33
Institute of Solid State Physics Extrinsic semiconductors Technische Universität Graz The introduction of impurity atoms that can add electrons or holes is called doping. n-type : donor atoms contribute electrons to the conduction band. Examples: P, As in Si. p-type : acceptor atoms contribute holes to the valence band. Examples: B, Ga, Al in Si.

Extrinsic semiconductors - TU Graz

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extrinsic semiconductors - TU Graz

Institute of Solid State Physics

Extrinsic semiconductors

Technische Universität Graz

The introduction of impurity atoms that can add electrons or holes is called doping.

n-type : donor atoms contribute electrons to the conduction band. Examples: P, As in Si.

p-type : acceptor atoms contribute holes to the valence band. Examples: B, Ga, Al in Si.

Page 2: Extrinsic semiconductors - TU Graz

Institute of Solid State Physics

n and p Technische Universität Graz

exp F cc

B

E En Nk T

exp v F

vB

E Ep Nk T

2 exp gi v c

B

Enp n N N

k T

The electron density and hole density are:

The law of mass action:

Page 3: Extrinsic semiconductors - TU Graz

Ionization of dopants

Easier to ionize a P atom in Si than a free P atom

4

2 2 208nmeE

h n

2*0

0r

mm

Ionization energy is smaller by a factor:

Ionization energy ~ 25 meV

Page 4: Extrinsic semiconductors - TU Graz

acceptors in Si donors in Si

Page 5: Extrinsic semiconductors - TU Graz

images from wikipedia

Czochralski Process

add dopants to the melt

Crystal growth

Page 6: Extrinsic semiconductors - TU Graz

Neutron transmutation

30Si + n 31Si + 31Si 31P +

image from wikipedia

Float zone Process

Crystal growth

Page 7: Extrinsic semiconductors - TU Graz

http://www.microfab.de/foundry/services/diffusion/index.html

Gas phase diffusion

AsH3 (Arsine) or PH3 (phosphine) for n-doping B2H6 (diborane) for p-doping.

Page 8: Extrinsic semiconductors - TU Graz

image from wikipedia

Chemical vapor deposition

Epitaxial silicon CVD SiH4 (silane) or SiH2Cl2 (dichlorosilane)PH3 (phosphine) for n-doping or B2H6 (diborane) for p-doping.

Page 9: Extrinsic semiconductors - TU Graz

Ion implantation

Implant at 7º to avoid channeling

Page 10: Extrinsic semiconductors - TU Graz
Page 11: Extrinsic semiconductors - TU Graz

http://www.synopsys.com

Page 12: Extrinsic semiconductors - TU Graz

Donors

Five valence electrons: P, As

States are added in the band gap just below the conduction band

Ec

Eg

Ev

ED

n-type: n ~ ND Many more electrons in the conduction band than holes in the valence band.

majority carriers: electrons; minority carriers: holes

D(E)

EF(T=0)

Page 13: Extrinsic semiconductors - TU Graz

Acceptors

Three valence electrons: B, Al, Ga

States are added in the band gap just above the valence band

Ec

Eg

Ev

EA

p-type: p ~ NA Many more holes in the valence band than electrons in the conduction band.

majority carriers: holes; minority carriers: electrons

EF(T=0)

D(E)

Page 14: Extrinsic semiconductors - TU Graz

Donor and Acceptor Energies

Energy below the conduction band Energy above the valence band

Page 15: Extrinsic semiconductors - TU Graz
Page 16: Extrinsic semiconductors - TU Graz

B Dk T E

Temperature dependence

200

K

1000

KIntrinsic

Extrinsic p NA

Freeze-out

Page 17: Extrinsic semiconductors - TU Graz

exp gi v c

B

En N N

k T

Page 18: Extrinsic semiconductors - TU Graz

n-type

For n-type, n ~ density of donors, p = ni

2 /n

n-type ND > NA, p ~ 0

exp F cD c

B

E En N Nk T

ln cF c B

D

NE E k TN

Page 19: Extrinsic semiconductors - TU Graz

p-type

For p-type, p ~ density of acceptors, n = ni

2/p

p-type NA > ND, n ~ 0

exp v FA v

B

E Ep N Nk T

ln vF v B

A

NE E k TN

Page 20: Extrinsic semiconductors - TU Graz

Intrinsic / Extrinsic

Intrinsic: n = p

Conductivity strongly temperature dependent near room temperature

Extrinsic: n ≠ p

Conductivity almost temperature independent at room temperature

Page 21: Extrinsic semiconductors - TU Graz

exp2

gi v c

B

En N N

k T

Intrinsic semiconductors

intrinsicextrinsic

freeze-out

1/T

log 1

0(n i

) cm

-3

GaAs

Si

Ge

300 K

Extrinsic semiconductors

At high temperatures, extrinsic semiconductors have the same temperature dependence as intrinsic semiconductors.

Page 22: Extrinsic semiconductors - TU Graz

Why dope with donors AND acceptors?

collector base emitter

n pn+

lightly doped p substrate

Bipolar transistor

Page 23: Extrinsic semiconductors - TU Graz

MOSFET

Bipolar Junction Transistor

Page 24: Extrinsic semiconductors - TU Graz

Ionized donors and acceptors

For Ev + 3kBT < EF < Ec- 3kBT Boltzmann approximation

1 4exp

AA

A F

B

NNE E

k T

1 2exp

DD

F D

B

NNE E

k T

4 for materials with light holes and heavy holes (Si)2 otherwise

Mostly, ND+ = ND and NA

- = NA

ND = donor density cm-3 ND+ = ionized donor density cm-3

NA = donor density cm-3 NA- = ionized donor density cm-3

Page 25: Extrinsic semiconductors - TU Graz

Charge neutrality

n + NA- = p + ND

+

Carrier concentration vs. Fermi energy

Page 26: Extrinsic semiconductors - TU Graz

Calculating EF(T) numerically

Page 27: Extrinsic semiconductors - TU Graz

http://lamp.tu-graz.ac.at/~hadley/psd/L4/eftplot.html

Page 28: Extrinsic semiconductors - TU Graz

degenerately doped semiconductor

Page 29: Extrinsic semiconductors - TU Graz

Degenerate semiconductor

Heavily doped semiconductors are called degenerately doped

ND > 0.1 Nc -> EF in the conduction band

NA > 0.1 Nv -> EF in the valence band

Heavy doping narrows the band gap

The Boltzmann approximation is not valid

Degenerate semiconductors = metal

Page 30: Extrinsic semiconductors - TU Graz
Page 31: Extrinsic semiconductors - TU Graz

Institute of Solid State Physics

Carrier Transport Technische Universität Graz

Ballistic transportDriftDiffusionGeneration and recombinationThe continuity equationHigh field effects

Page 32: Extrinsic semiconductors - TU Graz

Ballistic transport

dvF ma eE mdt

Electrons moving in an electric field follow parabolic trajectories like a ball in a gravitational field.

0eEtv vm

2

0 02eEtx v t x

m

Page 33: Extrinsic semiconductors - TU Graz