36
Fall 2001 Arthur Keller – CS 180 5–1 Schedule • Today Oct. 9 (T) Multivalued Dependencies, Relational Algebra Read Sections 3.7, 5.1-5.2. Assignment 2 due. • Oct. 11 (TH) SQL Queries. Read Sections 6.1-6.3. Project Part 2 due. • Oct. 16 (T) Duplicates, Aggregation, Modifications. Read Sections 5.3-5.4, 6.4-6.5. Assignment 3 due.

Fall 2001Arthur Keller – CS 1805–1 Schedule Today Oct. 9 (T) Multivalued Dependencies, Relational Algebra u Read Sections 3.7, 5.1-5.2. Assignment 2 due

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Fall 2001 Arthur Keller – CS 180 5–1

Schedule• Today Oct. 9 (T) Multivalued

Dependencies, Relational Algebra Read Sections 3.7, 5.1-5.2. Assignment 2 due.

• Oct. 11 (TH) SQL Queries. Read Sections 6.1-6.3. Project Part 2 due.

• Oct. 16 (T) Duplicates, Aggregation, Modifications. Read Sections 5.3-5.4, 6.4-6.5. Assignment 3

due.

Fall 2001 Arthur Keller – CS 180 5–2

Multivalued Dependencies

The multivalued dependency X Y holds in a relation R if whenever we have two tuples of R that agree in all the attributes of X, then we can swap their Y components and get two new tuples that are also in R.

Fall 2001 Arthur Keller – CS 180 5–3

ExampleDrinkers(name, addr, phones, beersLiked)

with MVD Name phones. If Drinkers has the two tuples:

it must also have the same tuples with phones components swapped:

Note: we must check this condition for all pairs of tuples that agree on name, not just one pair.

name addr phones beersLikedsue a p1 b1sue a p1 b2

name addr phones beersLikedsue a p1 b2sue a p1 b1

Fall 2001 Arthur Keller – CS 180 5–4

MVD Rules

1.Every FD is an MVD. Because if X Y, then swapping Y’s between

tuples that agree on X doesn’t create new tuples. Example, in Drinkers: name addr.

2.Complementation: if X Y, then X Z, where Z is all attributes not in X or Y. Example: since name phones

holds in Drinkers, so doesName addr beersLiked.

Fall 2001 Arthur Keller – CS 180 5–5

Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right of an MVD. For example:

Drinkers(name, areaCode, phones, beersLiked, beerManf)

• name areaCode phones holds, but neithername areaCode nor name phones do.

name areaCode phones beersLiked beerManfSue 831 555-1111 Bud A.B.Sue 831 555-1111 WickedAle Pete'sSue 408 555-9999 Bud A.B.Sue 408 555-9999 WickedAle Pete's

Fall 2001 Arthur Keller – CS 180 5–6

4NFEliminate redundancy due to multiplicative effect of

MVD's.• Roughly: treat MVD's as FD's for decomposition, but

not for finding keys.• Formally: R is in Fourth Normal Form if whenever

MVD X Y is nontrivial (Y is not a subset of X, and X Y is not all attributes), then X is a superkey. Remember, X Y implies X Y, so 4NF is more

stringent than BCNF.

• Decompose R, using4NF violation X Y,into XY and X (R—Y).

Fall 2001 Arthur Keller – CS 180 5–7

ExampleDrinkers(name, addr, phones, beersLiked)• FD: name addr• Nontrivial MVD’s: name phones andname beersLiked.

• Only key: {name, phones, beersLiked}• All three dependencies above violate 4NF.• Successive decomposition yields 4NF relations:

D1(name, addr)

D2(name, phones)

D3(name, beersLiked)

Fall 2001 Arthur Keller – CS 180 5–8

“Core” Relational AlgebraA small set of operators that allow us to manipulate

relations in limited but useful ways. The operators are:

1. Union, intersection, and difference: the usual set operators. But the relation schemas must be the same.

2. Selection: Picking certain rows from a relation.

3. Projection: Picking certain columns.

4. Products and joins: Composing relations in useful ways.

5. Renaming of relations and their attributes.

Fall 2001 Arthur Keller – CS 180 5–9

Relational Algebra

• limited expressive power (subset of possible queries)

• good optimizer possible

• rich enough language to express enough useful things

Finiteness

SELECT

π PROJECT

X CARTESIAN PRODUCT FUNDAMENTAL

U UNION BINARY

– SET-DIFFERENCE

SET-INTERSECTION

THETA-JOIN CAN BE DEFINED

NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

UNARY

Fall 2001 Arthur Keller – CS 180 5–10

Extra Example Relations

DEPOSIT(branch-name, acct-no,cust-name,balance)

CUSTOMER(cust-name,street,cust-city)

BORROW(branch-name,loan-no,cust-name,amount)

BRANCH(branch-name,assets, branch-city)

CLIENT(cust-name,empl-name)

Borrow B-N L-# C-N AMT

T1 Midtown 123 Fred 600 T2 Midtown 234 Sally 1200 T3 Midtown 235 Sally 1500 T4 Downtown 612 Tom 2000

Fall 2001 Arthur Keller – CS 180 5–11

SelectionR1 = C(R2)

where C is a condition involving the attributes of relation R2.

ExampleRelation Sells:

JoeMenu = bar=Joe's(Sells)

bar beer priceJoe's Bud 2.50Joe's Miller 2.75Sue's Bud 2.50Sue's Coors 3.00

bar beer priceJoe's Bud 2.50Joe's Miller 2.75

Fall 2001 Arthur Keller – CS 180 5–12

SELECT () arity((R)) = arity(R)

0 card((R)) card(R)

c (R) c (R) (R)

c is selection condition: terms of form: attr op value attr op attr

op is one of < = > ≠ ≥

example of term: branch-name = "Midtown"

terms are connected by

branch-name = "Midtown" amount > 1000 (Borrow)

cust-name = emp-name (client)

Fall 2001 Arthur Keller – CS 180 5–13

ProjectionR1 = L(R2)

where L is a list of attributes from the schema of R2.

Examplebeer,price(Sells)

• Notice elimination of duplicate tuples.

beer priceBud 2.50Miller 2.75Coors 3.00

Fall 2001 Arthur Keller – CS 180 5–14

Projection (π) 0 card (π A (R)) card

(R)

arity (π A (R)) = m

arity(R) = k

π i1,...,im (R) 1 ij k distinct

produces set of m-tuples a 1 ,...,a m

such that k-tuple b1,...,bk in R where aj = bij for j = 1,...,m

π branch-name, cust-name (Borrow)

Midtown Fred

Midtown Sally

Downtown Tom

Fall 2001 Arthur Keller – CS 180 5–15

Product

R = R1 R2

pairs each tuple t1 of R1 with each tuple t2 of R2 and puts in R a tuple t1t2.

Fall 2001 Arthur Keller – CS 180 5–16

Cartesian Product ()

arity(R) = k1 arity(R S) = k1 + k2

arity(S) = k2 card(R S) = card(R) card(S)

R S is the set all possible (k1 + k2)-tuples

whose first k1 attributes are a tuple in R

last k2 attributes are a tuple in S

R S R SA B C D D E F A B C D D' E F

Fall 2001 Arthur Keller – CS 180 5–17

Theta-JoinR = R1 C

R2

is equivalent to R = C(R1 R2).

Fall 2001 Arthur Keller – CS 180 5–18

ExampleSells = Bars =

BarInfo = Sells Sells.Bar=Bars.Name Bars

bar beer priceJoe's Bud 2.50Joe's Miller 2.75Sue's Bud 2.50Sue's Coors 3.00

name addrJoe's Maple St.Sue's River Rd.

bar beer price name addrJoe's Bud 2.50 Joe's Maple St.Joe's Miller 2.75 Joe's Maple St.Sue's Bud 2.50 Sue's River Rd.Sue's Coors 3.00 Sue's River Rd.

Fall 2001 Arthur Keller – CS 180 5–19

Theta-Join R arity(R) = r

arity(S) = s

arity (R S) = r + s

0 card(R S) card(R) card(S)

S

i j

$i $rj)R S)

R S

1 . . . r 1 . . . s

can be < > = ≠

If equal (=), then it is anEQUIJOIN

R S = (R S)c c

R(A B C) S(C D E)

result has schema T(A B C C' D E)

R.A<S.D

i j

R(ABC) S(CDE) T(ABCC’DE) 1 3 5 2 1 1 1 3 5 1 2 2 2 4 6 1 2 2 1 3 5 3 3 4 3 5 7 3 3 4 1 3 5 4 4 3 4 6 8 4 4 3 2 4 6 3 3 4 2 4 6 4 4 3 3 5 7 4 4 3

Fall 2001 Arthur Keller – CS 180 5–20

Natural JoinR = R1 R2

calls for the theta-join of R1 and R2 with the condition that all attributes of the same name be equated. Then, one column for each pair of equated attributes is projected out.

ExampleSuppose the attribute name in relation Bars was changed to bar, to match the bar name in Sells.BarInfo = Sells Bars

bar beer price addrJoe's Bud 2.50 Maple St.Joe's Miller 2.75 Maple St.Sue's Bud 2.50 River Rd.Sue's Coors 3.00 River Rd.

Fall 2001 Arthur Keller – CS 180 5–21

RenamingS(A1,…,An) (R) produces a relation identical to R but

named S and with attributes, in order, named A1,…,An.

ExampleBars =

R(bar,addr) (Bars) =

• The name of the second relation is R.

name addrJoe's Maple St.Sue's River Rd.

bar addrJoe's Maple St.Sue's River Rd.

Fall 2001 Arthur Keller – CS 180 5–22

Union (R S) arity(R) = arity(S) = arity(R S)

max(card(R),card(S)) card(R S)card(R) + card(S)

set of tuples in R or S or both R R S

S R S

Find customers of Perryridge Branch

πCust-Name ( Branch-Name = "Perryridge" (BORROW DEPOSIT) )

Fall 2001 Arthur Keller – CS 180 5–23

Difference(R S)

arity(R) = arity(S) = arity(R–S)

0 card(R –S)card(R) R – S R

is the tuples in R not in S

Depositors of Perryridge who aren't borrowers of Perryridge

πCust-Name ( Branch-Name = "Perryridge" (DEPOSIT – BORROW) )

Deposit < Perryridge, 36, Pat, 500 >

Borrow < Perryridge, 72, Pat, 10000 >

πCust-Name ( Branch-Name = "Perryridge" (DEPOSIT) ) —

πCust-Name ( Branch-Name = "Perryridge" (BORROW) )

Does (π (D) π (B) ) work?

Fall 2001 Arthur Keller – CS 180 5–24

Combining Operations

Algebra =

1.Basis arguments +

2.Ways of constructing expressions.

For relational algebra:

1.Arguments = variables standing for relations + finite, constant relations.

2.Expressions constructed by applying one of the operators + parentheses.

• Query = expression of relational algebra.

Fall 2001 Arthur Keller – CS 180 5–25

πCust-Name,Cust-City

(CLIENT.Banker-Name = "Johnson"

(CLIENT CUSTOMER) ) =

π Cust-Name,Cust-City (CUSTOMER)

• Is this always true?

πCLIENT.Cust-Name, CUSTOMER.Cust-City

(CLIENT.Banker-Name = "Johnson"

CLIENT.Cust-Name = CUSTOMER.Cust-Name

(CLIENT CUSTOMER) )

πCLIENT.Cust-Name, CUSTOMERCust-City

(CLIENT.Cust-Name =CUSTOMER.Cust-Name

(CUSTOMER πCust-Name

CLIENT.Banker-Name="Johnson" (CLIENT) ) ) )

Fall 2001 Arthur Keller – CS 180 5–26

SET INTERSECTION arity(R) = arity(S) = arity (R S)

(R S) 0 card (R S) min (card(R), card(S))

tuples both in R and in S

R (R S) = R S

SR

R S R

R S S

Fall 2001 Arthur Keller – CS 180 5–27

Operator Precedence

The normal way to group operators is:

1. Unary operators , , and have highest precedence.

2. Next highest are the “multiplicative” operators, , C , and .

3. Lowest are the “additive” operators, , , and —.

• But there is no universal agreement, so we always put parentheses around the argument of a unary operator, and it is a good idea to group all binary operators with parentheses enclosing their arguments.

ExampleGroup R S T as R ((S ) T ).

Fall 2001 Arthur Keller – CS 180 5–28

Each Expression Needs a Schema• If , , — applied, schemas are the same, so use this

schema.• Projection: use the attributes listed in the projection.• Selection: no change in schema.• Product R S: use attributes of R and S.

But if they share an attribute A, prefix it with the relation name, as R.A, S.A.

• Theta-join: same as product.• Natural join: use attributes from each relation;

common attributes are merged anyway.• Renaming: whatever it says.

Fall 2001 Arthur Keller – CS 180 5–29

Example• Find the bars that are either on Maple Street

or sell Bud for less than $3.Sells(bar, beer, price)

Bars(name, addr)

Fall 2001 Arthur Keller – CS 180 5–30

ExampleFind the bars that sell two different beers at the

same price.

Sells(bar, beer, price)

Fall 2001 Arthur Keller – CS 180 5–31

Linear Notation for Expressions• Invent new names for intermediate relations, and assign

them values that are algebraic expressions.• Renaming of attributes implicit in schema of new relation.

ExampleFind the bars that are either on Maple Street or sell Bud for

less than $3.Sells(bar, beer, price)

Bars(name, addr)

R1(name) := name( addr = Maple St.(Bars))

R2(name) := bar( beer=Bud AND price<$3(Sells))

R3(name) := R1 R2

Fall 2001 Arthur Keller – CS 180 5–32

Why Decomposition “Works”?

What does it mean to “work”? Why can’t we just tear sets of attributes apart as we like?

• Answer: the decomposed relations need to represent the same information as the original. We must be able to reconstruct the original from the

decomposed relations.

Projection and Join Connect the Original and Decomposed Relations

• Suppose R is decomposed into S and T. We project R onto S and onto T.

Fall 2001 Arthur Keller – CS 180 5–33

Example

R =

• Recall we decomposed this relation as:

name addr beersLiked manf favoriteBeerJaneway Voyager Bud A.B. WickedAleJaneway Voyager WickedAle Pete's WickedAleSpock Enterprise Bud A.B. Bud

Fall 2001 Arthur Keller – CS 180 5–34

Project onto Drinkers1(name, addr, favoriteBeer):

Project onto Drinkers3(beersLiked, manf):

Project onto Drinkers4(name, beersLiked):

beersLiked manfBud A.B.WickedAle Pete'sBud A.B.

name addr beersLikedJaneway Voyager BudJaneway Voyager WickedAleSpock Enterprise Bud

name addr favoriteBeerJaneway Voyager WickedAleSpock Enterprise Bud

Fall 2001 Arthur Keller – CS 180 5–35

Reconstruction of OriginalCan we figure out the original relation from the

decomposed relations?

• Sometimes, if we natural join the relations.

ExampleDrinkers3 Drinkers4 =

• Join of above with Drinkers1 = original R.

name beersLiked manfJaneway Bud A.B.Janeway WickedAle Pete'sSpock Bud A.B.

Fall 2001 Arthur Keller – CS 180 5–36

TheoremSuppose we decompose a relation with schema XYZ into XY

and XZ and project the relation for XYZ onto XY and XZ. Then XY XZ is guaranteed to reconstruct XYZ if and only if X Y (or equivalently, X Z).

• Usually, the MVD is really a FD, X Y or X Z.

• BCNF: When we decompose XYZ into XY and XZ, it is because there is a FD X Y or X Z that violates BCNF. Thus, we can always reconstruct XYZ from its projections onto XY

and XZ.

• 4NF: when we decompose XYZ into XY and XZ, it is because there is an MVD X Y or X Z that violates 4NF. Again, we can reconstruct XYZ from its projections onto XY and XZ.