15
Fall 2014 Chem 356: Introductory Quantum Mechanics 34 Chapter 3 – Schrodinger Equation, Particle in a Box .................................................................... 34 Introduction to the Schrodinger Equation ................................................................................ 34 Linear Operators ....................................................................................................................... 36 Quantization of energy ............................................................................................................. 39 Interpretation of Wave Function .............................................................................................. 40 Determination of Constant C .................................................................................................... 42 Useful integrals for particle in the box ..................................................................................... 44 Demonstration of Uncertainty Principle ................................................................................... 44 Particle in a 3 dimensional box ................................................................................................. 46 Chapter 3 – Schrodinger Equation, Particle in a Box Introduction to the Schrodinger Equation De Broglie suggested one can associate a wave with a particle and take h p λ = ikx e 2 k π λ = p = h 2π k = !k Generalization to 3 dimensional wave e i ! k i ! x ! p = " ! k In chapter 2 we saw that waves in general satisfy a wave equation. Try to postulate a wave equation for “electronwaves” (a guess) Provide some rational for Schrodinger equation: Wave equation 2 u x 2 = 1 V 2 2 u t 2 Choose solution with particular ω = ν 2π u( x, t ) = ψ ( x )cos(ω t )

Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

  • Upload
    others

  • View
    17

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

  34    

 

 Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box  ....................................................................  34  

Introduction  to  the  Schrodinger  Equation  ................................................................................  34  

Linear  Operators  .......................................................................................................................  36  

Quantization  of  energy  .............................................................................................................  39  

Interpretation  of  Wave  Function  ..............................................................................................  40  

Determination  of  Constant  C  ....................................................................................................  42  

Useful  integrals  for  particle  in  the  box  .....................................................................................  44  

Demonstration  of  Uncertainty  Principle  ...................................................................................  44  

Particle  in  a  3  dimensional  box  .................................................................................................  46  

     Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box  

Introduction  to  the  Schrodinger  Equation  

De  Broglie  suggested  one  can  associate  a  wave  with  a  particle  and  take   hpλ

=  

      ikxe     2kπλ =    

p = h

2πk = !k  

Generalization  to  3  dimensional  wave          

ei!k i!x    

!p = "!k  

 In  chapter  2  we  saw  that  waves  in  general  satisfy  a  wave  equation.    

    Try  to  postulate  a  wave  equation  for  “electron-­‐waves”     (a  guess)       Provide  some  rational  for  Schrodinger  equation:  

      Wave  equation  

∂2u∂x2 = 1

V2

∂2u∂t2  

      Choose  solution  with  particular   ω = ν

2π  

        u(x,t) =ψ (x)cos(ωt)  

Page 2: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   35    

         

d 2ψdx2 + ω 2

V2 ( ) 0xψ =  

        ω = 2πv   νλ = V , ω

V= 2πν

νλ= 2π

λ   ν (nu)  frequency  ;   V  

velocity    

         

d 2ψdx2 + 4π 2

λ 2 ψ (x) = 0  

      hp

λ =    

4π 2

λ 2 = 4π 2

h2 ⋅ p2 = p!

⎛⎝⎜

⎞⎠⎟

2

 

                  !2 ∂2ψ

dx2 + p2ψ (x) = 0  

    Now  substitute   2p :  

          Let  V  =  V(x)  indicate  potential:      

                                                                                                                    p2

2m+V = E

   

               

!2

2m∂2ψ∂x2 + p2

2mψ (x) = 0  

         

!2

2m∂2ψ∂x2 + (E −V )ψ (x) = 0  

      Or   Eψ (x) = − !

2

2m∂2ψ∂x2 +V (x)ψ (x)

 

                                                                                                                                                    Hψ (x)  

                               We  obtain  a  differential  equation  for  function   ( )xψ  

          Hψ (x) = Eψ (x)                 E is  a  constant,  the  energy                 H is  “operator”  that  acts  on  a  function.    Summarizing:  

1) p2ψ (x) = −!2 ∂2ψ

∂x2   (using  de  Broglie  +  classical  wave  equation)  

Page 3: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   36    

2) Substitute   2 2 ( ( ))p m E V x= −  2 2

2 ( ) ( ) ( )2

V x x E xm x

ψ ψ ψ∂− + =∂

h  

  ˆ ( ) ( )H x E xψ ψ=  

H = p2

2m+ V (x)   ‘energy  operator’    (see  later)  

 We  need  to  discuss  2  mathematical  items  

 

a) Operators     p ,   H ,   2p ….?  b) Eigenvalue  equations    

H Eψ ψ=     E, !p :   numbers  

pψ = !pψ  Operators  will  be  indicated  by  “^”  hat  or  carot    

   

Linear  Operators  (in  1  dimension  first)            

ˆ ( ) ( )Af x g x=        

Acting  with  an  operator  on  a  function  yields  a  new  function.    

A   ( )f x   ˆ ( ) ( )Af x g x=  2

2

ddx

  2x   0  

2

2 2 3d ddxdx

⎛ ⎞+ +⎜ ⎟

⎝ ⎠   3x   2 36 6 3x x x+ +  

dxdx

  2x   x

ddx

(x2 ) = x ⋅2x = 2x2  

d xdx

  2x  

ddx

(x ⋅ x2 ) = ddx

(x3) = 3x2  

−i!

ddx

  ikxe   !keikx  

− !

2

2md 2

dx2 +V (x)⎛⎝⎜

⎞⎠⎟   cos( )kx  

!2k 2

2m+V (x)

⎛⎝⎜

⎞⎠⎟

cos(kx)  

Page 4: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   37    

   The  operators  we  consider  are  linear  operators:        

1 1 2 2ˆ( ( ) ( ))A c f x c f x+  

        = ( ) ( )1 1 2 2ˆ ˆ( ) ( )c Af x c Af x+  

      Where   1c , 2c  are  (complex)  constants  

 Example  of  operator  that  is  not  linear:  SQR( ( ))f x     2( ( ))f x  

      2 2SQR( ( ) ( )) ( ( )) ( ( )) 2 ( ) ( )f x g x f x g x f x g x+ = + +         =SQR( ( )) SQR( ( )) 2 ( ) ( )f x g x f x g x+ +  

              Not  linear  therefore  We  can  act  with  operators  in  sequence             ˆ ˆˆ ˆ( ) ( ( ))ABf x A Bf x=         In  general:             ˆ ˆˆ ˆ( ) ( )ABf x BAf x≠  

      Example   A x=   ,     ˆ dBdx

=  

        ( )d dfx f x xdx dx

⎛ ⎞ =⎜ ⎟⎝ ⎠  

( ) ( ( )) ( )d d dfx f x xf x f x xdx dx dx

⎛ ⎞ = = +⎜ ⎟⎝ ⎠  

 If   ˆ ˆˆ ˆ( ) ( )ABf x BAf x= ,    for  any   ( )f x we  write  

        ˆ ˆˆ ˆ 0AB BA− =  

        ˆ ˆ[ , ] 0A B =   A  and   B  commute,  the  order  does  not  matter.  This  will  play  an  important  role  later  on.  

 Eigenvalue  equations  (by  example)  

          Aψ (x) = aψ (x)    

Acting  with   A  on  a  function  yields  the  same  function  multiplied  by  a  constant.  Example:  

      −i!

∂∂x

eikx = (−i!)(ik)eikx  

                      = !keikx  

Page 5: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   38    

                      22

ikxh eππ λ

⎛ ⎞= ⋅⎜ ⎟⎝ ⎠  

                 interpretation:     ikx ikxh e peλ

= =  

       2i xikxe eπλ=      periodic  with  period  λ  

      We  say       px = −i!

∂∂x

 

          ˆ ikx ikxx xp e p e=  

                             Number    The  wave  function   ikxe  is  an  eigenfunction  of  operator   ˆ xp  

          px = −i!

ddx

   ,      with  eigenvalue  

          !k = h

λ  

ˆ ( ) ( )p x p xψ ψ=  

A  particle  with  definite  momentum   xp  is  described  by  eigenfunction  of  operator   ˆ xp    

 Consider  kinetic  energy  operator    

p2

2m=

−i!∂∂x

⎛⎝⎜

⎞⎠⎟

2

2m= − !

2

2md 2

dx2  

    Eigenfunctions  of  Kinetic  energy:  

        − !

2

2md 2

dx2 eax = − !2a2

2m   0 !!<     (if  a  is  real)  

                             Not  physical    

      − !

2

2md 2

dx2 sin(ax) = + !2

2ma2 sin(ax)  

                      Constant  Eigenvalue       Or    

− !

2

2md 2

dx2 cos(ax) = !2

2ma2 cos(ax)  

    Also        

eiax    

!2

2ma2eiax  

Page 6: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   39    

Or  Hamiltonian  operator:  

       2ˆˆ ( )

2pH V xm

= + = − !

2

2m∂2

∂x2 +V (x)  

          ˆ ( ) ( )H x E xψ ψ=  

:  particle  described  by  eigenfunction     ( )xψ  has  the  definite  energy   E ,  (to  be  discussed  in  more  detail  in  chapter  4)        

 

Quantization  of  energy    

We  saw  that  a  fundamental  feature  of  ‘new’  quantum  mechanics  was  that  energy  cannot  take  on  any  value,  but  only  certain  values.  Why  is  that?    Let   us  consider  a  particle  in  a  box  problem:    

  ( ) 0V x =   0 x a< <           ( )V x = ∞   elsewhere  

   We  wish  to  solve  

      − !

2

2md 2

dx2ψ (x)+V (x)ψ (x) = Eψ (x)  

                                   E  is  a  Constant    Outside  the  box   ( )V x →∞we  want  finite  values  of E ,  the  only  possibility  is   ( ) 0xψ = outside  the  box.    We  also  wish   ( )xψ to  be  continuous:  

          Inside  the  box  we  have   0V =            

Page 7: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   40    

− !

2

2mdψ 2

dx2 = Eψ (x)  

   Boundary  Condition:   (0) ( ) 0aψ ψ= =  

 We  considered  before  this  equation            

General  Solution:   sin( ) cos( )c kx b kx+            

  0x =     0ψ =     0b =     E = !

2k 2

2m  

    x a=                 sin( ) 0c ka =     , 1,2,3nk naπ= =  

        Any  c ,   c  not  equal  to  0              

        ( ) sin n xx caπψ ⎛ ⎞= ⎜ ⎟⎝ ⎠

 

                    E = !

2n2π 2

2ma2 = h2n2

8ma2   1,2,3.....n =  

 -­‐ Quantization:  Combination  of  wave  equation  +  Boundary  conditions  -­‐ 1, 2, 3n = − − −  also  possible,  but  yields  “same”  solutions  

sin sinn x n xc ca aπ π⎛ ⎞− = −⎜ ⎟⎝ ⎠

 

-­‐ c  can  be  anything  (still)    

For  any  operator   A ,  with  eigenfunction   ψ (x)  ˆ ˆ( ) ( )Ac x cA xψ ψ=             ( )ca xψ=         ( ( ))a c xψ=  

   

If   ( )xψ is  an  eigenfunction  of  operator   A  then  also   ( )c xψ  is  eigenfunction.  (c  is  constant)    

Interpretation  of  Wave  Function    In  Mathchapter  B  we  discussed  probability  distribution   ( )p x dx :        

Page 8: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   41    

( ) 0p x ≥   x∀    

( ) 1p x dx∞

−∞

=∫  

( )x xp x dx∞

−∞

= ∫          etc.  

The  absolute  square  of  the  wave  function   2 *( ) ( ) ( )x x xψ ψ ψ= is  to  be  interpreted  like  a  

probability  distribution.  

          2( ) ( )p x dx x dxψ=    

      Probability  to  find  particle  between   x  and   x dx+             ( ) ( ) ( )x f x ig xψ = +        complex                 ( )f x ,   ( )g x  real  

        * ( ) ( ) ( )x f x ig xψ = −           * ( ) ( ) [ ( ) ( )][ ( ) ( )]x x f x ig x f x ig xψ ψ = − +  

                    2 2( ) ( ) [ ( ) ( ) ( ) ( )]f x g x i f x g x g x f x= + + −  

                                                                                                                      = f (x)2+ g(x)

2

       (real  always)  

      Also     2( )xψ 0>   everywhere  

               Probability  distribution    

      Moreover  (we  should  impose):   2( ) 1x dxψ∞

−∞

≡∫  

Normalization     Multiply   ( )xψ  by  constant  c ,  choose   c  such  that   ( ) ( )newc x xψ ψ=  is  normalized    

Particle  in  the  box  (later)  

     2( ) sinn

n xxa a

πψ ⎛ ⎞= ⎜ ⎟⎝ ⎠  

    Further  Interpretation  

          *( ) ( )high

low

x

x

x x dxψ ψ∫  

      Probability  to  find  particle  between lowx  and   highx  

And  

Page 9: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   42    

   

x = xψ *(x)ψ (x)dx−∞

∫ = ψ *(x)xψ (x)dx−∞

∫        

 

Determination  of  Constant  C    We  will  impose  that  the  wave  functions  are  normalized  

          * ( ) ( ) 1x x dxψ ψ∞

−∞

≡∫   For  reasons  discussed  before  

* ( )xψ :  complex  conjugate  of  functions           ( ) ( ) ( )x f x ig xψ = +     ( )f x , ( )g x real  

        * ( ) ( ) ( )x f x ig xψ = −  

      * ( ) ( ) [ ( ) ( )][ ( ) ( )]x x f x ig x f x ig xψ ψ = − +  

                        2 2[ ( )] [ ( )] [ ( ) ( ) ( ) ( )]f x g x i f x g x g x f x= + + −  

                        2 2( ) ( )f x g x= +  

                        2( )xψ=       0≥    everywhere  

      If   ( )xψ is  real  then   2 2( ) ( )x xψ ψ=  

   Consider  particle  in  the  box  wave  functions:  

        ( )n xψ =         Cn sin nπ x

a         0 ≤ x ≤ a  

                        0, elsewhere  

       2

2 2

0

( ) sina

nn xx dx C dxaπψ

−∞

⎛ ⎞= ⎜ ⎟⎝ ⎠∫ ∫  

                      2 12naC= =  

        Choose   Cn =

2a  

Simplest,  

2a

eiθ  would  work  too.    

    We  can  always  choose  the  function   ( )xψ to  be  normalized  (for  meaningful  wave    

                                                                     functions)       A  physically  meaningful  wave  function  would  be  normalized  

If   ˆ ( ) ( )A x a xψ ψ=  eigenfunction  of   A ,  eigenvalue  a  

Page 10: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   43    

  Then       ( )* ˆ( ) ( )x A xψ ψ  

    * ( ) ( )x a xψ ψ= * ( ) ( )a x xψ ψ=  

  And:   ( )* ˆ( ) ( )x A x dxψ ψ∞

−∞∫  

    * ( ) ( )a x x dxψ ψ∞

−∞

= ∫  

    1a= ⋅       IF   ( )xψ is  normalized  

We  define:  

           

A = ψ *(x) Aψ (x)dx−∞

∫  

    Called  the  expectation  value  of  operation A ,  depending  on   ( )xψ ,  also  called  the  

average  value  of   A    

If   ( )xψ is  normalized,  then   A  would  be  the  average  value  measured  for  quantity   A  

If   ( )xψ is  an  eigenfunction  of   A ,  then  one  would  always  measure  a ,  and  the  

average  value   A a=   IF   ( )xψ is  normalized  

 

If   ( )xψ is  not  an  eigenfunction  of   A ,  then  many  values  could  be  obtained  if   A  is  

measured.  The  average  value  would  be   A    (much  more  discussion  later)    

   One  more  definition:  

( )2ˆ ˆA A− :      The  standard  deviation  from  the  average.  The  spread  of  the  

measured  values  

        ( )( )ˆ ˆ ˆ ˆA A A A− −  

   22ˆ ˆ ˆ ˆ2A A A A= − +  

   22ˆ ˆ ˆ ˆ2A A A A= − +  

   22ˆ ˆA A= −  

    2Aσ=     Depends  on  wave  function   ( )xψ  

Page 11: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   44    

Using  definition:  

A2 = ψ *(x) A2ψ (x)dx−∞

∫  

 

Useful  integrals  for  particle  in  the  box          

sin2 bx dx = x

2− sin2bx

4b∫  

     

xsin2 bx dx = x2

4− xsin2bx

4b∫ − cos2bx8b2  

     

x2 sin2 bx dx = x3

6− x2

4b− 1

8b3

⎛⎝⎜

⎞⎠⎟∫ sin2bx − x

cos2bx4b2  

  Definite  Integrals  (Most  important).  Use   b = nπ

a; bx

x=a= nπ

aa = nπ  

        2

0

sin2

a n x adxaπ =∫  

       2

2

0

sin4

a n x ax dxaπ =∫  

       3 3

2 22 2

0

sin6 4

a n x a ax dxa nπ

π= −∫  

       

sinnπ x

a0

a

∫ cosmπ x

adx = 0, ∀n,m integers  

   

Demonstration  of  Uncertainty  Principle    Using  the  above  integrals,  we  can  calculate  the  following  

a) Normalize   sinn nn xCaπψ =  

22 2

0

sin 12

a

n nn x aC dx Caπ⎛ ⎞ = ≡⎜ ⎟⎝ ⎠∫   2

nC Ca

= =  

    Normalized  particle  in  the  box  eigen  states:  2 sin n xa a

π⎛ ⎞⎜ ⎟⎝ ⎠

 

b)  Calculate   x  for  normalized   ( )n xψ :  

Page 12: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   45    

0

2 sin sina n x n xx x dx

a a aπ π= ⋅ ⋅∫  

             224 2a a

a= ⋅ =   center  of  the  box  

c) Calculate   2x  

2 2

0

2 sin sina n x n xx x dx

a a aπ π= ⋅ ⋅∫  

           3 3 2 2

2 2 2 2

26 34 2a a a a

a n nπ π⎛ ⎞

= ⋅ − = −⎜ ⎟⎝ ⎠

 

d) Standard  deviation  in   x :  22 2

x x xσ = −  

         2 22 2 2 2 2 2

2 2 2 2 23 2 12 2 32 2a a a a a a n

nn nπ

ππ π⎡ ⎤⎛ ⎞ ⎛ ⎞= − − = − = −⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

e)

Px = 2a

sin nπ xa

−i!ddx

⎛⎝⎜

⎞⎠⎟

sin nπ xa

dx0

a

∫  

= 2

a−i!

nπa

⎛⎝⎜

⎞⎠⎟

sinnπ x

acos

nπ xa

dx = 00

a

∫  

f)

Px2 = 2

asin nπ x

a0

a

∫ −!2 d 2

dx2

⎛⎝⎜

⎞⎠⎟

sin nπ xa

 

        = 2

a!2 ⋅ n2π 2

a2 sin nπ xa

⎛⎝⎜

⎞⎠⎟

2

0

a

∫ dx    2a  

              = !

2n2π 2

a2 = h2n2

4a2     ( 2 nmE= ,  of  course!)  

                ( )2xhnPa

σ =  

 We  can  test  the  Heisenberg  Uncertainty  Principle  

       

12 2 2

22 3 2x pa n hnn a

πσ σπ

⎡ ⎤= ⋅ − ⋅⎢ ⎥

⎣ ⎦  

                              = !

2π 2n2

3− 2

⎣⎢

⎦⎥

12

  > !

2  

Page 13: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   46    

  Note  1:          12xaσ →  as  n→∞      is  the  same  as  uncertainty  in  uniform  distribution:  

                         2

0

12 2

ax ax

a= =  

2 3 2

0

1 1 13 3

a

x x aa

= =  

2 2 2

3 4 12x uniform

a a aσ = − =  

       xP

σ  grows  with  n.  Why?  

          Pn = ± (2mEn ) = ± n2π 2!2

a2  

                                                    Spiked  distribution  

Large  Uncertainty  This   represents  the  classical  limit  of  particle  of  energy nE   bouncing  back  and  forth  in  the  box  

    Note  2:         x , 2x ,   xP , 2xP    Can  be  calculated  for  any  wave  function  

 for  example:               ( ) ( )x Cx a xψ = −            also  satisfies  the  boundary  conditions    

 

Particle  in  a  3  dimensional  box        

    Consider  rectangular  box  of  length   , ,a b c  

Page 14: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   47    

      3D  Schrodinger  Equation:  

      − !

2

2m∂2

dx2 +∂2

dy2 +∂2

dz2

⎛⎝⎜

⎞⎠⎟ψ (x, y, z) ( , , )E x y zψ=  

    Boundary  Conditions:  (0, , ) ( , , ) 0y z a y zψ ψ= =     ,y z∀  ( ,0, ) ( , , ) 0x z x b zψ ψ= =   ,x z∀  ( , ,0) ( , , ) 0x y x y cψ ψ= =   ,x y∀  

“The  wave  function  at  the  faces  of  sides  of  a  box  is  zero”  Technique  to  solve:  Separation  of  variables.  

    Try     ( , , ) ( ) ( ) ( )x y z X x Y x Z zψ =  Substitute  in  Schrodinger  equation  and  divide  by   ( , , )x y zψ  (as  we  did  for  vibrating  

strings)  

      − !

2

2m1

X (x)d 2 Xdx2 − !

2

2m1

Y ( y)d 2Ydy2 − !

2

2m1

Z(z)d 2Zdz2 = E  

 This  can  only  be  true  if  each  term  itself  is  constant:   , ,x y zE E E  

      We  get  3  equations  

a) 2 2

2 ( )2 xd X E X x

m dx− =h   (0) ( ) 0X X a= =  

b) 2 2

2 ( )2 yd Y E Y y

m dy− =h

  (0) ( ) 0Y Y b= =  

c) 2 2

2 ( )2 zd Z E Z z

m dz− =h   (0) ( ) 0Z Z c= =  

x y zE E E E+ + =  

This  is  just  3  times  the  1D  particle  in  the  box  equation!  We  know  the  (normalized)  solution:  

2( ) sin k xX xa a

π⎛ ⎞= ⎜ ⎟⎝ ⎠  

Ex =

h2

8mk 2

a2

⎛⎝⎜

⎞⎠⎟  

2( ) sin l yY yb b

π⎛ ⎞= ⎜ ⎟⎝ ⎠    

Ey =

h2

8ml2

b2

⎛⎝⎜

⎞⎠⎟  

2( ) sin n zZ zc c

π⎛ ⎞= ⎜ ⎟⎝ ⎠    

2 2

28yh nEm c⎛ ⎞

= ⎜ ⎟⎝ ⎠

 

    Or  

Page 15: Fall$2014$ Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_3.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ Chapter$3$–$Schrodinger$Equation,$Particlein$aBox$38$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  3  –  Schrodinger  Equation,  Particle  in  a  Box   48    

      8 sin sin sinx y z

y yx x z zn n n

nn nabc a b c

ππ πψ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

   22 22

2 2 28yx znn nhE

m a b c⎛ ⎞

= + +⎜ ⎟⎜ ⎟⎝ ⎠     , , 1, 2,3....x y zn n n =  

Degeneracies  for  Cubic  box  Consider  the  special  case  of  a  Cubic  box  a b c= = .  Then  the  energy  takes  the  form  

( )2

2 2 228 x y z

hE n n nma

= + +  

For  each  triplet   , ,x y zn n n  we  get  a  different  wave  function,  but  different  values  of   , ,x y zn n n  may  

yield  the  same  energy.    Such  energy  levels  are  called  degenerate.  Eg.for  atoms  we  know  there  are  1  s-­‐orbital,  3  p-­‐orbitals,  5  d-­‐orbitals.    Table  of  energies  

2

28hEma

=   ( ), ,x y zn n n   Degeneracy  

14   (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)   6  12   (2,2,2)   1  11   (1,1,3), (1,3,1), (3,1,1)   3  9   (2,2,1), (2,1,2)(1,2,2)   3  6   (1,1,2), (1,2,1), (2,1,1)   3  3   (1,1,1)   1