6
Supercapacitors consist of two activated carbonbased electrodes (coatings on aluminium current collectors) soaked with an electrolyte (1M tetraethylammonium tetrafluoroborate in acetonitrile TEABF4 in ACN) and electrically isolated by a porous separator placed between the electrodes (ex situ 11 B NMR shows that it contains 1020% of the TEABF4 electrolyte). The electrodes prepared from the two carbon materials (carbon A and B, SI: part A) have comparable gas adsorption properties (Table S1), however, a slightly higher capacitance value is displayed by carbon B (111 F/g against 95 F/g for carbon A). Previous works using neutron diffraction 1 have found that carbons produced at temperatures ranging between 800° and 1200°C are made of graphene sheets, which are more or less curved (SI: part B, Figure S 2), and adsorption of various molecules and ions can occur between these graphene sheets. The presence of signals with larger chemical shifts in the 13 C MAS NMR spectra and the ratio of the D and G bands in the Raman spectra of these two carbons indicate that carbon B (from KOH activated coke) is more structurally disordered, probably with a larger amount of defects creating curvature in the graphene sheets (SI: part B, Figure S 3). In the NMR magnet, the graphenelike sheets create ring currents and a diamagnetic shift of 6 ppm is observed for molecules between graphene layers. For static samples, the anisotropy of this shift, if any, may broaden the NMR peaks of the adsorbed molecules and lead to overlapping of ACN and TEA + resonances (see SI, Part C, Figure S 4, for a comparison between the 1 H and 13 C spectra of ACN in the electrolyte solution and neat ACN adsorbed between graphene layers). 2 Moreover, the dipolar couplings with neighbouring spins broaden the NMR peaks (see the static and MAS spectra from Figure S 4, part C from SI). MAS removes these effects. However, the spinning speed has been limited to 5 kHz to avoid separating the liquid and solid phases by centrifugation: 3 the comparison of MAS NMR spectra at 5 kHz with static spectra shows no MASinduced desorption of previously 1 Petkov, V., Difrancesco, R.G., Billinge, S.J.L., Acharya, M. & Foley, H. C. Local structure of nanoporous carbons. Phil. Mag. B79, 15191530 (1999). 2 Kibalchenko, M., Payne, M.C., Yates, J.R. Magnetic Response of SingleWalled Carbon Nanotubes Induced by an External Magnetic Field. ACS Nano 5, 537545 (2011). 3 Dickinson, L.M., Harris, R.K., Shaw, J.A., Chinn, M. & Norman, P.R. Oxygen17 and deuterium NMR investigation into the adsorption of water on activated carbon. Magn. Reson. Chem. 38, 918924 (2000). adsorbed ACN (Figure S 4, part C, SI). The resolution in 13 C NMR spectra is further enhanced with 1 H decoupling (for the Jcoupling), and the resulting spectra confirm the absence of skin depth effects resulting from carbon black conductivity additive in our samples, as the 1 H decoupling RF irradiation (with half the penetration depth of the 13 C RF) manages to decouple the whole sample (SI: part D, Figure S 5). Fortunately, the presence of paramagnetic centres in the carbon material, as observed by EPR on most activated carbons, 4,5 considerably accelerates the 13 C and 11 B longitudinal relaxation (T1 < 8 s), thereby shortening the magnetization recovery delay to several seconds. This allowed us to record natural abundance (1%) direct detection 13 C NMR spectra of the electrolyte inside the nanoporous carbon in less than two hours, and the 11 B (S=3/2 and 80.42% abundant) NMR spectra in 5 minutes. Of course, such experimental times do not allow capturing the state of the electrolyte immediately after charging/discharging the supercapacitor. The selfdischarge of our supercapacitors is less than 10% after 24 hours and is measured as follows: the system is maintained at maximum voltage (potentiostatic mode) during 30 minutes. The selfdischarge is the subsequent voltage drop, which occurs at open circuit. In potentiostatic mode the current continuously decreases to reach a very low value after 30 minutes. Therefore, the voltage drop, which corresponds to relaxation after opening the circuit, is much smaller than the drop observed in a typical galvanostatic charge/discharge experiment. In order to avoid unpreventable ACN evaporation from the wet carbon powders inside the MAS rotor, the samples have been mildly dried under N2 flow of 100mL/min. After drying, they showed exceptional stability with no change in the NMR spectra over days. To further check the effect of drying, the 13 C static and slow MAS (1 kHz) NMR spectra of a slurry (no pumping and no charge/discharge cycling) made with carbon A powder and the 1M TEABF4 solution have been recorded separately. No electrolyte enters into the carbon porosity as a result of the drying process; as no shift or no additional peak shifted by 6 ppm appear in the spectra at various stage of the ACN evaporation (Figure S 6. part E, SI). We also recorded the 13 C static and MASNMR spectra of a cycled supercapacitor electrode, after a chargedischarge cycle with and without drying it for 15 4 Jackson, C. & WynneJones, W.F.K. Electron spin resonance in carbonized organic polymers—I. Carbon 2, 227252 (1964). 5 Ottaviani, M.F. & Mazzeo, R. EPR characterization of graphitized and activated micro and mesoporous carbons. Micropor. Mesopor. Mater. 141, 6168 (2011). Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3567 NATURE MATERIALS | www.nature.com/naturematerials 1 © 2013 Macmillan Publishers Limited. All rights reserved.

Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

Embed Size (px)

Citation preview

Page 1: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

   Supporting  Information    Supercapacitors   consist   of   two   activated   carbon-­‐based  electrodes   (coatings   on   aluminium   current   collectors)  soaked   with   an   electrolyte   (1M   tetraethylammonium  tetrafluoroborate   in   acetonitrile   -­‐   TEABF4   in   ACN)   and  electrically   isolated   by   a   porous   separator   placed  between   the   electrodes   (ex   situ   11B   NMR   shows   that   it  contains   10-­‐20%   of   the   TEABF4   electrolyte).   The  electrodes   prepared   from   the   two   carbon   materials  (carbon   A   and   B,   SI:   part   A)   have   comparable   gas  adsorption   properties   (Table   S1),   however,   a   slightly  higher   capacitance   value   is   displayed   by   carbon   B   (111  F/g   against   95   F/g   for   carbon  A).   Previous  works   using  neutron  diffraction1  have  found  that  carbons  produced  at  temperatures   ranging   between   800°   and   1200°C   are  made  of  graphene  sheets,  which  are  more  or  less  curved  (SI:   part   B,   Figure   S   2),   and   adsorption   of   various  molecules   and   ions   can   occur   between   these   graphene  sheets.     The   presence   of   signals   with   larger   chemical  shifts   in  the  13C  MAS  NMR  spectra  and  the  ratio  of  the  D  and  G  bands   in   the  Raman  spectra  of   these   two  carbons  indicate  that  carbon  B  (from  KOH  activated  coke)  is  more  structurally  disordered,  probably  with  a  larger  amount  of  defects   creating   curvature   in   the   graphene   sheets   (SI:  part  B,  Figure  S  3).  In  the  NMR  magnet,  the  graphene-­‐like  sheets  create  ring  currents   and   a   diamagnetic   shift   of   -­‐6   ppm   is   observed  for   molecules   between   graphene   layers.   For   static  samples,  the  anisotropy  of  this  shift,  if  any,  may  broaden  the   NMR   peaks   of   the   adsorbed   molecules   and   lead   to  overlapping  of  ACN  and  TEA+  resonances  (see  SI,  Part  C,  Figure   S   4,   for   a   comparison   between   the   1H   and   13C  spectra   of  ACN   in   the   electrolyte   solution   and  neat  ACN  adsorbed   between   graphene   layers). 2  Moreover,   the  dipolar   couplings   with   neighbouring   spins   broaden   the  NMR  peaks  (see  the  static  and  MAS  spectra  from  Figure  S  4,  part  C   from  SI).  MAS  removes   these  effects.  However,  the   spinning   speed   has   been   limited   to   5   kHz   to   avoid  separating  the  liquid  and  solid  phases  by  centrifugation:3  the  comparison  of  MAS  NMR  spectra  at  5  kHz  with  static  spectra  shows  no  MAS-­‐induced  desorption  of  previously    

                                                                                                                                       1  Petkov,  V.,  Difrancesco,  R.G.,  Billinge,  S.J.L.,  Acharya,  M.  &  Foley,  H.  C.  Local  structure  of  nanoporous  carbons.  Phil.  Mag.  B79,  1519-­‐1530  (1999).  2  Kibalchenko,  M.,  Payne,  M.C.,  Yates,  J.R.  Magnetic  Response  of  Single-­‐Walled  Carbon  Nanotubes  Induced  by  an  External  Magnetic  Field.  ACS  Nano  5,  537-­‐545  (2011).  3  Dickinson,  L.M.,  Harris,  R.K.,  Shaw,  J.A.,  Chinn,  M.  &  Norman,  P.R.  Oxygen-­‐17  and  deuterium  NMR  investigation  into  the  adsorption  of  water  on  activated  carbon.  Magn.  Reson.  Chem.  38,  918-­‐924  (2000).  

     adsorbed  ACN  (Figure   S   4,  part  C,  SI).  The  resolution   in  13C  NMR  spectra  is  further  enhanced  with  1H  decoupling  (for  the  J-­‐coupling),  and  the  resulting  spectra  confirm  the  absence  of  skin  depth  effects  resulting  from  carbon  black  conductivity   additive   in   our   samples,   as   the   1H  decoupling   RF   irradiation   (with   half   the   penetration  depth   of   the   13C   RF)   manages   to   decouple   the   whole  sample  (SI:  part  D,  Figure  S  5).  Fortunately,  the  presence  of  paramagnetic  centres  in  the  carbon  material,   as   observed   by   EPR   on  most   activated  carbons, 4 , 5  considerably   accelerates   the   13C   and   11B  longitudinal  relaxation  (T1  <  8  s),  thereby  shortening  the  magnetization   recovery   delay   to   several   seconds.   This  allowed   us   to   record   natural   abundance   (1%)   direct  detection   13C   NMR   spectra   of   the   electrolyte   inside   the  nanoporous   carbon   in   less   than   two   hours,   and   the   11B  (S=3/2  and  80.42%  abundant)  NMR  spectra  in  5  minutes.  Of   course,   such   experimental   times   do   not   allow  capturing   the   state   of   the   electrolyte   immediately   after  charging/discharging  the  supercapacitor.  The   self-­‐discharge   of   our   supercapacitors   is   less   than  10%   after   24   hours   and   is   measured   as   follows:   the  system  is  maintained  at  maximum  voltage  (potentiostatic  mode)   during   30   minutes.   The   self-­‐discharge   is   the  subsequent  voltage  drop,  which  occurs  at  open  circuit.  In  potentiostatic  mode   the   current   continuously   decreases  to  reach  a  very  low  value  after  30  minutes.  Therefore,  the  voltage   drop,   which   corresponds   to   relaxation   after  opening   the   circuit,   is   much   smaller   than   the   drop  observed   in   a   typical   galvanostatic   charge/discharge  experiment.  In   order   to   avoid   unpreventable   ACN   evaporation   from  the   wet   carbon   powders   inside   the   MAS   rotor,   the  samples   have   been   mildly   dried   under   N2   flow   of  100mL/min.   After   drying,   they   showed   exceptional  stability  with  no  change  in  the  NMR  spectra  over  days.  To  further  check  the  effect  of  drying,  the  13C  static  and  slow  MAS  (1  kHz)  NMR  spectra  of  a  slurry  (no  pumping  and  no  charge/discharge   cycling)   made   with   carbon   A   powder  and   the   1M   TEABF4   solution   have   been   recorded  separately.  No  electrolyte  enters  into  the  carbon  porosity  as   a   result   of   the   drying   process;   as   no   shift   or   no  additional  peak  shifted  by   -­‐6  ppm  appear   in   the   spectra  at  various  stage  of  the  ACN  evaporation  (Figure  S  6.    part  E,   SI).   We   also   recorded   the   13C   static   and   MAS-­‐NMR  spectra   of   a   cycled   supercapacitor   electrode,   after   a  charge-­‐discharge  cycle  with  and  without  drying  it  for  15                                                                                                                                          4  Jackson,  C.  &  Wynne-­‐Jones,  W.F.K.  Electron  spin  resonance  in  carbonized  organic  polymers—I.  Carbon  2,  227-­‐252  (1964).  5  Ottaviani,  M.F.  &  Mazzeo,  R.  EPR  characterization  of  graphitized  and  activated  micro-­‐  and  meso-­‐porous  carbons.  Micropor.  Mesopor.  Mater.  141,  61-­‐68  (2011).  

Nature  Materials  –  Supplementary  Information  –  DOI:/  ???  Exploring  electrolyte  organization  in  supercapacitor  electrodes  with  solid-­‐state  NMR,  M.Deschamps,  E.Gilbert,  P.Azais,  E.Raymundo-­‐Pinero,  M.Ramzi  Ammar,  P.Simon,  D.Massiot,  F.Béguin  

Exploring electrolyte organization insupercapacitor electrodes with solid-state NMR

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3567

NATURE MATERIALS | www.nature.com/naturematerials 1

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 2: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

minutes  under  N2  flow.  Drying  the  samples  only  removes  some   of   the   ACN   molecules,   while   no   significant  perturbation   is   detected   for   the   TEA+   NMR   signals  (Figure   S   7,   part   E,   SI).   Hence,   the   drying   stage   is  expected  to  remove  the  solvent  molecules  which  are  not  adsorbed  between  graphene  layers,  as  the  ACN  molecules  detected   in   the   carbon  A  powder   soaked  with  only  ACN  and   dried   for   15  minutes,  Figure   S   4)   or  which   do   not  belong   to   the   solvation   shell   of   the   electrolyte   ions.   In  figure   1,   the   free   ACN   (no   shift)   is   outside   the   space  between   graphene   layers,   and   we   can   reasonably  consider  that  it  should  have  been  removed  by  the  drying  stage   (as   in  Figure   S   4)   if   it  would   not   solvate   the   free  TEA+  and  BF4-­‐  ions.    A)  Electrolyte  and  carbon  electrodes      TEABF4  electrolyte  

         Figure   S   1.  a)  3D  representation  of   the   tetraethylammonium  (TEA+)   cation   –top-­‐,   tetrafluoroborate   (BF4-­‐)   anion   –middle-­‐  and  of  the  acetonitrile  (ACN)  solvent  molecule.  The  TEA+  cation  (b)  and  BF4-­‐  anion  (c)  are  expected  to  experience  a  diamagnetic  shift   in   their  NMR  spectra  while   inside  the  space  between  two  graphene-­‐like   layers,   which   are   identified   as   adsorption   sites.  The   graphene-­‐like   layers   are   made   here   of   portions   of   C60  molecules  in  order  to  illustrate  the  relative  sizes  of  each  entity.    The  carbon  electrodes  Carbon  A  was  prepared  by  carbonisation  of  coconut  shell  and   subsequent   steam   activation   at   1000   °C   plus   a  treatment   under   nitrogen   at   700   °C.   Carbon  B   is   a   coke  chemically  activated  by  KOH  between  700  °C  and  800  °C  and   repeatedly  washed  with  water   before   being   further  treated   under   nitrogen   at   600   °C.     The   electrodes  provided   by   Batscap   (France)   were   made   from   the  activated  carbons  A  or  B,  a  conductive  additive  (10  wt%)  and  a  binder  (polyvinylidene  di-­‐fluoride,  PVdF,  10  wt%),  and   obtained   by   stretching   under   heating   on   a   30   µm  thick  aluminum  foil.  After  calendering,  the  total  thickness  and   loading   of   the   electrodes  were   around   130   µm   and  6.5  mg.cm-­‐2,  respectively.    

B)   The   nanoporous   carbon   materials:   models   and  characterization    The  nanotexture  of  the  fresh  electrodes  (Table    S1)  was  characterized   using   N2   adsorption   at   -­‐196   °C  (AUTOSORB-­‐1,   Quantachrome).   The   samples   were  outgassed  12  h  at  200°C  before  the  analysis.  The  specific  surface   area   SBET   was   determined   from   the   nitrogen  adsorption  isotherms  using  the  BET  (Brunauer  –  Emett  -­‐  Teller)  method.  The  volumes  of  micropores  and  pores  in  the   range   from   1.2   nm   to   50   nm   were   calculated   by  applying   the   NLDFT   (Non-­‐Local   Density   Functional  Theory)   method   to   the   N2   adsorption   data.   The   CO2  adsorption  measurements  carried  out  at  0  °C  were  used  to   calculate   the   ultramicropore   volume   by   applying   the  DR  equation  (Dubinin-­‐Radushkevich).    Table  S1  Properties  of  the  electrodes  prepared  with  carbons  A  and  B     Carbon  A   Carbon  B  SBET(N2)  (m²/g)     1071   1191  Vtotal  (cm3/g)   0.72   0.70  Vultramicroa  (d<0.7  nm)  (cm3/g)  

0.51   0.40  

Vmicrob  (d<2  nm)  (cm3/g)   0.42   0.40  V  b  (1.2<d<50  nm)  (cm3/g)  

0.37   0.45  

Electrode  capacitance  (F/g)  

95   111  

Carbon  capacitance  (F/g)   119   138  a:  obtained  by  applying   the  Dubinin-­‐Radushkevich  equation  to  the  CO2  adsorption  data  b:  obtained  by  applying  the  NLDFT  method  to  the  N2  adsorption  data    Several   nanotexture   models   have   been   proposed   for  nanoporous   carbon   materials   in   the   literature.   Three  models   are   shown   below   in   Figure   S   2.   The   structural  organization  of  carbons  A  and  B  was  characterized  by  13C  MAS-­‐NMR  and  Raman  micro-­‐spectroscopy   (Figure   S   3).  The   13C   NMR   spectra   show   that   the   signal   intensity   for  chemical  shifts  higher  than  120  ppm  is  larger  for  carbon  B.   Recent   studies   indicate   that   larger   chemical   shifts  indicate   smaller   CCC   angles   in   conjugated   carbon  systems,   and   therefore   the   curvature   of   the   surface  graphene-­‐like   in   carbon   B   is   expected   to   be   larger,  resulting   from   the   presence   of   5   or   7   members   rings,  whereas  the  signal  of  13C  around  120  ppm,  similar  to  the  graphite   peak,   corresponds   to   graphene   layers   with   a  more  “planar”  character.6      

                                                                                                                                       6  Deschamps,  M.,  Cadars,  S.,  Gilbert,  E.,  Azaïs,  P.,  Raymundo-­‐Pinero,  E.,  Béguin,  F.,  Massiot,  D.  A  solid-­‐state  NMR  study  of  C70:  a  model  molecule  for  amorphous  carbons.  Solid  State  NMR  42,  81-­‐86  (2012).  

2 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3567

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 3: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

                 Figure   S   2.   Models   of   nanotexture   of   amorphous   porous  carbon   materials   (Reprinted   from   top:   reference   [7 ],   with  permission  of  Taylor  &  Francis   Ltd,  bottom   left:   reference   [8],  Copyright   2005,   with   permission   from   Elsevier,   and   bottom  right:  reference  [9],  with  permission  of  Taylor  &  Francis  Ltd).    

           Figure  S  3.  A:  13C  solid-­‐state  NMR  spectrum  of  carbon  A  (blue)  and  B  (green),  using  a  30°  excitation  pulse,  14  kHz  MAS  and  a  “short”   relaxation   delay   of   1s   (to   select   the   fast   relaxing  component   of   the   amorphous   carbon   and   remove   the  contribution   of   the   PVDF   binder).   B:   Raman   spectroscopy   of  carbon  A  (blue)  and  carbon  B  (green),  with  excitation  laser  line                                                                                                                                          7  Harris,  P.J.F.  New  Perspectives  on  the  Structure  of  Graphitic  Carbons.  Critical  Reviews  in  Solid  State  and  Materials  Sciences  30,  235  (2005).  8  Kumar,  A.,  Lobo,  R.F.  &  Wagner,  N.J.  Porous  amorphous  carbon  models  from  periodic  Gaussian  chains  of  amorphous  polymers.  Carbon  43,  3099-­‐3111  (2005).  9  Acharya,  M.,  Michael  S.  Strano,  Jonathan  P.  Mathews,  Simon  J.  L.  Billinge,  Valeri  Petkov,  Shekhar  Subramoney  &  Henry  C.  Foley.  Simulations  of  nanoporous  carbons:  A  chemically  constrained  structure.  Phil.  Mag.  B79,  1499-­‐1518  (1999).  

at  514.5  nm.  Raman  spectra  were  obtained  on  a  Renishaw  Invia  Reflex   spectrometer   (one   1800   grooves/mm   grating,   Edge  filter),  with   a   Leica  DM2500  microscope   (x50   objective).   Very  low   incident  power   (1-­‐2  mW)  was  used   to  avoid   local  heating  effects.   The   excitation   laser   line   was   the   514.5   nm   of   an   Ar+  laser.    Acquisition  times  are  100s.    Figure   S   3   also   shows   the   first   order   Raman   spectra  characterized   by   two   prominent   features   at   about   1580  cm-­‐1   and   1350   cm-­‐1.   The   1580   cm-­‐1   mode   (G   band)  corresponds  to  the  Raman-­‐allowed  E2g  mode  (in-­‐plane  C-­‐C   stretching   of   an   infinite   crystal),   and   the   1350   cm-­‐1  mode   (D   band)   corresponds   to   the   disorder-­‐induced  line.10  It   is  well   known   that   the   increase   of   the   G   and  D  bands  width  as  well  as  the  decrease  of  the  intensity  ratios  I(D)/I(G)   indicate   the   decrease   of   the   organization  degree  of  the  carbon  material.  Thus,  based  on  these  two  parameters,   carbon   A   appears   to   be   more   structurally  organized   or   less   amorphous   than   carbon  B,   confirming  what  is  observed  with  13C  NMR.    C)  Possible  MAS  induced  effects    The   carbon   A   powder   taken   from   supercapacitor  electrodes   (see   the  methods   section   for   the   preparation  protocol),   which   have   never   been   charged,   has   been  soaked  with   ACN   and   submitted   to   gentle   drying   under  N2   flow   at   ambient   temperature   (see   the   Methods  section).   The   1H   and   13C   static   NMR   spectra   of   ACN   in  carbon   A   only   show   one   methyl   peak   for   1H   and   two  resonances   for   13C   -­‐CH3CN-­‐,   one   singlet   peak   for   the  CN  group   and   one   quartet   for   the   CH3   group   Only   ACN  molecules   adsorbed   between   two   graphene   layers 11  remain   in   the  porous   carbon  after   gentle  drying.  This   is  confirmed  by  our  NMR  spectra,   in  which  the  NMR  peaks  are   shifted   by   -­‐6   ppm   compared   to   the   spectrum   of  acetonitrile   alone,   due   to   the   ring   currents   from   the  graphene   layers   in   between   which   they   are   adsorbed.  Spinning   the   sample   up   to   5   kHz   results   in   substantial  line  narrowing,  but   it  did  not  bring  about  any  change   in  the  NMR  spectra,   and  no   signal  of  desorbed  species   (i.e.  not   shifted   by   -­‐6   ppm)   resulting   from   MAS   induced  centrifugation  were   ever   detected.   Therefore  we   expect  that  MAS  will  not  induce  any  desorption  of  the  electrolyte  molecules,  and  sample  heating  from  MAS  will  be  minimal  with   such   spinning   speeds.  Moreover,   one   can   compare  the  centrifugation   forces  per  molecule  (mω2R  =  4.3.10-­‐16  N  for  TEA+  on  the  rotor  wall  at  5  kHz  MAS)  and  the  much  stronger  electrostatic  forces  between  TEA+  and  BF4-­‐  ions  

                                                                                                                                       10  Ferrari,  A.C.,  Robertson,  J.  Interpretation  of  Raman  spectra  of  disordered  and  amorphous  carbon.  Phys.  Rev.  B.  61,  14095-­‐14107  (2000).  11  Lastoskie,  C.,  Gubbins,  K.E.  &  Quirke,  N.  Pore  size  distribution  analysis  of  microporous  carbons:  a  density  functional  theory  approach.  J.  Phys.  Chem.  97,  4786-­‐4796  (1993).  

NATURE MATERIALS | www.nature.com/naturematerials 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3567

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 4: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

1  nm  apart  (e2/4πε0r2  =  2.3.10-­‐10  N)  or  commonly   found  adsorption   forces   per   molecule   (around   1-­‐100.10-­‐12  N).12,13    

 Figure   S   4.   1H   (A-­‐F)   and   13C   (G-­‐J)  NMR  spectra  of   the   liquid  electrolyte   solution   (A,G)   and   of   carbon   A   soaked   with  acetonitrile  (ACN)  and  gently  dried  for  15  minutes  with  N2  (B-­‐F,  H-­‐J).   The   spectra   with   carbon   A   have   first   been   recorded  without   Magic   Angle   Spinning   (B,H)   and   then   with   2.5   kHz  (C,D,I)  and  5  kHz  (E,F,J)  MAS  speeds.  The  peaks  are  shifted  by  -­‐6  ppm  to  the  right  compared  to  the  neat  ACN  spectra  due  to  the  local   magnetic   susceptibility   around   the   molecules   adsorbed  between   the   graphene   layers.   The   1H   spectra   do   not   change  either   after   30   minutes   at   2.5   kHz   or   24   hours   at   5   kHz.   If  centrifugation   of   ACN   occurred   and   ACN   molecules   were   to  leave  the  nanoporosity,  NMR  signals   from  free  ACN  molecules,  i.e.  without  any  diamagnetic  shift,  would  appear  at  the  positions  indicated  by  the  red  lines.    D)  Decoupling  and  NMR  lineshapes    To   further   increase   the   resolution,   low   RF   power  decoupling   on   1H   has   also   been   applied   to   remove   the  multiplets   stemming   from   the   13C-­‐1H   J-­‐couplings   in   the  

                                                                                                                                       12  Sheiko,  S.S.,  Sun,  F.C.,  Randall,  A.,  Shirvanyants,  D.,  Rubinstein,  M.,  Lee,  H.  &  Matyjaszewski,  K.  Adsorption-­‐induced  scission  of  carbon–carbon  bonds.  Nature  440,  191-­‐194  (2006).  13  Horinek,  D.,  Serr,  A.,  Geisler,  M.,  Pirzer,  T.,  Slotta,  U.,  Lud,  S.Q.,  Garrido,  J.A.,  Scheibel,  T.,  Hugel,  T.  &  Netz,  R.R.  Peptide  adsorption  on  a  hydrophobic  surface  results  from  an  interplay  of  solvation,  surface,  and  intrapeptide  forces.  Proc.  Nat.  Acad.  Sci.  105,  2842–2847  (2008).  

13C  NMR  spectra  (see  Figure  S  5).  The  electrodes  contain  carbon  black  to  improve  the  electronic  conductivity,  and  in   such   cases,   skin   depth   effects   may   be   encountered  which   would   preclude   detecting   the   signals   from   the  whole   sample.   The   skin   depth   is   proportional   to  ω0-­‐1/2  where   ω0   is   the   Larmor   frequency:   therefore,   the   skin  depth  for  1H  is  expected  to  be  roughly  half  the  skin  depth  for   13C.   We   expect   the   skin   depth   effect   can   be   safely  neglected   here:   the   1H   RF   decoupling   manages   to  decouple  every  detected  13C  spins,  as  no  residual  splitting  is  detected,  implying  that  the  RF  irradiation  is  applied  to  the  whole  sample  and  all  the  signals  are  detected.    

 Figure  S  5.  13C  MAS-­‐NMR  spectra  of  carbon  A  soaked  with  an  excess  of  a  1M  solution  of  TEABF4  in  ACN  and  gently  dried  with  N2  for  15  minutes.  In  A,  1H  decoupling  is  applied  to  remove  the  multiplets   induced   by   the   J-­‐coupling   with   the   1H   spins   which  appear   for  the  CH2  and  CH3  peaks   in  the  13C  spectrum  without  1H  decoupling,  as  shown  in  B.    E)  Drying  the  samples    Evaporating   the   solvent   in   the   presence   of   carbon   A  powder    To   check   the  effect  of   the  drying   stage,  we   recorded   13C  NMR   spectra   of   a   slurry   made   of   carbon   A   electrode  powder   and   electrolyte,   without   prior   pumping   or  charge/discharge  cycling.  Upon  drying,  the  [TEA+]/[ACN]  ratio   increases,   indicating   that   ACN   evaporation   has  occurred.   However,   no   electrolyte   enters   the  nanoporosity,  as  seen  from  the  unchanged  peak  positions  between  B  and  C.      

4 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3567

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 5: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

 Figure  S  6.  13C  static  and  MAS  NMR  spectra  of  5  mg  (≈10  mL)  of   carbon   A   mixed   with   50   mL   (40   mg)   of   1M   TEABF4  electrolyte   in   ACN.   A  :   Static   spectrum,   B  :   initial   1kHz   MAS  spectrum   (using   60   s   recovery   delay   as   the   longitudinal  relaxation   is   slower   in   the   solution)   and   C  :   1   kHz   MAS   NMR  spectrum   after   drying   the   mixture   with   N2   during   6   minutes  (ACN  loss  of  20  mg).  As  seen  from  the  position  of  the  NMR  lines,  no   TEA+   enters   the   activated   carbon   porosity   upon   drying.   A  few  mg  of  solvent  are  lost  over  a  couple  of  hours  indicating  that  spontaneous   evaporation   occurs   during   the   experiment,  because  of  leaks  through  the  seal  of  the  4  mm  rotor  cap  (shown  on  top).    Cycled  supercapacitor  electrodes  with  and  without  drying    As   ACN   evaporation   may   still   occur   while   the   NMR  spectra   are   recorded,   to   ensure   the   stability   and   the  reproducibility   of   our   NMR   experiments,   we   chose   to  mildly   dry   the   samples   before   recording   the   MAS-­‐NMR  spectra.    The   only   detected   effect   of   drying   the   electrodes   under  N2   is   to   remove   some   of   the   solvent   (Figure   S   6   and  Figure  S  7).  Before  the  N2  drying  stage,  the  spectra  show  that   the   TEA+   cations   are   in   the   nanoporosity   of   the  carbon   A   electrode,   as   indicated   by   the   chemical   shifts.  The   same   diamagnetic   shifts   are   observed   with   and  without  N2  drying,  and  no  modification  is  observed  in  the  NMR  spectra,  even  after  several  days.  

 Figure   S   7.   13C   MAS   NMR   spectra   of   carbon   A   negative  supercapacitor   electrodes,   after   a   charge/discharge   cycle  with  30  minutes   at   2.3V   and   30  minutes   at   0V.   In   A,   the   static   13C  NMR  spectrum  is  shown,  while  the  B  and  C  spectra  are  obtained  with   MAS   at   5   kHz.   The   supercapacitor   is   opened   right   after  cycling  and  spontaneous  drying  occurs  in  the  glove  box  during  the  recovery  of  the  carbon  from  the  aluminum  current  collector.  For  A  and  B,  no  drying  was  applied  after  the  electrode  recovery  and   the   sample   is   put   straight   into   the   4mm   NMR   rotor.   The  spectrum  in  C  has  been  obtained  after  15  minutes  drying  with  N2.   In   all   spectra,   the   resonances   are   shifted   by   -­‐6   ppm,  indicating   that   the   detected   molecules   are   adsorbed   between  graphene  layers.      F)  Rinsing  of   the   soaked   carbon  powders  and  of   the  charged  electrodes    

                     Figure   S   8.   11B   MAS-­‐NMR   spectra   for   carbon   A   electrodes  soaked  with   an   excess   of   electrolyte   (a)   and   rinsed  with   ACN  before  drying  (b).  The  intensity  of  the  11B  NMR  spectrum  of  the  rinsed   electrode   (b)   has   been   multiplied   by   100   in   order   to  show   the   small   amount   of   BF4-­‐   in   type   II   sites.   For   the   rinsed  electrode,  the  13C  MAS-­‐NMR  spectrum  (not  shown)  only  shows  the  solvent  peak.    

NATURE MATERIALS | www.nature.com/naturematerials 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3567

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 6: Exploring electrolyte organization in · presence of signals with ... water on activated ... coconut shell and

   Figure   S   9.   13C   MAS-­‐NMR   spectra   of   the   negative   (a,b)   and  positive   (c,d)   carbon  A  electrodes  of   a   supercapacitor   charged  at  2.7V,  before  (a,c)  and  after  rinsing  with  ACN  (b,d).  The  cation  is   strongly   bound   to   the   negative   electrode   (a   and   b),   and  rinsing  only  adds  a  small  amount  of  ACN.  The  TEA+  peak  width  becomes   smaller  which   indicates   its   increased  mobility.   In   the  positive   electrode   (c   and   d),   a   large   amount   of   the   previously  adsorbed  TEA+  has  been  removed  by  rinsing,  as  the  BF4-­‐  anion  is  strongly  bound  to  the  positive  electrode.    G)  NMR  spectra                                                Figure   S   10.   13C   (left)   and   11B   (right)  MAS-­‐NMR   spectra   for  the   positive   (red)   and   negative   (black)   electrodes   of   the  supercapacitors  made  with  carbon  A.  The  supercapacitors  have  been  charged  using  the  voltages  and  times  indicated  on  the  left.  The  green  lines  show  the  positions  of  each  resonance  at  0  V.  

6 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3567

© 2013 Macmillan Publishers Limited. All rights reserved.