28
Extremely Thin Absorber Solar Cells: EU Project Overview Status quo and perspectives A European Research Project (HPRN-CT-2000-00141) GCEP - Stanford, 19.10.2004

Extremely Thin Absorber Solar Cells: EU Project Overview Status quo and perspectivesgcep.stanford.edu/pdfs/solar_workshop_10_04/SolarLenz... · 2005. 5. 31. · Project Partners:

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Extremely Thin Absorber Solar Cells:EU Project Overview

    Status quo and perspectives

    A European Research Project (HPRN-CT-2000-00141)

    GCEP - Stanford, 19.10.2004

  • Outline

    • Energy Research Center of the Netherlands

    • ETA solar cells: A PV technology for the future ?- Motivation - Materials and methods- Interface Design- Comparison of different systems

    • Summary (status quo)

    • Future Research Perspectives

  • Energy Research Center of the Netherlands

    Bridge between academic research and commercial application

    • Largest independent energy research center in NL (600 co-workers)

    • R&D for/with private enterprises and governmental institutions, (national + international)

    • Core Research:Sustainability in energy generation

    and use

  • Research Priority Areas at ECN

    - Solar Energy- Biomass- Windenergy- Fuel Cells-- Clean Fossil FuelsClean Fossil Fuels-- Energy Efficiency in IndustryEnergy Efficiency in Industry-- Building Integration of Renewable Building Integration of Renewable

    EnergiesEnergies-- Policy StudiesPolicy Studies

  • ECN Solar Energy

    Conventional and Advanced Silicon- New contact and module concepts- Ribbon grown Si

    Thin Film Solar Cells- Thin Film Si (low T deposition on substrates)- Chalcopyrite

    - Dye Sensitized Solar Cells (Electrolyte and Solid State)- Polymer- und Hybrid Solar Cells- ETA Solar Cells

  • EU Network Project : ETA Solar Cells

    Project Partners:Energy Research Center of the Netherlands (ECN)Hahn Meitner Institute (HMI)Rijksuniversiteit Gent (UGent)Tallinn Technical University (TTU)Technical University Delft (TUD)Uppsala University (UU)Weizmann Institute of Science (WIS)

    Project Coordinator: Dr. Jeannette Wienke (ECN)

  • Motivation for the projectQuestion: Is it possible to cope with absorber materials of low electronic quality (defects) ?

    Implications: Short charge carrier lifetimesHigh (bulk) recombination probability

    Proposed solution: Short distances to charge separating interface

  • Concept :Extremely Thin Absorbers (~ 2 - 50 nm)

    Light

    Contact (-)

    Contact (+)

    Transparent n- type

    Inorg. absorber or mol. dye

    Transparent p- type

    3 component (nano)compositeWhy inorganic absorbers ?- Tunability of Eg(- Higher absorption)- Impact ionization

    Könenkamp et. al., Appl. Phys. Lett. 75 (1999) 692O’Regan, Schwartz, Chem. Mater., 7 (1995) 1349

  • Concept :Extremely Thin Absorbers (~ 2 - 50 nm)

    Transparent, n- type

    p - Absorber Contact

    (+)

    Contact (-)

    Light

    2 component (nano)composite

  • Challenges

    • Deposition techniques for thin (absorber) layers inside porous films

    • Materials: n-type, p-type, absorber (band alignment, structural, defect

    chemistry)

    • Interface: Recombination

    • Modelling and characterization(new device concept, complex geometry)

  • Deposition Techniques

    • ALD: Atomic Layer Deposition M. Nanu - TUD(CuInS2, Al2O3, In2S3)

    • CBD: Chemical bath deposition O. Niitsoo - WIS(CdS, CdSe, In(OH)xSy)

    • ILGAR: Ion Layer Gas Reaction H. Muffler - HMI (Al2O3, CuInS2)

    • Spray pyrolysis A. Katerski TTU (CuInS2)

    • Solution casting (CuSCN) B. O‘Regan - ECN

    • Electrodeposition (CdTe, CdHgTe) A. Belaidi - HMI

  • Atomic Layer Deposition (TU Delft)

    A

    B

    C

    D

    Adsorption Compound 1 (CuCl, InCl3)

    Monolayer Formation (compound 1)

    Surface Reaction with compound 2(H2S)

    M. Nanu, L. Reijnen, B. Meester, A. Goossens, and J.Schoonman, Thin Solid Films 431-432 (2003) 492

  • Transparent n-type materials

    TiO2 films with different microstructures/electronic properties

    Alternative materialslike ZnO, SnO2under development

    - electron mobility- band alignment- defect chemistry

    Micron-sized pores in a spray-pyrolized TiO2film

    Nano-sized pores in a screen-printed TiO2film

  • Transparent p-type materials

    CuSCN, CuI, (CuAlO2)

    • Mandatory in dye sensitizedsolar cells

    • Not always mandatory in ETA solar cells

    B. O‘Regan - ECN1 µm thick CuSCN on top of a TiO2 layer

  • Absorbers

    Inorganic binary compounds (Egap):PbS-q.s. (~1.1 eV) CdTe (1.45 eV)CdSe (1.8 eV)

    Inorganic ternary compound (Egap):CuInS2 (1.5 eV)

    Molecular metal-organic („Egap“):Ru(II)L2(NCS)2 “N3”-dye (~ 1.7 eV)

    = best inorganic absorber of the project

  • Characterization Methods

    Structural : SEM, TEM, BET, Raman, XPS

    Crystallogr. : XRD

    Electrical : Current-voltage, IMPS, IMVS, Surface Photovoltage, Transient Measurements (I,V)

    Optoelectronic : DLTS, PL

  • Characterization I:Voltage Transient Measurements

    Recombination dynamics: Example: TiO2/Dye/Electrolyte (CuSCN)

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    Phot

    ovol

    tage

    , nor

    mal

    ized

    43210Time, milliseconds

    CuSCN Cell

    Electrolyte Cell

    t ½ (µs)4 µm-CuSCN ~ 200 4 µm-Electrolyte ~ 4000

    Faster recombination inCuSCN based dye cells

    B. O‘Regan - ECN

    Background Illumination: 1 sunFlash Illumination: ~ 10 %

  • Characterization II:XPS - Interface structure

    CuI/Dye Interface

    CuI / dyeTiO2 / dye

    N 1s1

    2

    B. Mahrov - UU

    Evidence for change of the chemical environmentof the N3-dye molecule at the CuI surface

  • Interface I:Modification by additional layers

    In(OH)xSy by CBD, CuInS2 by Spray

    without In(OH)xSywith In(OH)xSy

    JSC : 10.7 mA/cm2

    VOC : 450 mVff : 43 %η : 2 %

    Example: TiO2 (flat) / In(OH)xSy / CuInS2

    J. Wienke, M. Krunks, F. Lenzmann, Semicond. Sci. Technol. 18 (2003) 876

  • Interface II:Modification by additional layersExample: TiO2 (por) / Al2O3 / Dye / CuSCN

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    Cur

    rent

    mA

    /cm

    2

    0.80.60.40.20.0-0.2Voltage (V)

    with Al2 O3without Al203

    JSC : 5.2 mA/cm2

    VOC : 690 mVff : 59 %η : 2.1 %

  • VOC = 500 mV, JSC = 18 mA/cm2, FF = 45 %, η = 4%(AM 1.5, area: 3 mm2)

    -0.9 -0.6 -0.3 0.0 0.3 0.6

    -20

    -10

    0

    10

    20

    30

    40 SnO2:F/TiO2/Al2O3/In2S3/CuInS2/Au

    curr

    ent d

    ensi

    ty [m

    A/c

    m2 ]

    voltage [V]500 600 700 800 900

    0.0

    0.2

    0.4

    0.6

    0.8

    exte

    rnal

    qua

    ntum

    effi

    cien

    cywavelength λ [nm]

    Interface III:2 interface layers (Al2O3 & In2S3) ⇒ best cell with inorg. absorber

    M. Nanu, TUD

    M. Nanu, A. Goossens, J. Schoonman, Adv. Mater., 16 (2004) 453

  • Interface IV:Interface design in various systems

    (1) TiO2 / Al2O3 / Dye / CuSCN (ECN, UU)

    (2) TiO2 / Al2O3/In2S3 / CuInS2 (TUD, TTU, HMI)

    (3) TiO2 / Al2O3/CdS / CdSe /Electrolyte (WIS)

    (4) TiO2 / In(OH)xSy / PbS /PEDOT:PSS (HMI)Electrolyte (ECN)

    n-type-layer absorber

    = best device setup of the project

  • Modelling of the first ETA cells (TiO2/CdTe)

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    curr

    ent d

    ensi

    ty(m

    A/c

    m2 )

    voltage (V)

    eta-cell darkEta-cell lightSCAPS darkSCAPS light

    S-shape

    S-shaped I-V curve explained by conduction band offset (0.6 eV)

    C. Grasso et. al, Proc. 17th Europ. PV Conf., Munich (2001) 211

  • Modelling the nanostructure

    light

    +-

    1) Network Model:A network of small unit cells

    M. Burgelman, C. Grasso J. Appl. Phys., 95(4) (2004) 2020

    M. Burgelman, C. Grasso - RUGS. Ruehle - WISK. Fredin - UU

    h+-SC

    2) Effective Medium ModelOne homogeneous “effective” medium

    CB TiO2

    VB ETA EFp

    EFnlight

    e--SCSC = selective contact

  • Overview of the most efficient systems

    TiO2/Al2O3/In2S3/CuInS2 4% (0.03 cm2) TUD

    TiO2/Al2O3/Dye/CuSCN 2-2.5% (1 cm2) ECN

    TiO2/CdTe 2% (< 1 cm2) HMI

    TiO2/Dye/spiro-OMeTAD 3.5% (1 cm2) EPFL

    TiO2/CdSe/CuSCN 2.3% (?) CNRS

  • General Summary

    • Practical realization of working ETA solar cells

    • Variable group of new systems (η = 2- 4%), competitive with other nanocompositeapproaches

    • Interface design of primary relevance

  • Future Research Perspectives

    • Deposition techniques (low cost)

    • Optimizing the microstructure (absorber thickness/interface area)

    - better performance (?)- easier & cheaper preparation

    • Other materials ? (non-toxic, low cost)

  • Acknowledgements

    Special thanks to:

    • all our partners for their contributions

    • European Commission for funding (HPRN-CT-2000-00141)

    Thank you for your kind attention !

    Extremely Thin Absorber Solar Cells:EU Project OverviewStatus quo and perspectivesOutlineEU Network Project : ETA Solar CellsMotivation for the projectConcept :Extremely Thin Absorbers (~ 2 - 50 nm)Concept :Extremely Thin Absorbers (~ 2 - 50 nm)ChallengesDeposition TechniquesAtomic Layer Deposition (TU Delft)Transparent n-type materialsTransparent p-type materialsAbsorbersCharacterization II:XPS - Interface structureInterface I: Modification by additional layersInterface II: Modification by additional layersInterface IV: Interface design in various systemsModelling of the first ETA cells (TiO2/CdTe)Overview of the most efficient systemsGeneral SummaryFuture Research PerspectivesInterface RecombinationTransient voltage measurements after flash illuminationMeasurement TechniqueTransient voltage measurementsat VOCSolid state vs. liquid electrolyte dye cell:Comparison of recombination dynamicsSolid state vs. liquid electrolyte dye cell: