FactSage Overview

  • Upload
    fyc1989

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 8/22/2019 FactSage Overview

    1/77

    FactSage Overview

    FactSage 1 2010Montreal

  • 8/22/2019 FactSage Overview

    2/77

    Several software/database packages with applications

    in materials science have been developed over the last 30years.

    These packages all contain large critically evaluateddatabases for thousands of compounds and hundreds ofsolution phases, as well as user interfaces of varying

    FactSage 2 2010Montreal

    - .

    HSC Chemistry

    MTS-NPL

    Thermo-Calc

    Thermodata

    FactSage

  • 8/22/2019 FactSage Overview

    3/77

    Thermochemical databases contain parameters giving theGibbs energy, G, of all compounds as functions of T (and P) and

    of all solutions as functions of T, (P) and composition. This is a

    complete database because all the other thermodynamic

    properties (H, Cp, , etc.) can be calculated by taking the

    appropriate derivatives of the G functions.

    FactSage 3 2010Montreal

    pressure, total mass of each element) the software calculates

    the equilibrium conditions by minimizing the total Gibbs energy

    of the system. This is mathematically equivalent to solving all the

    equilibrium constant equations simultaneously.

    Data are automatically extracted as required from the databases.

  • 8/22/2019 FactSage Overview

    4/77

    Calculated Phase Diagram Section in a 4-component System

    Liquid

    Mg(HCP) + LiquidMg(HCP)Mg(HCP) + Mn(CBCC)

    Mg(HCP) + Mn(CBCC) + CeMg12

    Mg(HCP) + Mg24

    Y5

    + Mn(CBCC)

    Mg - 1Mn - 0.2Ce - xY

    ure(C)

    600

    800

    FactSage 4 2010Montreal

    Mg(HCP) + Mn(CBCC) + Mg 24Y5 + CeMg 12

    4wt%Y

    Mass pct Y

    Temperat

    0 5 10 15 200

    200Precipitation of Mn(CBCC)

    Precipitation of CeMg12Precipitation of Mg24Y5

  • 8/22/2019 FactSage Overview

    5/77

    Input to Calculate the Previous Phase Diagram inFactSage

    FactSage 5 2010Montreal

  • 8/22/2019 FactSage Overview

    6/77

    Phase DiagramInput to Calculate the Previous

    Phase Diagram in FactSage

    FactSage 6 2010Montreal

  • 8/22/2019 FactSage Overview

    7/77

    Axis Setting

    FactSage 7 2010Montreal

  • 8/22/2019 FactSage Overview

    8/77

    Phase Diagram of a 6-component System Calculated fromThermodynamic Database

    Liquid

    Liquid + (Mn,Al)

    Liquid + (Mn,Al) + (Mg) + Al4MgY

    Liquid + (Mn,Al) + (Mg) + Al3Y

    Liquid + (Mn)Liquid + (Mg)

    Liquid + Al2Y + (Mg) + (Mn,Al)

    (Mg) + (Mn) + Al2Y

    re(C)

    600

    800Mg-Al-0.05Ce-0.5Mn-0.1Y-1Zn (wt%)

    FactSage 8 2010Montreal

    (Mg) + Al4MgY + (Mn,Al) + Gamma + Al

    11Ce

    3

    (Mg) + Al3Y + (Mn,Al) + Gamma + Al

    11Ce

    3

    (Mg) + Al 4MgY + (Mn,Al) + Al 11Ce3

    Mass pct. Al

    Tempera

    t

    0 4 8 12 16 200

    200

    400

  • 8/22/2019 FactSage Overview

    9/77

    The thermodynamic database can be used along with the Gibbsenergy minimization software of FactSageto

    calculate any phase diagram sectionisothermal, isoplethal, etc.

    calculate cooling paths of alloys(Equilibrium, Scheil-Gulliver, etc.)

    FactSage 9 2010Montreal

    ( estimation of amounts and composition of microstructural constituents)

    calculate heat evolution during cooling, etc.

    The thermodynamic database permits calculation of the drivingforce for diffusion, precipitation kinetics, etc. and can be coupledto software for phase field modeling and other kinetic modeling.

  • 8/22/2019 FactSage Overview

    10/77

    Merits of Using Thermodynamic Calculations in

    Alloy and Process Design

    Reduce Time/Cost/Manpower by effective searching foroptimal conditions, compositions, etc. through

    FactSage 10 2010Montreal

    ermo ynam c ca cu a ons. Eliminate Trial and Error Approach.

    Calculations are rapid.

    Does not require expert knowledge of thermodynamics.

  • 8/22/2019 FactSage Overview

    11/77

    FactSage 11 2010Montreal

  • 8/22/2019 FactSage Overview

    12/77

    How FactSageThermodynamic

    Databases are Developed

    1. Develop a mathematical model for G(T, P, Composition)

    for each phase.2. Optimize model parameters simultaneously using all

    available thermodynamic and phase equilibrium data

    FactSage 12 2010Montreal

    .

    3. Use models and database to estimate properties ofmulticomponent systems.

    4. Calculate thermodynamic properties and phase

    equilibria by Gibbs energy minimization.5. Dissemination to academic and industrial communities

    via the FactSagesystem.

  • 8/22/2019 FactSage Overview

    13/77

    FactSage Databases

    There are two kinds of FactSage databases:

    COMPOUND databases contain data for

    stoichiometric compounds (of fixed composition)giving the properties as functions of T and P.

    SOLUTION databases contain parameters of

    FactSage 13 2010Montreal

    models giving the properties of solution phases asfunctions of composition as well as of T and P.

    As well as the public FactSage databases, users

    may create their own private compound andsolution databases.

  • 8/22/2019 FactSage Overview

    14/77

    The FACT FS53 Compound Database

    As well as the many FactSage databaseswhich have been developed by

    evaluation/optimization of primary data fromthe literature, the FactSage compounddatabase FS53 contains data for over 4500

    FactSage 14 2010Montreal

    compoun s pure su stances ta en romstandard compilations (such as JANAF) aswell as most of the data for those compounds

    which have been evaluated / optimized.

  • 8/22/2019 FactSage Overview

    15/77

    The View Datamodule

    FactSage 15 2010MontrealView Data

    Click on View Datain themain FactSagewindow.

  • 8/22/2019 FactSage Overview

    16/77

    1. Enter the species you wish to view in the database.

    In this example, we will scan the FACT slide show compound database for allspecies of Ca, Al and/or O.

    2. Select the units of 3. Select the type

    FactSage 16 2010Montreal

    5. Click on OK to scan the database.

    For database management,see section 10.

    Click on Information to open FactSage Browser(when available).

    4. Select the databasein the drop-down list.

    pressure an energy. .

    Click on Exit to close View Data.

  • 8/22/2019 FactSage Overview

    17/77

    The List of CompoundsElements specified Units selected

    Number of speciesin the database

    Name of the database

    Menu Bar(more details on the next slide)

    Double-click or press Enterto view the com ound data.

    FactSage 17 2010Montreal

    Location of the database

    List of chemical species frame

    Total number of species in the database

    Status of the database

  • 8/22/2019 FactSage Overview

    18/77

    Heat capacity expressions Cp(T)

    The heat capacity expression of solid aluminum between 298K and 1200K is:Cp(T) = (45.924818 + 1.56972870 10

    -5 T2 2850.4189 T-1 0.77191758 T0.5 - 5945470.3 T-3)[J/molK]

    Cp(T) expressions are stored as polynomials in the Cp range [Tmin, Tmax] :

    Outside the Cp range: When T < Tmin, Cp(T) is extrapolated;

    When T > Tmax, Cp(T) at Tmax is used.

    ( )

    ( )8

    1

    P i

    p i

    i

    C C T=

    =

    FactSage 18 2010Montreal

    Note that the 2nd Cp expression for the liquid is constant at temperatures above 1200 K.

  • 8/22/2019 FactSage Overview

    19/77

    Different derived thermodynamic functions: H(T), S(T) and G(T)

    The basic data DH298, S298 and Cp(T) can be used to derive the temperaturedependence of the enthalpy, H(T), the entropy, S(T) and, most important, theGibbs energy, G(T).

    ( )( )

    ( )( )

    = = + 2980 298

    T Tp p

    C T C T S T dT S T S

    Tor dT

    T

    Absolute S(T) can be calculated from the 3rd law:

    FactSage 19 2010Montreal

    Absolute S(T) and H(T) are combined in the Gibbs-Helmholtz equation:

    ( ) ( )= + 298298

    T

    pH T DH C T dT

    ( ) ( ) ( )= G T H T T S T

    Absolute H(T) is given by :

  • 8/22/2019 FactSage Overview

    20/77

    Tabular output for Fe

    The allotropic transformation S1

    S2 (alpha

    gamma) at 1184.81 K with an associated enthalpyof transformation of (34587.3 - 33574.4) = 1012.9 J

    At this temperature G(S1) = G(S2)

    Phase transitions S1S2S1LG as Tincreases are displayed.

    FactSage 20 2010Montreal

    wo p ases n equ r um .

    The allotropic transition reverses at 1667.47 Kwhere S2 S1 (gamma delta).

    The enthalpy of fusion is 13806.9 J at 1810.95 K.

    The enthalpy of vaporization to form monatomic Fe(g)at 1 atm is (482944.2 133371.2) = 349573.0 J at3135.00 K.

  • 8/22/2019 FactSage Overview

    21/77

    Plotted Cp data for FeView Data uses the

    Figure Module togenerate the graphicaloutput.

    Curie temperature =1043 K

    FactSage 21 2010Montreal

  • 8/22/2019 FactSage Overview

    22/77

    The Equilibmodule

    Equilibcalculates the conditions for multiphase,

    multicomponent equilibria, with a wide variety of tabular andgraphical output modes, under a large range of constraintsthrough Gibbs energy minimization.

    FactSage 22 2010Montreal

    (continued)

  • 8/22/2019 FactSage Overview

    23/77

    The Equilibmodule

    FactSage 23 2010Montreal

    Click on Equilibin themain FactSagewindow.

  • 8/22/2019 FactSage Overview

    24/77

    Gibbs Energy Minimization

    ( ln )oi i iidealgas

    oi i

    purecondensed

    phases

    G n g RT P

    n g

    = +

    +

    Where,

    : moles

    : gas partial pressure: mole fraction

    : activity coefficient

    : standard molar Gibbs ener

    i

    i

    i

    i

    o

    n

    PX

    FactSage 24 2010Montreal

    1

    2

    ( ln ln )

    ( ln ln )

    o

    i i i i

    solution

    o

    i i i i

    solution

    n g RT X RT

    n g RT X RT

    + + +

    + + +

    +

    +

    L

    L

    Equilibdetermines thecombination of nnii, PPiiand XXiiwhichminimizes the total Gibbs energy

    GGof the system.

    In the present example theequilibrium products are an idealgas and pure solid compounds

  • 8/22/2019 FactSage Overview

    25/77

    Calculating Homogeneous Gas Phase Equilibria

    FactSage 25 2010Montreal

  • 8/22/2019 FactSage Overview

    26/77

    Homogeneous Gaseous Equilibria

    Reacting HH22SS with ClCl22

    Products selection:idealideal gasgas solution phase

    FactSage 26 2010Montreal

    Press

    CalculateCalculate

    Product T= 1500 KT= 1500 K

    and P=2 atmP=2 atm

    Drop-down menu forextensive propertyextensive property

  • 8/22/2019 FactSage Overview

    27/77

    H2S + Cl2 = Results window, FACTFormat Output

    Mole fraction XXHClHCl = 0.65092

    Total pressure PPtotaltotal = 2.0 atm

    FactSage 27 2010Montreal

    PPHClHCl = XXHClHCl PPtotaltotal = 1.30184 atm

  • 8/22/2019 FactSage Overview

    28/77

    Selection of FACTNon-Ideal Solutions: FACT-FeLQ. The Menu Window Interface.

    full title name:short description of the complete solution phase:

    list of possible components for the current system:

    A click in the Fe-liq cell gives (note that all this info appears in the Custom Select

    Species window):

    Fe-liq steel using M*O associate model of In-Ho Jung, with solutes Ag, Al, B, C, Ca, Ce, Co Cr,Cu, H, Hf, La, Mn, Mo, Mo, N, Nb, Nd, Ni, O, P, Pb, Pd, S, Si, Sn, Ta, Th, Ti, U, V, W and Zr

    Click mouse right button for extended menu on FACT-FeLQ.

    FactSage 28 2010Montreal

    Click mouse right button to custom select species for FACT-FeLQ.

    * denotes custom selection not all the species have been selected.

    C C

  • 8/22/2019 FactSage Overview

    29/77

    Results Window FACTformat output solubility of C in liquid cast iron

    The amount of: Fe is 100.00 g =

    93.332 % 107.14 g Mn is 1.00 g =

    0.93332 % 107.14 g

    Si is 1.00 g =

    Compositions in the

    liquid solution phaseFe-liq are given in weightpercent (wt. %).

    FactSage 29 2010Montreal

    Graphite saturation

    . .

    C is 5.1440 g =4.8011 % 107.14 g

    Compositions of thesolution in mole and

    mass fraction

    D lf i i l b C Si ddi i R

  • 8/22/2019 FactSage Overview

    30/77

    Desulfurizing a steel by CaSi addition. Reactants entry.

    Starting compositionof the steel melt

    FactSage 30 2010Montreal

    Note the use of the

    variable amount for the slag.

    Calcium silicideaddition

    D lf i i t l b C Si dditi l ti f l ti h d fi l diti

  • 8/22/2019 FactSage Overview

    31/77

    Desulfurizing a steel by CaSi addition, selection of solution phases and final conditions

    Summary of theReactants window

    Solution speciesselected

    FactSage 31 2010Montreal

    Final conditions:

    = 0.015 T = 1627C P = 1 atmand Calculate >>

    D lf i i St l b C Si Additi FACT F t R lt

  • 8/22/2019 FactSage Overview

    32/77

    Desulfurizing a Steel by CaSi Addition. FACTFormat Results.

    Gas phase,mainly Ar

    FactSage 32 2010Montreal

    No solid phases(activity

  • 8/22/2019 FactSage Overview

    33/77

    Initiating the Phase Diagrammodule

    FactSage 33 2010Montreal

    Click on Phase Diagramin

    the main FactSagewindow.

    Components window preparing a new Phase Diagram: CaO SiO

  • 8/22/2019 FactSage Overview

    34/77

    Components window preparing a new Phase Diagram: CaO SiO2

    Calculation of the CaO-SiO2 binary phase diagram T(C) vs. X(SiO2)

    2Enter the first component, CaO and press the+ button to add the second component SiO2.

    1Click on the New button

    FactSage 34 2010Montreal

    All examples shown here are stored in FactSage- click on: File > Directories > Slide Show Examples

    3Press Next >> to go to the Menu window

    The FACTCompound and solution databases are selected.

    Menu window selection of the compound and solution species

  • 8/22/2019 FactSage Overview

    35/77

    Menu window selection of the compound and solution species

    1Select the products to be included in the calculation:

    pure solid compound species and the liquid slag phase.

    2Right-click to display

    the extended menuon FACT-SLAG.

    FactSage 35 2010Montreal

    4Click in the Variables boxes to open the Variables window(or click on Variables in the menu bar).

    3Select the option possible2-phase immiscibility

    Variables window defining the variables for the phase diagram

  • 8/22/2019 FactSage Overview

    36/77

    Variables window defining the variables for the phase diagram

    1Select a X-Y (rectangular) graph and one composition variable: X(SiO2)

    Calculation of the CaO-SiO2 binary phase diagram T(C) vs. X(SiO2)

    2Press Next >> to define the composition, temperature and pressure.

    3Set the Temperature as Y-axis and enter its limits.

    4Set the Pressure at 1 atm.

    FactSage 36 2010Montreal

    6Press OK to return to the Menu window.

    5Set the composition

    [mole fraction X(SiO2)] asX-axis and enter its limits.

    C l l ti f th h di d hi l t t

  • 8/22/2019 FactSage Overview

    37/77

    Calculation of the phase diagram and graphical output1Press Calculate>> to calculate the phase diagram.

    Note the effect of

    the I option: themiscibility gap is

    FactSage 37 2010Montreal

    2You can point and click tolabel the phase diagram.

    calculated.

    See the Figureslideshow for more featuresof the Figuremodule.

    CaSiO3(s2) + Ca3Si2O7(s)

    P d i di C SO O

  • 8/22/2019 FactSage Overview

    38/77

    Predominance area diagram: Cu-SO2-O2

    FactSage 38 2010Montreal

    Fe-Cr-O Oxygen potential diagram

  • 8/22/2019 FactSage Overview

    39/77

    Fe-Cr-O2 Oxygen potential diagram

    FactSage 39 2010Montreal

    C O Al O SiO t h di

  • 8/22/2019 FactSage Overview

    40/77

    CaO-Al2O3-SiO2 ternary phase diagram

    FactSage 40 2010Montreal

    Al O C O SiO l th l j ti

  • 8/22/2019 FactSage Overview

    41/77

    Al2O3-CaO-SiO2 polythermal projection

    FactSage 41 2010Montreal

    Phase Diagram of a 6-component System Calculated from

  • 8/22/2019 FactSage Overview

    42/77

    Phase Diagram of a 6 component System Calculated fromThermodynamic Database

    Liquid

    Liquid + (Mn,Al)

    Liquid + (Mn,Al) + (Mg) + Al4MgY

    Liquid + (Mn,Al) + (Mg) + Al3Y

    Liquid + (Mn)Liquid + (Mg)

    Liquid + Al2Y + (Mg) + (Mn,Al)

    (Mg) + (Mn) + Al2Y

    re(C)

    600

    800Mg-Al-0.05Ce-0.5Mn-0.1Y-1Zn (wt%)

    FactSage 42 2010Montreal

    (Mg) + Al4MgY + (Mn,Al) + Gamma + Al

    11Ce

    3

    (Mg) + Al3Y + (Mn,Al) + Gamma + Al

    11Ce

    3

    (Mg) + Al 4MgY + (Mn,Al) + Al 11Ce3

    Mass pct. Al

    Temper

    at

    0 4 8 12 16 200

    200

    400

    C l l t d ti f th F O M O SiO O h di

  • 8/22/2019 FactSage Overview

    43/77

    Calculated section of the Fe2O3-MgO-SiO2-O2 phase diagram

    in air at SiO2/(MgO+Fe2O3+SiO2) = 20 weight %

    LOliv+LSp+LSp+Oliv+LSp+Oliv+MW

    Muan and Osborn[49]MW+L L

    Oliv+MW

    Oliv+MW+Spiv+Sp

    Oliv+Sp+L

    Oliv+MW+L

    ature,

    oC

    1600

    1700

    1800

    FactSage 43 2010Montreal

    Oliv+MW+LSp+Oliv+MWOliv+L

    Ambruz et al.[50]

    Correia and White[48]Oliv+MWSp+Oliv+MWOliv+MW+L

    Sp+Oliv+LSp+Oliv

    Ol

    Sp+L

    Sp+Py

    Sp+Tr

    Sp+Tr+Hem

    Sp+Py+Tr

    1375

    1339

    1247

    Py+Hem Py+Tr+Hem

    weight percent Fe2O3

    Tem

    per

    0 10 20 30 40 50 60 70 80

    1200

    1300

    1400

    AZ91 0 5C 0 5S 0 5C

  • 8/22/2019 FactSage Overview

    44/77

    AZ91 + 0.5Ca + 0.5Sr + 0.5Ce,

    Equilibrium cooling

    FactSage 44 2010Montreal

  • 8/22/2019 FactSage Overview

    45/77

    Liqu#1

    Liqu#1HCP#1 HCP#1 HCP#1HCP#1

    88.5 Mg + 9 Al + Zn + 0.5 Ca +

    01

    03

    Plotting outputs of Equilib

    FactSage 45 2010Montreal

    Al11Ce3(s) Al11Ce3(s) Al11Ce3(s)LC15#1 LC15#1 LC15#1

    ama

    D13 D13 D13

    T(C)

    log10(gram

    )

    200 300 400 500 600 700

    -03

    -01

    Scheil cooling

  • 8/22/2019 FactSage Overview

    46/77

    LiquidHCP

    'Al12Mg17'

    340.74oC

    0

    0.5

    1.0

    1.5

    2.0

    g

    AZ91 alloy(0.25 wt.% Mn + 50 ppm Fe + 0.1 wt.% Ce)

    Scheil-Gulliver cooling

    i.e. nodiffusion in solidphases; full diffusion in

    the liquid solution

    Final solidification at340.74C

    FactSage 46 2010Montreal

    'Al8Mn5''Al11Mn4'

    Al11Ce3

    Phi

    'Al4Mn'

    CeZn2Al2

    Temperature (oC)

    log10

    (wt.%)

    200 250 300 350 400 450 500 550 600 650 700

    -4.0

    -3.5

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5(102C lower than equ. cooling!)

    Al12Mg17 forms athigher T and in largerproportion

    Scheil Cooling (solidification) of AZ31 alloy

  • 8/22/2019 FactSage Overview

    47/77

    Alpha-Mg

    ase(wt%)

    60

    70

    80

    90

    100

    - AZ31 Alloy

    Solidification path calculation

    FactSage 47 2010Montreal

    Microstructure of asMicrostructure of as--cast AZ31cast AZ31

    Liquid

    Mg17Al12PHI

    Temperature,o

    C

    amountofe

    achph

    300 350 400 450 500 550 600 650 700

    0

    10

    20

    30

    40

    50

    Scheil Cooling calculation

    Eutectic g en r e

    Scheil Cooling (solidification) of AZ31 alloy

  • 8/22/2019 FactSage Overview

    48/77

    cent

    30

    40

    50

    (B)Eutectic

    (A)

    Mg Dendrite

    BB AA

    - AZ31 Alloy

    FactSage 48 2010Montreal

    Liquid - Al

    Liquid - Zn

    alpha Mg - Al

    alpha Mg - Zn

    Temperature, oC

    weig

    htpe

    300 350 400 450 500 550 600 650 700

    0

    10

    20

    ((A)A)

    ((B)B)Compositional change ofdendrites & eutectic area

    Solidification software

  • 8/22/2019 FactSage Overview

    49/77

    Solidification software(extended Scheil cooling)

    Scheil cooling + post equilibration of Scheil microstructure AZ91 alloy (0.25 wt.% Mn)

    Trackingmicrostructureconstituents

    CONS. PHASE TOTAL AMT/gram

    1 1 Al8Mn5 5.2241E-04

    2 1 HCP 6.4599E+01

    2 2 Al8Mn5 2.8231E-01

    3 1 HCP 1.5644E+01

    3 2 Al11Mn4 1.4638E-01

    4 1 HCP 1.7084E+00

    4 2 Al4Mn 1.7892E-02

    Constituent 1 594.16 to 594.06 C

    Liq. -> Al8Mn5

    Constituent 2 594.06 to 524.15 C

    Liq. -> HCP + Al8Mn5

    Constituent 3 524.15 to 447.46 C

    Liq. -> HCP + Al11Mn4

    Constituent 4 447.46 to 431.74 C

    ->

    FactSage 49 2010Montreal

    Output :

    Solidificationtemperature of340.89C

    5 1 HCP 4.9213E+00

    5 2 Al12Mg17 1.1878E+01

    5 3 Al4Mn 2.6558E-02

    6 1 HCP 1.9669E-01

    6 2 Phi 4.0423E-01

    6 3 Al4Mn 1.7904E-05

    6 4 Al11Mn4 3.8196E-05

    7 1 HCP 2.4177E-02

    7 2 Tau 3.5706E-02

    7 3 Al11Mn4 1.4894E-06

    8 1 HCP 4.2084E-02

    8 2 MgZn 5.1501E-02

    8 3 Tau 2.1364E-02

    8 4 Al11Mn4 2.3786E-06

    .

    Constituent 5 431.74 to 364.34 C

    Liq. -> HCP + Al12Mg17 + Al4Mn

    Constituent 6 364.34 to 342.66 C

    Liq. -> HCP + Phi + Al4Mn + Al11Mn4

    Constituent 7 342.66 to 340.89 C

    Liq. -> HCP + Tau + Al11Mn4

    Constituent 8 340.89 C (isothermal)

    Liq. -> HCP + MgZn + Tau + Al11Mn4

    A Few Other FactSage Features

  • 8/22/2019 FactSage Overview

    50/77

    Open calculations

    Streams

    Customized output (XML)

    FactSage 50 2010Montreal

  • 8/22/2019 FactSage Overview

    51/77

    How a thermodynamic

    FactSage 51 2010Montreal

    evaluation/optimization

  • 8/22/2019 FactSage Overview

    52/77

    There are many kinds of chemical thermodynamic data for

    compounds and solutions: Calorimetric data:

    Heat capacity

    Solution calorimetry

    Enthalpy of mixing

    Vapour pressures

    FactSage 52 2010Montreal

    Solid/liquid/gas Phase diagrams (T-P-Composition)

    Chemical potentials or activities

    From electrochemical cells

    From phase equilibria (vapour pressures, isopiestic, )

    (and so on)

  • 8/22/2019 FactSage Overview

    53/77

    These diverse kinds of data are not independent of eachother, but are related through the GIBBS FUNCTIONS of

    FactSage 53 2010Montreal

    .

    For each phase (compound or solution):G = G(T, P, Composition)

  • 8/22/2019 FactSage Overview

    54/77

    ( )

    ( ),

    ( " ")

    GT

    T P CompositionH enthalpy or heat

    = 1

    ( )p

    P

    dHC heat capacity

    dT

    =

    ( )G

    S entropyT

    =

    Then:

    FactSage 54 2010Montreal

    When phases are in equilibrium:i (in phase ) = i (in phase ) for all components i= i (in phase )=

    (and so on)

    ,compos on

    , , ji T P n

    G

    n

    =

    (chemical potential of

    component i of a solution)i= (where ni = moles of i)

  • 8/22/2019 FactSage Overview

    55/77

    Therefore, in developing a database for amulticomponent chemical system, one assesses and

    evaluates ALL the data SIMULTANEOUSLY in order toobtain an optimal Gibbs function, G(T, P, Composition)for each phase.

    FactSage 55 2010Montreal

    The resultant database is then thermodynamically self-consistent.

    The optimized Gibbs functions are stored in the database(as sets of parameters).

    All thermodynamic properties and phase equilibria can thenbe calculated from these functions.

    1 A mathematical model for each solution phase based

  • 8/22/2019 FactSage Overview

    56/77

    1. A mathematical model for each solution phase based

    upon the structure of the solution. The simplestexample:A "regular" solution in which the molecules of each component are randomly distributed.

    ( ) ( )

    ( )

    1 1 2 2 3 3

    1 1 2 2 3 3

    12 1 2 23 2 3 31 3 1

    ln ln ln

    o o og molar x g x g x g

    RT x x x x x x

    x x x x x x

    = + + +

    + + + ++ + + +

    L

    L

    L

    where: xi = mole fraction of component i

    FactSage 56 2010Montreal

    gi = Gibbs function of pure component i

    ij = empirical parameter of the model

    In the present study, we have used more sophisticated models

    - Polynomial (Bragg-Williams)

    ij = k Lij (Xj Xi)

    k

    - "Modified Quasichemical Model" for liquid alloys- in order to take Short-Range-Ordering into account

    - "Compound Energy Formalism" for solid solutions

    - in order to take sublattices into account

  • 8/22/2019 FactSage Overview

    57/77

    2. Obtain the model parameters by simultaneous evaluationof all available data of all kinds (generally for 2- and 3-component systems.)

    12 , 23 , 31 ,

    3. Store parameters and use models to estimate properties of

    FactSage 57 2010Montreal

    -componen p ases us ng - an -componen parame ers.

    Mg

    Al Ce

    Mg,CeMg,Al

    Al,Ce

  • 8/22/2019 FactSage Overview

    58/77

    In our databases, many different models are used such as theModified Quasichemical Model which takes short-range-orderinginto account, and the Com ound Ener Formalism which takes the

    FactSage 58 2010Montreal

    crystallographic information into account. It is important always to

    use the model which takes into account the actual structure of thesolution. Otherwise, extrapolations and estimates of multicomponentdata from binary and ternary data may be seriously in error.

  • 8/22/2019 FactSage Overview

    59/77

    Some of the data critically evaluated andused in the modeling of the

    FactSage 59 2010Montreal

    2

    2 3 a e e

    2 3system, and comparison withcalculations from the resultant optimized

    database.

    Calculated Fe-Si-O phase diagram in equilibrium with iron1800

  • 8/22/2019 FactSage Overview

    60/77

    Slag1 + Slag2

    Slag + Cristobalite

    Slag + TridymiteSlag

    Zhao et al.

    Allen

    Schurmann

    Schuhman

    Bowen

    Greig

    1371oC

    1465oC

    1670oC 1723

    o

    C

    0.970.53

    0.44

    erature,

    oC1400

    1600

    1800

    FactSage 60 2010Montreal

    Olivine + Tridymite

    Olivine + Quartz

    Wustite + Olivine

    Wustite + Slag

    1188oC

    1205 C1187

    oC

    867oC

    0.370.22

    F

    e2SiO4

    mass SiO2/(FeO+SiO2)

    Te

    mp

    0 0.2 0.4 0.6 0.8 1

    800

    1000

    1200

    Calculated Fe-Si-O phase diagram in equilibrium with air

  • 8/22/2019 FactSage Overview

    61/77

    Slag1 + Slag2

    Slag + Cristobalite

    Slag

    Muan

    Greig

    1672oC

    1723oC

    1595oC

    0.330.96

    rature,

    C1600

    1700

    FactSage 61 2010Montreal

    Slag + Tridymite

    Spinel + Tridymite

    Hematite + Tridymite

    Spinel + Slag

    1389oC

    1444oC

    1465oC

    0.17

    mass SiO2/(Fe2O3+SiO2)

    Tem

    pe

    0 0.2 0.4 0.6 0.8 1

    1300

    1400

    1500

    Calculated Ca-Fe-O phase diagram in equilibrium with iron1800

  • 8/22/2019 FactSage Overview

    62/77

    Slag

    Lime + Slag

    Zhao et al.

    Abbatista

    Allen and Snow

    Larson

    Takeda

    Timucin

    1371oC

    rature,

    oC1400

    1600

    1800

    FactSage 62 2010Montreal

    Lime

    Wustite

    Ca2Fe2O5 + WustiteLime + Ca2Fe2O5

    Lime+Wustite

    Ca2Fe

    2O5

    1059oC

    1125oC

    0.760.16

    0.13

    0.67

    0.72

    mass FeO/(CaO+FeO)

    Tempe

    0 0.2 0.4 0.6 0.8 1

    800

    1000

    1200

    Calculated Ca-Fe-O phase diagram in equilibrium with air1700

  • 8/22/2019 FactSage Overview

    63/77

    Lime + Slag

    Sla +Hematite

    Slag

    Phillips and MuanHaraTakeda

    + Spinel

    Slag

    Lime 1438

    oC

    1443oC

    1595oC

    1389oC

    0.580.9

    rature,

    oC

    1300

    1400

    1500

    1600

    1700

    FactSage 63 2010Montreal

    Lime+Ca2Fe2O5

    Ca2Fe2O5

    CaFe2O4+Hematite

    CaFe4O7

    Ca2Fe2O5

    CaFe2O4

    + Hematite

    a2 e2 5 + ag

    + CaFe2O4

    CaFe4O

    7

    1157oC

    1220oC

    1216oC 0.79

    mass Fe2O3/(CaO+Fe2O3)

    Temp

    0 0.2 0.4 0.6 0.8 1

    900

    1000

    1100

    1200

    Calculated FeO-Al2O3 phase diagram in equilibrium with iron

    2200

  • 8/22/2019 FactSage Overview

    64/77

    Slag

    Slag + Corundum

    Slag + Spinel

    ElrefaieTurnockAtlas

    Fisher and HoffmanNovokhatskii et al.

    Hay et al.Rosenbakh et al.

    Oelsen and Heynert

    1335oC

    1783oC

    0.43

    0.70

    2054o

    C

    0.48

    rature,C

    1400

    1600

    1800

    2000

    FactSage 64 2010Montreal

    Wustite + SpinelSpinel + Corundum

    Spinel

    0.04

    mole Al2O3/(FeO+Al2O3)

    Te

    mp

    0 0.2 0.4 0.6 0.8 1

    600

    800

    1000

    1200

    Calculated Al-Fe-O phase diagram in equilibrium with air

    M d G 2054oC

  • 8/22/2019 FactSage Overview

    65/77

    Slag + Corundum

    Slag

    Spinel

    Spinel + Al2Fe2O6Corundum

    Spinel + Corundum

    Slag + Spinel

    Muan and GeeRichardsTurnockAtlas

    Corundum + Al2Fe2O6Hematite + Al2Fe2O6o

    1382oC

    1414oC

    1703oC

    0.75

    0.88

    0.48

    0.22

    2054 C

    1595o

    C

    0.16

    0.96

    rature,

    oC

    1400

    1600

    1800

    2000

    FactSage 65 2010Montreal

    Hematite

    Hematite + Corundum

    . .

    mole Al2O3/(Fe2O3+Al2O3)

    Te

    mp

    0 0.2 0.4 0.6 0.8 1

    600

    800

    1000

    1200

    Calculated Al-Fe-O phase diagram at 1500oC0

  • 8/22/2019 FactSage Overview

    66/77

    Spinel

    Corundum + Spinel

    Corund

    um

    Spinel + Slag SlaPO2,atm)

    -6

    -4

    -2

    FactSage 66 2010Montreal

    Corundum + Fe

    Spinel + Fe

    MayersRoiterMuan and Gee (after Roiter)

    Darken and Gurry (after Roiter)

    mole Fe/(Al+Fe)

    lo

    g10

    (

    0 0.2 0.4 0.6 0.8 1

    -14

    -12

    -10

    -8

    FeO-Fe2O3 phase diagram2000

    10-2

    10-4 1

  • 8/22/2019 FactSage Overview

    67/77

    T,

    K

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    Magnetite

    Hematite

    Wustite

    SlagFe-liq+Slag

    Fe-bcc+Slag

    Fe-fcc+Slag

    Fe-fcc+Wustite

    1702

    1801

    1667

    1644

    1818

    1863

    10

    10-6

    10-8

    10-4

    10-6

    1

    10-2

    10-10

    10-12

    10-6

    10-8

    [57]

    [58]

    FactSage 67 2010Montreal

    Weight % Fe2O

    3

    0 10 20 30 40 50 60 70 80 90 100

    800

    900

    1000

    1100

    FeO Fe2O

    3

    827

    10-12

    10-8

    10-10

    10-16

    10-28

    10-24

    10-16

    10-20

    [61]

    [63][62]

    [64]

    [65]

    [66]

    [67]

    [60]

    FeO-Fe2O3 phase diagram: Selected experimental points and calculated linesand invariant temperatures. Dashed lines are calculated oxygen isobars (bar).

    Fe O System

  • 8/22/2019 FactSage Overview

    68/77

    FactSage 68 2010Montreal

    Oxygen partial pressure for two-phase equilibria

    with magnetite in the Fe-O system.

  • 8/22/2019 FactSage Overview

    69/77

    FactSage 69 2010Montreal

    Experimental and calculated oxygen partial pressure oversingle-phase magnetite as a function of composition.

    Liquidus of the Ca-Fe-Si-O system in equilibrium with iron

  • 8/22/2019 FactSage Overview

    70/77

    0.6

    0.7

    0.8

    0.9

    0.1

    0.2

    0.3

    0.4

    SiO2

    Zhao et al.

    Allen and Show

    SiO2

    Calculated

    Bowen et al.

    SiO2

    SiO2

    Slag+SiO21650oC

    Grl et al.

    Temperatures between 1200C and 1650C

    FactSage 70 2010Montreal

    0.1

    0.2

    0.3

    0.4

    0.5

    0.10.20.30.40.50.60.70.80.9

    0.5

    0.6

    0.7

    0.8

    0.9

    CaO FeO weight fraction

    CaO FeO weight fraction

    CaO FeO weight fraction

    CaO FeO weight fraction

    Slag + Lime

    Slag + Ca2SiO4

    1650oC

    1400 oC

    1300 oC

    1200o

    C

    1300o

    C

    Slag

    Ca 3SiO 5

    Ca2SiO 4

    Ca 3Si2O7

    3

    Fe 2SiO 4

    Liquidus of the Ca-Fe-Si-O system in equilibrium with air

  • 8/22/2019 FactSage Overview

    71/77

    0.6

    0.7

    0.8

    0.9

    0.1

    0.2

    0.3

    0.4

    SiO2

    Phillips and Muan

    SiO2

    SiO2

    Zhao et al.

    Burdick

    Zhang et al.

    Calculated

    Temperatures between 1300C and 1450C

    FactSage 71 2010Montreal

    0.1

    0.2

    0.3

    0.4

    0.5

    0.10.20.30.40.50.60.70.80.9

    0.5

    0.6

    0.7

    0.8

    0.9

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    Sla

    g

    1300oC

    1350oC

    Ca 3SiO5

    Ca 2SiO4

    Ca 3Si2O7

    3

    Ca 2Fe2O5 CaFe2O4 CaFe4O7

    1450 oC

    Liquidus of the Al-Ca-Fe-O system in equilibrium with air

  • 8/22/2019 FactSage Overview

    72/77

    0.6

    0.7

    0.8

    0.9

    0.1

    0.2

    0.3

    0.4

    Al2

    O3

    Al2

    O3

    Al2

    O3

    Al2

    O3

    Calculated

    Dayal and Glasser

    Swayze

    Newkirk and Thwaite

    Al2

    O3

    Al2

    O3

    CaAl2O4

    CaAl4O7

    CaAl12O19

    At 1400C and 1500C

    FactSage 72 2010Montreal

    0.1

    0.2

    0.3

    0.4

    0.5

    0.10.20.30.40.50.60.70.80.9

    0.5

    0.6

    0.7

    0.8

    0.9

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    CaO Fe 2

    O3weight fraction

    Slag1500 oC

    1400 oC

    1500oC

    Ca2Fe 2O5CaFe 2O4 CaFe4O7

    Ca3Al2O6

    1400 oC

    The FACT OXIDE DATABASE

    Components

  • 8/22/2019 FactSage Overview

    73/77

    Components

    Major:(completely evaluated and modeled at all compositions andtemperatures)Al2O3 CaO FeO Fe2O3 MgO SiO2

    Secondary:extensivel evaluated, articularl with the ma or

    FactSage 73 2010Montreal

    components, and particularly over composition ranges of

    practical importance)B2O3 CrO Cr2O3 MnO Na2O NiO PbO Ti2O3TiO2 ZnO ZrO2

    Minor:

    (evaluated for some combinations with other components)As2O3 Cu2O K2O SnO

    The FACT OXIDE DATABASE

  • 8/22/2019 FactSage Overview

    74/77

    Liquid Solution

    Modeled for all oxide components

    Also: Non-oxide components (in dilute solution)

    S SO PO CO H O OH F Cl Br I

    FactSage 74 2010Montreal

    > 150 Solid Stoichiometric Compounds

    The FACT Oxide Database

  • 8/22/2019 FactSage Overview

    75/77

    Major Oxide Solid Solutions

    Spinel: (Al, Co2+, Co3+, Cr2+, Cr3+, Fe2+, Fe3+, Mg, Ni2+, Zn)

    [Al, Co2+, Co3+, Cr3+, Fe2+, Fe3+, Mg, Ni2+, Zn, ]2 O4

    Pyroxenes: (Ca, Fe2+, Mg)M2 (Fe2+, Fe3+, Mg, Al )

    M1 (Fe3+, Al, Si)B SiA O6

    Olivine: (Ca, Fe2+, Mg, Mn, Ni, Co, Zn) [Ca, Fe2+, Mg, Mn, Ni, Co, Zn] SiO4

    Melilite: (Ca)2 [Mg, Fe2+, Fe3+, Al, Zn] {Fe3+, Al, Si}2O7

    Monoxide: CaO - MgO - MnO - CoO - NiO - FeO

    FactSage 75 2010Montreal

    (+ Fe2O3 - Al2O3 - ZnO - Cr 2O3)

    -Ca2SiO4: -Ca2SiO4 ( + Fe2SiO4, Mg2SiO4, Mn2SiO4) -Ca2SiO4: -Ca2SiO4 ( + Fe2SiO4, Mg2SiO4, Mn2SiO4 , Pb2SiO4 , Zn2SiO4)

    Wollastonite: CaSiO3 ( + FeSiO3, MgSiO3, MnSiO3)

    Corundum: Al2O3 - Cr2O3 - Fe2O3

    Ilmenite: (Fe2+

    , Mg, Mn, Ti3+

    ) (Ti4+

    , Ti3+

    )O3 Pseudobrookite: (Fe2+, Mg, Mn, Ti3+) (Ti4+, Ti3+)2O5

    26 other solid solutions

    Summary of the FactSage Databases and their contents

  • 8/22/2019 FactSage Overview

    76/77

    Go to the FactSage main window, or towww.factsage.com and click onDocumentation

    FactSage 76 2010Montreal

    Corresponding Coupled Compound andSolution Databases

  • 8/22/2019 FactSage Overview

    77/77

    There are several FactSage-accessible solution databasessuch as FToxid, FTsalt, FTlite, FSstel, SGnobl, etc. (seeSummary of Databases for a complete listing), eachcontaining data for a group of systems (oxides, salts, light

    metals, steel, noble metals, etc.)

    For each of these solution databases there is a corres ondin

    FactSage 77 2010Montreal

    coupled pure compound database which contains data for all

    stoichiometric solid compounds which have been optimized tobe thermodynamically consistent with the data in thecorresponding solution database. If you select a solution from,for example, the FToxid solution database, and a compound

    from the corresponding coupled FToxid compound database,you are assured of thermodynamic consistency because thetwo data sets were obtained by simultaneousevaluation/optimization.