46
GEOGRAPHY 477 Exploring the transitional forest gap dynamics of small‐scale disturbances resulting in regeneration and increased species richness in Balu Pass, Glacier National Park Carley Coccola, Kim House, Kira Hoffman, and Annie Markvoort December 15, 2011 Large and small scale natural disturbances shape and define characteristics of forest stands. This research examines the response of a western hemlock transitioning stand following small-scale gap producing events in Glacier National Park. A megaplot with three individual quadrats was selected for the study and dendrochronological, tree mensuration, vegetation and soil profile data was collected and analyzed. Results confirmed that three distinct age classes (new gap, intermediate gap, mature forest) were present in the megaplot, and that growth releases in dominant and sub-dominant trees corresponded with probable gap formation events. Productivity was found to increase in new gaps and stand dynamics were found to be significantly different in new and intermediate aged gaps. The dominant regeneration of western hemlock species on coarse woody debris supported the hypothesis that a transitional forest was present in this region of the Park.

Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

GEOGRAPHY 477 

Exploring the transitional forest gap dynamics of small‐scale disturbances resulting in regeneration and increased species richness in Balu Pass, Glacier 

National Park   

Carley Coccola, Kim House, Kira Hoffman, and Annie Markvoort 

December 15, 2011 

Large and small scale natural disturbances shape and define characteristics of forest stands. This research examines the response of a western hemlock transitioning stand following small-scale gap producing events in Glacier National Park. A megaplot with three individual quadrats was selected for the study and dendrochronological, tree mensuration, vegetation and soil profile data was collected and analyzed. Results confirmed that three distinct age classes (new gap, intermediate gap, mature forest) were present in the megaplot, and that growth releases in dominant and sub-dominant trees corresponded with probable gap formation events. Productivity was found to increase in new gaps and stand dynamics were found to be significantly different in new and intermediate aged gaps. The dominant regeneration of western hemlock species on coarse woody debris supported the hypothesis that a transitional forest was present in this region of the Park.

Page 2: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

i

Table of Contents   

List of Figures ..................................................................................................................... ii

1.0 Introduction ................................................................................................................... 1

2.0 Study Area .................................................................................................................... 3

3.0 Methods......................................................................................................................... 5

3.1 Plot Selection - Methods and Analysis ..................................................................... 5

3.2 Vegetation Survey - Methods and Analysis .............................................................. 6

3.3 Dendrochronology and Tree Mensuration - Methods and Analysis ......................... 7

3.4 Soil Samples - Methods and Analysis ...................................................................... 8

4.0 Results ......................................................................................................................... 9

4.1 Vegetation and Coarse Woody Debris Results ......................................................... 9

4.2 Dendrochronology and Tree Mensuration Results ................................................. 12

4.3 Soil Results ............................................................................................................. 18

5.0 Discussion ................................................................................................................... 19

6.0 Conclusion .................................................................................................................. 24

6.1 Limitations .............................................................................................................. 24

7.0 Acknowledgments ....................................................................................................... 25

References ......................................................................................................................... 26

Appendix A: Plant species observed in megaplot by Quadrat .......................................... 31

Appendix B: Estimated Percent Cover of Species in Structural Vegetation Layers by

Quadrat .............................................................................................................................. 32

Appendix C: Decay Classes for Course Woody Debris (BEC Field Manual) ................. 33

Appendix D: Age and health observations of 21 largest trees in megaplot ...................... 34

Appendix E: Tree Ring Growth Results ........................................................................... 35

Appendix F: Soil Properties and Results from pits in each Quadrat ................................ 43 

 

Page 3: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

ii

List of Figures  

Figure 1: Location of Balu Pass, Glacier National Park, B.C. 3

Figure 2: Location and distribution of Interior-Cedar Hemlock zone in British Columbia 4

Figure 3: Schematic of the three quadrats within the megaplot. 6

Figure 4: Percent cover in each vegetation layer in the three surveyed quadrats. 10

Figure 5: Percent canopy closure of dominant and sub-dominant trees in the three

surveyed quadrats. 10

Figure 6: Species richness of ground cover, herbaceous and shrub layer is the three

surveyed quadrats. 11

Figure 7: Coarse woody debris transect. 12

Figure 8: DBH of mensurated trees in megaplot as a function of tree age. 13

Figure 9: Height of mensurated trees in megaplot as a function of tree age. 13

Figure 10: Average representative age of western hemlock trees per quadrat. 14

Figure 11: Age distribution of regenerating hemlock seedlings in quadrat one. 16

Figure 12: Height as a function of DBH for western and mountain hemlock species in

quadrat three. 17

 

Page 4: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

1

1.0 Introduction

An ecological disturbance is characterized by a temporary shift in equilibrium, resulting

in a pronounced change in an ecological system (Krebs, 1999). The forests of Glacier National

Park (GNP) experience several types of natural and anthropogenic disturbances that differ in

scale, intensity, and frequency. Large-scale natural disturbances within GNP occur as a result of

weather, insects, and disease (Parks Canada, 2009). Weather events, such as lightning and heavy

snowfalls cause avalanches and forest fires, which regularly damage entire forest stands

(Johnson et al., 1990). Forest pathology research has shown that western hemlock looper and

western balsam bark beetle cause significant damage and inhibit growth within Interior Cedar-

Hemlock (ICH) forests (McCloskey et al., 2009; Parks Canada, 2009; MacLauchlan et al.,

2003).

Humans have also had an effect on disturbances within the park. First Nations, including

the Secwepemc, Okanagan, and Ktunaxa people traditionally used the land within the park for

seasonal hunting and foraging (McCleave, 2008). Since the arrival of western settlers, significant

anthropogenic alterations of the landscape have occurred, such as the construction of the

Canadian Pacific Railway through Rogers Pass and the ongoing avalanche control along the

highway corridor (Downs, 1980). Regardless of the cause of disturbance, regeneration is often

inhibited in tree stands by intense snow pack and brush dominated species like alder (Alnus) or

thimbleberry (Rubus parviflorus) (Parks Canada, 2009).

Although large-scale disturbances have dramatic effects on a forest, small-scale

disturbances such as those producing gaps in the forest canopy can have greater overall effects in

a forest (Spies et al., 1990). Small canopy gaps, or forest gaps, are an important factor in

disturbance regimes and vegetation growth (Scharenbroch and Bockheim, 2007; Duncan et al.,

Page 5: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

2

1998). Forest gaps characterize a disturbance where a singular dominant tree dies or loses a

branch, creating a small opening in the forest canopy (McCarthy, 2001). Dominant trees are

often the tallest and oldest trees in a stand. These trees are often partially decayed and the first to

be affected by severe weather events (Coates, 2000).

Gaps naturally occur in old growth and mature forests and are an indicator of overall

forest health (Yamamoto, 2000). Researchers use gap dynamics to study the rate of regeneration

in a site and the pioneer species associated with single-tree disturbances (Runkle, 1992). The

theory of gap dynamics proposes that canopy gaps provide increased solar radiation, higher soil

temperatures, and soil moisture (Scharenbroch and Bockheim, 2007; Gray and Spies, 1997).

These conditions create microclimates that favour shade-intolerant species (Yamamoto, 2000).

The balance between increased sunlight and shade from stumps and coarse woody debris (CWD)

enhances seedling survival (Gray and Spies, 1997). CWD allows for recruitment of western

hemlock seedlings, which out-compete other species because of their ability to germinate in a

litter void of mosses (Peterson et al., 1997). These optimal growing conditions increase species

richness; defined as the number of different species within a given area (Peterson et al., 1997;

Siitonen et al., 2000). Gaps in the canopy cover affect species composition, succession, nutrient

cycles, and habitat structure (Spies et al., 1990). Forest gaps dynamics have been predominantly

studied in tropical and temperate hardwood forests and to a lesser extent in western Canadian

coniferous forests (Spies et al., 1990; Bartemucci et al., 2002).

This research examines whether new forest gaps support increased species richness and

productivity in ICH forests of GNP. The objectives of this research are twofold: (1) Describe

small-scale disturbances using dendrochronological and ecological survey techniques supported

Page 6: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

3

by soil profile analysis to examine species replacement patterns. (2) Discuss whether

productivity and species richness increase or decrease as a gap matures.

2.0 Study Area 

The study was conducted in Balu Pass, GNP in the Columbia Mountains of southeast British

Columbia, Canada (Figure 1). A megaplot was selected in the study area and located at

N51o18’01”, W117o31’26” at 1386 m above sea level. The megaplot has an east-facing aspect

with slope gradients ranging from 24% to 61%. According to British Columbia’s ecosystem

classification system, the megaplot is situated within the ICH biogeoclimatic zone with the sub-

classification mk1 (Figure 2), just below the elevation of Engelmann Spruce Sub-Alpine Fir

(ESSF) zone (Ketcheson et al., 1991).

Figure 1: Location of Balu Pass, Glacier National Park, B.C.

.

The climate in GNP is classified as interior continental, with cool, wet winters and warm, dry

summers influenced by easterly flowing air masses (Johnson et al., 1990). These rising air

masses cause expansion and cooling which result in high precipitation throughout the park. Mean

Page 7: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

4

annual precipitation is 1278 mm (Parks Canada, 2011) and average monthly temperatures range

from -9 to +20 degrees Celsius (Parks Canada, 2009b). Within the megaplot, soils ranged from

brunisolic to podzolic development, with an overall soil podzolic classification due to elevation

and precipitation (Coates, 2002).

Figure 2: Location and distribution of Interior-Cedar Hemlock zone in British Columbia (Ministry of Forests, 2011).

The ICH in GNP is an example of a productive forest with abundant tree species including:

western hemlock (Tsuga heteophylla), mountain hemlock (Tsuga mertensiana), sitka spruce

(Picea sitchensis), western red cedar (Thuja plicata), and sub-alpine fir (Abies lasiocarpa).

Characteristic vegetation of the area includes devil’s club (Oplopanax horridus), lady fern

(Athyrium filix-femina), oak fern (Gymnocarpium dryopteris), rosy twistedstalk (Streptopus

Page 8: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

5

roseus), spiny wood fern (Dryopteris expansa) oval-leaved blueberry (Vaccinium ovalifolium),

and black huckleberry (Vaccinium membranaceum) (Ketcheson et al., 1991; Pojar et al., 2008;

MOF, n.d).

3.0 Methods

3.1 Plot Selection ‐ Methods and Analysis

A large plot was chosen to obtain information on a wide range of species growing in

seemingly similar forest conditions (Clark and Clark, 1992). A rectangular plot measuring 40 m

x 15 m was established by determining a perimeter with a compass, measuring tape, and a hand-

held Garmin GPS receiver. Elevations and locations (latitude/longitude) were recorded at each

corner of the megaplot and slope was measured at five locations across the megaplot. Tree

density was estimated to ensure the megaplot contained a minimum of 20 trees. Plot size and

location were determined by the hypothesized existence of a single forest type with three distinct

age classes. These age classes were delineated to create three distinct quadrats: quadrat one was

classified as open canopy, quadrat two as closed canopy, and quadrat three as intermediate

forest. A sketched map was created to log the plot perimeter, age class perimeters, and locations

of significant CWD, soil pits, tree cores, and tree samples. Upon returning to the lab, a finalized

map with all of the relevant information was produced (Figure 3).

Page 9: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

6

Figure 3: Schematic of the three quadrats within the megaplot. .

3.2 Vegetation Survey ‐ Methods and Analysis  A complete species list of mosses, herbaceous plants, and shrubby plants was assembled

within each of the three quadrats (Appendix A) (Pojar et al., 2008; Parish et al., 1996). For each

quadrat, the percent cover by layer of mosses, herbs, and shrubs was recorded and percent

canopy closure was estimated visually (Roush, 2007; BEC Field Manual, 1998). Within each of

these layers, the percent cover of each individual species was estimated visually to the nearest

1%, after averaging estimations made throughout the quadrat (Appendix B). The vegetation data

collected was used to demonstrate the qualitative differences between the three time series gaps.

Visual representations of species richness (ground cover, herbaceous, shrub) among the three

quadrats as well as percent cover by layer were created.

Page 10: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

7

A survey of CWD, defined as fallen trees or branches, uprooted trees no longer living,

and other wooden debris that are not self-supporting, was taken via a transect, which crossed

through the three quadrats at the centre of the megaplot (BC MOE and MOF, 1998). Diameter

and decay class were recorded for every piece of CWD encountered along the transect with a

diameter greater than 7.5 cm (BEC Field Manual, 1998). CWD decay classes were recorded on a

scale of 1-5, with “6” added as an additional class for CWD that had undergone significant decay

(Appendix C). To reduce the chance of bias in the results, two individuals estimated and

compared classifications for each piece of CWD.

3.3   Dendrochronology and Tree Mensuration ‐ Methods and Analysis

Living tree cores and tree measurements were collected from the largest twenty-one trees

in the megaplot (Appendix D). Six mature hybrid sitka spruce trees were cored outside the plot

to assess the general age class of the stand and to evaluate whether the forest was transitioning to

a new dominant species. The trees in the plot and the hybrid trees were sampled using the

following standards. Trees were sampled radially at breast height using a 5.2 mm increment

borer. One core was taken per tree, but in the instances of rot, two cores were taken to provide a

longer chronology. Cores were stored in plastic straws for transport to the University of Victoria

Tree Ring Lab, where analysis was conducted. Circumferences of trees were measured on the

upper slope using a measuring tape at breast height (~1.3 m). Circumference measurements were

adjusted to diameter at breast height (DBH). This height was chosen because it is the standard

measurement to avoid swelling of the basal tree butt and other growth distortions (Roush,

2007).

Page 11: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

8

Tree heights were acquired in metres using a Nikon range finder and these measurements

assisted with the on-site classification of dominant and co-dominant canopy trees. Species type,

overall tree health, and crown dimension were recorded to assess potential disturbances, such as

fire scars and insect outbreaks (Roush, 2007). Seed trees < 5 cm DBH and approximately 1 m in

height were cut with a handsaw. Cross-sectional cookies were taken for measurement. Individual

seedlings (<1 cm DBH and <1 m) were tallied and their age determined on site by counting

individual whorls.

To prepare for quantitative dendrochronological analysis, tree cores were air dried and

then glued on to slotted mounting boards (Hart el al., 2010). Cross-sections of cookies and

mounted cores were sanded with progressively finer sandpaper to a 600 grit-polish (Stokes and

Smiley, 1964). The exact age of each sample was determined using a Velmex stage and Wild

M3B microscope with 0.01 mm focusing power, coupled with a CCD video display. Exact-age

dating was applied where possible to provide a complete picture of the establishment and

mortality of trees in the plot (Gutsell and Johnson, 2002). Correlation analysis was conducted in

SPSS to verify if there was a relationship between the dependent variables (DBH and height) and

the independent variable (age), and to allow for the production of a simple model to predict age.

Analyses were also conducted to describe variations between quadrats.

  

3.4   Soil Samples ‐ Methods and Analysis  

Three soil pits were dug to approximately 60 cm in the center of each of the three

quadrats and their locations were recorded with a hand-held Garmin GPS receiver. Soil horizon

depths as well as fabric and litter layers were measured with a measuring tape to millimeter

accuracy. The biotic composition of the litter layer was recorded to determine the presence of

Page 12: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

9

organics, mycelium abundance, and detrital activity. The percent composition of fine fragments

(sand, clay, and silt) was estimated in each pit to determine the overall soil type. These were

estimated using a soil texture triangle, which included a taste test, moist cast test, and graininess

test (BEC Field Manual, 1998). The size and shape of the soil particles were classified and the

resulting drainage properties of the soil were estimated. The deposition of the area was noted

based on the surrounding local geomorphology. Soil samples containing gravels <7 cm from

each pit were collected in petri dishes for examination. Samples were taken from each horizon,

dried, and then classified using a Munsell color chart (BEC Field Manual, 1998).

4.0   Results

4.1   Vegetation and Coarse Woody Debris Results

The percent cover within each of the three structural vegetation layers (ground cover,

herbaceous, shrub) was highest in quadrat one (Figure 4). Quadrat two had lower percent cover

in each layer, and quadrat three had the lowest overall percent cover. These results were

consistent with the percent canopy closure of dominant and sub-dominant trees within each

quadrat (Figure 5). Quadrat one, the youngest hypothesized gap, had only two dominant trees

leading to 10% canopy closure. This contributed to the high percent cover of understory species

observed (Figure 4). Quadrat two, hypothesized to be relatively even-aged mature living forest,

had 85% canopy closure with low understory species biomass. Quadrat three, the hypothesized

intermediate gap, had a very dense sub-dominant tree layer, which coincided with the lowest

percent cover of understory biomass. Here, the distribution of western hemlock and mountain

hemlock resulted in a canopy closure of 95%.

Page 13: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

10

Figure 4: Percent cover in each vegetation layer in the three surveyed quadrats.

Figure 5: Percent canopy closure of dominant and sub-dominant trees in the three surveyed quadrats.

Species richness varied among the three quadrats (Figure 6). Quadrats one and two had

the same overall species richness although a higher number of mosses were growing in quadrat

one. It should be noted that although species richness was similar between these two areas,

richness reflects absolute counts of species and not percent cover. Percent cover was still

0 10 20 30 40 50 60 70 80 90 100 

1  2  3 

Total Percent Cover (%

Quadrat 

% ground cover 

% herbaceous  

% shrub 

0 10 20 30 40 50 60 70 80 90 100 

1  2  3 

Percent Canopy Closure (%

Quadrat 

% Mountain Hemlock 

% Western Hemlock 

Page 14: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

11

significantly higher in quadrat one (Figure 4). In quadrat three, species richness was substantially

lower in all sub-canopy layers. This coincided with the high canopy closure of sub-dominant and

dominant trees.

Figure 6: Species richness of ground cover, herbaceous and shrub layer is the three surveyed quadrats.

The volume, size, and decay of CWD varied significantly along the transect (Figure 7).

The first 15 metres of the transect were within quadrat one, where a high volume of CWD

existed. From 15 to 27 metres, the transect passed through quadrat two where several large,

standing hemlock trees resulted in very little CWD. From 27 to 40 metres, the transect passed

through quadrat three where a dense stand of small hemlock trees was growing. Here, the

volume of CWD increased again; however, this increase was noted in decay classes five and six.

Some of the CWD in this quadrat was severely decayed and could not be recorded in the CWD

transect results.

10 

15 

20 

25 

1  2  3 

Species Richness (count) 

Quadrat 

Shrub/tree 

Herb 

Ground Cover 

Page 15: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

12

Figure 7: Coarse woody debris transect.

4.2 Dendrochronology and Tree Mensuration Results  

The final chronology of the plot extended 270 years with the sample age uniformly

distributed. Pith was achieved for most of the trees in the survey area, but exact ages remained

unknown where rot was encountered. Based on statistical analysis, Pearson’s correlation (R)

was 0.948 between DBH and age and 0.932 between height and age. Due to this strong

relationship, DBH and height were plotted against age and a least squares regression was applied

(Figure 8 and 9 respectively) to determine whether age explained either of the dependent

variables. The coefficient of determination (R2) for height as a function of age was 0.8686,

whereas the R2 value for DBH as a function of age was 0.898.

Page 16: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

13

Figure 8: DBH of mensurated trees in megaplot as a function of tree age.

Figure 9: Height of mensurated trees in megaplot as a function of tree age.

y = 0.0025x ‐ 0.0045 R² = 0.898 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0  50  100  150  200  250  300 

Diameter at Breast Height (m) 

Ages (years) 

y = 0.1084x + 2.2641 R² = 0.86861 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

40.0 

0  50  100  150  200  250  300 

Height (m) 

Tree age (years) 

Page 17: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

14

As a result, age was concluded to have a stronger relative strength index with DBH than

with height (McGrew and Monrow, 2000). Therefore, the model produced for the linear

relationship of tree age and DBH was used to extrapolate estimated ages for trees where pith was

not achieved. The known and estimated ages were then plotted per quadrat to give an average

representation of western hemlock species within the survey area (Figure 10). The six hybrid

sitka spruce trees sampled outside of the megaplot were found to be complacent and

approximately 200 years old.

Figure 10: Average representative age of western hemlock trees per quadrat.

Each individual core was visually cross dated to assess and compare growth release rings

surrounding potential gap formations. Dendrochronological analysis resulted in an average age

class per quadrat, allowing for the examination of relationships within gaps and between

trees. A period of good growth throughout the megaplot was observed between approximately

1950 and 1960 AD. This growth did not correspond with any known gap formations and was

likely the result of favorable climatic conditions in the region. However, consistent growth

50 

100 

150 

200 

250 

300 

350 

0  1  2  3 

Age (years) 

Quadrat  

Page 18: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

15

releases in trees surrounding gaps are suspected to be the result of the mortality of a dominant

tree (Speers, 2010). These growth results are specified below with respect to each quadrat

(Appendix E).

Quadrat One

Only two large trees were found within quadrat one as the rest of the quadrat consisted of

an open forest gap comprised of ground cover species, herbaceous plants, shrubs, and hemlock

seedlings. The average age throughout the open gap area was 11.9 years with a standard

deviation of 10.5 years. Good growth conditions were observed in the dominant trees in the gap

from approximately 1980-1985 AD, corresponding to the probable time of seedling germination

in the centre of the gap. Within the time periods 1940-1945 AD and 1920-1925 AD, trees

surrounding the gap demonstrated distinct growth releases, likely coinciding with the time of the

disturbance which formed the gap.

The age of the oldest sapling in quadrat one was 43 years and is likely one of the first

individuals to have re-colonized the gap following the disturbance. The three larger saplings in

the gap were identified as western hemlock and found on the perimeter of the open area. The age

of saplings and seedlings ranged considerably within the quadrat, and overall western hemlock

productivity was high. For example, on a single nursing log, 209 live one-year old hemlock

seedlings were counted. The age distribution of regenerating hemlock seedlings was plotted to

show the variability in the population (Figure 11).

Page 19: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

16

Figure 11: Age distribution of regenerating hemlock seedlings in quadrat one.

Quadrat Two

The trees in quadrat two were the oldest in the megaplot based on their average age of

216 years (Figure 10). Based on the dendrochronological results no overarching growth

correlations were observed among the total population of quadrat two. However, growth release

patterns in several trees of quadrat two corresponded with the estimated age of the gaps in

quadrats one and three.

Quadrat Three

The trees in quadrat three were an evenly aged distribution of western hemlock and

mountain hemlock species, with only 67.3% living trees (33) and 32.7% (16) dead trees. The

height of all the living trees plotted against DBH had a linear correlation with a Pearson’s R

value of 0.787 (Figure 12).

0 5 10 15 20 25 30 35 40 45 50 

Age  (years) 

Page 20: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

17

Figure 12: Height as a function of DBH for western and mountain hemlock species in quadrat three.

Our results point at two disturbances that affected growth in quadrat three over

approximately 120 years, as was evident in the older trees (approximately 200 years)

surrounding the gap in quadrat three. These trees demonstrated growth releases between 1930-

1940 AD. The average age of living, juvenile trees populating this intermediate gap is 68 years,

with a standard deviation of 11 years. The average age of the living trees corresponds with the

growth release of the larger trees surrounding the quadrat. The 200-year-old trees also

demonstrated a growth release approximately 1890-1900 AD, which might have also resulted

from a small-scale disturbance event. The gap in quadrat three is distinctive from the gap found

in quadrat one due to the older average stand age, higher density of trees, and higher rate of

mortality.

Page 21: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

18

4.3 Soil Results  

Soils in quadrat one were classified as a silty loam and soils in quadrats two and three

were classified as fine sandy loams. These classifications were derived from the percent of fine

fragments. Although overall soil types in each quadrat were similar, substantial differences in the

litter and fabric layers as well as the A horizons existed between pits (Appendix F). Fine

fragments were classified as sands, silts or clays. Course fragments (>2 mm) were classified as

sub-angular in each pit and were relatively uniform in abundance. Sites were classified with a

colluvium deposition based on the slope and geomorphology of the area.

Soil pit one had no litter layer but a fabric layer of 2.3 cm depth. The colour of the humus

layer indicated there was a high level of organic material present. The A horizon was strongly

leached into the lower horizons creating a distinctly white appearance. This soil pit was

classified as a well-drained podzolic silty loam based on the presence of fine fragments, biotic

component, color, and underlying geomorphology.

Soil pit two also had no distinguishable litter layer and had the smallest observed fabric

layer of 1.9 cm depth. There was a trace of an organic layer present directly above the A layer

and below the humus layer. There were two A horizons identified in the pit, both of which were

less leached than pit one resulting in a more pinkish appearance. This soil pit was classified as a

well-drained podzolic fine sandy loam based on the greater percent of fine fragments, biotic

component, lighter color, and underlying geomorphology.

Soil pit three was the only pit that had a distinct litter layer. This litter layer was

significant and measured to 5.0 cm in depth. Pit three also contained the largest fabric layer at

3.0 cm, with significant amounts of consolidated matted mycelium matter. Beneath the trace

humus layer, two leached A horizons were present. Leaching was not as obvious as in pit one,

Page 22: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

19

leaving the soil with a pinkish grey appearance. This soil pit was classified as a well-drained

podzolic fine sandy loam based on the greater percent of fine fragments, biotic component,

lighter color, and underlying geomorphology.

5.0 Discussion 

Dendrochronological and forest mensuration results from the three quadrats within the

megaplot describe four potential single disturbance events over a period of approximately 120-

130 years. These four separate disturbances are most likely the result of dominant tree mortality

events, which was evident due to the abundance and decomposition of course woody debris in

the gap areas of quadrats one and three. Our results are consistent with mensuration studies

completed in the ICH of the Columbia Mountains by Wright el al., (1998) and those done by

Coates (2000, 2002) in northern British Columbia examining frequency of canopy gap

formations due to small-scale disturbances in mature, species-diverse forests. Small-scale

disturbances give rise to canopy openings, which support greater species richness as well as

greater species percent cover in all sub-canopy layers. Disturbances therefore play a key role in

determining the distribution and abundance of species in a forest (Pickett and White, 1985).

Our study site presented an opportunity to examine three distinct and diverse age classes

as well as their representative microclimates occurring within a very condensed setting. Our

results were consistent with our hypothesis that three distinct age classes existed, but also

furthered a subsequent hypothesis that small-scale disturbances regulate species replacement

patterns and can create transitional forests. This subsequent hypothesis was supported by the

presence of mature sitka spruce hybrids found in the area surrounding our study site. Although

subsequent analysis of the hybrid sitka spruce outliers revealed that they were in the same age

Page 23: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

20

class as quadrat two (approximately 200 years old), it was important to note their complacent

rings, dominance in the forest canopy, and lack of seedlings present in the understory. The

reasons for this may be that the sitka spruce hybrids are being out-competed by western hemlock,

or that they simply prefer more heterogeneous stands and have specific microsite requirements.

Although these are hybrid species and it is difficult to determine their growth requirements, sitka

spruce are often found intermixed with other species, increasing the overall resilience of a stand

(Peterson et al., 1997).

Increased canopy heterogeneity suggests that the forest is transitioning from a mature to

an old growth stage. This hypothesis is further supported by the presence of several large

veteran trees, snags, CWD, and various stages of successional regrowth (BEC manual, 1998). In

areas like GNP, which have a high frequency of large-scale disturbances, small-scale

disturbances like those in this study may provide a niche for the future species composition of

the forest (Sherman et al., 2000).

The three quadrats in the megaplot are examples of an ICHmk1 in three distinct age

classes. Quadrat one in the megaplot represents the youngest age class in the study. Formed

likely by a single disturbance event, it had all the characteristics of a traditional forest gap

(Peterson et al., 1997). Here, a significant amount of partially decomposed CWD provided the

basis for new generations of western hemlock trees. In this quadrat, a single remaining veteran in

the southwest corner of the quadrat, which offered only 10% canopy closure, provided the shade

required to support primary succession in the gap. The average age of juvenile trees in the

quadrat was approximately 11 years. This, along with the presence of more than 200 new

seedlings supported quadrat one as the youngest age class in the megaplot.

Page 24: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

21

As an intermediate age class, quadrat three demonstrated a more progressed stage of

hemlock gap colonization. The deep litter and fabric layers, coupled with stage six

decomposition of CWD confirmed that quadrat three is a gap, which likely formed following the

fall of a veteran tree. The amount and density of trees within this small quadrat (more than 30)

with a relatively even age of about 70 years, suggest that this quadrat was a mature gap with an

intermediate age class. Seedlings likely germinated following the formation of a gap and

subsequently out-competed each other for light and nutrients.

Quadrat two, in the centre of the megaplot, was the oldest age class in the study area,

with several evenly-spaced large hemlock trees spanning the quadrat. Although many of the trees

experienced some form of damage, there was no evidence of constant stress as evident in tight

ring widths among the stand. The limited amount of CWD indicated an absence of small-scale

disturbance events. A very thin fabric and litter layer in conjunction with an 85% closed canopy

substantially reduced the percent cover of species in the understory. The trees in quadrat two are

an example of a successional stand that is too large to be formed by a small, single disturbance

event. The consistent age stand (with all samples approximately 200 years or older) was likely

established following a larger scale disturbance.

Although it was hypothesized that species richness would increase with the formation

of a new gap, our results show that the overall species richness in our young gap did not differ

from species richness in a stable stand (quadrat two). These findings indicate that either there is

no increase in species richness with the formation of a gap, or that the spatial autocorrelation

between quadrat one and quadrat two caused species richness to be constant. However, in

comparing the two gaps, it was found that species richness in the young gap (quadrat one) was

significantly higher than richness in the intermediate gap (quadrat three). Despite the species

Page 25: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

22

richness findings, significant differences in productivity between the three quadrats were

observed.

The plant community found in quadrat one represented species that are “gap requiring,”

made evident by the fact that they were present in high percentages in the gap (Appendix B)

(Avecedo, 1995). Microclimatic elements such as sunlight availability, increased precipitation,

soil temperature, substrate, organic matter, and edge effects (drip line) also influenced the type

and abundance of plants in the early successional gap community (Appendices A, B). Soil pits

were initially introduced in the study to compare potential differences between “gap requiring”

species and shade tolerant species, as well as their respective underlying substrates (Wright et

al., 1998). Although the organic component was higher in quadrat one, increased leaching of the

A horizon pointed to the potential lack of retention and absorption by dominant trees, which may

lead to less moisture availability due to the nature of a well drained soil (Appendix F). This lack

of moisture availability may influence the overall structure of the plant community.

The occurrence of small-scale disturbances, which increase the volume of CWD in a

forest, offers considerable regeneration potential for species such as western hemlock (Lertzman,

1992; Lorimer, 1984). This was apparent in our megaplot, where high amounts of fallen,

decomposing trees and CWD had a direct relationship with the growth of western hemlock

seedlings. As suggested in other studies, germination of western hemlock is dominant in

comparison with other tree species (mountain hemlock, subalpine fir, sitka spruce, western red

cedar) on fallen logs and tip-up mounds found in gaps created from a single tree-fall event

(Peterson et al., 1997; Lorimer, 1984;). Quadrat one provided a clear example of this where we

observed the growth of at least 209 seedlings on a single fallen veteran. More than 40 other

western hemlock trees between the ages of 3 and 43 were counted in the same quadrat. In

Page 26: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

23

addition to the presence of CWD, the availability of abundant sunlight and water likely

supported early stages of germination.

Time varies based on microsite conditions, but in pristine conditions, germination occurs

approximately 2-3 years after a disturbance. The delayed germination within the megaplot could

be attributed to the elevation and reduced growing season of the site. Western hemlock trees

were dominant in the megaplot canopy and in the surrounding stand. Their dominance in the

understory as well suggests that western hemlock species are particularly good at regenerating in

areas with CWD. Although western hemlock demonstrates high seedling germination rates,

significant consequences of elevated gap productivity were also observed in quadrat three.

Quadrat three presented a situation where gap formation led to an increased rate of

regeneration that resulted in the subsequent mortality of juvenile western hemlock. It is

hypothesized that this was due to increased competition for limiting growth factors, such as

sunlight and nutrients. Likely the gap in quadrat three was highly productivity in the early stages

of its formation when sunlight was abundant and CWD nursing logs were moderately

decomposed. This is evident by the dense network of similarly aged western hemlock in the

stand growing on decaying remnants of CWD. High volumes of CWD lead to greater

concentrations of nutrients in the soil and higher moisture retention. These conditions are ideal

for species recruitment (Siitonen et al., 2000).

This supports our theory that most trees germinated during favorable conditions

following a small-scale disturbance. This response is typical in gap formations of the ICH,

known for its dense forest canopy and shade tolerant plant communities (Wright et al., 1998).

Also evident in quadrat three is the transition away from a gap phase as the stand matures, out-

competed species die, and dominant and sub-dominant trees take hold. This quadrat exemplifies

Page 27: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

24

successional gap dynamics and the transition that occurs when light and nutrients are limiting

factors in a stand.

6.0 Conclusion 

This study confirms our hypothesis that new forest gaps support increased species

richness and productivity in ICH forests of GNP. Our study demonstrated that young gaps with

large openings had higher species percent cover and richness in all vegetation layers in

comparison to intermediate gaps that have dramatically reduced percent cover and richness as

they progress into an intermediate age class. Good growth conditions resulting from small-scale

disturbances increase productivity, which can lead to increased density of the stand and higher

inter-intra species competition resulting in mortality. In all quadrats, western hemlock was the

dominant regenerating species, which suggests the megaplot was in a transitioning forest on the

edge of the ICH and ESSF biogeoclimatic zones. Germination of western hemlock trees was

most successful when CWD was present in decay class three or greater. Gaps increase

understory heterogeneity, which increases overall forest health and represents a key component

of old growth forest dynamics.

6.1 Limitations 

Statistical differences between the quadrats could not be computed due to the lack of

repeated variables (McGrew and Monrow, 2000). Time constraints at the study site also limited

our ability to conduct and collect data in numerous megaplots for direct comparison.

Page 28: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

25

7.0 Acknowledgments 

We would like to thank Dan Smith and Jim Gardner for an amazing educational

experience in such a beautiful area. We would also like to thank our teaching assistant Kara

Pitman for all her assistance out in the field and back in the lab. Thanks to Jodi Axelson for her

ecological expertise and for helping us with our study goals and data collection, and thanks to

Bethany for all her positive energy. We had so much fun!

 

 

 

Page 29: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

26

References 

Bartemucci, P., Coates, K. D., Harper, K. A. and Wright, E. F. 2002. Gap disturbances

in northern old growth forests of British Columbia, Canada. Journal of Vegetation

Science, 13(5): 685-696. doi:10.1111/j.1654-1103.2002.tb02096.x

BC Ministry of Forests (MoF). n.d. The ecology of the Interior-Cedar Hemlock zone:1-6.

Retrieved from: http://www.for.gov.bc.ca/hfd/pubs/docs/Bro/bro48.pdf

Clark, D. and Clark, D. 1992. Life-history diversity of canopy and emergent trees in

neo-tropical rain-forest. Ecological Monographs, 62(3): 315-244.

Coates, D.K. 2000. Conifer seedling response to northern temperate forest gaps. Forest

Ecology and Management. 127: 249-269.

Coates. D.K. 2002. Tree recruitment in gaps of various size, clearcuts and undisturbed

mixed forest of interior British Columbia, Canada. Forest Ecology and Management.

155: 387-398.

Coupe, R., Stewart, A. C. and Wikeem, B. M. 1991. Chapter 15: Engelmann spruce

subalpine fir zone. In D. Meidinger and J. Pojar (Eds.), Ministry of Forests, Ecosystems

of British Columbia, 223-236. Victoria, Canada: Research Branch. Retrieved

http://www.for.gov.bc.ca/hfd/pubs/docs/srs/Srs06/chap15.pdf

Downs, A. (Ed). 1980. Incredible Rogers Pass. Frontier Books: Surrey, British

Columbia. Frontier Books: Surrey, British Columbia, 14, 34.

Duncan, R., Buckley, H., Urlich, S., Stewart, G., and Geritzlehner, J. 1998. Small-scale

species richness in forest canopy gaps: The role of niche limitation versus the size

of the species pool. Journal of Vegetation Science, 9(3): 455-460

doi:10.2307/3237109

Page 30: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

27

Gray, A. N. and Spies, T. A. 1997. Microsite controls on tree seedling establishment in

conifer forest canopy gaps. Ecology, 78(8): 2458-2473. doi:10.1890/0012-9658

Gutsell, S.L. and Johnson, E.A. 2002. Accurately aging trees and examining their

height-growth rates: implications for examining forest dynamics. Journal of Ecology.

90:153-166.

Hart, S.J., Clague, J.J. and Smith, D.J. 2010. Dendrogeomorphic reconstruction of

Little Ice Age paraglacial activity in the vicinity of the Homathko Icefield,

British Columbia Coast Mountains, Canada. Geomorphology. 121: 197-205.

Johnson, E., Fryer, G., and Heathcott, M. 1990. The influence of man and climate on

frequency of fire in the Interior wets belt forest, British Columbia. Journal of Ecology,

78(2): 403-412.

Ketcheson, M. V., Braumandl, T. F., Meidinger, D., Utzig, G., Demarchi, D. A. and

Wikeem, B. 1991. Chapter 11: Interior Cedar-Hemlock zone. In D. Meidinger and J.

Pojar (Eds.), BC Ministry of Forests, Ecosystems of British Columbia, 167-181. Victoria,

Canada: Research Branch. Retrieved from

http://www.for.gov.bc.ca/hfd/pubs/docs/srs/srs06/chap11.pdf

Krebs, C. J. 1999. Ecological methodology. Menlo Park, California: Benjamin/Cummings. 39-40

Lertzman, K.P. 1992. Patterns of gap-phase replacement in a subalpine, old-growth

forest. Ecology, 73(2): 657-669.

Lorimer, C. 1984. Methodological considerations in the analysis of forest disturbance

history. Can. J. For. Res. 15: 200-213.

Page 31: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

28

Maclauchlan, L.E, Bleiker, K.P, and Lindgren, B.S. 2003. Characteristics of subalpine fir

susceptible to attack by western balsam bark beetle (coleoptera: Scolytidae). Canadian

Journal of Forest Research, 33(8): 1538-1538. doi:10.1139/x03-071

McCarthy, J. 2001. Gap dynamics of forest trees: A review with particular attention to

boreal forests. Environmental Reviews, 9(1): 1-1. doi:10.1139/er-9-1-1

McCleave, J.M. 2008. Chapter 7: Mount Revelstoke and Glacier National Parks. The

regional integration of protected areas: a study of Canada's national parks. Unpublished

PhD dissertation. University of Waterloo, Waterloo, Ontario, 198-229.

McCloskey, S., Daniels, L. and McLean, J. 2009. Potential impacts of climate change on

western hemlock looper outbreaks. Northwest Science, 83(3): 225-238.

McGrew, J.C., and Monroe, C.B. 2000. An introduction to statistical problem solving in

Geography. United States of America: The McGraw-Hill Companies, Inc.

Parish, R., Lloyd, D., Coupé, R., and Antos, J. 1996. Plants of southern interior British

Columbia. Vancouver: Lone Pine Pub.

Parks Canada. 2009. Glacier National Park of Canada: Old growth inland forest.

Retrieved from: http://www.pc.gc.ca/pn-np/bc/glacier/natcul/natcul1/c.aspx

Parks Canada. 2009b. Teacher Resource Centre: Glacier National Park of Canada.

Retrieved from: http://www.pc.gc.ca/apprendre-learn/prof/itm2-crp-

trc/htm/fglacier_e.asp

Parks Canada. 2011. Glacier National Park of Canada - Weather and Climate. Retrieved

from: http://www.pc.gc.ca/pn-np/bc/glacier/visit/visit4.aspx

Page 32: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

29

Peterson, E.B., Peterson, N.M, Weetman, G.F, and P.J. Martin. 1997. Ecology and

management of sitka spruce: emphasizing its natural range in British Columbia.

UBC Press: Vancouver, 80-81.

Pickett, S.T.A. and White, P.S. 1985. The Ecology of Natural Disturbance and Patch

Dynamics. Academic Press Inc., New York, NY.

Pojar, J., MacKinnon, A. and Coupe, P. B. 2008. Plants of Coastal British Columbia,

including Washington, Oregon & Alaska. Edmonton: Lone Pine Pub.

Roush, W. 2007. A substantial upward shift of the alpine treeline ecotone

in the southern Canadian Rocky Mountains. MSc Thesis: University of Victoria, 1-

175.

Runkle, J. R., 1951, and The Pacific Northwest Research Station (Portland, Or.). 1992.

Guidelines and sample protocol for sampling forest gaps. No. 283. Portland, Or:

U.S.D.A. Forest Service, Pacific Northwest Research Station.

Selkirk College. n.d. What is the biogeoclimatic ecosystem classification? Retrieved from

http://selkirk.ca/discover/bec/zones/whatis.html

Scharenbroch, B. C. and Bockheim, J. G. 2007. Impacts of forest gaps on soil

properties and processes in old growth northern hardwood-hemlock forests. Plant

and Soil, 294(1): 219-233. doi:10.1007/s11104-007-9248-y

Sherman, R.E., Fahey, T.J, and Battles, J. J. 2000. Small scale disturbance and

regeneration dynamics in a neotropical mangrove forest. Journal of Ecology.

88(1): 165-168.

Page 33: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

30

Siitonen, J., Martikainen, P., Punttila, P. and Rauh, J. 2000. Coarse woody debris and

stand characteristics in mature managed and old-growth boreal mesic forests in

southern Finland. Forest ecology and management. 128: 211-225.

Spies, T., Franklin, J. and Klopsch, M. 1990. Canopy gaps in douglas-fir forests of the

Cascade Mountains. Canadian Journal of Forest Research. 20(5): 649-658.

doi: 10.1139/x90-087

Speers, J.H. 2010. Fundamentals of tree ring research. The University of Arizona Press.

Tucson, USA, 192-194.

Stokes, M.A. and Smiley, T.L. 1964. An Introduction to Tree-Ring Dating. Chicago:

University of Chicago Press, 69-73.

Wright, E.F., Canham, C.D. and Coates, K.D 2000. Effects of suppression and

release on sapling growth for 11 tree species of northern, interior British

Columbia. Canadian Journal of Research 5(1): 197-202.

Yamamoto, S. 2000. Forest gap dynamics and tree regeneration. Journal of Forest

Research, 5(4): 223-229. doi:10.1007/BF02767114

Page 34: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

31

Appendix A: Plant species observed in megaplot by Quadrat 

Quadrat 1  Quadrat 2  Quadrat 3 common name  latin  common name  latin  common name  latin 

Western hemlock  tsuga heterophylla Western hemlock  tsuga heterophylla 

Western hemlock  tsuga heterophylla 

Mountain hemlock  Tsuga mertensiana  Mountain 

hemlock  Tsuga mertensiana  Mountain hemlock  Tsuga mertensiana 

Indian hellebore  Veratrum viride  Sub‐alpine fir  Abies lasiocarpa Queen's cup  Clintonia uniflora 

Queen's cup  Clintonia uniflora  One‐leaved foam flower  Tiarella unifoliata  Rosy twisted 

stock  Stretopus roseus 

Oak fern  Gymnocarpium dryopteris  Bunch berry  Cornus canadensis  Oak fern  Gymnocarpium 

dryopteris 

Spiny wood fern  Dryopteris expansa  Indian Hellebore  Veratrum viride  Spiny wood fern  Dryopteris expansa 

Creeping raspberry  Rubus pedatus  Queen's cup  Clintonia uniflora  Common 

horsetail  Equisetum arvense 

Rosy twisted stock  Stretopus roseus  Oak fern  Gymnocarpium dryopteris 

Black huckleberry 

Vaccinium membranaceum 

Lady fern  Athrium filix‐femina  Spiny wood fern  Dryopteris expansa 

Oval‐leaved blueberry 

Vaccinium ovalifolium 

Pink wintergreen  Pyrola asarifolia  Creeping raspberry  Rubus pedatus  Hanging basket 

moss Rhytidiadelphus loreus 

Black huckleberry  Vaccinium membranaceum 

Oval‐leaved blueberry 

Vaccinium ovalifolium  Lady fern moss  Thuidium 

recognitum Oval‐leaved blueberry 

Vaccinium ovalifolium 

Rosy twisted stock  Stretopus roseus  Pipecleaner 

moss Rhytidiopsis robusta 

Devil's club  Oplopanax horridus  False azalea  Nenziesia ferruginea     

Hanging basket moss 

Rhytidiadelphus loreus  Spangle top  Scolochloa 

festucacea     

Lady fern moss  Thuidium recognitum 

Black huckleberry 

Vaccinium membranaceum     

Schreber's red stem moss 

Pleurozium schreberi 

Western mountain ash  Sorbus scopulina     

Pipecleaner moss  Rhytidiopsis robusta 

Golden curls moss 

Homalothecium aeneum     

Common lawn moss 

Brachythecium albicans  Glow moss  Aulaconnium 

palustre     

Golden curls moss  Homalothecium aeneum 

Clasping twisted stalk 

Streptopus amplexifolius     

Green tongue wort 

Marchantia polymorpha 

Pipecleaner moss 

Rhytidiopsis robusta     

  

Page 35: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

32

 Appendix B: Estimated Percent Cover of Species in Structural Vegetation Layers by Quadrat 

Quadrat #1  % Ground Cover  % Herbaceous Cover  % Shrub Layer Hanging basket moss  5  Indian Hellebore  1  Devil's club  5 Lady fern moss  10  Queen's cup  10  Black huckleberry  40 Schreber's red stem moss  5  Oak fern  25  Oval‐leaved blueberry  30 Pipecleaner moss  60  Spiny wood fern  20  Western hemlock  15 Common lawn moss  10  Creeping raspberry   5  Mountain hemlock  10 Golden curls moss  5  Rosy twisted stock  4 

   Green tongue wort  1  Lady fern  30    Organic material  4  Pink wintergreen  5    Total % Cover by Layer:  95 

 20 

 75 

Quadrat #2 % Ground Cover  % Herbaceous Cover  % Shrub Layer Golden curls moss  10  One‐leaved foam flower  3  Black huckleberry  13 Glow moss  10  Bunch berry  1  Western mountain ash  1 Pipecleaner moss  20  Indian Hellebore  1  False azalea  1 Organic material  60  Queen's cup  23  Oval‐leaved blueberry  10 

    Oak fern  45  Western hemlock  50 

    Spiny wood fern  7  Mountain hemlock  25 

    Creeping raspberry   7 

    

   Rosy twisted stock  10    

    Clasping twisted stalk  10 

    

   Spangle top  3    Total % Cover by Layer:  40 

 5 

 10 

Quadrat #3 % Ground Cover  % Herbaceous Cover  % Shrub Layer Hanging basket moss  2  Queen's cup  10  Oval‐leaved blueberry  5 Lady fern moss  3  Rosy twisted stock  4  Western hemlock  70 Pipecleaner moss  5  Oak fern  5  Mountain hemlock  25 Organic material  90  Spiny wood fern  80 

  

   Common horsetail  1  

 Total % Cover by Layer:  10 

 2 

 5 

Page 36: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

33

Appendix C: Decay Classes for Course Woody Debris (BEC Field Manual) 

Page 37: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

34

Appendix D: Age and health observations of 21 largest trees in megaplot 

Quadrat Spp Age DBH (m)

Height (m)

Canopy Class Damage Comments

1 Hw (210) 542 1.35 36.5 dominant 12.5m break and

regrowth 3 prong top. Very old. Rot inside

1 Hw 81 0.182 12 suppressed some near top appears healthy

2 Hw 223 0.376 18 intermediate top kill and regrowth at 4.5 m and 15.7m

no rot

2 Hw 200 0.583 27.8 co-dominant none apparent healthy

2 Hw (218) 249 0.618 29.1 co-dominant none apparent tree appears healthy. Centre rot,

core not finished

2 Hw 264 0.611 29.1 co-dominant none apparent tree appears healthy. Centre not reached, subtle rot.

2 Hw 273 0.748 29.4 co-dominant none apparent healthy, no rot. Core in two pieces

2 Hw (251) 228 0.567 24.2 co-dominant broken top height measured to broken top.

Wet and rot in centre

2 Hw (136) 325 0.809 31.6 co-dominant none apparent rot centre and woodpecker holes

2 Hw 266 0.529 25.7 co-dominant Split tree. split in small tree at 13.0m. 3rd stem dead

Split starts at 0.68m, tree stems separate at 3m. Second stem 17.7m high. Variable growth in core.

2 Hw 267 0.682 33.7 co-dominant none apparent edge of plot - gap. Rot at centre, pith reached.

2 Hw 72 0.111 2.7 suppressed none apparent top is growing crooked, could be attempting new crown

2 Bl 123 0.169 9 suppressed none apparent only subalpine fir in plot 3 Hw 260 0.557 31 co-dominant none apparent pith reached, some rot at centre 3 Hw 260 0.65 32.1 co-dominant none apparent no rot

3 Hw 255 0.701 34.1 dominant none apparent took first core - rot, discarded. Second core good. Near corner 3

3 Hw (147) 134 0.331 17 co-dominant broken top, scar at

base extensive rot

3 Hw 72 0.146 9 suppressed lower 3 metres branches dead, no foliage

Reached rot quickly in core

3 Hm 79 0.169 10 suppressed lower 3 metres branches dead, no foliage

major pistol butt, good core.

3 Hm 53 0.162 11 suppressed Unhealthy. lower 3 metres branches dead, no foliage

Young but healthy core appearance. Shadowed by upslope

3 Hw 68 0.182 13 suppressed lower 3 metres branches dead, no foliage

healthy, no damage. 1 piece core

*Western Hemlock = Hw; Mountain Hemlock = Hm; Subalpine fir =Bl. **For trees where pith was not reached, counted age is recorded in brackets, with extrapolated age based on Fig 8 in bold.

Page 38: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

35

Appendix E: Tree Ring Growth Results  

TREE DATA   

Year  Ring  1  2  3  4  5  6  7  8  9  10 11 

12  13  14  15  16  17 

18  19  20  21 

2011  1           2+        2+     1              2+           2+ 

      1+ 

2010  2           2+        2+     1              2+          2+        1+ 

2009  3           2+        2+     1              2+           2+ 

      1+ 

2008  4           2+        2+     1              2+          2+        1+ 

2007  5           2+        2+     1              2+           2+        1+ 

2006  6           2+        2+     1              2+          2+        1+ 

2005  7           2+        2+     1              2+           2+        1+ 

2004  8           2+        2+     1              2+          2+        1+ 

2003  9           2+        2+     1              2+           2+        1+ 

2002  10           2+     1  2+     1+           1+  2+  1     1           1+ 

2001  11           2+        2+     1+              2+  1                 1 

2000  12           2+        2+  1  1+              2+                    1 

1999  13        1  2+     1  2+  1  1+              2+                    1 

1998  14        1  2+        2+  1  1              2+                    1 

1997  15        1  2+        2+     1              2+     1              1 

1996  16           2+        2+     1           2                       1 

1995  17           2+        2+     1           2                       1 

1994  18           2+        2+     1                    2     2        1 

1993  19           2+        2+     1           1     1+        2     2  1 

1992  20           2+        2+     1                          2     2  1 

1991  21  1        2+        2+     1+           1              2     2  1 

1990  22           2+        2+     1                          2     2  1 

1989  23           2+        2+     1                          2        1 

1988  24           2+        2+  2  1           2              2        1 

1987  25           2+  2+     2+  2  1                                   1 

1986  26           2+  2+     2+  2  1                                   1 

1985  27              2+     2+     1                                   1 

1984  28              2+     2+     1+                    1  1           1 

1983  29        1+     2+  1  2+     1           1        1  1           1 

1982  30              2+     2+     1                 2  1              1 

1981  31              2+     2+     1+                 2  1              1 

1980  32        1     2+     2+     1                 1  1              2+ 

1979  33              2+     2+     1                 1  1     2+        2+ 

1978  34              2+     2+     1                 1  1  1  2+ 

      2+ 

Page 39: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

36

1977  35              2+     2+                       1  1  1           2+ 

1976  36              2+     2+                       1  1  1        2  2+ 

1975  37              2+     2+                 2        1           2  2 

1974  38              2+     2+     1           2        1     2     2  2 

1973  39           2  2+     2+     1           2        1     2        2 

1972  40        1  2     1  2+     1           2  1     1              2 

1971  41        1  2        2+                 2  1        2  2+        2 

1970  42        1  2     1  2+                 2           2  2        2 

1969  43        1        1  2+  2              2           2  1        2 

1968  44        1        1  2+  2                 2        2  2          

1967  45        1        1  2+                    2        2  1          

1966  46        1        1  2+                    2        2  2     1    

1965  47        1        1  2+                    2        2  2     1    

1964  48                 1  2+  2                          2  2     1    

1963  49                 1  2+                    2        2  2     1    

1962  50                 1  2+                    2        1  2     1    

1961  51              2+     2+                 2  2        1  2     1    

1960  52                    2+                 2  2        1  2     1    

1959  53        1     1     2+                 2  2           2 End year  1    

1958  54        1     1     2+                    2  2        1+ 

   1    

1957  55     1           1+  2+                 1     2              1    

1956  56                    2+  2              1     2              1    

1955  57                    2+  2                    2              1    

1954  58                    2+  2                    2              1    

1953  59                    2+  2                    2        4     1    

1952  60                    2+  2                             4     1    

1951  61                    2+  2     1  1        1+           4     1    

1950  62                    2+  2     1           1+           4     1    

1949  63                    2+  2                 2           4     1    

1948  64                    2+  2                 2           4     1    

1947  65     1              2+  2                 2           4     1  1 

1946  66     1     1  1  1  2+  2                 2           4     1  1 

1945  67  1  1     1  1  1  2+                    2           4     1  1 

1944  68     1        1  1+  2+                    2  1     4  4     End year 

1943  69     1     1  1  1+  2+                    2        4           1 

1942  70           1  1  1+  2                    2        4           1 

1941  71     1              2  2+  2                       4           1 

1940  72     1           2++        2                 End year 

   4  End year     1 

1939  73     1+           1  2+     2                       4           1 

1938  74     1           1  2+     2                       4           1 

1937  75                 1  2+     2                       4           1 

Page 40: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

37

1936  76                 1  2+     2                       4           1 

1935  77                    2+     2                                   1 

1934  78                    2+     2                                   1+ 

1933  79                    2+     2                    End year 

            1+ 

1932  80           1        2+     2                                   1+ 

1931  81           1        2+     2                       End year 

         1+ 

1930  82           1        2+     2                                   1+ 

1929  83           1        2+     2                                   1+ 

1928  84                    2+     1           1                       1+ 

1927  85                    2+     2                                   1+ 

1926  86                    2+     2                                     

1925  87        1  1        2+     2                                     

1924  88     1  1  1        2+     2  2  1+ 

                             

1923  89     1  1           2+     2  2  1                               

1922  90  1  1  1           2+     2  2  1                               

1921  91     1  1  1+        2+     2  2  1                               

1920  92     1  1  1+     1  2+     2  2  1                               

1919  93     1  1  1        2+     2  2                                  

1918  94     1  1  1+        2+  1  2  2                                  

1917  95        1  1        2+  1  2  2                                  

1916  96  2  2              2+     2  2                                  

1915  97  2  2              2+  1  2+  2                                  

1914  98     2              2+  1  2+  2           1                      

1913  99  1  2              2+  1  2+  2                                  

1912  100                    2  1  2+  2                                  

1911  101                    2  1  2+  2                                  

1910  102                    2  1  2+  2                                  

1909  103                    2  1  2+  2                                  

1908  104                    2  1  2+  2                                  

1907  105                    2  1  2+  2                                  

1906  106                    2     2+  2                                  

1905  107  2                 2     2+  2                                  

1904  108  2                 2     2+  2                                  

1903  109  2                 2  1  2+  2                                  

1902  110  2                 2  1  2+  2                                  

1901  111 2+ 

               2  1  2+                                     

1900  112 2+                 2  1  2+                                     

1899  113 2+ 

               2  1  2+                                     

1898  114 2+                 2  1  2+                                     

1897  115 2+ 

         2+     2  1  2+                                     

1896  116 2+           2+     2  1  2+                                     

Page 41: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

38

1895  117  2           2+     2  1  2+                                     

1894  118  2           2+  2  2  1  2+              1                      

1893  119  2           2+  2  2  1  2+              1                      

1892  120  2           2+     2  1  2+              1                      

1891  121  2                 2+  1  2+                                     

1890  122  1                 2+  1  2+                                     

1889  123  1                 2+  1  2+                                   End year 

1888  124                 1  2+  1  2+                                     

1887  125  2                 2  1  2+                                     

1886  126  2              1  2  1  2+                                     

1885  127  2     1        1  2  1  2+                                     

1884  128  2     1           2  1  2+           1                         

1883  129  2                 2  1  2+           1                         

1882  130  2                 2  1  2+              1                      

1881  131  2                 2  1  2+                                     

1880  132  2                 2     2+                                     

1879  133  2                 2     2+                                     

1878  134  2                 2     2+                                     

1877  135  2                 2     2+                                     

1876  136 2                 2 

End 

2+                                     

1875  137 2+                 2+ 

rot  2+                                     

1874  138 2+  1              2+     2+                                     

1873  139 2+ 

1              2+     2+  1        1                         

1872  140 2+  1              2+     2+  1        1                         

1871  141 2+ 

               2+     2+  1                                  

1870  142 2+                 2+     2+  1           1+                      

1869  143 2+ 

               2+     2+              1                      

1868  144 2+                 2+     2+                                     

1867  145 2+ 

               2+     2+                                     

1866  146 2+                 2+     2+                                     

1865  147 2+ 

               2+     2+              End rot 

                    

1864  148 2+                 2     2+                                     

1863  149  2              1+  2     2+                                     

1862  150  2                 2     2+    1+                               

1861  151  2                 2     2+     1+ 

                             

1860  152  2                 2     2+    1+                               

1859  153  2                 2     2+     1+                               

Page 42: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

39

1858  154  2                 2     2+     1                               

1857  155  2                 2     2+     1                               

1856  156  2                 2     2+     1                               

1855  157  2     1           2     2+     1                               

1854  158  2     1           2     1     1                               

1853  159  2     1           2     2+     1                               

1852  160                    2     2+     1                               

1851  161                    2     2+     1     1+                         

1850  162                    2     2+     1     1+                         

1849  163                    2     2+     1     1+                         

1848  164                 1  2     2+     1     1+                         

1847  165                 1  2     2+     1     2                         

1846  166     1     1     1  2     2+     1     1+                         

1845  167     1+     1     1  2     2+     1     1+                         

1844  168     1+ 

1  1              2+     1     1+                         

1843  169     1+  1  1        1     2+     1     1+                         

1842  170     1+ 

1           1     2+     1     1+                         

1841  171        1           1     2+     1     1+                         

1840  172     2              1     2+     1     1+                         

1839  173     2              1     2+     1                               

1838  174     2              1     2+     1                               

1837  175     2                    2+     1                               

1836  176  1  2              1     2+     1                               

1835  177  1  2              2     2+     1                               

1834  178  1                 2     2+     1                               

1833  179  1                 2     2+     1                               

1832  180  1     4           2     2+     1                               

1831  181  1     4           2     2+     1                               

1830  182  1     4           2     2+     1                               

1829  183  1     4           2     2+     1                               

1828  184  1  2  4           2     2+     1                               

1827  185  1  2  4           2     2+     1                               

1826  186  1  2  4           2     2+  1  1                               

1825  187  1     4        1  2     2+  1  1                               

1824  188  1     4           2     2+  1  1                               

1823  189  1     4  rot     1  2     2+     1                               

1822  190  1     4           2     2+     1                               

1821  191  1     4           2     2+     1                               

1820  192 1+     4           2     2+     1                               

1819  193 1+     4           2     2+     1                               

1818  194 1+     4           2     2+     1                               

Page 43: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

40

1817  195 1+ 

   4           2     2+     1                               

1816  196 1+     4           2     2+     1                               

1815  197  1     4           2     2+     1                               

1814  198  1     4           2     2+     1                               

1813  199  1     4                 2+     1                               

1812  200  1     End year                 2+     1                               

1811  201  1                       2+     1                               

1810  202  1        rot              2+  2  1                               

1809  203  1              1        2+  2  1                               

1808  204  1                       2+     1                               

1807  205 1+                       2+     1                               

1806  206 1+ 

                     2+     1                               

1805  207  1                       2+     1                               

1804  208  1                       2+     1                               

1803  209  1  2                    2+     1                               

1802  210 End ‐ rot                    2+  2 

1+                               

1801  211                          2+     1+                               

1800  212                          2+    1+                               

1799  213                          2+     1+                               

1798  214                          2+     1+ 

                             

1797  215                          2+     1+                               

1796  216                          2+     1                               

1795  217     2                    2+  Rot  1                               

1794  218     2    End‐ rot              2+     1                               

1793  219     2                    2+     1                               

1792  220     2                    2+     1                               

1791  221     2              2     2+     1                               

1790  222     2              2     2+     1                               

1789  223     End year 

            2     2+     1                               

1788  224                    2     2+     1     2                         

1787  225                    2     2+     1     2                         

1786  226                    2     2+  1  1                               

1785  227                    2     2+  1  1                               

1784  228                    2     2+  1  1                               

1783  229                    2     2+  1  1                               

1782  230                 4  2     2  1  1                               

1781  231                 4  2     2  1  1                               

1780  232                 4  2     2     1     2                         

1779  233                 4  2     2     1                               

Page 44: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

41

1778  234                 4  2     2     1                               

1777  235                 4  2     2     1                               

1776  236                 4  2     2     1                               

1775  237                 4  2     2     1                               

1774  238                 4  2     2     1                               

1773  239                 4  2     2     1                               

1772  240                 4  2     2     1                               

1771  241                 4  2     2     1                               

1770  242                 4  2     2     1                               

1769  243                 4  2     2     1                               

1768  244                 4  2     2     1                               

1767  245                 4  2     2  rot?  1                               

1766  246                    2     2     1                               

1765  247                    2     2     1                               

1764  248                    2     2     1                               

1763  249                    2     2     1                               

1762  250                    2     2  4 1+                               

1761  251                    End‐rot 

      4  1+ 

                             

1760  252                             4 1+                               

1759  253                             4  1+                               

1758  254                             4 1+                               

1757  255              4              4  1+     End 

year                         

1756  256              4              4  1                               

1755  257              4              4  1                               

1754  258              4              4  1                               

1753  259              4              4  1                               

1752  260              4              4  1  End year                         

1751  261              4              4  End year 

                          

1750  262              4              4                                  

1749  263              4              4                                  

1748  264              End year              4                                  

1747  265                             4                                  

1746  266                          End year  4                                  

1745  267                            End year                                  

1744  268                                                                

1743  269                                                                

1742  270                                                                

1741  271                                                                

1740  272                                                                

1739  273                 End year                                               

Page 45: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

42

*1 complacent rings *1+ very complacent rings *2 narrow rings *2+ very narrow rings *4 complacent rings in first years of growth

 

Page 46: Exploring the transitional forest gap dynamics of small‐scale ......3.3 Dendrochronology and Tree Mensuration ‐ Methods and Analysis Living tree cores and tree measurements were

43

Appendix F: Soil Properties and Results from pits in each Quadrat 

Pit Horizons

Depth

Biotic Compositi

on

Colour % Fine Fragments Sorting Shape

Soil Porocit

y Draina

ge Soil Type

Deposition code colour Sand Clay Silt

1

F 2.3 yes1 -- -- n/a n/a n/a

gravels, pebbles,

some cobbles

Sub-rounded or sub-angular

Mod. Porous

well drained

silty loam colluvial

H(O) trace yes -- -- n/a n/a n/a

A(E) 12 n/a 7.5yr 6/1 grey 55% 5% 40%

B1 20 n/a 7.5yr 3/4

dark brown 70% 0% 30%

B2 11 n/a 7.5yr 4/6

strong brown 90% 0% 10%

2

F 1.9 yes2 -- -- n/a n/a n/a

fine sand, large rocks,

cobbles, gravels, pebbles

Sub-rounded or sub-angular

Highly Porous

well drained

fine sandy loam

colluvial

H(O) trace yes -- -- n/a n/a n/a

A(E) 1 7 n/a 7.5yr 6/2

pinkish grey 65% <5% 30%

A(E) 2 7 n/a 7.5yr 5/2 brown 65% 5% 30%

B1 16 n/a 7.5yr 4/4 brown 70% <5% 25%

B2 15 n/a 7.5yr 4/6

strong brown 55% 5% 40%

3

Litter 5 n/a -- -- n/a n/a n/a

gravels, pebbles, cobbles

large rocks

Sub-rounded or sub-angular

Highly Porous

well drained

fine sandy loam

colluvial

F 3 yes3 -- -- n/a n/a n/a

H trace yes -- -- n/a n/a n/a

A(E) 1 14 n/a 7.5yr 6/2

pinkish-grey 80f% <5% 15%

A(E) 2 5 n/a 7.5yr 5/2 brown 65f% 5% 30%

B1 4 n/a 7.5yr 3/3

dark brown 65% 5% 30%

B2 20 n/a 7.5yr 4/4 brown 65% 5% 30%

1. moderate consolidated mat 2. consolidated mat - moderate 3. highly matted decomposing debris