132
8/17/2019 FEA for Nonlinear Elastic Problems http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 1/132

FEA for Nonlinear Elastic Problems

Embed Size (px)

Citation preview

Page 1: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 1/132

Page 2: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 2/132

Page 3: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 3/132

3

Stress and Strain Measures

Section 3.2

Page 4: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 4/132

4

Goals – Stress & Strain Measures

• Definition of a nonlinear elastic "ro/lem

•)nderstand t0e deformation gradient1

• 0at are Lagrangian and Eulerian strains1

• 0at is "olar decom"osition and 0o to do it1

• Ho to e"ress t0e deformation of an area and olume

• 0at are *iola-Kirc00off and auc0y stresses1

Page 5: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 5/132

5

Mild vs !ou"# Nonlinearit$

• Mild Nonlinear *ro/lems 50a" 36

ontinuous7 #istor$%indeendent nonlinear relations /eteenstress and strain

– Nonlinear elasticity7 8eometric nonlinearity7 and deformation-

de"endent loads

• !ou"# Nonlinear *ro/lems 50a" 4 9 !6

– E:uality and;or ine:uality constraints in constitutie relations

– Histor$%deendent nonlinear relations /eteen stress and strain

– Elasto"lasticity and contact "ro/lems

Page 6: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 6/132

6

'#at (s a Nonlinear Elastic Problem)

• Elastic 5same for linear and nonlinear "ro/lems6

Stress-strain relation is elastic – Deformation disa""ears 0en t0e a""lied load is remoed

– Deformation is 0istory-inde"endent

– *otential energy eists 5function of deformation6

• Nonlinear

– Stress-strain relation is nonlinear5* is not constant or do not eist6

– Deformation is large

• Eam"les

– <u//er material

– 'ending of a long slender mem/er

5small strain7 large dis"lacement6

Page 7: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 7/1327

!eference Frame of Stress and Strain

• $orce and dis"lacement 5ector6 are inde"endent of t0econfiguration frame in 0ic0 t0ey are defined 5!eferenceFrame (ndifference6

• Stress and strain 5tensor6 de"end on t0e configuration

• +a"ran"ian or Material Stress,Strain= 0en t0e

reference frame is undeformed configuration

• Eulerian or Satial Stress,Strain= 0en t0e referenceframe is deformed configuration

• >uestion= 0at is t0e reference frame in linear"ro/lems1

Page 8: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 8/1328

*eformation and Main"

• ?nitial domain Ω is deformed to Ω

– e can t0in@ of t0is as a main" from Ω to Ω

• -= material "oint in Ω .= material "oint in Ω

• Material "oint * in Ω is deformed to > in Ω

dis"lacement

Ω0

Ω x

X x

u

P

Q

Φ

ne-to-one ma""ingontinuously differentia/le

= +. - u = Φ = +5 7t6 5 7t6. - - u -

1, :−Φ Φ

Page 9: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 9/1329

*eformation Gradient

• ?nfinitesimal lengt0 d- in Ω deforms to d. in Ω

<emem/er t0at t0e ma""ing is continuousl$ differentiable

• *eformation "radient=

– gradient of ma""ing Φ

– Second%order tensor7 *eend on bot# Ω/ and Ω.

– Due to one-to-one ma""ing=

F includes bot# deformation and ri"id%bod$ rotation

Ω0

Ωx

u dx

dXP

Q

P'Q'

d d d d∂

= ⇒ =∂

.. - . F -

-

iiB

B

$

C

∂=

∂ -∂

= + = + ∇∂

uF 0 0 u

-

det -.≡ >F

iB

F7

7

= δ

∂ ∂

∇ = ∇ =∂ ∂

0

- .

,d d−=- F .

Page 10: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 10/13210

E.amle – 1niform E.tension

• )niform etension of a cu/e in all t0ree directions

• Continuit$ re2uirement= 0y1

• Deformation gradient=

• = uniform e"ansion 5dilatation6 or contraction

• Golume c0ange

– ?nitial olume=

– Deformed olume=

, , , 2 2 2 3 3 3 C 7 C 7 C= λ = λ = λ

,

23

- -

- -

- -

λ = λ λ

F

i λ >

, 2 3λ = λ = λ

, 2 3dG dC dC dC=

, 2 3 , 2 3 , 2 3 , 2 3 dG d d d dC dC dC dG= = λ λ λ = λ λ λ

Page 11: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 11/13211

Green%+a"ran"e Strain

• 0y different strains1

Lengt0 c0ange=

• !i"#t Cauc#$%Green *eformation Tensor

• Green%+a"ran"e Strain Tensor

<atio of lengt0 c0ange

dX

dx

&0e effect of rotation is eliminated

&o matc0 it0 infinitesimal strain

2 2 & &

& & &

& &

d d d d d d

d d d d

d 5 6d

− = −

= −

= −

. - . . - -

- F F - - -

- F F 0 -

& =C F F

,5 6

2= −E C 0

Page 12: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 12/13212

Green%+a"ran"e Strain cont

• *ro"erties=

E is s$mmetric= E&

E – No deformation= F 07 E /

– 0en 7

– E / for a ri"id%bod$ motion7 /ut

Dis"lacement gradient

Hig0er-order term

( )

& &

& & , 2

,

2

∂ ∂ ∂ ∂= + + ÷∂ ∂ ∂ ∂ = ∇ + ∇ + ∇ ∇

u u u uE

- - - -

u u u u

BiiB

B i

uu,2 C C

∂ ∂ε = + ÷ ÷∂ ∂

,∇ <<u

( )

&

,I

2≈ ∇ + ∇ =E u u

≠I

Page 13: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 13/13213

E.amle – !i"id%4od$ !otation

• <igid-/ody rotation

A""roac0 ,= using deformation gradient

Green%+a"ran"e strain removes ri"id%bod$ rotation from deformation

α= α − α= α + α=

, , 2

2 , 2

3 3

C cos C sin C sin C cos

C

α − α = α α

cos sin

sin cos

,

F

=

&

,

,

,

F F

= − =& ,25 6E F F 0 /

Page 14: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 14/13214

E.amle – !i"id%4od$ !otation cont

• A""roac0 2= using dis"lacement gradient

= − = α − − α= − = α + α −= − =

, , , , 2

2 2 2 , 2

3 3 3

u C C 5cos ,6 C sinu C C sin C 5cos ,6

u C

α − − α ∇ = α α −

cos , sin

sin cos ,

u

− α

∇ ∇ = − α

&

25, cos 6

25, cos 6

u u

= ∇ + ∇ + ∇ ∇ =& & ,

2

5 6E u u u u /

Page 15: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 15/132

15

E.amle – !i"id%4od$ !otation cont

• 0at 0a""ens to engineering strain1

En"ineerin" strain is unable to ta5e care of ri"id%bod$ rotation

= − = α − − α= − = α + α −= − =

, , , , 2

2 2 2 , 2

3 3 3

u C C 5cos ,6 C sinu C C sin C 5cos ,6

u C

α − = α −

ε

cos , cos ,

Page 16: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 16/132

16

Eulerian 6Almansi7 Strain Tensor

• Lengt0 c0ange=

• +eft Cauc#$%Green *eformation Tensor

• Eulerian 6Almansi7 Strain Tensor

!eference is deformed 6current7 confi"uration

bJ,= $inger tensor

− −

− −

− = −

= −= −

= −

2 2 & &

& & & ,

& & ,

& ,

d d d d d d

d d d dd 5 6d

d 5 6d

. - . . - -

. . . F F .

. 0 F F .

. 0 b .

= & b F F

−= − ,,5 6

2e 0 b

Page 17: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 17/132

17

Eulerian Strain Tensor cont

• *ro"erties

Symmetric – A""roac0 engineering strain 0en

– ?n terms of dis"lacement gradient

• <elation /eteen E and e

S"atial gradient( )

∂ ∂ ∂ ∂= + − ÷∂ ∂ ∂ ∂

= ∇ + ∇ − ∇ ∇

& &

& &

,2

,

2

u u u ue. . . .

u u u u

∂∇ =∂ .

= & E F eF

∂<<

∂,

u

.

Page 18: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 18/132

18

E.amle – +a"ran"ian Strain

• alculate F and E for deformation in t0e figure

• Ma""ing relation in Ω

• Ma""ing relation in Ω,.!

,.

C

K

)ndeformedelement

Deformed element2.

.%

=

=

= = +

= = +

4

? ?? ,4

? ?? ,

3C N 5s7 t6C 5s ,6

4

,

K N 5s7 t6K 5t ,62

=

=

= = − = = +

4

? ?? ,

4

? ?? ,

5s7 t6 N 5s7 t6 -.3!5, t6

y5s7t6 N 5s7t6y s ,

Page 19: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 19/132

19

E.amle – +a"ran"ian Strain cont

• Deformation gradient

• 8reen-Lagrange Strain

Ω0

Ωx

u dx

dXP

QP'

Q'

Referencedomain (s, t)

5 7 6s t

-

5 7 6s t .

∂ ∂ ∂= =∂ ∂ ∂−

=

− =

- .3! 4 ; 3 -

, - - 2

- -.%4 ; 3 -

. . sF - s -

= − = −

& -.3(+ -,5 6

2 - -.2!!E F F 0

Page 20: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 20/132

20

E.amle – +a"ran"ian Strain cont

• Almansi Strain

• Engineering Strain

'#ic# strain is consistent 8it# actual deformation)

= × = & .4+ ,.%(b F F

( )− − = − =

,,2

.!2

.22e 0 b

− − ∇ = − = −

, .%

,.33 ,u F 0

( ) −

= ∇ + ∇ = − ε

& , 2

, .32

.32 ,u u

Page 21: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 21/132

21

E.amle – 1nia.ial Tension

• )niaial tension of incom"ressi/le material 5λ, λ > 16

$rom incom"ressi/ility

• Deformation gradient and deformation tensor

8-L Strain

−λ λ λ = ⇒ λ = λ = λ ,;2, 2 3 2 3,

λ = λ λ

,;2

,;2

F −

λ

= λ λ

2

,

,

C

λ −

= λ − λ −

2

,

,

, ,

, 2

,

E

= λ= λ= λ

, , ,2 2 2

3 3 3

C

C

C

Page 22: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 22/132

22

E.amle – 1nia.ial Tension

• Almansi Strain 5b C6

• Engineering Strain

• Difference

− − λ

= − λ − λ

2, - -,

- , -2

- - ,

e

− λ

= λ λ

2

,

b

λ −

= λ − λ −

ε

,;2

,;2

,

,

,

= λ − = − λ ε = λ −2 2

,, ,, ,,

, ,

E 5 ,6 e 5, 6 ,2 2

Page 23: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 23/132

23

Polar *ecomosition

• ant to se"arate deformation from rigid-/ody rotation

Similar to "rinci"al directions of strain• )ni:ue decom"osition of deformation gradient

– 9= ort#o"onal tensor 5rigid-/ody rotation6

– 1: ;= ri"#t% and left%stretc# tensor 5symmetric6

• 1 and ; 0ae t0e same eigenalues 5rincial stretc#es67

/ut different eigenectors

= =F 91 ;9

Page 24: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 24/132

24

Polar *ecomosition cont

• Eigenectors of 1= E,7 E27 E3

• Eigenectors of ;= e,7 e27 e3

• Eigenalues of 1 and ;=λ,7 λ27 λ3

Q

Q

V

U

E1 E2

E3

λ1E1

λ2E2

λ3E3

e1

e2

e3

λ1e1

λ2e2

λ3e3

=F 91

=F ;9= × ×

= × ×

d d

d

. 9 1 -

; 9 -

Page 25: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 25/132

25

Polar *ecomosition cont

• <elation /eteen 1 and C

– 1 and C 0ae t0e same eigenectors.

– Eigenalue of 1 is t0e s:uare root of t0at of C

• Ho to calculate 1 from C1

• Let eigenectors of C /e

• &0en7 0ere

*eformation tensor inrincial directions

= =2

1 C 1 C

, 2 3 F= E E E& = CΦ Φ

λ

Λ = λ λ

2,

22

23

Page 26: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 26/132

26

Polar *ecomosition cont

• And

• 8eneral Deformation

,. Stretc0 in "rinci"al directions

2. <igid-/ody rotation

3. <igid-/ody translation

)seful formulas

= + = +d d d. F - b 91 - b

= Φ Λ Φ

& 1

λ Λ = λ λ

,

2

3

=

= λ ⊗∑3

i i ii ,

1 E E

== λ ⊗∑

3

i i ii ,

; e e

== ⊗∑

3

i ii ,

9 e E

=

= λ ⊗

3

i i ii ,

F e E

== λ ⊗∑

32

i i ii ,C E E

== λ ⊗∑

32i i i

i ,

b e e

Page 27: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 27/132

27

Generali<ed +a"ran"ian Strain

• 8-L strain is a s"ecial case of general form of Lagrangianstrain tensors 5Hill7 ,+#(6

( )= −2mm

,

2mE 1 0

E l P l

Page 28: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 28/132

28

E.amle – Polar *ecomosition

• Sim"le s0ear "ro/lem

• Deformation gradient

• Deformation tensor

• $ind eigenalues and eigenectors of C

C,7 ,

C27 2

C,

C2

E2

E,

60o

= + = =

, , 22 2

3 3

C @C

C

C

=2

@3

=

, @

,F

= = =

+

23&

2 %233

,, @

@ @ ,C F F

( ) ( )

λ = λ =

= = −, 2

3 3, ,

, 22 2 2 2

37 , 3

7E E

E l P l *

Page 29: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 29/132

29

E.amle – Polar *ecomosition cont

• ?n E, J E2 coordinates

• *rinci"al Direction Matri

• Deformation tensor in "rinci"al directions

• Stretc0 tensor

′ = =

Λ

3

, 3C

, 2

, 2 3 2 F

3 2 , 2

−Φ = =

E E

= × ×Φ Φ

& C

3 , 3

=

Λ

= × × =

Φ Λ Φ

& 3 2 , 2

, 2 ! 2 3

1

E l P l * i i

Page 30: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 30/132

30

E.amle – Polar *ecomosition cont

• Ho 1 deforms a s:uare1

• <otational &ensor

– 3o cloc@ise rotation

C,7 ,

C27 2

30o

C,7 ,

C27 2

30o

, 3 2 , 2, 2 3 2

− = × = −

9 F 1

, 2, 3 2 7 ,, 2 ! 2 3 × = × =

1 1

, 2, ,.,!3 27

,, 2 ! 2 3

× = × =

9 9

! 3 # , 2

, 2 3 2

&

= × =

; F 9

E l P l * i i

Page 31: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 31/132

31

E.amle – Polar *ecomosition cont

• A straig0t line ill deform to

• onsider a diagonal line= θ 4!o

• onsider a circle

E:uation of elli"se

C,7 ,

C27 2

25o

C,7 ,

C27 2

= θ2 ,C C tan

( )θ

= − =⇒ = − θ

⇒ = +

, , 2 2 22 , 2

,, 2tan

C @ 7 C

5 @ 6tan

@

α = = α = °+

2

,

,tan 24.+

, @

+ =

− + =

− + + =

2 2 2, 2

2 2 2, 2 2

2 2 2 2, , 2 2

C C r

5 @ 6 r

2@ 5, @ 6 r

* f ti f ; l

Page 32: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 32/132

32

*eformation of a ;olume

• ?nfinitesimal olume /y t0ree ectors

– )ndeformed=

– Deformed=

$rom ontinuum Mec0anics

d-,

d-3

d-2

d.,d.3

d.2

= × × =, 2 3 , 2 3

rst r s t

dG d 5d d 6 e dC dC dC- - -

= × × =, 2 3 , 2 3 iB@ i B @dG d 5d d 6 e d d d. . .

=

∂ ∂∂ = ÷ ÷ ÷ ÷∂ ∂ ∂ ∂ ∂∂

=∂ ∂ ∂

==

, 2 3 iB@ i B @

B, 2 3@iiB@ r s tr s t

B , 2 3@iiB@ r s t

r s t, 2 3

rst r s t

dG e d d d

e dC dC dCC C C

e dC dC dC

C C C

e dC dC dCdG

=iB@ ir Bs @t rst

e a a a e deta= = λ λ λ, 2 3 detF

* f ti f ; l t

Page 33: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 33/132

33

*eformation of a ;olume cont

• Golume c0ange

• Golumetric Strain

• ?ncom"ressi/le condition= ,

• &ransformation of integral domain

−= −

dG dG ,dG

=

dG dG

Ω ΩΩ = Ω∫∫∫ ∫∫∫

-

d d.

f fD

E l 1 i i l * f ti f 4

Page 34: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 34/132

34

E.amle % 1nia.ial *eformation of a 4eam

• ?nitial dimension of L00 deforms to L00

Deformation gradient

• onstant olume

L

0

0

L

0

0

= λ λ == λ λ == λ λ =

, , , ,

2 2 2 2

3 3 3 3

C L ; L C 0 ; 0

C 0 ; 0

λ = λ λ

,

2

3

F

= = λ λ λ

= = ÷

, 2 32

det

L 0 LA

L 0 L A

F

= ⇒ = =

L L , 0 0 A A

L L

* f ti f A

Page 35: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 35/132

35

*eformation of an Area

• <elations0i" /eteen dS and dS

dS

x d x1

n

S x

xdS

0d X1

N

S0

X

F(X)

d X2

d x2

)ndeformed Deformed

= × == × =

, 2 , 2

- i - iB@ B @, 2 , 2

r rst s t

dS d d NdS e dC dCdS d d n dS e d d

N - -

n . .

∂ ∂=

∂ ∂ B , 2@

i - iB@ s ts t

C CNdS e d d

∂ ∂∂ ∂=

∂ ∂ ∂ ∂ B , 2@i i

i - iB@ s tr r s t

C CC CNdS e d d

∂×

∂i

r

C

* f ti f A t

Page 36: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 36/132

36

*eformation of an Area cont

• <esults from ontinuum Mec0anics

• )se t0e second relation=

−∂ ∂∂ ∂= =

∂ ∂ ∂ ∂, B , 2 , 2@i i

i - iB@ s t rst s tr r s t

C CC CNdS e d d e d d

F

∂ ∂ ∂= ∂ ∂ ∂

∂ ∂∂=

∂ ∂ ∂

r s tiB@ rsti B @

B, @irst iB@

r s t

e e C C C

C CCe e .

F

F

r n dS

−= ×& dS dSn F N

−−

×× ⇒ =

×

& &

& ; ;

F Nn F N n

F N

−= & -dS 5 6 5 6 dSF . N -

St M

Page 37: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 37/132

37

Stress Measures

• Stress and strain 5tensor6 de"end on t0e configuration

auc0y 5&rue6 Stress= $orce acts on t0e deformed config. – Stress ector at Ω=

– auc0y stress refers to t0e current deformed configuration as areference for /ot0 area and force 5true stress6

P

N

∆S0

P n ∆S

x

∆f

Undeformed congurationDeformed conguration

Cauc#$ Stress: s$m

∆ →

∆= =

∆S

limS

ft n

St ss M su s c nt

Page 38: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 38/132

38

Stress Measures cont

• &0e same force7 /ut different area 5undeformed area6

– P refers to t0e force in t0e deformed configuration and t0e area

in t0e undeformed configuration• Ma@e /ot0 force and area to refer to undeformed config.

First Piola%=irc##off StressNot s$mmetric

= <elation /eteen σ and P

∆ →∆= =

&

S

limSfT P N

= = & d dS dSf n P N −= ×&

dS dSn F N

−= ,P F σ

−= =& & d 5 dS 6 dSf F N P N

Stress Measures cont

Page 39: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 39/132

39

Stress Measures cont

• )nsymmetric "ro"erty of P ma@es it difficult to use

– <emem/er e used t0e symmetric "ro"erty of stress 9 strainseeral times in linear "ro/lems

• Ma@e P symmetric /y multi"lying it0 F-&

– ust conenient mat0ematical :uantities

• $urt0er sim"lification is "ossi/le /y 0andling differently

Second Piola%=irc##off Stress: s$mmetric

=irc##off Stress: s$mmetric

− − −= × = × ×& , & S P F F F = × × & ,

F S F

= = × × & F S Fσ

Stress Measures cont

Page 40: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 40/132

40

Stress Measures cont

• Eam"le

• /seration

– $or linear "ro/lems 5small deformation6=

– $or linear "ro/lems 5small deformation6=

– S and E are conBugate in energy

– S and E are inariant in rigid-/ody motion

(nte"ration can be done inΩ/

Ω Ω Ω

Ω = Ω = Ω

∫∫∫ ∫∫∫ ∫∫∫

= d = d = dε σ ε τ ε

≈ ≈ ≈P Sτ

≈ ≈E e

E.amle 1nia.ial Tension

Page 41: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 41/132

41

E.amle – 1nia.ial Tension

• auc0y 5true6 stress= 7 σ22 σ33 σ,2 σ23 σ,3

Deformation gradient=

• $irst *-K stress

• Second *-K stress

L

0

0

L

0

0$

σ =,,$

A

− −

λ

= λ = λ

,,

, ,2

,3

7 ,

F

− −= × × = = = =λλ

2, &

,, ,, 2 2 2 ,,

$ , $ A $A $S 5 6

A A AA AF F

−= = =λ

,,, ,,

, - -

$ , $ A $* 5

A A A AF σ

Summar$

Page 42: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 42/132

42

Summar$

• Nonlinear elastic "ro/lems use different measures ofstress and strain due to c0anges in t0e reference frame

• Lagrangian strain is inde"endent of rigid-/ody rotation7/ut engineering strain is not

• Any deformation can /e uni:uely decom"osed into rigid-

/ody rotation and stretc0• &0e determinant of deformation gradient is related to t0e

olume c0ange7 0ile t0e deformation gradient andsurface normal are related to t0e area c0ange

•$our different stress measures are defined /ased on t0ereference frame.

• All stress and strain measures are identical 0en t0edeformation is infinitesimal

Page 43: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 43/132

43

Nonlinear Elastic Anal$sis

Section 3.3

Goals

Page 44: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 44/132

44

Goals

• )nderstanding t0e "rinci"le of minimum "otential energy

– )nderstand t0e conce"t of ariation

• )nderstanding St. Genant-Kirc00off material

• Ho to o/tain t0e goerning e:uation for nonlinear elastic"ro/lem

• 0at is t0e total Lagrangian formulation1

• 0at is t0e u"dated Lagrangian formulation1

• )nderstanding t0e lineariation "rocess

Numerical Met#ods for Nonlinear Elastic Problem

Page 45: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 45/132

45

Numerical Met#ods for Nonlinear Elastic Problem

• e ill o/tain t0e ariational e:uation using t0e rincileof minimum otential ener"$

– nly "ossi/le for elastic materials 5"otential eists6

• &0e N-< met0od ill /e used 5need aco/ian matri6

• Total +a"ran"ian 6material7 formulation uses t0e

undeformed configuration as a reference7 0ile t0eudated +a"ran"ian 6satial7 uses t0e currentconfiguration as a reference

• &0e total and u"dated Lagrangian formulations are

mat#ematicall$ e2uivalent /ut 0ae different as"ects incom"utation

Total +a"ran"ian Formulation

Page 46: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 46/132

46

Total +a"ran"ian Formulation

• )sing incremental force met#od and N%! met#od

– &otal No. of load ste"s 5N67 current load ste" 5n6

• Assume t0at t0e solution 0as conerged u" to tn

• ant to find t0e e:uili/rium state at tn,

X x

nu

u

Undeformed conguration(known)

Last conerged conguration(known)

!urrent conguration(unknown)

0P

nP

+ = + ∆n , n nf f f

Total +a"ran"ian Formulation cont

Page 47: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 47/132

47

Total +a"ran"ian Formulation cont

• ?n &L7 t0e undeformed confi"uration is t0e reference

2

nd

*-K stress 5S6 and 8-L strain 5E6 are t0e natural c0oice• ?n elastic material7 strain ener"$ densit$ ' eists7 suc0

t0at

• e need to e"ress in terms of E

∂=

stressstrain

Page 48: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 48/132

St ;enant%=irc##off Material

Page 49: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 49/132

49

St ;enant%=irc##off Material

• Strain energy density for St. Genant-Kirc00off material

• $ourt0-order constitutie tensor 5isotro"ic material6

– LameOs constants=

– ?dentity tensor 52nd order6=

– ?dentity tensor 54t0 order6=

– &ensor "roduct=

ontraction o"erator== ,

2

5 6 = =E E * E =iB iB

= a /a b

= λ ⊗ + µ2* 0 0 ( ν

λ = µ =

+ ν − ν + ν

E E

5, 65, 2 6 25, 6

= δiB F0

= δ δ + δ δ,iB@l i@ Bl il B@2

? 5 6

= ∀= = = + +ii ,, 22 33

= 7 2nd-order sym.

= tr5 6 a a a a

( a a a

0 a a

⊗ = iB @la a 54t0-order6a a

St ;enant%=irc##off Material cont

Page 50: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 50/132

50

St ;enant%=irc##off Material cont

• Stress calculation

– differentiate strain energy density

– Limited to small strain /ut large rotation

– <igid-/ody rotation is remoed and only t0e stretc0 tensorcontri/utes to t0e strain

an s0o

Deformation tensor

∂= = = λ + µ

∂5 6

= tr5 6 2E

S * E E 0 EE

= − = − = −& & & 2, , ,2 2 25 6 5 6 5 6E F F 0 1 9 9u 0 1 0

∂ ∂= =∂ ∂ 2SE C

E.amle

Page 51: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 51/132

51

E.amle

• E 37 and ν .3

• 8-L strain=

• LameOs constants=

• 2nd *-K Stress=

,.!

,.

C

K

)ndeformedelement

Deformed element2.

.%

= − -.3(+ -- -.2!!E

νλ = = µ = =+ ν − ν + ν

E E,%73( ,,7!3(5, 65, 2 6 25, 6

= λ + µ = λ − + µ −

= −

, .3(+

tr5 6 2 5.3(+ .2!!6 2 , .2!!,,72+#

37!#!

S E 0 E

− = =

& ,7(%2 -,

- 2,7!,#FSF

E.amle – Simle S#ear Problem

Page 52: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 52/132

52

E.amle Simle S#ear Problem

• Deformation ma"

Material "ro"erties

• 2nd *-K stress

C,7 ,

C27 2

-0.4 -0.2 0.0 0.2 0.4

20

10

0

-10

-20

Cauchy

2nd P-K

Shear parameter k

S h e a r s t r e

s s

= + = =, , 2 2 2 3 3 C @C 7 C 7 C

= − =

&

2

@, ,5 6

2 2 @ @E F F 0

=

, @

,F

νλ = = µ = =+ ν − ν + ν

E E4M*a 4M*a5, 65, 2 6 25, 6

= λ + µ =

2

2@ 2@tr5 6 2 2- M*a2@ 3@

S E 0 E

+ += =

+

2 4 3&

3 2

!@ 3@ 2@ 3@,2- M*a

2@ 3@ 3@FSF

Page 53: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 53/132

;ariational Formulation

Page 54: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 54/132

54

;ariational Formulation

• e ant to minimie t0e "otential energy 5e:uili/rium6

Πint= stored internal energy

Πet= "otential energy of a""lied loads

• ant to find u t0at minimies t0e "otential energy

– *ertur/ u in t0e direction of > "ro"ortional to τ

– ?f u minimies t0e "otential7 Π5u6 must /e smaller t0an Π5uτ6 for all"ossi/le >

Ω Ω Γ

Π = Π + Π

= Ω − Ω − Γ ∫∫ ∫∫ ∫ s o

int et

& / &

5 6 5 6 5 6

5 6d d d

u u u

E u f u t

τ = + τu u u

;ariational Formulation cont

Page 55: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 55/132

55

;ariational Formulation cont

• ;ariation of Potential Ener"$ 5Directional Deriatie6

– Π de"ends on u only7 /ut Π de"ends on /ot0 u and >

– Minimum otential ener"$ #aens 8#en its variation becomes<ero for ever$ ossible >

– ne-dimensional eam"le

e ill use Poer-/arQ for ariation

Π(u)

RuR

At minimum: all directional

derivatives are <ero

τ=Π = Π + ττ

d5 7 6 5 6du u u u

E.amle – +inear Srin"

Page 56: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 56/132

56

E.amle +inear Srin"

• *otential energy=

• *ertur/ation=

• Differentiation=

Ealuate at original state=

@

f

u

;ariation is similar to differentiation ???

Π = × − ×2,2

5u6 @ u f u

Π + τ = × + τ − × + τ2,25u u6 @ 5u u6 f 5u u6

Π + τ = × + τ × − × τd

5u u6 @ 5u u6 u f ud

τ=

Π + τ = × × − × = τ

d5u u6 @ u u f u

d

;ariational Formulation cont

Page 57: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 57/132

57

;ariational Formulation cont

• Gariational E:uation

– $rom t0e definition of stress

– Note= load term is similar to linear "ro/lems

– Nonlinearit$ in t#e strain ener"$ term

• Need to rite LHS in terms of u and >

for all >

;ariational e2uation in T+ formulation

Ω Ω Γ

Π = Ω − Ω − Γ =∂∫∫ ∫∫ ∫ s o

& / & 5 6

5 7 6 = d d d

E

u u E u f u tE

Ω Ω Γ Ω = Ω + Γ ∫∫ ∫∫ ∫ s

o

& / & = d d dS E u f u t

Page 58: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 58/132

;ariational Formulation cont

Page 59: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 59/132

59

;ariational Formulation cont

• Gariational E:uation

• Linear in terms of strain if St. Genant-Kirc00off material

is used• Also linear in terms of >

• Nonlinear in terms of u /ecause dis"lacement-strainrelation is nonlinear

for all >

Energy form Load form

Ω Ω Γ Ω = Ω + Γ ∫∫ ∫∫ ∫ s

o

& / & = d d dS E u f u t

a5 7 6u u $ 5 6u

= ∀ ∈$a5 7 6 5 67u u u u #

+ineari<ation

Page 60: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 60/132

60

+ near <at on

• e are still in continuum domain 5not discretied yet6

• <esidual

• e ant to linearie <5u6 in t0e direction of ∆u

– $irst7 assume t0at u is "ertur/ed in t0e direction of ∆u using aaria/le τ. &0en lineariation /ecomes

– <5u6 is nonlinear .r.t. u7 /ut L<5u6F is linear .r.t. ∆u

– ?teration @ did not conerged7 and e ant to ma@e t0e residual atiteration @, ero

= − $<5 6 a5 7 6 5 6u u u u

τ=

∂ + τ∆ ∂ = = ∆ ∂τ ∂

&

<5 6 <L<5 6F

u uu u

u

+ ∂≈ ∆ + = ∂

& @@ , @ @<5 6

<5 6 <5 6 u

u u uu

+ineari<ation cont

Page 61: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 61/132

61

+

• &0is is N-< met0od 5see 0a"ter 26

• )"date state

• e @no 0o to calculate <5u@67 /ut 0o a/out 1

– nly lineariation of energy form ill /e re:uired

– e ill address dis"lacement-de"endent load later

∂ ∆ = − ∂

& @

@ @<5 6 <5 6u u uu

+

+ +

= + ∆

= +

@ , @ @

@ , @ ,

u u u

. - u ∂ ∂

@<5 6u

u

∂ ∂

= −∂ ∂ $<5 6F a5 7 6 5 6Fu u u uu u

+ineari<ation cont

Page 62: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 62/132

62

• Lineariation of energy form

– Note t0at t0e domain is fied 5undeformed reference6

– Need to e"ress in terms of dis"lacement increment ∆u

Stress increment 5St. Genant-Kirc00off material6

• Strain increment 58reen-Lagrange strain6

Ω Ω = Ω = ∆ + ∆ Ω ∫∫ ∫∫ La5 7 6F L = d = = Fdu u S E S E S E

∂∆ = ∆ = ∆

∂= =

SS E * E

E

∆ = ∆ + ∆& & ,25 6E F F F F

∂ ∂ + ∂∆ ∆ = ∆ = ∆ = = ∇ ∆ ÷ ÷∂ ∂ ∂

5 6. - u uF u

- - -

+ineari<ation cont

Page 63: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 63/132

63

• Strain increment

• ?nc. strain ariation

• +ineari<ed ener"$ form

– (mlicitl$ deends on u: but bilinear 8rt u and >

– First term@ tan"ent stiffness

– Second term@ initial stiffness

??? +inear 8rt u

??? +inear 8rt u

∆ = ∆ + ∆

= ∇ ∆ + ∇ ∆

= ∇ ∆

& & ,2

& & ,

2 &

5 6

5 6

sym5 6

E F F F F

u F F u

u F

∆ = ∆ ∇

= ∇ ∆

= ∇ ∇ ∆

& &

&

sym5 6F

sym5 6

sym5 6

E u F

u F

u u

Ω= ∆ + ∆ Ω ≡ ∆

∫∫

La5 7 6F = = = Fd a 5 T 7 6u u E * E S E u u u

+ineari<ation cont

Page 64: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 64/132

64

• N-< ?teration it0 ?ncremental $orce

– Let tn /e t0e current load ste" and 5@,6 /e t0e current iteration

– &0en7 t0e N-< iteration can /e done /y

)"date t0e total dis"lacement

• ?n discrete form

• 0at are and 1

∆ = − ∀ ∈$ n @ @ n @a 5 T 7 6 5 6 a5 7 67u u u u u u u #

+ = + ∆n @ , n @ @u u u

∆ =& n @ @ & n @

& U V FU V U V U Vd = d d !n @

& F= n @U V!

E.amle – 1nia.ial 4ar

Page 65: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 65/132

65

• Kinematics

• Strain ariation

• Strain energy density and stress

• Energy and load forms

L0%1

m

1 2F %1&&

x

= =2 2du du

u 7 udC dC

= + = + ÷

2

2,, 2 2du , du ,E u 5u 6dC 2 dC 2

= × 2,,, ,,2

5E 6 E 5E 6 ∂ = = × = + ÷∂

2,, ,, 2 2

,,

,S E E E u 5u 6

E 2

= + = +,, 2 2

du du duE u 5, u 6

dC dC dC

= = +∫ L

,, ,, ,, 2 2a5u7u6 S E AdC S AL 5, u 6u =$ 25u6 u $

( )= + − = ∀2 ,, - 2 2< u S AL 5, u 6 $ -7 u

E.amle – 1nia.ial 4ar

Page 66: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 66/132

66

• Lineariation

• N-< iteration

∆ = ∆ = + ∆,, ,, 2 2

S E E E5, u 6 u ∆ = ∆,, 2 2

E u u

( )∆ = × × ∆ + × ∆

= + ∆ + ∆

∫ -L,, ,, ,, ,,-

2- 2 2 2 ,, - 2 2

a 5uT u7u6 E E E S E AdC

EAL 5, u 6 u u S AL u u

+ + ∆ = − +@ 2 @ @ @ @2 ,, - 2 ,, 2 -E5, u 6 S FAL u $ S 5, u 6AL

+ = + ∆@ , @ @2 s 2u u u

E.amle – 1nia.ial 4ar

Page 67: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 67/132

67

(a) with initia stiffness!teration u "train "tress con#

0 0$0000 0$0000 0$0000 9$999%&011 0$5000 0$6250 125$00 7$655%&01

2 0$3478 0$4083 81$664 1$014%&02

3 0$3252 0$3781 75$616 4$236%&06

(') withot initia stiffness!teration u "train "tress con#

0 0$0000 0$0000 0$0000 9$999%&01

1 0$5000 0$6250 125$00 7$655%&01

2 0$3056 0$3252 70$448 6$442%&03

3 0$3291 0$3833 76$651 3$524%&04

4 0$3238 0$3762 75$242 1$568%&05

5 0$3250 0$3770 75$541 7$314%&07

1dated +a"ran"ian Formulation

Page 68: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 68/132

68

" "

• &0e current configuration is t0e reference frame

– <emem/er it is un@non until e sole t0e "ro/lem

– Ho are e going to integrate if e donOt @no integral domain1

• '#at stress and strain s#ould be used)

– $or stress7 e can use auc0y stress 5σ6

– $or strain7 engineering strain is a "air of auc0y stress – 'ut7 it must /e defined in t0e current configuration

∂ ∂= + = ∇ ÷

÷∂ ∂

&

,

sym5 62

u uu

. .

;ariational E2uation in 1+

Page 69: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 69/132

69

2

• ?nstead of deriing a ne ariational e:uation7 e illconert from &L e:uation

Similarly

− −

= × ×

⇒ = × ×

&

, &

,

F S F

S F F

σ

σ

− −

∂ ∂= + ÷

÷∂ ∂

∂ ∂= + ÷ ÷∂ ∂ ∂ ∂ ∂ ∂

= + ÷ ÷∂ ∂ ∂ ∂

∂ ∂= + ÷ ÷∂ ∂

= × ×

& &

&

& & ,

& & &

& &

&

,

2

,2

,

2

,2

u uE F F

- -

u uF F F F- -

- u u -F F

. - - .

u uF F. .

F F

∆ = × ∆ ×

∂∆ ∂∆∆ = + ÷

÷∂ ∂

&

& ,

2

E F F

u u

. .

ε

ε

;ariational E2uation in 1+ cont

Page 70: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 70/132

70

2

• Energy $orm

– e Bust s0oed t0at material and s"atial forms aremat0ematically e:uialent

• Alt0oug0 t0ey are e:uialent7 e use different notation=

• Gariational E:uation

0at 0a""ens to load form1

(s t#is linear or nonlinear)

− −

Ω Ω

= Ω = Ω

∫∫ ∫∫ σ ε

, & & a5 7 6 = d 5 6 = 5 6du u S E F F F F

− −σ ε = δ δ σ ε = σ ε, ,i@ @l Bl mi mn nB m@ nl @l mn mn mn$ $ $ $

Ω Ω ΩΩ = Ω = Ω∫∫ ∫∫ ∫∫

= d = d = dS E σ ε σ ε

Ω= Ω∫∫ σ ε

a5 7 6 = du u

= ∀ ∈$a5 7 6 5 67u u u u #

+ineari<ation of 1+

Page 71: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 71/132

71

• Lineariation of ill /e c0allenging /ecause e donOt@no t0e current configuration 5it is function of u6

• Similar to t0e energy form7 e can conert t0e lineariedenergy form of &L

• <emem/er

?nitial stiffness term

η ∆@l5 7 6u u

a 5 7 6u u

Ω∆ = ∆ + ∆ Ω∫∫ a 5 T 7 6 = = = Fdu u u E * E S E

− −

− −

∂ ∂∆ ∂∆ ∂∆ = + ÷

÷∂ ∂ ∂ ∂

∂ ∂∆ ∂∆ ∂= σ + ÷ ÷∂ ∂ ∂ ∂ ∂ ∂∆ ∂∆ ∂

≡ σ + ÷∂ ∂ ∂ ∂

& & , &

m m m m, ,i@ @l Bli B i B

m m m m@l

@ l @ l

,= 5 6 =

2

u u u u,$ $2 C C C C

u u u u,

2

u u u uS E F F

- - - -

+ineari<ation of 1+ cont

Page 72: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 72/132

72

4t0-order s"atialconstitutie tensor

• ?nitial stiffness term

• &angent stiffness term

0ere

∆ = ∆= = 5 7 6S E u uη ∆ = ∇ ∇ ∆& 5 7 6 sym5 6u u u u

∆ = × × × ∆ ×

= ε ∆ε = ε ∆ε

ε ε

& &

@i @l lB iBmn "m ": :n

@l @i lB iBmn "m :n ":

5 = = 6 5 6 = = 5 6

$ $ D $ $,

$ $ D $ $

E * E F F * F F

∆ = ∆ε= = = =E * E c

=iB@l ir Bs @m ln rsmn,

c $ $ $ $ D

Satial Constitutive Tensor

Page 73: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 73/132

73

• $or St. Genant-Kirc00off material

• ?t is "ossi/le to s0o

• /seration – * 5material6 is constant7 /ut c 5s"atial6 is not

= λ ⊗ + µ = λδ δ + µ δ δ + δ δrsmn rs mn rm sn rn sm

5 6 2 5 6* 0 0 ( *

= λ + µ + iB@l iB @l i@ Bl il B@,

c 8 8 58 8 8 8 6 .

= ≠ ε= 7 =S * E c

+ineari<ation of 1+ cont

Page 74: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 74/132

74

• $rom e:uialence7 t0e energy form is linearied in &L andconerted to )L

• N-< ?teration

• /serations

&o formulations are t0eoretically identical it0 differente"ression

– Numerical im"lementation ill /e different

– Different constitutie relation

Ω= ∆ + Ω∫∫ ε ε σ η

La5 7 6F = = = Fdu u c

Ω∆ = ∆ + Ω∫∫ ε ε σ η

a 5 T 7 6 = = = Fdu u u c

∆ = − ∀ ∈$ n @ @ n @a 5 T 7 6 5 6 a5 7 67u u u u u u u #

E.amle – 1nia.ial 4ar

Page 75: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 75/132

75

• Kinematics

• Deformation gradient=

• auc0y stress=

• Strain ariation=

Energy 9 load forms=

• <esidual=

L0%1

m

1 2F %1&&

x = =+ +

2 2

2 2

u udu du7

d , u d , u

= = + = +,, 2 2d

$ , u 7 , udC

σ = = + +2

,, ,, ,, ,, 2 2 2

, ,$ S $ E5u u 65, u 6

2

− −ε = =+

& , 2,, ,, ,, ,,

2

u5u6 $ E $

, u

= σ ε = σ∫ L

,, ,, ,, 2a5u7u6 5u6Ad Au =$ 25u6 u $

( )= σ − = ∀2 ,, 2< u A $ -7 u

E.amle – 1nia.ial 4ar

Page 76: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 76/132

76

• S"atial constitutie relation=

• Lineariation=

!teration u "train "tress con#

0 0$0000 0$0000 0$000 9$999%&01

1 0$5000 0$3333 187$500 7$655%&01

2 0$3478 0$2581 110$068 1$014%&02

3 0$3252 0$2454 100$206 4$236%&06

= = + 3,,,, ,, ,, ,, ,, 2

,c $ $ $ $ E 5, u 6 E

ε ε ∆ = + ∆∫ L 2,, ,,,, ,, 2 2 2-

5u6c 5 u6Ad EA5, u 6 u u

σσ η ∆ = ∆

+∫ L ,,

,, ,, 2 2-2

A5 u7u6Ad u u

, u

( )∆ = ε ε ∆ + σ η ∆σ

= + ∆ + ∆+

∫ L

,, ,,,, ,, ,,

2 ,,2 2 2 2 2

2

a 5uT u7u6 5u6c 5 u6 5 u7u6 Ad

EA5, u 6 u u Au u, u

Page 77: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 77/132

77

H$erelastic Material Model

Section 3.!

Goals

Page 78: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 78/132

78

• )nderstand t0e definition of 0y"erelastic material

• )nderstand strain energy density function and 0o to useit to o/tain stress

• )nderstand t0e role of inariants in 0y"erelasticity

• )nderstand 0o to im"ose incom"ressi/ility

• )nderstand mied formulation and "ertur/ed Lagrangianformulation

• )nderstand lineariation "rocess 0en strain energydensity is ritten in terms of inariants

'#at (s H$erelasticit$)

Page 79: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 79/132

79

• Hy"erelastic material - stress-strain relations0i" deriesfrom a strain energy density function

– Stress is a function of total strain 5inde"endent of 0istory6

– De"ending on strain energy density7 different names are used7suc0 as Mooney-<ilin7 gden7 eo07 or "olynomial model

• 8enerally comes it0 incom"ressi/ility 5 ,6

– &0e olume "reseres during large deformation

– Mied formulation J com"letely incom"ressi/le 0y"erelasticity

– *enalty formulation - nearly incom"ressi/le 0y"erelasticity

• Eam"le= ru//er7 /iological tissues – nonlinear elastic7 isotro"ic7 incom"ressi/le and generally

inde"endent of strain rate

• Hy"oelastic material= relation is gien in terms of stress

and strain rates

Strain Ener"$ *ensit$

Page 80: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 80/132

80

• e are interested in isotro"ic materials

– Material frame indifference= no matter 0at coordinate system is

c0osen7 t0e res"onse of t0e material is identical – &0e com"onents of a deformation tensor de"ends on coord. system

– &0ree inariants of C is inde"endent of coord. system

?nariants of C

– ?n order to /e material frame indifferent7 material "ro"ertiesmust /e e"ressed using inariants

– $or incom"ressi/ility7 ?3 ,

No deformation?, 3

?2 3

?3 ,

= = + + = λ + λ + λ2 2 2, ,, 22 33 , 2 3? tr5 6 C

= − = λ λ + λ λ + λ λ 2 2 2 2 2 2 2 2,

2 , 2 2 3 3 ,2? 5tr 6 tr5 6C C

= = λ λ λ2 2 23 , 2 3? detC

Strain Ener"$ *ensit$ cont

Page 81: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 81/132

81

• Strain Energy Density $unction

– Must /e ero 0en C 07 i.e.7 λ, λ2 λ3 ,

– $or incom"ressi/le material

– E= Neo-Hoo@ean model

Mooney-<ilin model

+ + == − − −∑ m n @

, 2 3 mn@ , 2 3m n @ ,

5? 7? 7? 6 A 5? 36 5? 36 5? ,6

+ == − −∑ m n

, 2 mn , 2m n ,

5? 7? 6 A 5? 36 5? 36

= −, , ,5? 6 A 5? 36

= − + −, 2 , , , 25? 7? 6 A 5? 36 A 5? 36

µ=,A 2

Strain Ener"$ *ensit$ cont

Page 82: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 82/132

82

• Strain Energy Density $unction

– eo0 model

– gden model

– 0en N , and a , ,7 Neo-Hoo@ean material

– 0en N 27 α, 27 and α2 & 27 Mooney-<ilin material

= − + − + −2 3, , ,- , 2- , 3- , 5? 6 A 5? 36 A 5? 36 A 5? 36

( )α α α

=

µλ λ λ = λ + λ + λ −

α

∑ i i i

Ni

, , 2 3 , 2 3

i , i

5 7 7 6 3

=

µ = α µ∑N

i i

i ,

,

2

E.amle – Neo%Hoo5ean Model

Page 83: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 83/132

83

• )niaial tension it0 incom"ressi/ility

• Energy density

• Nominal stress

-0.8 -0.4 0 0.4 0.8-250

-200

-150

-100

-50

0

50

omina strain

) o m i n a s

t r e s s

eo*+ooean

-inear eastic

λ = λ λ = λ = λ, 2 3 , ;

= − = λ + λ + λ − = λ + −λ

2 2 2 2,- , ,- , 2 3 ,-

2 A 5? 36 A 5 36 A 5 36

∂ = = λ − = µ + ε − ÷ ÷∂λ λ + ε ,- 2 2

, ,* 2A , 5, 6

E.amle – St ;enant =irc##off Material

Page 84: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 84/132

84

• S0o t0at St. Genant-Kirc00off material 0as t0e folloingstrain energy density

• $irst term

• Second term

λ= + µ 2 25 6 tr5 6 tr5 6

2E E E

∂= =

∂tr5 6

tr5 6 =E

E 0 E 0E

∂ ∂ ∂= = λ + µ

∂ ∂ ∂

25 6 tr5 6 tr5 6tr5 6

E E ES E

E E E

∂λ = λ = λ ⊗

tr5 6tr5 6 5 = 6 5 6 =

EE 0 0 E 0 0 E

E

∂= δ δ + δ δ = + =

∂iB Bi

i@ Bl Bi iB B@ il l@ l@ l@

@l

E EE E E E 2E

E

E.amle – St ;enant =irc##off Material cont

Page 85: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 85/132

85

• &0erefore

*

∂ ∂= λ + µ∂ ∂= λ ⊗ + µ= λ ⊗ + µ

2tr5 6 tr5 6tr5 65 6 = 2

5 6 2 =

E E

S E E E0 0 E E

0 0 ( E

Nearl$ (ncomressible H$erelasticit$

Page 86: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 86/132

86

• ?ncom"ressi/le material

– annot calculate stress from strain. 0y1

• Nearly incom"ressi/le material

– Many material s0o nearly incom"ressi/le /e0aior

– e can use t0e /ul@ modulus to model it

• )sing ?, and ?2 enoug0 for incom"ressi/ility1 – No7 ?, and ?2 actually ary under 0ydrostatic deformation

– e ill use reduced inariants= ,7 27 and 3

• ill , and 2 /e constant under dilatation1

− −= = = =,;3 2;3 ,;2, , 3 2 2 3 3 3 ? ? ? ? ?

+oc5in"

Page 87: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 87/132

87

• 0at is loc@ing – Elements do not ant to deform een if forces are a""lied –

Loc@ing is one of t0e most common modes of failure in NL analysis – ?t is ery difficult to find and solutions s0o strange /e0aiors

• &y"es of loc@ing – S0ear loc@ing= s0ell or /eam elements under transerse loading –

Golumetric loc@ing= large elastic and "lastic deformation• 0y does loc@ing occur1

– ?ncom"ressi/le s"0ere under 0ydrostatic "ressure

s.here"

Golumetric strain

* r e s s u r e No uni:ue "ressurefor gien dis"l.

Ho8 to solve loc5in" roblems)

Page 88: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 88/132

88

• Mied formulation 5incom"ressi/ility6

– anOt inter"olate "ressure from dis"lacements

– *ressure s0ould /e considered as an inde"endent aria/le

– 'ecomes t0e Lagrange multi"lier met0od

– &0e stiffness matri /ecomes "ositie semi-definite

4, formulation

Dis"lacement

*ressure

Penalt$ Met#od

Page 89: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 89/132

89

• ?nstead of incom"ressi/ility7 t0e material is assumed to /e nearlyincom"ressi/le

&0is is closer to actual o/seration• )se a large /ul@ modulus 5"enalty "arameter6 so t0at a small olume

c0ange causes a large "ressure c0ange

• Large "enalty term ma@es t0e stiffness matri ill-conditioned

• ?ll-conditioned matri often yields ecessie deformation• &em"orarily reduce t0e "enalty term in t0e stiffness calculation

• Stress calculation use t0e "enalty term as it is

Golumetric strain

* r e s s u r e

)ni:ue "ressurefor gien dis"l.%

,

,KF

,

,

=

E.amle – H$drostatic Tension

Page 90: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 90/132

90

• ?nariants

• <educed inariants

?, and ?2 are not constant

, and 2 are constant

= α

= α = α

, ,

2 2

3 3

C

C C

α

= α α

F

α

= α α

2

22

C

= α = α = α2 4 #, 2 3? 3 ? 3 ?

= =

= == = α

,;3, , 3

2;32 2 3,;2 3

3 3

? ? 3

? ? 3 ?

Strain Ener"$ *ensit$

Page 91: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 91/132

91

• )sing reduced inariants

– D5,7 26= Distortional strain energy density

– H536= Dilatational strain energy density

&0e second terms is related to nearly incom"ressi/le/e0aior

–K= /ul@ modulus for linear elastic material

/'as:

= +, 2 3 D , 2 H 3

5 7 7 6 5 7 6 5 6

= − 2H 3 3

K 5 6 5 ,6

2

= λ + µ23

2H 3 3

, 5 6 5 ,6

2D= −

Moone$%!ivlin Material

Page 92: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 92/132

92

• Most "o"ular model

– ?nitial s0ear modulus W 25A, A,6

?nitial oungOs modulus W #5A, A,6 53D6 or (5A, A,6 52D6 – 'ul@ modulus K

• Hydrostatic "ressure

– Numerical insta/ility for large K 5olumetric loc@ing6

– *enalty met0od it0 K as a "enalty "arameter

= += − + − + −

, 2 3 D , 2 H 3

2, , , 2 3

5 7 7 6 5 7 6 5 6K

A 5 36 A 5 36 5 ,62

∂∂= = = −∂ ∂H 3

3 3" K5 ,6

Moone$%!ivlin Material cont

Page 93: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 93/132

93

• Second *-K stress

– )se c0ain rule of differentiation

∂∂ ∂∂ ∂ ∂ ∂= = + +∂ ∂ ∂ ∂ ∂ ∂ ∂= + + −

3, 2

, 2 3

, ,7 , 27 3 37

A A K5 ,6E E E

S E E E E ∂=∂7aaE E

− −

− −

= −

= −

=

,;3 4;3,,7 3 ,7 , 3 373

2;3 !;3227 3 27 2 3 373

,;2,37 3 372

5? 6? ? 5? 6?

5? 6? ? 5? 6?

5? 6?

E E E

E E E

E E

=

= + −

= + − +

,7

27

+37 imn Brs mr ns4

? 2

? 45, tr 6 4

? 52 4tr 6 4 e e E E F

E

E

E

0

E 0 E

E 0 E

=

=

=

,;3, , 3

2;32 2 3

,;23 3

? ?

? ?

?

=

= −

=

,7

27 ,

,37 3

? 2

? 25? 6

? 2?

E

E

E

0

0 C

C

E.amle

Page 94: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 94/132

94

• S0o

• Let

• &0en

• Deriaties

and

−= = − = ,,7 27 , 37 3? 2 7 ? 25? 67 ? 2?E E E0 0 C C

= = =, ,, 2 32 3

? tr5 67 ? tr5 67 ? tr5 6C CC CCC

= = − = + −2 3, ,, , 2 , 2 3 3 , , 22 #

? ? 7 ? ? ? 7 ? ? ? ? ?

∂∂ ∂

= δ = =∂ ∂ ∂

3, 2

iB Bi B@ @iiB iB iB

?? ?

7 7

−∂∂ ∂= δ = δ − =

∂ ∂ ∂,3, 2

iB , iB Bi 3 BiiB iB iB

?? ?7 ? 7 ?

∂ ∂=

∂ ∂2

C E

Mi.ed Formulation

Page 95: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 95/132

95

• )sing /ul@ modulus often causes insta/ility

– Selectiely reduced integration 5$ull integration for deiatoric

"art7 reduced integration for dilatation "art6

• Mied formulation= ?nde"endent treatment of "ressure

*ressure " is additional un@non 5"ure incom"ressi/le material6 – Adantage= No numerical insta/ility

– Disadantage= system matri is not "ositie definite

• *ertur/ed Lagrangian formulation

– Second term ma@e t0e material nearly incom"ressi/le and t0esystem matri "ositie definite

= −H 3 3 5 7"6 "5 ,6

= − − 2H 3 3

, 5 7"6 "5 ,6 "

2K

;ariational E2uation 6Perturbed +a"ran"ian7

Page 96: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 96/132

96

• Stress calculation

• Gariation of strain energy density

• ?ntroduce a ector of un@nons=

Golumetric strain

= + +, ,7 , 27 37A A "E E ES

= +

= + − −

7 7"

3

"

"= 5 , 6"

K

EE

S E

= 5 7"6r u

Ω = + Ω ∫∫ a 5 7 6 = "H dr r S E

= − −3"

H ,K

= − + − + − + 2, 2 3 , , , 2 3

,5 7 7 6 A 5 36 A 5 36 "5 ,6 "

2K

E.amle – Simle S#ear

Page 97: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 97/132

97

• alculate 2nd *-K stress for t0e sim"le s0ear deformation – material "ro"erties 5A,7 A,7 K6

C,7 ,

C27 2

45o

= = =

& , , , , , , 2

, ,

F C F F

=

− = − = −

= = −

,7

27 ,

,37 3

? 2

# 2

? 25? 6 2 4

#4 2

? 2? 2 2

2

E

E

E

0

0 C

C

= = =, 2 3? 47 ? 47 ? ,

E.amle – Simle S#ear cont

Page 98: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 98/132

98

Note= S,,7 S22 and S33 are not ero

= − = − − −

= − = −

,7 ,7 37

(27 27 373

! 4 4 2

? ? 4 , 3 3 ,

% ! 2

? ? ! 2 3

,

E E E

E E E

= + + −

− − +

= + − − − +

, ,7 , 27 3 37

, , , ,

, , , ,

, ,

A A K5 ,6

!A %A 4A !A

2 4A !A A 2A 3

A A

E E ES

= =

= =

= =

,;3, , 3

2;32 2 3

,;23 3

? ? 4

? ? 4

? ,

Stress Calculation Al"orit#m

Page 99: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 99/132

99

• 8ien= UEV UE,,7 E227 E337 E,27 E237 E,3V& 7 U"V7 5A,7 A,6

$or "enalty met0od7 useK53 J ,6 instead of "

= = +& U V U, , , - - -V U V 2U V U V0 C E 0

= + += + + − − −= − + − + −

, , 2 3

2 , 2 , 3 2 3 4 4 ! ! # #

3 , 2 4 4 3 4 # , ! ! 4 ! 2 # #

?

?

? 5 6 5 6 5 6

=

= + + + − − −

= − − −

− − −

,727 2 3 3 , , 2 4 ! #

2 2 237 2 3 ! 3 , # , 2 4

! # 3 4 # 4 , ! 4 ! 2 #

U? V 2U, , , V

U? V 2U V

U? V 2U

V

EE

E

− −

− −

= −= −

=

,;3 4;3,,7 3 ,7 , 3 373

2;3 !;3227 3 27 2 3 373

,;2,37 3 372

U V ? U? V ? ? U? VU V ? U? V ? ? U? V

U V ? U? V7

E E E

E E E

E E

= + +,- ,7 -, 27 37U V A U V A U V "U VE E ES

+ineari<ation 6Penalt$ Met#od7

Page 100: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 100/132

100

• Stress increment

• Material stiffness

• Linearied energy form

Ω ∆ = ∆ + ∆ Ω ∫∫

-

a 5 T 7 6 = = = du u u E * E S E

∆ = ∆ = ∆7 7 = =E ES E * E

∂= = + + − + ⊗

∂ ,- ,7 -, 27 3 37 37 37A A K5 ,6 K EE EE EE E E

S*

E

+ineari<ation cont

Page 101: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 101/132

101

• Second-order deriaties of reduced inariants

− − − −

− − − −

− −

= − ⊗ + ⊗ + ⊗ −

= − ⊗ + ⊗ + ⊗ −

= − ⊗ +

4 % 4,3 3 3 3

! ( !23 3 3 3

3 ,2 2

,7 ,7 ,7 37 37 ,7 , 37 37 , 373 3 3 3

27 27 27 37 37 27 2 37 37 2 373 3 3 3

37 37 37 373 3

, 4 , ? ? ? 5? ? ? ? 6 ? ? ? ? ? ? ?

3 + 32 , 2

? ? ? 5? ? ? ? 6 ? ? ? ? ? ? ?3 + 3

, , ? ? ? ? ?

4 2

EE EE E E E E E E EE

EE EE E E E E E E EE

EE E E EE

− − − −

=

= ⊗ −

= ⊗ −

,7

27

, , , ,37 3 3

?

? 4

? 4? ?

EE

EE

EE

/

0 0 (

C C C (C

MAT+A4 Function Moone$

l l d f d f d

Page 102: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 102/132

102

• alculates S and * for a gien deformation gradient

%

% 2nd PK stress and material stiffness for Mooney-Rivlin material

%

function [Stress D] = Mooney(F !"# !#" K ltan$

% n&uts'

% F = Deformation radient [)*)]

% !"# !#" K = Material constants% ltan = # +alculate stress alone,

% " +alculate stress and material stiffness

% ut&uts'

% Stress = 2nd PK stress [S"" S22 S)) S"2 S2) S")],

% D = Material stiffness [.*.]

%

Summar$

H l l d 0

Page 103: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 103/132

103

• Hy"erelastic material= strain energy density eists it0incom"ressi/le constraint

• ?n order to /e material frame indifferent7 material"ro"erties must /e e"ressed using inariants

• Numerical insta/ility 5olumetric loc@ing6 can occur 0enlarge /ul@ modulus is used for incom"ressi/ility

• Mied formulation is used for "urely incom"ressi/ility5additional "ressure aria/le7 non-*D tangent stiffness6

• *ertur/ed Lagrangian formulation for nearly

incom"ressi/ility 5reduced integration for "ressure term6

Page 104: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 104/132

104

Finite Element Formulation forNonlinear Elasticit$

Section 3.#

;oi"t Notation

ill t0 ; i t t ti / t0 t

Page 105: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 105/132

105

• e ill use t0e ;oi"t notation /ecause t0e tensornotation is not conenient for im"lementation –

2nd

-order tensor ector – 4t0-order tensor matri

• Stress and strain ectors 5Goigt notation6

– Since stress and strain are symmetric7 e donOt need 2, com"onent

= & ,, 22 ,2U V UE E 2E VE

= &

,, 22 ,2

U V US S S VS

%Node 9uadrilateral Element in T+

ill l t i 4 d d il t l l t t

Page 106: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 106/132

106

• e ill use "lane-strain7 4-node :uadrilateral element todiscuss im"lementation of nonlinear elastic $EA

• e ill use &L formulation• )L formulation ill /e discussed in 0a"ter 4

inite $ement atundeformed

domain

*eference$ement

X 1

X 2

1 2

3+

s

t

(,1-,1)

(1-,1)

(1-1)

(,1-1)

(nterolation and (soarametric Main"

Di l t i t l ti

Page 107: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 107/132

107

• Dis"lacement inter"olation

• (soarametric main"

– &0e same inter"olation function is used for geometry ma""ing

Nodal dis"lacement ector 5u?7 ?6

?nter"olation function

Nodal coordinate 5C?7 ?6

(nterolation 6s#ae7 function

• Same for all elements

• Ma""ing de"ends of geometry

== ∑

eN

? ?? , N 5 6

u s u

== ∑

eN

? ?? ,

N 5 6- s -

= − −= + −

= + +

= − +

,

, 4,

2 4,

3 4,

4 4

N 5, s65, t6N 5, s65, t6

N 5, s65, t6

N 5, s65, t6

*islacement and *eformation Gradients

Di l t di t

Page 108: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 108/132

108

• Dis"lacement gradient

– Ho to calculate

• Deformation gradient

– 4ot# dislacement and deformation "radients are not s$mmetric

=

∂∂

=∂ ∂∑

eN?

?? ,

N 5 6su

u- - == ∑

eN

i7B ?7B ?i? ,u N 5 6us

∇ = & - ,7, ,72 27, 272Uu u u u Vu

= = + +& &

,, ,2 2, 22 ,7, ,72 27, 272U V U$ $ $ $ V U, u u u , u VF

?N 5 61

s

-

Green%+a"ran"e Strain

• 8 L t i

Page 109: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 109/132

109

• 8reen-Lagrange strain

– Due to nonlinearity7

– $or St. Genant-Kirc00off material7

+ + = = + + + + +

,,7, ,7, ,7, 27, 27,2,,,

22 272 ,72 27, 272 2722

,2 ,72 27, ,72 ,7, 27, 272

u 5u u u u 6EU V E u 5u u u u 6

2E u u u u u u

E

≠U V FU VE 4 d

=U V FU VS * E

λ + µ λ = λ λ + µ µ

2 - F 2 -

- -

*

;ariation of G%! Strain

• Alt0 0 E5 6 is li is li5 6E u u

Page 110: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 110/132

110

• Alt0oug0 E5u6 is nonlinear7 is linear

$unction of uDifferent from linear strain-dis"lacement matri

= N

U V FU VE 4 d= ∇ &

5 7 6 sym5 6E u u u F

5 7 6E u u

= + + + + + +

L

L

L

,, ,7, 2, ,7, ,, 27, 2, 27, ,, 47, 2, 47,

N ,2 ,72 22 ,72 ,2 272 22 272 ,2 472 22 472

,, ,72 2, ,72 ,, 272 2, 272 ,, 472 2, 472

,2 ,7, 22 ,7, ,2 27, 22 27, ,2 47, 22 47,

$ N $ N $ N $ N $ N $ N

F $ N $ N $ N $ N $ N $ N

$ N $ N $ N $ N $ N $ N

$ N $ N $ N $ N $ N $ N

4

;ariational E2uation

• Ener y form

Page 111: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 111/132

111

• Energy form

• Load form

• <esidual

Ω

Ω

= Ω

≈ Ω

∫∫ ∫∫

-

-

& & N

& int

a5 7 6 = d

U V F U V d

U V U V

u u S E

d 4 S

d F

Ω Γ

Ω Γ=

= Ω + Γ

≈ Ω + Γ

∫∫ ∫

∑ ∫∫ ∫

$S

- -

e

S- -

& / &

N& /? ? ?

? ,

& et

5 6 d d

N 5 6 d N 5 6 d

U V U V

u u f u t

u s f s t

d F

= ∀ ∈ #& int & et

0U V U 5 6V U V U V7 U Vd F d d F d

+ineari<ation – Tan"ent Stiffness

• ?ncremental strain ∆ ∆U V FU VE 4 d

Page 112: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 112/132

112

• ?ncremental strain

• Lineariation

∆ = ∆NU V FU VE 4 d

Ω Ω ∆ Ω = Ω ∆ ∫∫ ∫∫

- -

& & N N= = d U V F F Fd U VE * E d 4 * 4 d

Ω Ω ∆ Ω = Ω ∆ ∫∫ ∫∫

- -

& & 8 8= d U V F F F d U VS E d 4 4 d

=

,, ,2

,2 22

,, ,2

,2 22

S S - -

S S - - F

- - S S

- - S S

Σ

=

,7, 27, 37, 47,

,72 272 372 4728

,7, 27, 37, 47,

27, 272 372 472

N - N - N - N -

N - N - N - N - F

- N - N - N - N

- N - N - N - N

4

+ineari<ation – Tan"ent Stiffness

• &angent stiffness

Page 113: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 113/132

113

• &angent stiffness

• Discrete incremental e:uation 5N-< iteration6

– K& F c0anges according to stress and strain

– Soled iteratiely until t0e residual term anis0es

Ω

= + Ω ∫∫

-

& & -

& N N 8 8 F F F F F F F d= 4 * 4 4 4

∆ = − ∀ ∈ #& & et int

& 0U V FU V U V U V7 U Vd = d d F F d

Summar$

• $or elastic material t0e ariational e:uation can /e

Page 114: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 114/132

114

• $or elastic material7 t0e ariational e:uation can /eo/tained from t0e "rinci"le of minimum "otential energy

• St. Genant-Kirc00off material 0as linear relations0i"/eteen 2nd *-K stress and 8-L strain

• ?n &L7 nonlinearity comes from nonlinear strain-dis"lacement relation

• ?n )L7 nonlinearity comes from constitutie relation andun@non current domain 5aco/ian of deformationgradient6

&L and )L are mat0ematically e:uialent7 /ut 0aedifferent reference frames

• &L and )L 0ae different inter"retation of constitutierelation.

Page 115: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 115/132

115

MAT+A4 Code forH$erelastic Material Model

Section 3.%

HBPE!3*m

• 'uilding t0e tangent stiffness matri =F and t0e residual

Page 116: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 116/132

116

• 'uilding t0e tangent stiffness matri7 =F7 and t0e residualforce ector7 U!V7 for 0y"erelastic material

• ?n"ut aria/les for H*E<3D.m

aria'e /rra sie eanin

! !nteer ateria !dentification o$ (3) (ot sed)

R (3,1) ateria .ro.erties (/10, /01, )

/;% -oica #aria'e !f tre, sa#e stress #aes

-;/ -oica #aria'e !f tre, cacate the o'a stiffness matri<

% !nteer ;ota nm'er of eements

= !nteer imension of .ro'em (3)

>?@ (3,%) Aoordinates of a nodes

-% (8,%) %ement connecti#it

function /0P1R)D(MD PRP PD!31 43!5 51 5DF 607 41$%88888888888888888888888888888888888888888888888888888888888888888888888

% M!5 PR9R!M +MP359 94:!4 S3FF51SS M!3R6 !5D R1SD!4 FR+1 FR

% /0P1R14!S3+ M!31R!4 MD14S

%88888888888888888888888888888888888888888888888888888888888888888888888

Page 117: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 117/132

117

%

%%

lo;al DSP3D FR+1 9KF S9M!

%

% nteration &oints and <eits

69=[-#>?@@)?#2.A"BA.)D# #>?@@)?#2.A"BA.)D#],

C93=[">##############D# ">##############D#],

%

% nde* for istory varia;les (eac interation &t$

535=#,

%

%4P 1R 141M153S 3/S S M!5 4P 3 +MP31 K !5D F

for 1="'51

% 5odal coordinates and incremental dis&lacements

1460=607(41(1'$'$,

% 4ocal to lo;al ma&&in

DF=Eeros("2$,

for ="'B

=(-"$85DFG",

DF('G2$=(41(1$-"$85DFG"'(41(1$-"$85DFG),

end

DSP=DSP3D(DF$,

DSP=resa&e(DSP5DFB$, %

%4P 1R 5319R!35 P53S

for 46="'2 for 40="'2 for 47="'2

1"=69(46$, 12=69(40$, 1)=69(47$,

535 = 535 G ",

%

% Determinant and sa&e function derivatives

[H S/PD D13] = S/!P14([1" 12 1)] 1460$,

F!+=C93(46$8C93(40$8C93(47$8D13,

Page 118: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 118/132

% % Residual forces

FR+1(DF$ = FR+1(DF$ - F!+8:MI8S3R1SS,

%

% 3anent stiffness

Page 119: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 119/132

119

% 3anent stiffness

if 43!5

S9=[S3R1SS("$ S3R1SS($ S3R1SS(.$,

S3R1SS($ S3R1SS(2$ S3R1SS(?$,

S3R1SS(.$ S3R1SS(?$ S3R1SS()$],

S/1!D=Eeros(A$,

S/1!D("')"')$=S9,

S/1!D('.'.$=S9,

S/1!D(@'A@'A$=S9,

%

1KF = :MI8D3!58:M G :9I8S/1!D8:9,

9KF(DFDF$=9KF(DFDF$GF!+81KF,

end

end, end, end,

end

end

H$erelastic Material Anal$sis 1sin" A4A91S

• ELEMEN& &*E3D(<H ELSE&NE

Page 120: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 120/132

120

ELEMEN&7&*E3D(<H7ELSE&NE – (-node linear /ric@7 reduced integration it0 0ourglass control7

0y/rid it0 constant "ressure

• MA&E<?AL7NAMEMNEH*E<ELAS&?7 MNE-<?GL?N(.7 2.7 – Mooney-<ilin material it0 A, ( and A, 2

• S&A&?7D?<E& – $ied time ste" 5no automatic time ste" control6

y

H$erelastic Material Anal$sis 1sin" A4A91SHEAD?N8

Page 121: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 121/132

121

- ?ncom"ressi/le 0y"erelasticity 5Mooney-<ilin6 )niaial tensionNDE7NSE&ALL,7

27,.37,.7,.747.7,.7!7.7.7,.#7,.7.7,.%7,.7,.7,.

(7.7,.7,.NSE&7NSE&$AE,,727374NSE&7NSE&$AE3,727!7#NSE&7NSE&$AE42737#7%

NSE&7NSE&$AE#47,7(7!ELEMEN&7&*EC3*!H7ELSE&NE,7,7273747!7#7%7(SL?D SE&?N7 ELSE&NE7 MA&E<?AL MNEDMATE!(A+:NAMEMNEBDHBPE!E+AST(C: MNEB%!(;+(N/ /

H$erelastic Material Anal$sis 1sin" A4A91S

• Analytical solution "rocedure

Page 122: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 122/132

122

Analytical solution "rocedure – 8radually increase t0e "rinci"al stretc0 λ from , to # –

Deformation gradient

– alculate ,7E and 27E

– alculate 2nd *-K stress

– alculate auc0y stress

– <emoe t0e 0ydrostatic com"onent of stress

λ

= λ λ

, ;

, ;

F

= +, ,7 , 27A A E ES

= × × & ,F S F

σ = σ − σ,, ,, 22

H$erelastic Material Anal$sis 1sin" A4A91S

• om"arison it0 analytical stress s numerical stress

Page 123: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 123/132

123

om"arison it0 analytical stress s. numerical stress

Page 124: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 124/132

Elastomer Test Procedures

• Elastomer tests

Page 125: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 125/132

125

Elastomer tests – sim"le tension7 sim"le com"ression7 e:ui-/iaial tension7 sim"le

s0ear7 "ure s0ear7 and olumetric com"ression

0 1 2 3 4 5 6 70

10

20

30

40

50

60

70

Nominal strain

N o m i n a l s t r e s s

uni-axial

bi-axialpure shear

Elastomer Tests• Data ty"e= Nominal stress s. "rinci"al stretc0

Page 126: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 126/132

126

FF L

Simple tension test

F

F

L

Pure shear test

L

F

Equal ia!ial test

F

L

"olumetric compression test

y" " "

*ata Prearation

• Need enoug0 num/er of inde"endent e"erimental data

Page 127: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 127/132

127

Need enoug0 num/er of inde"endent e"erimental data – No ran@ deficiency for cure fitting algorit0m

All tests measure "rinci"al stress and "rinci"le stretc0

Experiment Type Stretch Stress

Uniaxial tension Stretch ratio λ = L/L0Nominal stress TE = F/A0

Equi-iaxialtension

Stretch ratioλ

= L/L0 in y-

!irection

Nominal stress TE = F/A0

in y-!irection

"ure shear test Stretch ratioλ

= L/L0Nominal stress TE = F/A0

#olumetric test $ompression ratioλ

= L/L0"ressure TE = F/A0

*ata Prearation cont

• )ni-aial test λ = λ λ = λ = λ, 2 37 , ;

Page 128: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 128/132

128

)ni aial test

• E:ui-/iaial test

• *ure s0ear test

, 2 37 ;

−∂

= = − λ λ +∂λ3

,- -,

)

& 25, 65A A 6− − λ = = λ − λ − λ

,-& 2 3,- -,

-,

A&5A 7A 7 6 U V U V 25 6 25, 6

A. b

λ = λ = λ λ = λ2, 2 37 , ;

−∂= = λ − λ + λ

∂λ! 2

,- -,, )

& 25 65A A 62

λ = λ λ = λ = λ, 2 37 ,7 , ;−∂

= = λ − λ +∂λ

3,- -,

)& 25 65A A 6

*ata Prearation cont

• Data *re"aration

Page 129: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 129/132

129

Data *re"arat on

• $or Mooney-<ilin material model7 nominal stress is alinear function of material "arameters 5A,7 A,6

+

+

λ λ λ λ λ λ λ. .

. .

. .

, 2 3 i i , ND&

E E E E E E E, 2 3 i i , ND&

&y"e , , , 4 4 4

& & & & & & &

Curve Fittin" for Moone$%!ivlin Material

• Need to determine A, and A, /y minimiing error

Page 130: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 130/132

130

N m , , y m m g/eteen test data and model

• $or Mooney-<ilin7 &5A,7 A,7 l@6 is linear function – Least-s:uares can /e used

( )=

− λ∑,- -,

ND& 2E@ ,- -, @

A 7A @ ,

minimie & &5A 7A 7 6

λ

λ = = = λ

/ /

& ,,

& 2 ,

& ND& ND&

5 6&

& 5 6U V U V FU V

& 5 6

.

.T b - b

.

=

,

,

AU VA

b

=

/

E,E

E 2

END&

&

& U V

&

T

Curve Fittin" cont

• Minimie error5s:uare6

Page 131: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 131/132

131

5 : 6

• Minimiation Linear regression e:uation

= − −

= − −

= − +

& E & E

E & E

E & E & & E & &

U V U V U V U V

U V U V

U V U V 2U V F U V U V F FU V

e e T T T T

T -b T -b

T T b - T b - - b

=& & E F FU V F U V- - b - T

Stabilit$ of Constitutive Model

• Sta/le material= t0e slo"e in t0e stress-strain cure is

Page 132: FEA for Nonlinear Elastic Problems

8/17/2019 FEA for Nonlinear Elastic Problems

http://slidepdf.com/reader/full/fea-for-nonlinear-elastic-problems 132/132

"alays "ositie 5*ruc5er stabilit$6

Sta/ility re:uirement 5Mooney-<ilin material6

• Sta/ility c0ec@ is normally "erformed at seeral s"ecified

deformations 5"rinci"al directions6

• ?n order to /e *.D.

>εd = = d -*

σ ε + σ ε >, , 2 2d d d d -

ε

ε ε > ε

,, ,2 ,

, 2 2, 22 2

D D d

d d D D d