68
ื—ื™ืœ ื”ืื•ื•ื™ืจโ€“ ืขื ืฃ ื”ื ืขื”, ื™ื•ื ืขื™ื•ืŸ ื”- 13 ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–, ื”ื˜ื›ื ื™ื•ืŸ, 6.11.2014 F100 Turbine Exhaust Case Stress Analysis of Strut Cracks Cap. Shani Eitan, Propulsion Branch, IAF

F100 Turbine Exhaust Case

  • Upload
    others

  • View
    16

  • Download
    1

Embed Size (px)

Citation preview

Page 1: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

F100 Turbine Exhaust Case

Stress Analysis of Strut Cracks

Cap. Shani Eitan, Propulsion Branch, IAF

Page 2: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Background

โ€ข Turbine Exhaust Case (TEC) is a part of Low Pressure Turbine (LPT) module of the F100-220/220E-DPI engine.

โ€ข TECs consist of 8 Struts that straighten the turbine exit flow.

โ€ข Some of the struts also contain oil lines for the bearings.

โ€ข IAF has experienced a high number of cracks on the Strutsโ€™ airfoils, that were beyond T.O. limit.

Page 3: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Page 4: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Objectives

โ€ข To estimate the risk of flying with a cracked strut

โ€ข The objectives of this investigation is to calculate:โ€ข Critical crack length ๐‘Ž๐‘๐‘Ÿโ€ข Static Margin of safety (M.S.) as a function of crack length (a)

๐‘€. ๐‘†. ๐‘Ž =๐œŽ๐‘ข๐œŽโˆ’ 1, ๐œŽ = ๐‘“ ๐ฟ๐‘‚๐ด๐ท๐‘†, ๐‘Ž

แ‰š๐‘Ž๐‘๐‘Ÿ = ๐‘Ž๐‘€.๐‘†.=0

= ?

Page 5: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Challenges

โ€ข Analysis:โ€ข Stress calculation of a cracked part (not crack propagation,

not fatigue, but margin of safety at next flight).

โ€ข Boundary conditions

โ€ข Thermal loads

โ€ข Exotic material

โ€ข Aerodynamic cross section

โ€ข Operator stand point of view (not a designer):โ€ข Design is unknown

โ€ข Loads are unknown (at least initially)

โ€ข Material properties

โ€ข Dimensions

Page 6: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsFree Body Diagram

L โ€“ Lift โ€“ aerodynamic forceD โ€“ Drag โ€“ aerodynamic forceM โ€“ Moment/torque โ€“aerodynamic loadT โ€“ Temperature of turbine exit flow โ€“ thermal condition

V โ€“ Velocity of turbine exit flow

- Fixed displacement boundary condition

Page 7: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsStrut Airfoil Mechanical Properties@ ~1300๐‘‚F

โ€ข Strut Airfoil is made of Nickel INCONEL alloy AMS5599

โ€ข Youngโ€™s Modulus is E=200GPa

โ€ข Ultimate strength is ๐œŽ๐‘ข =827Mpa

โ€ข Thermal Expansion coefficient

โ€ข is ๐›ผ = 13.410โˆ’6

๐พ

Page 8: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

V

Page 9: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Velocity represented by Flow Rate formula:

โ€ข Flow Rate at the Exhaust is the sum of core air flow rate and fuel flow rate:

แˆถ๐‘š๐‘’๐‘ฅ = ฯ โˆ™ A๐‘’๐‘ฅ โˆ™ V โ†’ V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

แˆถ๐‘š๐‘’๐‘ฅ = แˆถ๐‘š๐‘ + แˆถ๐‘š๐‘“

Page 10: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Core air flow rate is calculated using F100-220 core-fan bypass ratio:

โ€ข Known F100 flow rates (fuel including A/B, Engine Inlet Air flow):

ฮฒ =แˆถ๐‘š๐‘

แˆถ๐‘š๐น= 0.61

แˆถ๐‘š๐‘“ = 49,964๐‘๐‘โ„Ž

แˆถ๐‘š๐ธ = 225๐‘๐‘๐‘ 

V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

Page 11: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Core air flow rate is calculated using F100-220 core-fan bypass ratio:

โ€ข Fuel flow in seconds:

แˆถ๐‘š๐‘

แˆถ๐‘š๐ธ โˆ’ แˆถ๐‘š๐‘= 0.61 โ†’ แˆถ๐‘š๐‘ =

0.61

1.61แˆถ๐‘š๐ธ =

0.61

1.61โˆ™ 225 = 86๐‘๐‘๐‘ 

แˆถ๐‘š๐‘“ = 49,964๐‘™๐‘

60 โˆ™ 60 โˆ™ ๐‘ = 14๐‘๐‘๐‘ 

V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

Page 12: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Gas flow rate thru the TEC can therefore be calculated:

โ€ข Cross Sectional Area of the flow thru the TEC:

แˆถ๐‘š๐‘’๐‘ฅ = แˆถ๐‘š๐‘ + แˆถ๐‘š๐‘“ = 86 + 14 = 100๐‘™๐‘

๐‘ ๐‘’๐‘

V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

Aex = ฯ€ ๐‘…๐‘œ2 โˆ’ ๐‘…๐‘–

2 = ฯ€ 15.6742 โˆ’ 6.3852 = 643.7 ๐‘–๐‘›2

Page 13: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Gas density in the TEC area:

V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

ฯ =๐‘ƒ

ว๐‘… โˆ™ ๐‘‡=

44.8 ๐‘ƒ๐‘†๐ผ

271๐ฝ

๐พ๐‘” โˆ™ ๐พโˆ™ 1362๐‘‚๐น

=308,885.1

๐‘

๐‘š2

271๐ฝ

๐พ๐‘” โˆ™ ๐พโˆ™ 1012K

= 1.126๐‘˜๐‘”

๐‘š3

ฯ = 4.068 โˆ™ 10โˆ’5๐‘™๐‘

๐‘–๐‘›3

Page 14: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Velocity

โ€ข Velocity at TEC inlet can therefore be calculated:

V =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ

๐‘‰ =แˆถ๐‘š๐‘’๐‘ฅ

ฯ โˆ™ A๐‘’๐‘ฅ=

100

643.7 โˆ™ 4.068 โˆ™ 10โˆ’5= 3,818

๐‘–๐‘›

๐‘ ๐‘’๐‘= 97

๐‘š

๐‘ ๐‘’๐‘

Page 15: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift L =

1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

L

Page 16: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Surface Area of the airfoil:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

S =๐‘ ๐‘1 + ๐‘2

2=225.8 โˆ™ 221 + 163.3

2= 43,388 ๐‘š๐‘š2 = 67.25 ๐‘–๐‘›2

Page 17: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Lift coefficient ๐ถ๐ฟ of a finite airfoil the sum of the 2D cross sectional ๐ถ๐‘™:

โ€ข Whereas, c(y) is the cross section length at each section of the airfoil:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐ฟ =1

๐‘†เถฑ0

๐‘

๐ถ๐‘™ ๐‘ฆ โˆ™ ๐‘ ๐‘ฆ ๐‘‘๐‘ฆ

๐‘ ๐‘ฆ =๐‘2 โˆ’ ๐‘1

๐‘๐‘ฆ + ๐‘1 = โˆ’0.225๐‘ฆ + 221

Page 18: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข ๐ถ๐‘™ ๐‘ฆ is the 2D cross sectional lift coeff. At each section. A 2 sections interpolation will be used :

๐ถ๐‘™ is calculated using lift-line theorem:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™ ๐‘ฆ =๐ถ๐‘™2 โˆ’ ๐ถ๐‘™1

๐‘๐‘ฆ + ๐ถ๐‘™1

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

Page 19: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข 2D cross section airfoil line z(x) was derived from a SolidWorks model.

โ€ข SolidWorks model was constructed using a swept protrusion of the 2 cross sections:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

Page 20: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข 2D cross section airfoil line z(x) was interpolated using O(5) order level:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

Page 21: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข 2D cross section airfoil line z(x) was interpolated using O(5) order level:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

=5E-10x5-3E-07x4 +8E-05x3-0.0087x2 +0.6387x + 0.211

Rยฒ =0.9957

-10

0

10

20

30

40

50

050100150200250

Y1

Y2

YM

Poly. (YM)

Page 22: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข 2D cross section airfoil line ๐‘‘๐‘ง

๐‘‘๐‘ฅ 1was analytically

calculated:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

๐‘ง1 ๐‘ฅ

= 5 โˆ™ 10โˆ’10๐‘ฅ5 โˆ’ 3 โˆ™ 10โˆ’7๐‘ฅ4 + 8 โˆ™ 10โˆ’5๐‘ฅ3 โˆ’ 0.0087๐‘ฅ2 + 0.6387๐‘ฅ + 0.211

๐‘‘๐‘ง

๐‘‘๐‘ฅ1

= 25 โˆ™ 10โˆ’10๐‘ฅ4 โˆ’ 12 โˆ™ 10โˆ’7๐‘ฅ3 + 24 โˆ™ 10โˆ’5๐‘ฅ2 โˆ’ 0.0174๐‘ฅ + 0.6387

Page 23: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Integrals were calculated using transformation x-๐œƒ, and using MAPLE:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

แˆป๐‘ฅ = ฮค๐‘ 2 (1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ

เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ = โˆ’2.93

Page 24: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Integrals were calculated using transformation x-๐œƒ, and using MAPLE:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

Page 25: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Integrals were calculated using transformation x-๐œƒ, and using MAPLE:

โ€ข Angle between two cross sections was measured:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 +1

๐œ‹เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1

๐‘๐‘œ๐‘ ๐œ— โˆ’ 1 ๐‘‘๐œƒ

๐ถ๐‘™1 = 2๐œ‹ ๐›ผ1 โˆ’ 2.93

๐ถ๐‘™2 = 2๐œ‹ ๐›ผ2 โˆ’ 2.72

๐›ผ1 โˆ’ ๐›ผ2 = 110 = 11 โˆ™๐œ‹

180= 0.192.

Page 26: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Turbine exit velocity angle of attack at the last rotor stage is relatively small:

โ€ข ๐›ผ 1 โ‰ˆ 0๐‘œ

โ€ข ๐›ผ 2 โ‰… 10๐‘œ ๐‘š๐‘’๐‘Ž๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‘

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐›ผ1, ๐›ผ2

Page 27: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

LoadsCalculation of Lift

โ€ข Lift force acting on the strut airfoil can now be calculated:

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ

๐ถ๐ฟ =1

๐‘†เถฑ0

๐‘

๐ถ๐‘™ ๐‘ฆ โˆ™ ๐‘ ๐‘ฆ ๐‘‘๐‘ฆ =1

43,388เถฑ

0

225.8

0.0112๐‘ฆ โˆ’ 18.41 โˆ’0.225๐‘ฆ + 221 ๐‘‘๐‘ฆ = 17.508

L =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ฟ =

1

2โˆ™ 1.126 โˆ™ 972 โˆ™ 0.043388 โˆ™ 17.508 = 4,023 ๐‘

Page 28: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads interim summery

L=4000 N

V=97 m/s

D

M

T=1300F

Page 29: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Drag force Calculation

D

Page 30: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Drag force Calculation

โ€ข Drag force on a finite wing is expressed using the formula:

D =1

2๐œŒ๐‘‰2๐‘†๐ถ๐ท

Page 31: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Drag force Calculation

โ€ข Drag coefficient on a finite wing is expressed using the formula:

๐ถ๐ท =8

๐œ‹2๐ถ๐ฟ2

๐œ‹๐ด๐‘…; ๐ด๐‘… =

๐‘2

๐‘†

Page 32: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Drag force Calculation

โ€ข Drag force can be therefore calculated:

D =4๐œŒ ๐‘‰๐‘†๐ถ๐ฟ

2

๐‘2๐œ‹3=4 โˆ™ 1.126 97 โˆ™ 0.043388 โˆ™ 17.5 2

0.2252๐œ‹3= 15,500 ๐‘

Page 33: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

M

Page 34: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment acting on a finite wing is expressed using lift-line theorem according to the formula:

M =1

2๐œŒ๐‘‰2๐ถ๐‘€เถฑ

0

๐‘

๐‘2(๐‘ฆแˆป๐‘‘๐‘ฆ

Page 35: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment coefficient of a finite wing formula:

๐ถ๐‘€ =1

0๐‘๐‘2(๐‘ฆแˆป๐‘‘๐‘ฆ

เถฑ

0

๐‘

แˆป๐‘(๐‘ฆ 2๐ถ๐‘š(๐‘ฆแˆป๐‘‘๐‘ฆ

Page 36: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment coefficient as a function of location, using 2 cross section interpolation method:

๐ถ๐‘š ๐‘ฆ =๐ถ๐‘š2 โˆ’ ๐ถ๐‘š1

๐‘๐‘ฆ + ๐ถ๐‘š1

Page 37: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment coefficient of 2D cross sections:

๐ถ๐‘š1,2 =1

2เถฑ

0

๐œ‹๐‘‘๐‘ง

๐‘‘๐‘ฅ1,2

๐‘๐‘œ๐‘ 2๐œ— โˆ’ ๐‘๐‘œ๐‘ ๐œ— ๐‘‘๐œƒ

Page 38: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment integrals were calculated using MAPLE:

Page 39: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment integrals were calculated using MAPLE:

๐ถ๐‘š ๐‘ฆ = โˆ’0.0033๐‘ฆ + 0.6416

๐ถ๐‘€ =1

0๐‘๐‘2(๐‘ฆแˆป๐‘‘๐‘ฆ

เถฑ

0

๐‘

๐‘ ๐‘ฆ 2๐ถ๐‘š ๐‘ฆ ๐‘‘๐‘ฆ = 0.999

Page 40: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads Aerodynamic Moment Calculation

โ€ข Aerodynamic moment can now be calculated:

M =1

2๐œŒ๐‘‰2๐ถ๐‘€เถฑ

0

๐‘

๐‘2 ๐‘ฆ ๐‘‘๐‘ฆ = 58.4 ๐‘ โˆ’๐‘€

Page 41: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Loads summery

L=4000 N

V=97 m/s

D=15500 N

M=58N-M

T=1300F

Page 42: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress Analysis

โ€ข Sress analysis (calculation of ๐œŽแˆป was conducted using 3 different methods.

โ€ข Numerical analysis:โ€ข Finite Elements Method (FEM) โ€“ Ansys Workbench

โ€ข Analytical method:โ€ข Nominal stress of degraded moments of inertia due to

crack presence in a critical cross section.

โ€ข Stress intensity factor K1C method

Page 43: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Physical Model

FREE AFT ENDFREE OUTER

SURFACE

FREE INNER

SURFACE

FIXED SURFACE END

(ATTACHED TO LPT)

โ€ข TEC is attached (fixed) to the aft outer perimeter of the LPT. Rest of the surfaces are free.

โ€ข Struts are attached (fixed) to the inner and outer case surfaces.

โ€ข Struts โ€œfeelโ€ air flow aerodynamic forces and high temprature

Page 44: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model -Geometry

FREE AFT ENDFREE OUTER

SURFACE

FREE INNER

SURFACE

FIXED SURFACE END

(ATTACHED TO LPT)

โ€ข One TEC strut was modeled in Solidworks, attached to inner and outer platforms representing the case.

โ€ข One strut model saves computational memory in comparison to a full TEC model.

FIXED SURFACE END

(ATTACHED TO LPT)

Page 45: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model โ€“ Crack Geometry

crackโ€ข Crack width 0.1mm was modeled.

โ€ข Several different crack lengths: 0โ€, 0.5โ€, 1.5โ€, 3.0โ€

Page 46: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model - Mesh

โ€ข SOLID187 3D Element was used. Element size 0.1 mm in crack and 1 mm in near crack surface.

Page 47: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model โ€“ Loads and Boundary Condition

FIXED

FIXED

LOADS

Page 48: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model โ€“Material Properties

Page 49: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model โ€“ Results

๐œŽ = 163๐‘€๐‘๐‘ŽM.S.= +4.07

No Crack (a=0โ€)

๐œŽ = 415๐‘€๐‘๐‘ŽM.S.= +0.99

a=0.50โ€

๐œŽ = 538๐‘€๐‘๐‘ŽM.S.= +0.54

a=1.50โ€

Page 50: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisFEM โ€“ Computational Model โ€“ Results

๐œŽ = 855๐‘€๐‘๐‘ŽM.S.= -0.02

a=3.0โ€

Page 51: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Stress in the strut consists of different loads and stress conditions (moment, shear, bending, torque). And therefore would be calculated with VON-MISES formula:

๐œŽ = ๐œŽ๐ตโˆ’๐ฟ๐ท + ๐œŽ๐‘‡2 + 3 ๐œ๐ฟ๐ท + ๐œ๐‘€

2

๐œŽ = ๐œŽ2 + 3๐œ2

Page 52: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Strut was considered as a fixed supported beam under a uniform load consists of lift, drag, moment and thermal stress

Page 53: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Geometric properties were calculated using a CAD model:

I๐‘ฅ๐‘ฅ1 = 67497.36๐‘š๐‘š4

I๐‘ฆ๐‘ฆ1 = 994338.67๐‘š๐‘š4

๐ฝ = 994338.67๐‘š๐‘š4

Area = 425.08 millimeters^2

I๐‘ฅ๐‘ฅ2 = 142470.71๐‘š๐‘š4

I๐‘ฆ๐‘ฆ2 = 2259760.67๐‘š๐‘š4

๐ฝ = 2259760.67๐‘š๐‘š4

Area = 561.99 millimeters^2

Page 54: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Uniform force is the vector sum of Lift and drag:

โ€ข Maximum bending moment and shear is at the smallest section profile (least area and inertia):

๐‘ค =๐ฟ2 + ๐ท2

๐‘=

40002 + 155002

225.8= 71

๐‘

๐‘š๐‘š

๐‘€ =๐‘ค๐‘2

12=71 โˆ™ 225.82

12= 301,665 ๐‘ โˆ’ ๐‘š๐‘š

V =๐‘ค๐‘

2=71 โˆ™ 225.8

2= 8016 ๐‘

Page 55: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Maximum stresses due to lift and drag at the beam are:

โ€ข Torque due to aerodynamic moment:

๐œŽ๐ต =๐‘€

๐ผ๐‘ฅ๐‘ฅ๐‘ง =

301665 โˆ™ 21

67500= 93 ๐‘€๐‘ƒ๐‘Ž

๐œ๐ฟ๐ท =V

๐ด=8016

425.8= 18.825 ๐‘€๐‘ƒ๐‘Ž

๐œ๐‘€ =๐‘‡๐‘Ÿ

๐ฝ=58400 โˆ™ 80

994338.67= 4.7 MP๐‘Ž

Page 56: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Thermal stress is due to strutโ€™s thermal expansion:

โ€ข Inner and outer diameters of the TEC also expand, and therefore compensate the strutโ€™s expansion:

๐œ€ =โˆ†๐‘™

๐‘™= ๐›ผโˆ†๐‘‡

Page 57: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Strut potential expansion is:

โ€ข Outer case perimeter expansion:

โˆ†๐‘™ = 225.8 โˆ™ 13.4 โˆ™ 10โˆ’6 โˆ™ 1012 =3mm

๐œ€ =โˆ†๐‘ƒ

๐‘ƒ= ๐›ผโˆ†๐‘‡

๐‘ƒ1 = ๐‘ƒ0 ๐›ผโˆ†๐‘‡ + 1 = 2๐œ‹๐‘…0 ๐›ผโˆ†๐‘‡ + 1

๐‘ƒ1 = 2๐œ‹ โˆ™ 15.674 13.4 โˆ™ 10โˆ’6 โˆ™ 1012 + 1 = 99.81"

Page 58: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Outer Case radius expansion is therefore:

โ€ข Inner case is calculated the same way = 2.2mm

๐‘…1 =๐‘ƒ12๐œ‹

โˆ†๐‘… = ๐‘…1 โˆ’ ๐‘…0 = 5.23๐‘š๐‘š

Page 59: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Expansion superposition summery:Outer case expands 5.23

mm

Inner case expands 2.20 mm

The gap between inner and outer case expands 3.03 mm

The strut expands 3.00 mm

The strut expands additional 0.03 mm due to cases

tension

Page 60: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach

โ€ข Thermal stress due to 0.03mm expansion is:

โ€ข Total stress can now be calculated using VON-MISES criteria:

๐œŽ๐‘‡ = ๐ธ๐œ€ = 200,000 โˆ™0.03

225.8= 26 MPa

๐œŽ = 26 + 93 2 + 19 + 5 2 = 121 MP๐‘Ž

Page 61: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach โ€“ classic approach

โ€ข Stress rise due to loss of geometrical stiffness:

๐‘Ž โ†‘ โ‡’ ๐ด โ†“ , ๐ผ๐‘ฅ๐‘ฅ โ†“ โ‡’ ๐œŽ =๐‘€

๐ผ๐‘ฅ๐‘ฅ๐‘ง โ†‘ , ๐œ =

๐‘‰

๐ดโ†‘

Page 62: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach โ€“ classic approach

โ€ข Stress rise due to loss of geometrical stiffness:

CrackLength [mm]

CrackLength [inch]

CrackLength

[cm]

Cross section area A [mm^2]

Ixx [mm^4]Bending

Stress riseShear Stress

rise

00.00056214247100

12.70.501.27545.281360895%3%

25.41.002.54528.8612800211%6%

38.11.503.81512.5611867220%10%

50.82.005.08496.210880131%13%

63.52.506.35479.849893044%17%

76.23.007.62463.488905960%21%

88.93.508.89447.127918880%26%

Page 63: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

M.S. VS Crack length (a)

M.S

. (M

argi

n o

f Sa

fety

)

CmInch Crack

length (a)

Page 64: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach โ€“ Fracture Mechanics

โ€ข In Fracture Mechanics theorem we define a critical stress intensity factor K1C.

โ€ข K1C is a material property โ€“ for INCONEL 625 itโ€™s 59 Mpa ๐‘š.

โ€ข The stress intensity is calculated using the formula:

K1 = ฮฒฯƒ ฯ€a

โ€ข The Margin of Safety would therefore be

๐พ1๐‘K1

โˆ’ 1

Page 65: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach โ€“ Fracture Mechanics

โ€ข Definition of ๐‘Ž and ๐›ฝ

ฮฒd/ba/dBda[inch]

1104.34.30

1.0210.124.34.30.5

1.0510.234.34.31

1.0810.354.34.31.5

1.1310.464.34.32

1.2810.584.34.32.5

1.510.74.34.33

Page 66: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Stress AnalysisAnalytical Approach โ€“ Fracture Mechanics

โ€ข M.S. calculations:

M.S.

๐พ1๐‘K1

โˆ’ 1K1CK1ฮฒฯƒ[MPa]a[m]a[inch]

-590.0112100

1.3934855924.71.021210.01270.5

0.6440945935.91.051210.02541

0.3068245945.11.081210.0381.5

0.0802455954.61.131210.05082

-0.147035969.21.281210.06352.5

-0.335555988.81.51210.07623

Page 67: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Summery of Results

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

M.S

.

a [inch]

Results Summery - 3 methods of crack M.S.

Classic Fracture Mechanics FEA

Page 68: F100 Turbine Exhaust Case

6.11.2014, ื”ื˜ื›ื ื™ื•ืŸ, ืœืžื ื•ืขื™ ืกื™ืœื•ืŸ ื•ื˜ื•ืจื‘ื™ื ื•ืช ื’ื–13-ื™ื•ื ืขื™ื•ืŸ ื”, ืขื ืฃ ื”ื ืขื”โ€“ื—ื™ืœ ื”ืื•ื•ื™ืจ

Conculsion

โ€ข Construction of a decision making tool for fleet managers having a logistic maintenance issue.

โ€ข Calculation of M.S. using three different methods

โ€ข Results show good correlation between methods in range of 1โ€-2โ€ crack length

โ€ข M.S.=0 in a=3โ€ according to FEM method

โ€ข M.S.=0 in a=2.2โ€ according to K1C method

โ€ข Engine manufacturer approved a temporary limit of 3โ€ as long as a visual inspection is done after/before every flight

โ€ข Investigation helped in keeping availability of the fleet until logistics was solved (procurement and repair implemented)