22
Porto, 10 April 2006 Exploring Mechanical Property Balance in Tufted Carbon Fabric/Epoxy Giuseppe Dell’Anno 1 Denis D. Cartié 1 Giuliano Allegri 2 Ivana K. Partridge 1 Amir Rezai 3 1 - Composites Centre, Cranfield University, Cranfield, Bedford, MK43 0AL, UK 2 - School of Engineering, Cranfield University, Cranfield, Bedford, MK43 0AL, UK 3 - BAE Systems, Advanced Technology Centre, Filton, Bristol BS34 7QW, UK

Exploring Mechanical Property Balance in Tufted Carbon ...comptest/proc/files/presentations/Dell'Anno.pdfPorto, 10 April 2006 Exploring Mechanical Property Balance in Tufted Carbon

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Porto, 10 April 2006

    Exploring Mechanical Property Balance in Tufted Carbon Fabric/EpoxyGiuseppe Dell’Anno1Denis D. Cartié1Giuliano Allegri2Ivana K. Partridge1Amir Rezai3

    1 - Composites Centre, Cranfield University, Cranfield, Bedford, MK43 0AL, UK2 - School of Engineering, Cranfield University, Cranfield, Bedford, MK43 0AL, UK3 - BAE Systems, Advanced Technology Centre, Filton, Bristol BS34 7QW, UK

  • Porto, 10 April 2006

    Slide n° 1

    Table of ContentsTuftingTufting

    Concept and TechnologyConcept and TechnologyMechanical testingMechanical testing

    Tensile testTensile testCompression after impact (CAI) testCompression after impact (CAI) test

    Bridging lawsBridging lawsSingleSingle--tuft specimen testingtuft specimen testingAnalytical modellingAnalytical modelling

    ConclusionsConclusions

    Robotic TuftingRobotic Tufting

  • Porto, 10 April 2006

    Slide n° 2

    Tufting: the conceptTufting: the concept

    Z-pinsPlane of composite

    Z-pinning

    TuftingStitching

    Lock stitches

    Modified lock stitches

    Chain stitches

    Only for p

    re-pregs

    High thre

    ad tensio

    n

    Two side

    access

    Needle

    Loops

    Thread

    Laid-up fabric

  • Porto, 10 April 2006

    Slide n° 3

    Robotic tufting of dry preformsRobotic tufting of dry preforms

    Silastic® 3481Silicone rubber from Dow Corning®

    SIL16Silicone foam from Samco®

    3mm

    3mm

  • Porto, 10 April 2006

    Slide n° 4

    Woven 5 harness satin carbon fibre fabric, 0°/90° lay-upRTM grade epoxy resinResin Transfer Moulding: ΔP=2bar, 180°C for 185 minutes

    Robotic tufting of dry preformsRobotic tufting of dry preforms

    Glass fibre thread Carbon fibre thread

    MaterialEC 9 68x3 S260 T8GSaint Gobain® Vetrotex®

    CF Sewing yarnToho Tenax®

    Specific weight 204g/km 137g/kmFilament type Continuous

    Filament count 204 1000Filament Φ 9μm

  • Porto, 10 April 2006

    Slide n° 5

    Mesostructure

    Robotic tufting of dry preformsRobotic tufting of dry preforms

    Tuft diameter in situ =570μmTuft diameter in situ =710μm

    Carbon fibre threadGlass fibre thread

  • Porto, 10 April 2006

    Slide n° 6

    BS EN ISO 527-4:1997Glass fibre threadLimess® system stereo cameras

    Tensile behaviour

    Checking with astrain gauge

    VicSnap®

    Vic3D®

    Load/Displacement curve

    Cameras Specimen

    Fracture path

  • Porto, 10 April 2006

    Slide n° 7

    Fracture surfaceCross section of a tufted specimen

    Tensile behaviourTensile behaviour

    Tensile TestYoung's modulus

    54.255.0

    50

    51

    52

    53

    54

    55

    56

    57

    Control GF tufted

    GPa

    Tensile TestMax stress

    476.5 429.8

    0

    100

    200

    300

    400

    500

    600

    Control GF tufted

    MPa

    3mm

  • Porto, 10 April 2006

    Slide n° 8

    Failure analysisTufts act as crack initiators

    Fibre breakage?Resin pockets?Resin impregnation defects?

    Tensile behaviourTensile behaviour

    VoidsResin pockets

    Broken fibres

  • Porto, 10 April 2006

    Slide n° 9

    Impact at 15J0°/90° lay-up - 101.6x152.4mm - Specimen fixture according to Boeing BSS 7260

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

    Time (s)

    Forc

    e (N

    )

    Control

    Glass fibre tufted

    Carbon fibre tufted

    Compression after ImpactCompression after Impact

  • Porto, 10 April 2006

    Slide n° 10

    Maximum Load

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    Control GF tufted CF tufted

    Load

    (N)

    Con

    trol

    Gla

    ss fi

    bre

    tufte

    d

    Car

    bon

    fibre

    tufte

    d

    Compression after ImpactCompression after Impact

    Impact at 15J0°/90° lay-up - 101.6x152.4mm - Specimen fixture according to Boeing BSS 7260

  • Porto, 10 April 2006

    Slide n° 11

    Samples C-scanned before and after impactImages processed with PaintShop® Pro(Apparent) total damaged area unchanged by tufting

    Processed ImageAfter ImpactBefore Impact

    50mm

    50m

    mCompression after ImpactCompression after Impact

  • Porto, 10 April 2006

    Slide n° 12

    Linear extent of the damage reducedMaximum distance of the damage border from the centre of impact lowered in tufted samples

    After Impact

    Compression after ImpactCompression after Impact

    Control

    Reduction intufted samples:Glass fibre 11%Carbon fibre 12%

  • Porto, 10 April 2006

    Slide n° 13

    Cross section of impacted control specimen

    Compression after ImpactCompression after Impact

    Number of delamination planes reduced by tufting

    Delamination sites

    ImpactorΦ=20mm

    Laminate

  • Porto, 10 April 2006

    Slide n° 14

    Cross section of impacted tufted specimen

    Compression after ImpactCompression after Impact

    Number of delamination planes reduced by tufting

    Delamination sites

    ImpactorΦ=20mm

    Laminate

  • Porto, 10 April 2006

    Slide n° 15

    Maximum stress @ 0.5mm/min

    0

    50

    100

    150

    200

    250

    Control GF tufted CF tufted

    Stre

    ss a

    t fai

    lure

    (kN

    ) Increase 27%Increase 25%

    Con

    trol

    Gla

    ss fi

    bre

    tufte

    d

    Car

    bon

    fibre

    tufte

    d

    Compression after ImpactCompression after Impact

    Compression responseSpecimen fixture according to Boeing BSS 7260

  • Porto, 10 April 2006

    Slide n° 16

    Aim Determine the mechanical response of a single tuft inserted in a composite laminate Release

    film Tuft Laminate

    SingleSingle--tuft specimenstuft specimens

    Mode I Mode II

  • Porto, 10 April 2006

    Slide n° 17

    SEM ofCarbon fibre tuft

    after failureunder mode II

    40

    50

    60

    70

    80

    90

    100

    110

    120

    0 0.1 0.2 0.3 0.4

    Displacement (mm)

    Load

    (N)

    0

    50

    100

    150

    200

    250

    300

    0 0.1 0.2 0.3 0.4

    Sliding displacement (mm)

    Shea

    r For

    ce (N

    )

    No evidence of pull-outThe tuft fails on the delamination plane

    SingleSingle--tuft specimenstuft specimens

    Mode IIMode I

    Glass fibre tuft

    Carbon fibre tuft

    Glass fibre tuft

    Carbon fibre tuft

    rate 1mm/min rate 0.25mm/min

  • Porto, 10 April 2006

    Slide n° 18

    Bridging stiffnesses χI and χII

    Analytical model* for through-thickness reinforcement

    IP wχ= IIS uχ=

    2

    22 3

    zI

    z

    k EALEA k L

    χ =+ ( )

    xII

    k LG L

    χβ

    =

    4 xkEI

    β = ( ) ( ) ( )2 cos cosh 2 sinh sin sin cosh cos sinh

    cos cosh 1L L L L L L L L L

    G L LL L

    β β β β β β β β ββ β

    β β− + − + −

    =−

    Foundation stiffnesses kz and kxhave to be determined experimentally

    ModellingModelling

    * G. Allegri, X. Zhang Delamination Bridging Laws for Composite Laminates Reinforced by Through-Thickness Pinssubmitted for publication to Mechanics of Materials

  • Porto, 10 April 2006

    Slide n° 19

    ModellingModelling

    Mode IIMode I

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4540

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    Total opening displacement (mm)

    Z fo

    rce

    (N)

    ExperimentalModel

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4540

    50

    60

    70

    80

    90

    100

    110

    120

    Total opening displacement (mm)

    Z fo

    rce

    (N)

    ExperimentalModel

    0 0.05 0.1 0.15 0.2 0.250

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    Total sliding displacement (mm)

    X fo

    rce

    (N)

    ExperimentalModel

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

    50

    100

    150

    200

    250

    300

    Total sliding displacement (mm)

    X fo

    rce

    (N)

    ExperimentalModel

    Glass fibre tuft

    Carbon fibre tuft5% agreement

    Prediction:

    Glass fibre tuft

    Carbon fibre tuft10% agreement

    Prediction:

  • Porto, 10 April 2006

    Slide n° 20

    Conclusions on effects of tufting

    Robotic TuftingRobotic Tufting

    10% drop in failure load in tension

    In-plane Young’s modulus not degraded significantly

    Tufts act as crack initiators

    CAI increased by ~26%

    No tuft pull-out observed under mode I or mode II

    Analytical model for the bridging law by single tuft

    established

  • Porto, 10 April 2006

    Slide n° 21

    Thank youThank youfor your attention!for your attention!

    Further information from Further information from [email protected]@cranfield.ac.ukResearch funded by Cranfield University IMRC with industrial conResearch funded by Cranfield University IMRC with industrial contributionstributions

    mailto:[email protected]

    Table of ContentsMesostructureFailure analysisImpact at 15J�0°/90° lay-up - 101.6x152.4mm - Specimen fixture according to Boeing BSS 7260Impact at 15J�0°/90° lay-up - 101.6x152.4mm - Specimen fixture according to Boeing BSS 7260Compression response�Specimen fixture according to Boeing BSS 7260Conclusions on effects of tufting

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice