Fault Analysis ECE4334

Embed Size (px)

Citation preview

  • 8/11/2019 Fault Analysis ECE4334

    1/64

    ECE4334

    Dr. C.Y. Evrenosoglu

    ECE4334

    FAULT ANALYSIS

    Dr. E

  • 8/11/2019 Fault Analysis ECE4334

    2/64

    ECE4334Content

    System representation Single line-to-ground fault

    Line-to-line fault

    Double line-to-ground fault

    Balanced (3) faults

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    3/64

    ECE4334System representation and assumptions

    The power system operates under balanced steady-state conditions before

    the fault occurs. Thus, the sequence networks are uncoupled before the

    fault occurs. During unsymmetrical faults they are interconnected at the

    fault location.

    Prefault load current is neglected. This, prefault voltage, VF at the faultpoint is close to its nominal value (i.e. it can be take to be 10). The

    prefault voltage at each bus (and machine internal voltages) in the

    positive-sequence network equals VF. This assumption is called flat

    profile. In defining the prefault flat voltage profile, we do take into account the

    connection-induced phase shifts in Y xfmr.

    Transformer winding resistances and shunt admittances are ignored.

    Load impedances can be ignored

    Series resistance and shunt elements in lines are ignored.

    Armature resistance in generators is ignored.

    The resulting circuit model consists only of sources and pure reactances.Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    4/64

    ECE4334Using symmetrical components

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    5/64

  • 8/11/2019 Fault Analysis ECE4334

    6/64

    ECE4334Using symmetrical components

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    7/64

    ECE4334Example 9.1

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    8/64

    ECE4334Example 9.1

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    9/64

    ECE4334Example 9.2

    Dr. C.Y. Evrenosoglu

    At bus 2 all the voltages are 0!

  • 8/11/2019 Fault Analysis ECE4334

    10/64

    ECE4334Example 9.2

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    11/64

    ECE4334Single line-to-ground fault

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    12/64

    ECE4334Single line-to-ground fault

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    13/64

    ECE4334Single line-to-ground fault on the example

    Dr. C.Y. Evrenosoglu

    Remember?

  • 8/11/2019 Fault Analysis ECE4334

    14/64

    ECE4334Single line-to-ground fault on the example

    Dr. C.Y. Evrenosoglu

    Remember?

  • 8/11/2019 Fault Analysis ECE4334

    15/64

    ECE4334Single line-to-ground fault on the example

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    16/64

    ECE4334Single line-to-ground fault

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    17/64

    ECE4334Example 9.3

    Dr. C.Y. Evrenosoglu

    No fault impedance

  • 8/11/2019 Fault Analysis ECE4334

    18/64

    ECE4334REMEMBER: Example 9.1

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    19/64

    ECE4334REMEMBER: Example 9.1

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    20/64

    ECE4334Back to Example 9.3

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    21/64

    ECE4334Example 9.3

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    22/64

    ECE4334Line-to-line fault

    Dr. C.Y. Evrenosoglu

    {

  • 8/11/2019 Fault Analysis ECE4334

    23/64

    ECE4334Line-to-line fault

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    24/64

    ECE4334Line-to-line fault on the example

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    25/64

    ECE4334Line-to-line fault on the example

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    26/64

  • 8/11/2019 Fault Analysis ECE4334

    27/64

    ECE4334Example 9.4

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    28/64

    ECE4334Double line-to-ground fault

    Dr. C.Y. Evrenosoglu

  • 8/11/2019 Fault Analysis ECE4334

    29/64

    ECE4334Double line-to-ground fault

    Dr. C.Y. Evrenosoglu

    D bl li d f l

  • 8/11/2019 Fault Analysis ECE4334

    30/64

    ECE4334Double line-to-ground fault

    Dr. C.Y. Evrenosoglu

    ECE4334D bl li d f l h l

  • 8/11/2019 Fault Analysis ECE4334

    31/64

    ECE4334Double line-to-ground fault on the example

    Dr. C.Y. Evrenosoglu

    ECE4334D bl li t d f lt th l

  • 8/11/2019 Fault Analysis ECE4334

    32/64

    ECE4334Double line-to-ground fault on the example

    Dr. C.Y. Evrenosoglu

    ECE4334E l 9 5

  • 8/11/2019 Fault Analysis ECE4334

    33/64

    ECE4334Example 9.5

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (a b)

  • 8/11/2019 Fault Analysis ECE4334

    34/64

    ECE4334Example 9.5 (a,b)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (a b)

  • 8/11/2019 Fault Analysis ECE4334

    35/64

    ECE4334Example 9.5 (a,b)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (c)

  • 8/11/2019 Fault Analysis ECE4334

    36/64

    ECE4334Example 9.5 (c)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (c)

  • 8/11/2019 Fault Analysis ECE4334

    37/64

    ECE4334Example 9.5 (c)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (c)

  • 8/11/2019 Fault Analysis ECE4334

    38/64

    C 33Example 9.5 (c)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9 5 (c)

  • 8/11/2019 Fault Analysis ECE4334

    39/64

    Example 9.5 (c)

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    40/64

    Example 9.6

    Dr. C.Y. Evrenosoglu

    ECE4334REMEMBER: Example 9.1

  • 8/11/2019 Fault Analysis ECE4334

    41/64

    REMEMBER: Example 9.1

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    42/64

    p

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    43/64

    p

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    44/64

    p

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    45/64

    p

    Dr. C.Y. Evrenosoglu

    ECE4334Example 9.6

  • 8/11/2019 Fault Analysis ECE4334

    46/64

    Dr. C.Y. Evrenosoglu

    Results by ignoringthe xfmr shifts

    ECE4334Generalized solution for networks

  • 8/11/2019 Fault Analysis ECE4334

    47/64

    Assume that we know the pre-fault voltages (solution

    of power flow)

    The general procedure is given as follows:

    1. Calculate Zbus for each sequence (first calculateYbus)

    2. For a fault at bus i, the Zii values are the Thvenin

    equivalent impedances; the pre-fault voltage is thepositive sequence Thvenin voltage.

    3. Connect and solve the Thvenin equivalent

    sequence networks to determine the fault currents

    in each sequence.

    Dr. C.Y. Evrenosoglu Thanks to Dr. Tom Overbye, University of Illinois for the content

    ECE4334Generalized solution for networks

  • 8/11/2019 Fault Analysis ECE4334

    48/64

    4. Sequence voltages throughout the system can be calculated by

    5. Phase values are determined from the sequence values

    Dr. C.Y. Evrenosoglu Thanks to Dr. Tom Overbye, University of Illinois for the content

    0

    0

    0

    0

    prefaultfIZ

    = +

    V V

    M

    M

    This is solved

    for each

    sequencenetwork!

    The entry

    corresponds to the

    faulted bus

    ECE4334Unbalanced fault example for a network

  • 8/11/2019 Fault Analysis ECE4334

    49/64

    Pre-fault voltages are 1 pu at all buses. Pre-fault loads are ignored.

    Transformer phase-shifts are ignored.

    Calculate the bus voltages after a single-line-to-ground fault at bus

    3.

    Dr. C.Y. Evrenosoglu

    ECE4334Unbalanced fault example in network

  • 8/11/2019 Fault Analysis ECE4334

    50/64

    First step: Sequence networks

    Dr. C.Y. Evrenosoglu

    ECE4334Ex.: Positive/negative sequence networks

  • 8/11/2019 Fault Analysis ECE4334

    51/64

    Dr. C.Y. Evrenosoglu

    Form Ybus and subsequently calculate Zbus

    j0.2 j0.05 j0.2j0.05j0.1

    j0.1 j0.1

    ECE4334Ex.: Positive/negative sequence networksF Y d b tl l l t Z

  • 8/11/2019 Fault Analysis ECE4334

    52/64

    Dr. C.Y. Evrenosoglu

    Form Ybus and subsequently calculate Zbus

    j0.2 j0.05 j0.2j0.05j0.1

    j0.1 j0.1

    Thvenin equivalent

    impedance at bus 1

    of positive & neg.

    sequence networks

    Thvenin equivalent

    impedance at bus 2 Thvenin equivalent

    impedance at bus 3

    ECE4334Ex.: Zero sequence network

  • 8/11/2019 Fault Analysis ECE4334

    53/64

    Dr. C.Y. Evrenosoglu

    Form Ybus and subsequently calculate Zbus

    j0.05 j0.05 j0.05j0.05j0.3

    j0.3 j0.3

    ECE4334Ex.: Zero sequence network

  • 8/11/2019 Fault Analysis ECE4334

    54/64

    Dr. C.Y. Evrenosoglu

    Form Ybus and subsequently calculate Zbus

    j0.05 j0.05 j0.05j0.05j0.3

    j0.3 j0.3

    Thvenin equivalent

    impedance at bus 1

    of zero sequence

    network

    Thvenin equivalent

    impedance at bus 2Thvenin equivalent

    impedance at bus 3

    ECE4334EX: Sequence networks

  • 8/11/2019 Fault Analysis ECE4334

    55/64

    For a single-line-to-ground fault at bus 3 the Thvenin equivalent

    impedances are used for bus 3 and since it is a bolted fault we do not have3Zf in the final circuit.

    Dr. C.Y. Evrenosoglu

    For SLG fault the

    sequence networks

    are connected in

    series

    ECE4334EX: Calculate the sequence currents & voltages

  • 8/11/2019 Fault Analysis ECE4334

    56/64

    Dr. C.Y. Evrenosoglu

    Bus voltages at each bus in each sequence:

    ECE4334EX: Calculate the sequence voltages

  • 8/11/2019 Fault Analysis ECE4334

    57/64

    Dr. C.Y. Evrenosoglu

    ECE4334EX: Calculate the sequence voltages

  • 8/11/2019 Fault Analysis ECE4334

    58/64

    Dr. C.Y. Evrenosoglu

    ECE4334EX: Calculate the phase voltages at bus 1

  • 8/11/2019 Fault Analysis ECE4334

    59/64

    Dr. C.Y. Evrenosoglu

    ECE4334EX: Calculate the phase voltages at bus 2

  • 8/11/2019 Fault Analysis ECE4334

    60/64

    Dr. C.Y. Evrenosoglu

    ECE4334EX: Calculate the phase voltages at bus 3

  • 8/11/2019 Fault Analysis ECE4334

    61/64

    Dr. C.Y. Evrenosoglu

    ECE4334What about faults on lines?

  • 8/11/2019 Fault Analysis ECE4334

    62/64

    The previous analysis has assumed that thefault is at a bus. Most faults occur on

    transmission lines, not at the buses.

    These faults are treated by including a

    dummy bus at the fault location. How the

    impedance of the transmission line is thensplit depends upon the fault location.

    Dr. C.Y. Evrenosoglu Thanks to Dr. Tom Overbye, University of Illinois for the content

    ECE4334Power system protection

    M i id i t f lt i kl

  • 8/11/2019 Fault Analysis ECE4334

    63/64

    Main idea is to remove faults as quickly as

    possible while leaving as much of the system as

    intact as possible

    Fault sequence of events1. Fault occurs somewhere on the system, changing the

    system currents and voltages

    2. Current transformers (CTs) and potential transformers(PTs) sensors detect the change in currents/voltages

    3. Relays use sensor input to determine whether a fault

    has occurred

    4. When a fault occurs the relays open the circuit

    breakers to isolate fault

    Dr. C.Y. Evrenosoglu Thanks to Dr. Tom Overbye, University of Illinois for the content

    ECE4334Power system protection

    P t ti t t b d i d ith b th

  • 8/11/2019 Fault Analysis ECE4334

    64/64

    Protection systems must be designed with both

    primary protection and backup protection in

    case primary protection devices fail.

    In designing power system protection systemsthere are two main types of systems that need to be

    considered:

    1. Radial: there is a single source of power, so poweralways flows in a single direction; this is the easiest

    from a protection point of view

    2. Network: power can flow in either direction:protection is much more complicated

    Dr. C.Y. Evrenosoglu Thanks to Dr. Tom Overbye, University of Illinois for the content