26
27. 7. 2003 1 FII–13 Magnetické pole způsobené proudy

F II– 13 Magnetic ké pole způsobené proudy

  • Upload
    sorcha

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

F II– 13 Magnetic ké pole způsobené proudy. Hlavní body. Síly působící na pohybující se náboje Biot-Savart ův zákon Amp érův zákon Výpočet některých magnetických polí. Síla působící na elektrický náboj v pohybu I. - PowerPoint PPT Presentation

Citation preview

Page 1: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 1

FII–13 Magnetické pole způsobené proudy

Page 2: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 2

Hlavní body

• Síly působící na pohybující se náboje

• Biot-Savartův zákon

• Ampérův zákon

• Výpočet některých magnetických polí

Page 3: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 3

Síla působící na elektrický náboj v pohybu I

• Protože proudy jsou pohybující se elektrické náboje, platí pro proudy vše, co platí pro náboje v pohybu.

• Síla , kterou působí magnetické pole o indukci na náboj q, pohybující se rychlostí je popsána Lorentzovým vztahem:

)( BvqF

F

B

v

Page 4: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 4

Síla působící na elektrický náboj v pohybu II

• Obecněji se Lorentzovou silou nazývá síla, která zahrnuje společné působení elektrických a magnetických sil:

• Tento vztah může být považován za definici elektrických a magnetických sil a může být počátečním bodem pro jejich studium.

)]([ BvEqF

Page 5: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 5

Síla působící na elektrický náboj v pohybu III

• Lorentzova síla je centrem celého elektro- magnetismu. Vrátíme se k ní probráním několika příkladů a zjistíme, že pomocí ní lze jednoduše vysvětlit téměř všechny elektromagnetické jevy.

• Nyní si ukážeme, jak je magnetické pole generováno kvantitativně.

Page 6: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 6

Biot-Savartův zákon I

• Existuje mnoho analogií mezi elektrostatickým a magnetickým polem a nabízí se otázka, zda existuje vztah analogický Coulombovu zákonu, který by popisoval, jak na sebe působí dva krátké rovné kousky vodičů, protékaných proudem. Takový vztah existuje ale právě jeho složitost je důvodem pro rozdělení problémů magnetismu na generaci polí a jejich působení.

Page 7: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 7

Biot-Savartův zákon II

• Vše, co je potřebné pro nalezení sil, kterými na sebe působí dva makroskopické vodiče libovolné velikosti a tvaru je aplikovat princip superpozice a integrovat.

• V obecném případě se takovým způsobem musí postupovat, ale v případě speciální symetrie existuje analogická pomůcka, jako je Gaussova věta elektrostatiky.

Page 8: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 8

Magnetické pole přímého vodiče protékaného proudem I

• Mějme nekonečný vodiči, který ztotožníme s osou x. Proud I poteče ve směru +x. Nalezneme magnetickou indukci v bodě P [0, a].

• Základem je použití principu superpozice. Vodič rozdělíme na malé kousíčky stejné délky dx a sečteme příspěvek každého z nich.

Page 9: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 9

Magnetické pole přímého vodiče II

• Příspěvek jednoho kousíčku zjistíme použitím Biot-Savartova zíkona:

• Protože oba vektory, které se vektorově násobí, leží v rovině x, y . , bude nenulová jen z-tová složka , což vede ke značnému zjednodušení. Vidíme, odkud se bere pravidlo pravé ruky!

30

4xP

xP

r

rxdIBd

B

Page 10: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 10

Magnetické pole přímého vodiče III

• Kousek vodiče délky dx o souřadnici x tedy přispívá:

• Zde r je vzdálenost dx od P a je úhel mezi spojnicí dx s P a osou x. Musíme vyjádřit všechny proměnné jako funkci jedné z nich, například .

20 sin

4 r

dxIdBz

Page 11: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 11

Magnetické pole přímého vodiče IV

• Pro r dostáváme:

a pro x a dx (- je zde proto, abychom dostali pro malé záporná x!):

2

2

2

sin1sin

arar

2sincotcot

dadxax

a

x

Page 12: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 12

Magnetické pole přímého vodiče V

• Takže konečně dostáváme:

Závěry, vyplývající ze symetrie vysvětlíme později!

a

Id

a

I

a

daIBz

2sin

4

sin

sinsin

4

0

0

0

022

20

Page 13: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 13

Ampèrův zákon

• Podobně jako v případě elektrostatického pole existuje v magnetismu zákon, který může výrazně usnadnit výpočty v případech speciální symetrie a může být také použit pro vysvětlení fyzikálních myšlenek v mnoha důležitých situacích.

• Je to Ampérův zákon, který dává do souvislosti křivkový integrál přes uzavřenou křivku s proudy, které tato křivka obemyká.

B

Page 14: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 14

Magnetické pole přímého vodiče protékaného proudem VI

• Podobně jako při použití Gaussovy věty, je Ampérův zákon jednoduše použitelný, podaří-li se najít vhodnou integrační křivku, která je všude tečná k , čili siločáru, na níž je navíc B všude konstantní. Potom lze B vytknout před integrál, který je jednoduše délkou integrační cesty – uzavřené křivky.

B

Page 15: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 15

Magnetické pole přímého vodiče protékaného proudem VII

• Mějme přímý dlouhý vodič protékaný proudem I.

• Předpokládáme, že B(r) je osově symetrická a vodič je přirozeně osou symetrie.

• Siločáry jsou kružnice a tedy naše integrační cesta bude kružnice s poloměrem r, která prochází bodem, kde chceme zjistit velikost magnetického pole. Potom:

r

IrB

IrrB

2)(

)(2

0

0

Page 16: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 16

Magnetické pole přímého vodiče protékaného proudem VIII

• Vektory magnetické indukce jsou tečné ke kružnicím, jejichž centrem je vodič, které jsou tudíž siločáramy, a klesá s první mocninou vzdálenosti.• To je situace podobná jako u elektrostatického

pole dlouhého nabitého vodiče. Ovšem siločáry elektrického pole jsou radiální, zatímco siločáry pole magnetického jsou kružnice, tedy jsou navzájem v každém bodě kolmé.

Page 17: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 17

Magnetické pole ve středu čtvercového závitu protékaného

proudem I

• Použitím Ampérova zákona jsme dostali stejný výsledek podstatně jednodušeji. Jednalo se ale o speciální případ.

• Zkusme spočítat magnetickou indukci ve středu čtvercového závitu a x a oprotékaného proudem I. Je zjevně superpozicí, součtem příspěvků všech 4 stran. Každý musí být nalezen podobně jako u pole nekonečného vodiče, ale s vhodnými integračními mezemi.

Page 18: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 18

Magnetické pole ve středu čtvercového závitu II

• Příspěvek jedné strany je:

atd.

22

sin4

0

2

04

3

4a

Id

IB

az

Page 19: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 19

Síla mezi dvěma přímými vodiči I

• Mějme dva dlouhé rovné paralelní vodiče vzdálené d, protékané proudy I1 a I2, které mají stejný směr.

• Nejprve nalezneme směry sil a potom, díky symetrii, můžeme jednoduše pracovat s velikostmi. Je vhodné vyjádřit sílu na jednotku délky:

d

II

l

F 210

2

Page 20: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 20

Síla mezi dvěma přímými vodiči II

• Tento vztah je použit také jako definice 1 ampéru:

1 ampér je konstatní proud, protékaný dvěma přímými, rovnoběžnými, nekonečně dlouhýmy vodiči o zanedbatelném průřezu, vzdálenými 1 metr, který by způsobil sílu rovnou 2 10-7 N na metr jejich délky.

Page 21: F II– 13  Magnetic ké pole způsobené proudy

27. 7. 2003 21

Giancoli

• Kapitola 28 – 1, 2, 3, 4,6

Page 22: F II– 13  Magnetic ké pole způsobené proudy

Magnetické působení dvou proudů I

312

1212210212 ||4

)]([)(

rr

rrldldIIrFd

Mějme dva proudy I1 a I2 protékající dva krátké rovné kousky vodičů a . Potom síla působící na druhý kousek v důsledku existence prvního kousku je:

Tato velmi obecný vztah plně popisuje silové působení, ale prakticky je velmi obtížně použitelný.

)( 11 rld

)( 22 rld

Page 23: F II– 13  Magnetic ké pole způsobené proudy

Magnetické působení dvou proudů II

BdldIrFd

22212 )(

Proto se dělí na vztah popisující působení pole na proud:

A na vztah pro výpočet pole, který se nazývá Biot-Savartův zákon:

312

121102 ||4

)]([)(

rr

rrldIrBd

Page 24: F II– 13  Magnetic ké pole způsobené proudy

Magnetické působení dvou proudů III

Uvědomíme-li si, že:

je jednotnový vektor určující směr od prvního proudu k druhému , vidíme, že magnetické síly klesají také se druhou mocninou vzdálenosti.

212

012110

2 ||4

][)(

rr

rldIrBd

||

)(

12

12012 rr

rrr

1r

2r

Page 25: F II– 13  Magnetic ké pole způsobené proudy

Magnetické působení dvou proudů IV

Škálovací konstanta 0 = 4 10-7 Tm/A se nazývá permeabilita vakua. V některých pramenech se nepoužívá, protože 0 , 0 a c nejsou nezávislé přírodní konstanty. Mezi permitivitou a permeabilitou vakua a rychlostí světla platí vztah:

200

1

c

^

Page 26: F II– 13  Magnetic ké pole způsobené proudy

Ampérův zákon

iIldB 0

Mějme obecně několik vodičů, protékaných proudy I1, I2 …(třeba i nulovými) potom:

• Všechny porudy se sčítají, ale musí se vzít v úvahu i jejich směr (smysl)!

^