OO a.-. < -H<ro^. - - uj 51 CO—Q—5:2ujUJOum<w|-3 <> Zl-oOO <t toxor>- v^Wj »—— m (^OOWwUh OQiOOZ CL t-ZI-O UL oo^-i(Njroh- 1—ILTlCO'^ ••-• •Uh1 xuj h-lu m < I/) X UJ LU UJ ZZZZyjjjH 11 in<r\Jcoroco

H-ujUJOh-oroo—iuj 0<H-_lh-00 00O oooa »CQtD cDI— _i in vo (\i uj rn uj

0<Q.a2 omujihuQ. »—1

1

LD UjO HH2 t—1 —«—1 »—

(

0<1<<J.z-j | >->Z>a:h-^_J ,-'2< a CO 2 > CL LL >-. 00O0o0O0_J_l_J_JC0 oirM—LnH-Lnt-HDhhOatfZiuCKO Z 1LUUJ O Oh zzzz v. —<«— <«—

<

3(J 1 ex 1— uj 1-4 •-< H sfCJJLU wa:i LLUJUJILJJ-I-I-JMHQSQSIQS:O—IZO-OciCloCO ••-> CCUL' Ctth O 5i5:2:s<<<<< 11 <Q.<o:<a._J< ^JSH JUC 1— t—< 1JJ •-. < LLO O •—

'

—1•—1»—•—

1

LuLULLLLlUSCLUCLLlCLLajoccao^ujz « uj <ui_ h- < _i > s: u. coo -fr u- DDQQc£ao:ij.a5:Qo:u.ccLLctiia c3C<ooh->-| _!Q:Q.ijji«i_ja.cccto^^a: ~2

u-U-U-U-cciiii 11 uj 11 <3 2TV.U. a ujllidZ; 11 C 11 LT\ C\| ro> 11 1-. a 1— cc tr, u. 11 < u_ v,Z —

;

Z~» in CM (V;

Ujq::hmu 11 s z 11 z n 11 1 1 CL l| II II II II XmX inX-Ml II^CUju^i-iO^Hli-CQlLiyiSwWwj-u^^cooi-Oii^<_;tL>o>_JZ)Z)Si-:Z5<

75

Page 154: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 155: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

UJCCUJLL,

ILi—t

OOCoLL

OUJCCUJI-—I<I

Ul

CO

IS)

UJ

m»-» *

«tuu

o<

LU

oU-

oo

a

in

00

LOH- co*-< ||OS to<0CNZUJO || t-D^U.^^

<r>oUJ

• UJorOHII H-</><

UJ

HO2

Hi.-.

H«.i ci-

00 I UJ_JUJ|-<C\J—•-< in«a: .ir\

UJ-4"-*

H + uj<(NltMs i

oo

UJ •

Of*! II

H- •—

i

OsOKz: ii zr0<J>-<2UJUao

h-LOZ

• HHCL r-IOS<V. ..

UJ<-x <NJ

|_<— f_

(Jj- r—I•—

l

wen .u..... 001-4.;..

m «-•-.: —tujr-Oh-00 «UJZ• C\|w.-I

LO II || oI (Niro ii

ii i— i— I— <

<Z2Z<HHH<uoo.

(\iiTivomr-(\)Ooo

c\ir-c\icr>

ooor-r-

OCT>Ocj>

(MCNJ

oo oo

CM 00r-lOCOO<\l<\l

OO

(MvJ-xO

inrovOOOjmIHr-lOOOC")ITlvtOOs0<\ir-oooor~

1

II

1

II

1

II

1

II

1

II

1

II

1

II

1

II

1

II

v0OOc0'-<'-| Oc0C0h-<N(Njr*-cO'-iooc\if-i—iino4"oOvOror~Lf>o<l-r\ip~.<K\jr-4 |-rnr» Nor^-r*-ou^ooot^roOLnstor^o—| -~oor^-^'~— —'^•-'-»-'—'-^"~>i^r-i<Njor^^r^cocN<)cooocor^<>inNtrnc\j--<o--»'-'--*(NJh-<—l<fC0'-4^"--0Cr>'—irOtMi—!•—<l—lr-li—ti—li—l^-li—(r—i(j>cor,~N>0<3in^^fntMr-lrHO——»--"-ws,w—w-.......... ihh|-hl-hhhH>-|-HI-h

I I I t I I I I I I I I I I I I I I I I I I I I I

II II II II II II II II II II II II II II II II II II II II II II II II II

<c\jf0vtiriv0r--ccoo—tOsiro^mvOr^ooOO^CMrOvj-Lni—lr-li—l,-H<—Ii—<r-lr-l,_|,—(C\r\jC\C\)(XOJ

ll ll

vor-c\c\iroro rocom

:HKhhl-H|-l-|-l-HHI-h|-l-l-hHhHH|-h|-l-H(-l-hhl-f-H

00

76

Page 156: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 157: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

z1—1

oCO

UJHO

moor-

o^cnOcoo—t r-i o-" r-h ct> o

ocooLnr-oc\iOir\(\imo«-»—.— «»——> c\jo c\j 4- ro \0 co r~ cr« <\i^mvOiTi^trorsi'-Hin^'-J-fsjO-J-h-cOvOror^^-iwwwwww ,3-OvOc\jr-cocorocoir\ir\xOhhl-hl-HO^H(MNff|(<i^<fOOO

| I | I I I OOOQOoOOO • « •

II li II II II II• II II II—~———— II II II II II II II II II

-.—..-»

in vor- co cro——.—— -»^»—*-—.o r-ic\i

romrorom-4-^-ir\'rOstm^r~coo> '-t'-i'-1

roOr-oocr>mcoOOsOvO'-^mCOCT'

O^-lr-tCOtNJr-imOco cr> vO co f- r-«o lo —.—.—•—— -» —.—.-.-.—vti^-ocNvj-o^-r-oOcoi^-vom^Tooj^o— —»—OOI^I^I^Nr^NtMHHHHr-li-li-IHHHOCO^-COOOOOOO — »- ,wwwwwwww

t • • • • • • •<<<<<<!<<!<<<<<<II II II II II II II II II II II II II II II II II II II II II II

rONtLOvor^coo> 0'-tfMro<J' l^vOr,-cccT«o^-icNsim<j-

•— I— hi— i— i—<t<<<<<<<r<<<<i<<<<<<<<<<<<<<<<i<<<<<<

actnoz

CM*I ^UJ I

inuj^..--^.~~.— <\iinN0LT\vtn1(NJr-(Lnr-lwwwwwwO>vf<<<<£< <t H Lf\

II || II II II II COCO_* -»—. —> —» —« • •

m vO r- co o>o >t commromrn j- ii nww—,wwoa<«<«JU

11

Page 158: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 159: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Q

-»C\I

ZU-~<X>O"-^OOOOD

OCO—JwCL

Q_00OUJU_

UJv <~ol-Mi- • **»

^r-l—OJC

UJU'vH—h r-

in i-i -«o i-i cr>

Ovt «oo —' •nOitc-iwvghco

i • •—

<

• t— t-t i—I UJ

—ico— H il i-II II II U. cOhhHOU-U-ixc*:>U3CU3

<—OLUo•<GcCUJOa:h-

1 LL00

xooxt—(Qn

X *

XXinchr-i •

0lx< —

»

*^vOO —

»

*^• «-^ *m.

_» o_ • U_ u.-t <[_J X> D• on w w^

-a UJ X XLL m •Q l/) 00» in

• „ oxUJO

oo

oII

u.UJo

QTrHu. •• >-

1 1

«—

»

•» «« < X _J U- UL00 «t • u 2^0 —7 3 D•^ ii • a' O-J a — ^-»

o o 13 _J< X oxor UJ 1—1 O0 Ih Ul z JZo U UJ X 4-1- > Oh s>-

»—

<

z *• r- HZ a: OCO a. oo;r < II •> UJ z> .. •. . 2! 15—

.

H X XI— o -co UJOO—

»

«*> >/) »—

<

»

CO vOO — r> h-Dn m 00 o SL —* tf. UJO. > u_ + -., • +• t UJ < o m UJ ox o 3— 00—o 0> z Q- M — • > <c> — LL isiLL

UJ UJ ^ <r o ^t m o < 1- - >- ID •;+ D» • a o oo • • •—I _J _JX o Z 1 M 1

t—

»

o o u_ DsOO^ Z Ml/) 00

II II X o a: i-h 1—1 • • >— r-t . UJ U53 vOD1— z UJ IU u_ II _J tov H 3 + — i—i—

< Q < a. - » a. uia:— o «X — 1 xZ Z IU CO ii a ii

-» UJ (-UJ-* -^(>0UJ U.O0 OOUJOO1 1 OcOI- OJ-h s: > o <f|-r-I^DQ: DO t-)cr)o —

OQ LJ<3 »-<u.<i- O— ZH- UJO-OUJ T OLD + •.. _)U- 1 o ^—•o oCNJ^Z *TZ QXO_jvj-OC'-| 2 h-SiJJ— i—l Hi! /, UJ on— CCT'— or-ICQ CO DO u. I OC_J>-. UJ O--.i-H N---as^ — Z5 % OCM-.. ^^

— • X X -% UJ— —

U

»^l—

.

-»LjO • Hi- •^Oi,; l/)O0«— f + OLT\ 00• C\l— 0> -*&»"ICMOtMcO r- O iox-* »H* h^._i » DDIM • t •(NH-O1-t >f^ IT\ "^ vO CO >t vf • o^cocoxr-XvOX<M<3r-xo— I LO -H -J—Z—

O

,_ir-— oo>—- 1—1 »— 1—1 »^ • cm • CMr-l »1—( f-» r- a> vO v0»~

< •— DLL II UJOOt-Hh-O—'-?.!-<3\ 1— ,-.,£)_,_< ,£)^. sO—

'

O— -A v0<-s0- s0— o— .Q—»n0- U —

<

- 1 cx siocooocno^ *cc- v. 00 00t-cvl—t- *-»-— 1-"-i-a— }._— }——(-— K-'-I-—I-I 1 II UL II +<-Os •CMO'-•Dh< > UJ<CLi-KLL<LL<lOU_'<riJ-'<Uj<IIn,<Uj<UJ<rOwWDZOHWS^OOUH | oT/) II xrz^i-^i-h-^h-s: h-z ii i-shs h-zih-SIhShSH«-DwCrnx^wN ii o ii ii ii <3O0CLq:— «-ho: md: >-ori-<C£0 •—<CC*—CC mo; i—iQi l—•c£»-<c£ » il i it •—

O II D II O II LLi-irs) II -• II

ou-CLOcoLCaoaoa^caoaoaoa'c^cx^uj^Hozw noo^ _J 00 1/5 O0 XOU- H-. 2 LL C 3 LL 3LL3ULU 3U.3u.3U-3U.3U.3U.<13Qy<Q•-<DMOuOOOG (-'D->

.-i »

r- r-lvfr (\Ln-—ivo CT" 0> CO Is- vO O h- Z3

O i—i <r O CO r- o o Oo> CM -J

O

78

Page 160: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 161: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

LU

UJa:Z>

X

in

<Q<

u_

Z> — XO — O

CM -H

Z 4f •"

< * COc£ -t OUJ CO O vOX CO •y- llh- 3 — —

»

COUJ < »-» —

»

^ XO ~-» ^% v.- tr>

O LL U_

t- >-

enZ> 3̂

p* CO •

10 X X »-.

UJ X CO CO V, r-(

> I— CM uj;jj

cc Q cv^ •>

3 *

i \ 1 \ OXO 3

*"*«.

LL U_CO 1— r-l

> oi < Z> Z) —<f—1 •—» O LL) < — — 5^ I oinm > + X ax -:. ujo •

• > < ***+ z _IZ — CM -0vO O _J -) ~^ 0*-< v.»-< OocO—tLL Z — ^^ OCO D-'-O > 0>-iLL» UJ z CD —

••:"• 5!-'- — *X

X 3 «*** —>»—

<

— CO UICO CO»-<0_Xo —I •?• LL— —3 1-3) CD^. »0in UJ h- CO DQ t LL + :: + <— >-~*^ cc UJ • —

+

CM O— CO— - OO •com LL _j + X— •v. «-LL i^LL ^•oxin*-H • Cl ^^ tO«-i X >- ID ^.D HJ » 1

xo X UJ t—

«

a— O O Z 1 M 1 UlLLLLOO.f-4 Q — OO X X »-<CO r I/) iniiHu_ •—

<

h" | —X •Ji V. COD vOD OOOLLu_ X UJ Vr —%—^-Q CO— + — —1>—

»

—iw »

-JX > • — LLU_ «X _J *:o—

x

— 1 X •i: u_xuo> r-H <.<!- i-» H3DINJ + £»• .r OOLLCO COLLI CO —<o_jo>

» z h- <CM 1—» | W— .-« CMOZ>0 umo -. + 1-)<J> r

On < O 1 •— ^Tr-t-i < r-r^ 1 O SHU O •« »CM> • ll UJ —sf— 1 .-.ZCH— < 1 Oco— OO— O^—O •

nOO-J 12 _J LL -sog »-H wwhOU. 1 UJOD-,. OOvJ -, V.—O>>0 C5—LL>0 00 O00—

I

CO LL Z— — aoicoto.^ —

»

in +— • + von coj->- U- >m ii n 3 _J=) -5 ID UJ CD—<0C x«*s« -5 r~t • XCM • • •CMt—OcY—'O » II

cox—

_J _l^ + _l 1^•wCM— LUX— •-. —4 —

.

-J- —'Z^O .-ir-weo>—ococox <^*

» o> •-*—' U_i UJ U-LU II *! UJ LL •1 -iv cllp 1 | CO »—<»-<- -5 Lb CD-) in—t-h-O-ii-hON ) ooCQ »c> r-l

>0—XXOO ODT^-IOQWO 1—tin- xc\ 1

«0——< — X>-».— co^coaco *k "OC* coco— <<5^- X-hDOZ

|

•^II II • + X) CM ID i-<od;o 11 oir 11 1O • •-OS •cmO--1DhS II — f-

LU<ZZ t-«U_ •Z U_O r-t CMO 00 11 zzin 11 1 II c 1 11 11 11 11 — X"-.

:

XCO >-i :/COO r-l | COCO II X •LUUJ<-' Z1—5; •—n—

<

I-DOO^hXX II z> -acvf-y—H—^«-.^—»—

3

It 1— —3 II II II M || II || II O CO O- r-4 QL H- 51 IT11—

1

Htf-wZ II II -. II OCX II xz«-:>-OlL II O II LL^CM II m 11 11 c»-ia: . . *-*

CCC^r-*UiO<HjCZZQifl'—h-l-C— u- "-C————00 qq oco X oco _ico co oo xOO K-a:C CIH3U.X>UD<1<JQ »—1

—«x3ic«Cci:hOCdUQlJ-XXUXXUOUUUOOOOQ->Qi'13LL HX_J jq: r— 1

in O 3 00 Z3C r-t <t-u> in Oco cr

_l<

r-t CJUJ

<ZCM CM CM <t

CO

79

Page 162: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 163: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

3

orD<3a2:<

003<CD

QO&00

u. U_>- 3 3 ^CO

X Xro

X 00 00 ^1— O cmD CJ O :•-

*—i1 1 f

2*~+

IL u_002-cr\

(X < 3 3 1—<r-l

UJ < *w» »-» ^ 1

>- + X ox ... UJ

< -^ Z JZ -^CNJ

_J 2 *—

%

o»-"UOO aoo >v0

2! CO —

»

'•.•"i\

"£•>•• w-^ •

O «—

»-»>-H -->O0 UJoO 00 pH—1 ft U»w —3 1-3 CD*^h- LA DO t LL + f- + <<—UJ • w + CM 3— 00-- „ O_l + X~ ^ wU. S£U- -toCL «—^ lO 1-1 X >- X3 .-. 3 -1

1

UJ —

<

a«- Q 2: 1 M | UJU-O a w 00 X X M(/l ~ OO inx• h- 1 —X .-- V. 003 v03 00

i-H UJ «< —»-»—».;• Q O 00 »-» + w r—Iw r-lw&• > —* * ~U-LL »x _l ^O—

X

— 1 X • J .

—-, •—

1

< r-l »-'33c\| + Sa ; 0OU.0O 00 UJOO HO Is-

i*i h- <r» 1w 1 ww-» *-». NU^O omo -^ + uo

* U) I (\l«— C^-^XI—M < 1—

1

V 1 O -^—•0 O ••:--

U. LL tt 3 5: UJ «—» "•1 mZq:- < 1 OOOw OCT>w O'-1 '- u. u. co

JOIO «— _l -• + u_ STh-i-H v—mOU.1 UJUD.v UCNJ-. SwOOJOluin

0>CJO • LUr-(_J 00 u_ Zwcsjw D- QC 00 00 q» —

»

IT. +—« • + vOLO 00h->>0>00 »

II II II II •-HO _I2I 3 UJ CD "Qi X— vr^*- 21 p—

1

• Xc\l • • .(ni— oor«- n 11 11 11 11Is-

o^*1*—»—

»

1 1 -«+ + _l _|_n0«- UJX —•—-'-» —

*

—i- >-< 2: -»O f-i Is-— 00 >— 000—————

m

r-K\IC\lC\IUJ«*. U- II ^_l uu u_ 11 a;. c\j a. cc 1 1 00 -«-"-'

:

2TUJCQ srm w_|-t_:l»— -a-HO**. I 00 CO »H r-t CM CM (VJ

xxxx3~-DS^JOQwO >-hLO— X(\ iO— <>w3— —• CO "•«» 00 <JC (_)\ •Q£ivWW-<XXXXX"DDDQZ II II II • + 3 • rvjuj r-iuoro 11 oz 11 t •wQ*n

. •rv'O--13 »-h»». II 00000'-<zzzz lr-i(/j • 0'-i<nooo n 2:2:0 II I IIC 11 11 11 11 -»:X»—^ xco —<,.00CJI'H 1 O000 II X -UJZZZZZ J

r—l —!--«»—

1

h-3c\lsOXx II 3--oom-.^-- h—_.—.-.->: II t- 5: II II II r>J II <_w--*WW Z_J II xz- >-Uu_ II CJ II LLr-.<\l II »-< 11 11 a——————ih r\j c\ima Lb' co 2: 2! c 00 >-H-l-O-'U-WQ ww^^qaCQ C oo X (^ cj 00 _i oo 00 to x U 1— --1 --- tN' f\ ro, u.>-X»-ODDDhm!XDcD<<Do;H(J)COuQli.XXOXXOuUUOUOOCa>QV)X>-X>->.H

JLtO 30 vO r-cof-> uuj c\: (\!(\J in

80

Page 164: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 165: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

ID in*- • —.—».-»X o h-»-H0^ r-A oooooom> LL <<<

in » _J-J_J• X •> ••

o 00 r-*r-*-*

r-i H, * •• •u_ X vOvO^O»• f-H •-•••.

X » o>cm7>o X •. ••

r-l l-l C\JC\j<\|h •> •• »m ro ooo• • «. • «o o ronroLL LL •»«*•-• * oooX X » » *c* a* ooo»• •> • • •

>t <r ooo• • • » »o o oooT—l r~i * • •

uiai LULU r-lr-C—

1

a: • aL •• •> •-

ox OX LUUJLU\—t h-r-l ._)_)_!00 —f </)^H h-H-H-

•• •• •• •"iH-tt-H

om oLn H-H-l—Q . o • ». •o ••o -<(\JrOOOr-t 00 i-l —1 —

1

»

HU. mU. CQcQCQX X • <l<<a-x O-X —1—1 1

*o -o •»

>rH >--H OOOQ O •• » »Xtn xm r-<r\irn

•• • «* • * «.

U-O U-O ^ojrnX'-" IH »->•ua. 1_>LL » »

•• » » •• r-ttNJrsJ

LLX U-X XXX_J<^ _)<> » •

o • o • r—tCvJCSj

CNJ *(M XXXo • o • ooo>vO >^0 ZZZ"LL — LL t—<t—<•—•

C\J • i-l »— ww*^<fX <t-xin 3320> O *(7> »lJJ<<< 1

vOw vO>OwO'Da: a: a:w|- -I-HZOQD22LU<-*>OLL'<LL>-' K-.t-'

I— Sinh-1— 2! »H—l_J—II—I—»-HQt • »-hq;xz_i_i_j220aoooci:co>c<<i<acz3lLf-i03U. 'UUCUDUUI

1—1 1-1

|--C\J 03,-< O (NiOm>t ir>vt so r-io

81

Page 166: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 167: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

BIBLIOGRAPHY

1. Amelio, G. F., Bertram, W. J., Tompsett, M. F., "Charge-

Coupled Imaging Devices: Design Considerations," IEEE Trans -

actions on Electron Devices , V. Ed-18, no. 11, p. 986-996,

November 1971.

2. Amelio, G. F., Tompsett, M. F., and Smith, G. E., "Experimental

Verification of the Charge Coupled Device Concept," Bell SystemTechnical Journal , V. 49, no. 4, p. 593-600, April 1970.

3 . Barbe , D . F . , Noise and Distortion Considerations in Charge -

Coupled Devices , Naval Research Laboratory, 6 March 1972.

4. Boyle, W. S., and Smith, G. E., "Charge-coupled devices - a

new approach to M-I-S device structures," IEEE Spectrum , p. 18-27,

July 1971.

5. Grove, A. S., and others, "Investigation of Thermally OxidizedSilicon Surfaces Using Metal-Oxide-Semiconductor Structures,"

Solid State Electronics , V. 8, p. 145-163, February 1965.

6. Grove, A. S. , and others, "Simple Physical Model for the Space-Charge Capacitance of Metal-Oxide-Semiconductor Structures,"

Journal of Applied Physic's , V. 35, no. 8, p. 2458-2460, August1964.

7. Hall, R. , and White, J. P. , "Surface Capacity of Oxide CoatedSemiconductors," Solid State Electronics , V. 8, p. 211-226,July 19 64.

8. Heiman, F. P. , "On the Determination of Minority Carrier Lifetime

from the Transient Response of an M-I-S Capacitor," IEEE Trans -

actions on Electron Devices , V. Ed-14, no. 11, p. 781-784,November 1967 .

9. Hofstein, S. R. , "Minority Carrier Lifetime Determination from

Inversion Layer Transient Response," IEEE Transactions on Electron

Devices , V. Ed-14, no. 11, p. 785-786, November 1967.

10. Lowan, A. N., and Blanch, G., "Tables of Planck's Radiation

and Photon Functions," Journal of the Optical Society of America ,

11. Melngailis, I., and Harmon ,T. C, Semiconductors and Semimetals ,

V. 5, p. 111-174, Academic Press, 1970.

82

Page 168: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 169: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

12. Moll, J. L., Physics of Semiconductors , McGraw-Hill, 1964.

13. Nill, K. W. , Calawa, A. R. , and Harmon, T. C. , "Laser Emissionfrom Metal-Semiconductor Barriers on PbTe and Pb Sn Te,"Applied Physic Letters , V. 16, no. 10, p. 375-377, T5 May 1970.

14. Westinghouse Solid State Technology Laboratory Technical Memo-randum SSTL-70-1, Characterization of the Metal-Insulator-

Semiconductor (M-I-S) System with Capacitance-Voltage (CV )

and Capacitance-Time (C-T) Measurements , by F. C. Blaha,

I. A. Mack, and M. H. White.

15. Sze, S. M., Physics of Semiconductor Devices , Wiley, 1969.

16. Tasch, A. F. , Chapman, R. A. , and Breazeale, B. H. , "Field-

Effect Measurements on the HgCdTe Surface," Journal of Applied

Physics , V. 44, no. 10, p. 4202-4204, September 1970.

17. Tompsett, M. F., "Charge Transfer Devices," Journal of VacuumScience Technology , V. 9, no. 4, p. 1166-1181, July-August 1972.

18. Tompsett, M. F. , and others, "Charge-Coupled Imaging Devices:Experimental Results," IEEE Transactions on Electron Devices ,

V. Ed-18, no. 11, p. 992-996, November 1971.

19. Waxman, A., andWarfield, G., "Tunneling in M-I-S Structures,"

Solid State Electronics, V. 10, p. 1165-1198, May 1967.

20. Wolfe, R., ed. , Applied Solid State Science, V. 1, p. 154-238,Academic Press, 1969.

21. Zaininger, K. H., "Automatic Display of M-I-S Capacitance VersusBias Characteristics," RCA Review , p. 341-359, September 1966.

22 . Zaininger, K. H. , and Heiman , F. P. , "The C-V Technique as anAnalytical Tool," Solid State Technology , V. 13:5-6, May-June1970.

83

Page 170: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 171: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

INITIAL DISTRIBUTION LISTNo. Copies

1. Defense Documentation Center 2

Cameron Station

Alexandria , Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School

Monterey, California 93940

3. Assoc. Professor T. F. Tao, Code 52Tv 5

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93940

4. ENS Alan Jeffrey Doshier, USN 1

1910 Ruddell

Denton, Texas 76201

84

Page 172: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 173: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Security Classification

DOCUMENT CONTROL DATA -R&D(Security classification of title, body ol abstract and indexing annotation must be entered when the overall report Is classified)

1 originating ACTIVITY (Corporate author)

Naval Postgraduate School

Monterey, California 93940

Za. REPORT SECURITY CLASSIFICATION

2b. GROUP

3 REPORT TITLE

Feasibility Study of Pb Sn Te Charge Coupled Devices for Infrared Imaging1 —x x

Applications

4. DESCRIPTIVE NOTES (Type of repot t and.lnclusive dates)

Master's Thesis; March 1973ft. AU THORISI (First name, middle Initial, laat name)

Alan Jeffrey Doshier

«. REPOR T DA TE

March 1973

7a. TOTAL NO. OF PAGES

86

7b. NO. OF REFS

22la. CONTRACT OR GRANT NO.

6. PROJEC T NO.

6«. ORIGINATOR'S REPORT NUMBER(S)

»b. OTHER REPORT NOISI (Any other number* that may be mealgnedthis report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School

Monterey, California 93940

13. ABSTRACT

The purpose of this thesis is to examine the feasibility of narrow-gap semiconductor

charged coupled devices for infrared imaging applications. The semiconductors con-

sidered are PbTe for a three to five micron imager and Pb .Sn Te for an eight to 12

micron imager, both operated at a temperature of 85°K. Theoretical calculations of

signal current and storage time are made based on the metal-insulator-semiconductortheory developed for silicon M-I-S devices. For

?a 0.1 °K temperature resolution of a

300°K scene, signal currents are 4.8x10 A/cm for PbTe and 3.2x10 "_A/cm for

Pb Sn..Te at a clocking frequency of 1 MHz. Storage times of 5.7x10 secondsfor PbTe and 1.27x10 seconds for Pb Sn Te are calculated using a minority life-

time of 10 seconds. Therefore, clocking frequencies higher than 1 MHz are recom-mended. Experimental studies of Pb, Sn Te M-I-S were made which demonstrated

1 —x xthat accumulation, depletion, and inversion layers can be controlled by gate voltage,

following the general behavior of silicon M-I-S devices. A PbTe CCD infrared imager

seems feasible. Feasibility of Pb Sn„ Te CCD's will require significant improvementin material and fabrication technology" to increase storage time and reduce dark current

FORMI NOV «S

S/N 01 01 -807-681 1

1473 (PAGE 1)85

Security ClassificationA-3U08

Page 174: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 175: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

Security Classification

KEY WO RDlROLE W T ROLE w T

Charge Coupled Devices

Narrow-gap Semiconductors

Infrared Imaging

Metal- Insula tor-Semiconductor

DD,r:..1473 'back:

S/N 0101-807-682 1

86Security Classification A-31 409

Page 176: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias
Page 177: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

.U3U52 I

^ deVafog aPP^

cat

Thesis 143452D6625 Doshierc.l Feasibility studv of

Pb1

Sn Te charge coup-

led devices for infra-red imaging application.

Page 178: Feasibility study of Pb(1-x)Sn(x)Te charge coupled devices for … · 2012. 5. 29. · listofillustrations 1. a3-phaseccd 8 2. them-i-sstructure 11 3. idealm-i-sbanddiagramatzerobias

thesD6625

F

S!S^„f,tUdV ° f Pb<1x)Sn(x)Te

3 2768 001 00467 4DUDLEY KNOX LIBRARY