105
1 EXPERIMENT 01 RTL Circuits Objectives 1. Examine the RTL characteristics. 2. Familiarize with the internal working of the RTL circuits. 3. Design and analyze an RTL inverter and determine its input-output characteristics, Propagation delay, and noise margins. Required Equipments Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor 470 ¼-watt resistor. 2N2222 NPN silicon transistor, or equivalent 1N4001 Diode semiconductor Background Resistor-Transistor Logic (RTL) refers to the obsolete technology for designing and fabricating digital circuits that employ logic gates consisting of nothing but transistors and resistors. RTL gates are now seldom used, if at all, in modern digital electronics design because it has several drawbacks, such as bulkiness, low speed, limited fan-out, and poor noise margin. A basic understanding of

EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

1

EXPERIMENT 01

RTL Circuits

Objectives

1. Examine the RTL characteristics. 2. Familiarize with the internal working of the RTL circuits.3. Design and analyze an RTL inverter and determine its input-output

characteristics, Propagation delay, and noise margins.

Required Equipments

Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard

Required Parts list

10 K ¼-watt resistor.  0.1 F capacitor 470 ¼-watt resistor.  2N2222 NPN silicon transistor, or equivalent 1N4001 Diode semiconductor

Background

Resistor-Transistor Logic (RTL) refers to the obsolete technology for designing and fabricating digital circuits that employ logic gates consisting of nothing but transistors and resistors.  RTL gates are now seldom used, if at all, in modern digital electronics design because it has several drawbacks, such as bulkiness, low speed, limited fan-out, and poor noise margin. A basic understanding of what RTL is, however, would be helpful to any engineer who wishes to get familiarized with TTL, which for the past many years has become widely used in digital devices such as logic gates, latches, buffers, counters, and the like. 

Basically, RTL replaces the diode switch with a transistor switch. If a +5V signal (logic 1) is applied to the base of the transistor (through an appropriate resistor to limit base-emitter forward voltage and current), the transistor turns fully on and grounds the output signal. The output signal rise to +5 volts if the input is grounded (logic 0), the transistor is off. In this way, the transistor does invert the logic sense of the signal, but it also ensures that the output voltage will always be a valid logic level under all circumstances.

Page 2: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

2

RTL gates also exhibit limited 'fan-outs'.  The fan-out of a gate is the ability of its output to drive several other gates. The more gates it can drive, the higher is its fan-out. The fan-out of a gate is limited by the current that its output can supply to the gate inputs connected to it when the output is at logic '1', since at this state it must be able to drive the connected input transistors into saturation.    

Another weakness of an RTL gate is its poor noise margin. The noise margin of a logic gate for logic level “0”, Δ0, is defined as the difference between the maximum input voltage that it will recognize as a “0” (VIL) and the maximum voltage that may be applied to it as a “0” (VOL of the driving gate connected to it).  For logic level '1', the noise margin Δ1 is the difference between the minimum input voltage that may be applied to it as a '1' (VOH of the driving gate connected to it) and the minimum input voltage that it will recognize as a '1' (VIH).  Mathematically, Δ0 = VIL-VOL and Δ1 = VOH-VIH. Any noise that causes a noise margin to be overcome will result in a “0” being erroneously read as a '1' or vice versa.  In other words, noise margin is a measure of the immunity of a gate from reading an input logic level incorrectly.     

In an RTL circuit, the collector output of the driving transistor is directly connected to the base resistor of the driven transistor.  Circuit analysis would easily show that in such an arrangement, the differences between VIL and VOL, and between VOH and VIH, are not that large.  This is why RTL gates are known to have poor noise margins in comparison to DTL and TTL gates.

Some years ago, when RTL ICs were the standard logic devices used in both commercial and experimental digital circuits, transistors typically had a forward current gain of about 30. With improved manufacturing techniques, modern transistors show current gains of 100 or more. There is also far less variation between transistors of a given type. As a result, we can tolerate a much lower input current to drive the transistor reliably into saturation. The resistor values in the schematic diagram reflect the capabilities of modern transistors; they are significantly higher than the values used in RTL ICs, allowing working circuits to be built that require far less operating current.

RTL Inverter

The output signal of a NOT logic gate (Inverter) is the complement of the input signal. That is, when the input signal is low “0”, the output signal is high “1” and vice versa. A NOT gate can be easily obtained by means of an inverting amplifier circuit as shown in Figure 1.

Page 3: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

3

Voltage Transfer Characteristic

The voltage transfer characteristic (VTC) is nothing but a sketch of the output voltage as a function of the input voltage. In this case, the input voltage is increase from 0 to its maximum value (VBB). When the input voltage is zero, the transistor is OFF and the output voltage is 5 V. This is the maximum output voltage that we can obtain for this circuit. Let us label this voltage as VOH. The transistor remains in its cutoff state (OFF) as long as the input voltage is less than 0.6 V.

Transistor operation characteristics Base-to-emitter cut-in (turn-ON) voltage VBE(ON) = 0.6 V Base-to-emitter voltage in the active region VBE = 0.7 V Base-to-emitter voltage in the saturation region VBE(sat) = 0.8 V Collector-to-emitter voltage in the saturation region VCE(sat) = 0.2 V

As soon as the input voltage reaches 0.6 V, the transistor is ready to turn ON. Thus, 0.6 V is the maximum input voltage that we can apply to the transistor and keep it in its cutoff mode. Let us label it as VIL. These voltages are shown in Figure 2.

Figure 2: Transfer characteristic of an RTL Inverter

When the input voltage increases above 0.6 V, the transistor enters its active region. As soon as the input voltage goes above 0.7 V, the base-to-emitter voltage in the active region is 0.7 V. The remainder of the applied voltage is the voltage drop across RB, which results in the base current and thereby the collector current. As the collector current begins to flow in the transistor, the output voltage begins its decline. As the input

Page 4: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

4

voltage increases, the base current increases, the collector current increases, and the collector-to-emitter voltage decreases. The operation in the active region continues until the collector-to-emitter voltage becomes equal to its saturation voltage. The transistor is now at the verge of saturation. The collector current is 10.21 mA. If = 100, the base current is 0.1021 mA. Let us denote the input voltage that forces the transistor to enter the saturation region as VIH. Note that VIH is the minimum value of the high-input voltage and is given as

If we denote the corresponding low output voltage as VOL, then VOL = VCE(sat) = 0.2 V. These voltages are also shown in Figure 2. As the input voltage increases above 1.82 V, the output remains at 0.2 V and the transistor goes into deep saturation. The operation in the deep saturation region continues until the input voltage reaches its maximum value.

SUMMARY: In the above discussion we have defined some terminology pertaining to the RTL circuit. We will use this terminology for all types of gates. Therefore, let us formally define it.

Voltage Transfer Characteristic

VOH = Nominal High Output VoltageThis is the output voltage that corresponds to logic 1 (high) and it may vary with the loading and temperature. The manufacturers usually specify its minimum value in order to compensate for the component tolerances and variations in the loading conditions.

VOL = Nominal Low Output VoltageThis is the gate output voltage that corresponds to logic 0 (low). The manufacturers usually specify its maximum value.

VIH = High input voltage at which |dvo/dt| = 1The minimum input voltage that is interpreted as logic 1 (high) by the gate.

VIL = Low input voltage at which |dvo/dt| = 0The maximum input voltage that is interpreted as logic 0 (low) by the gate.

Transition Region: The region between VIL and VIH is called the transition region.

Transition region is mostly the active region and it is the forbidden region for the logic circuit. The input voltage should either be low (less than or equal to V IL) or high (greater than or equal to VIH). If there is a random noise in the system, it should be small enough such that it does not drive the transistor into the forbidden region.

Transition Width: It is the difference between the two input voltages (VIH – VIL). For RTL gate, the transition width is 1.22 V.

Page 5: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

5

Logic Swing: The difference between the two output voltages (VOH – VOL) is designated as the logic swing. For the RTL under discussion, the logic swing is 4.8 V.

Noise Margins

The input signal to a gain can be corrupted by some unwanted and unexpected signal. If the gate is not properly designed the unwanted signal can force the gate to malfunction. A noise margin is the figure of merit for the gate. If the noise margin is high the gate is less susceptible to malfunction. We define the noise margin for each level of the input signal. Thus, we have the definitions for the lower- and upper-noise margins for the low- and high-level of the input signal.

These margins are defined as follows:

The Lower Noise Margin: NML = VIL – VOL

By definition, it is the difference between the maximum allowed input voltage that can be interpreted as low by the gate and the actual low output voltage of the preceding stage driving the gate. For the RTL circuit we just analyzed, the maximum input voltage that can be interpreted by the gate as low is 0.6 V. The gate usually receives the input signal from the other gate whose minimum output is 0.2 V. Then the lower noise margin is 0.4V=(0.6V – 0.2V). Keep in mind that each gate generates a random noise voltage, however small it may be. For the RTL gate under discussion, the largest random noise voltage that can corrupt the low input signal is 0.4 V. The reason, of course, is that when the random noise voltage is added to the input voltage, the total voltage should be less than or equal to the maximum input voltage that is interpreted as low by the gate. Since the actual input signal voltage is 0.2 V, the maximum input voltage that can be added to it is 0.4 V, which is simply the lower noise margin.

The Upper Noise Margin: NMH = VOH – VIH

By definition, it is the difference between the actual output voltage of the preceding stage driving the gate and the minimum value of the input voltage that can be interpreted as high by the gate. For the RTL gate under discussion, the maximum input voltage is VBB=5 V. The minimum input voltage that the gate can interpret as high is 1.82 V. Then, the upper noise margin is 3.18 V = (5V – 1.82V). This simply means that the largest random noise voltage that the gate can tolerate is 3.18 V. The logic circuit should still be able to interpret the input voltage as high when the upper noise margin is subtracted from the input signal. All our discussion pertains to a single RTL circuit. When it is used as a driver for other gates, its noise margins are bound to change, as we will show later.

Page 6: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

6

Dynamic Response of Logic Gates

An important figure of merit to describe logic gates is their response in the time domain.

The rise and fall times, tf and tr, are measured at the 10% and 90% points on the transitions between the two states as shown by the following expressions:

V10% = VL + 0.1ΔV

V90% = VL + 0.9ΔV = VH – 0.1ΔV

Where ΔV = VH – VL. Rise and fall times usually have unequal values; the characteristic shapes of the input and the output waveforms also differ.

Propagation Delay

• Propagation delay describes the amount of time between a change at the 50% point input to cause a change at the 50% point of the output described by the following:

• V 50%=V H +V L

2

Page 7: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

7

The high-to-low propagation delay, τPHL, and the low-to-high propagation delay, τPLH, are usually not equal, but can be described as an average value:

τ P=τ PLH+τ PHL

2

Page 8: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

8

Pre – LaboratoryRTL Inverter Propagation Delay

In this laboratory the concept of propagation delay is addressed for the RTL inverter using PSPICE to simulate Transient behavior. The RTL inverter circuit is shown in Figure 5.

Figure 5: RTL Inverter Schematic Circuit

Circuit description and specific parameters

The input voltage vin is a PULSE waveform with an amplitude of 5V, the rise time

(TR) and fall time (TF) equal to 10 NS, delay time (TD) equal to 0 NS, a duration (PW) of

200 NS and a period (PER) of approximately 500 NS.

The transistor used in all simulations will be a 2N2222 with the following model

parameters for both Netlist and Schematic circuit.

.MODEL parameters for the npn transistor are:

IS=1E-14 A, BF=50, VAF=80 V, TF=0.45NS, TR=5NS, CJE=7.6PF, CJC=3PF, RB=13,

RC=6.2

Page 9: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

9

Pre – Laboratory Procedure

1. Use PSPICE1 to get the transient response for the circuit shown in Figure 5.

2. Plot both Vin and VCE as outputs superimposed on the same plot.

3. Determine VIL, VIH, VOL, and VOH for the simulation and record the values in the

report's questions.

4. Determine τPHL and τPLH for the simulation and record the values in the report's

questions.

5. Print the plot.

Pre – Laboratory Report

1. What are the values for :

VIL = _____ VIH = _____VOL = _____ VOH = _____

2. Calculate τPLH and τPHL for the simulation.

τPLH = __________________ τPHL = _________

3. What is the propagation delay of the gate?

τP = _________

1 First become familiar with the MicroSim PSPICE software installed on the PC Lab (INCADEL or

CRAY). Refer to the manual for PSPICE for getting started in the construction of a circuit, adding

Specific Parameters for Transient Analysis and for other tips for plots or visit

https://ece.uprm.edu/seminarios/.

Page 10: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

10

Laboratory ProcedureRTL Inverter Voltage Transfer Characteristic

1. Wire the circuit shown in Figure 6.

2. With your Multimeter, measure the base-emitter, base-collector, collector-emitter,

and collector DC voltages, with respect to ground, and measure the base and

collector DC currents, recording your values in table 1 of the report.

3. Use the Oscilloscope with the Y-axis sensitivity set to 1 Volt/division and the X-

axis sensitivity at 0.5 Volts/division.

4. Adjust the X zero reference to the screen center and the Y reference below the

center.

5. The input VS is a sine wave from a function generator with a peak amplitude of 5

Volts and frequency of 100 Hertz.

6. Draw a rough sketch of the characteristic displayed on the oscilloscope in the

Graphic 1(Indicate the scales that were used) of the report and ask the question.

7. Determine VIL, VIH, VOL, and VOH for the VTC displayed on the oscilloscope and

record the values in the report's questions.

Figure 6

Page 11: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

11

Laboratory Report

Table 1

DC Parameters

Measured Valued Vin = 0V

Measured Valued

Vin = 5VIC

IB

VC

VBC

VBE

VCE

Graphic 1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Page 12: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

12

1. Record the values of VS corresponding to the VC values given below from the

transfer curve displayed on the oscilloscope.

VC = 4V Vin =______V.

VC = 3V Vin =______V.

VC = 2V Vin =______V.

2. What are the values for :

VIL = _____ VIH = _____

VOL = _____ VOH = _____

3. What are the noise margins for the Gate?

NMH = ____________

NML = ____________

Page 13: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

13

EXPERIMENT 02

7400 Standard NAND Gate: Transient Analysis and Voltage Transfer Characteristic.

Objectives

4. Examine the TTL characteristics. 5. Familiarize with electrical properties of logic gates built from bipolar transistors

(TTL).6. Build and test logic gate networks for measure its voltage transfer characteristics,

Propagation delay, Fan-Out, and power dissipation of the 7400 TTL NAND.

Required Equipments

Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard

Required Parts list

1 200 ¼-watt resistor 1 510 ¼-watt resistor 2 1 K ¼-watt resistors 1 10 K potentiometer 1 1N4148 Diode 1 7400 TTL NAND gate

Background

Now that we have studied the characteristics of the saturating transistor inverter, we have the knowledge in place to understand the behavior of the transistor-transistor logic or TTL. For years, TTL has been a workhorse technology for implementing digital functions and for providing “glue logic” necessary in microprocessor system design. TTL is interesting from another point of view since it is the only circuit that we shall encounter that makes use of transistors operating in all four regions of operation—forward-active, inverse-active, saturation, and cutoff.

The classical TTL inverter shown in Figure 1 solves is the typically circuit found in TTL unit logic in which several identical gates are packaged together in a single dual-in-line package, or DIP. Transistor Q1 controls the supply of base current to Q2. Input voltage Vi causes the current iB1 to switch between either the base-emitter diode or the base-collector diode of Q1. Q2 forces the output low to VCESAT2. The load resistor is an

Page 14: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

14

active pull-up circuit formed by transistor Q4 and diode D1. Q3 and D1 are required to ensure that Q4 is turned off when Q2 is turned on and vice versa.

Figure 1

A complete standard Two-input TTL NAND gate is shown in the schematic in Figure 2. If any one of the two input emitters is low, then the base current to transistor Q 3

will be zero and the output will be high, yielding Y = AB .

Page 15: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

15

Figure 2

In this lab, you will know the electrical properties of logic gates built from bipolar transistors (TTL)

Power Dissipation

Power dissipation is the power lost in the transistors of a logic gate. Since modern integrated circuits involve millions of transistors, it is important to minimize this power loss (the very first Pentium CPU had 3.2 million transistors).

y measuring the input characteristics and the transfer characteristics of all the chips, we can assess the power loss of each chip. The current flowing into a gate at any point is a good indication of power dissipation. To assess the amount of power dissipated by a gate at a specific state, we simply measure the current flowing into the gate at that state. A comparison of the output voltage to the input voltage during a change in state of a logic gate can provide information on how much power is lost as the gate switches. In the plot of output voltage versus input voltage, the slope indicates the amount of power dissipation. A steeper slope indicates smaller power dissipation.

Pre-Laboratory Procedure

Perform the following simulations for the 7400 TTL NAND of the Figure 2.1. DC transfer characteristics: Use the DC command to step Vin from 0 to 5V in

Page 16: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

16

0.1V increments. Obtain the plot of the DC transfer curve Vout versus Vin using PROBE.

2. Transient response: Carry out a transient simulation and obtain the plot of V in

and Vout using PROBE. Use Vin as a PULSE waveform with an amplitude of 5 Volts, rise and fall times equal to 2 NS and delay time equal to 0 NS, set the pulse duration for 50 NS and pulse period for 100 NS.

Pre-Laboratory Report

1. For the 7400 TTL NAND gate, determine VIH, VOH, VIL, VOL and the break points from the DC simulations.

2. From the transient simulations, determine τPHL and τPLH and calculate the average propagation delays for TTL NAND gate.

3. Calculate the average power dissipation for the circuit.

Laboratory Procedure

Part A: Electric Characteristics

1. Assemble the circuit in Figure 3 using the 7400.

a. Mount the 7400 (TTL) carefully and firmly with the pins in the center rows of your breadboard. Connect the 5-volt DC supply to VCC and connect ground to GND of the 7400.

b. Connect pin 1 to the +5V supply via the 1kΩ resistor, connect pin 2 to one of the probes of the digital Multimeter (DMM), and leave the other probe unconnected. Use the DMM to measure the input current when the second probe is connected to +5V via the 1kΩ resistor (pin 2 is pulled high), and when the second probe is connect to ground via the 510Ω resistor (pin 2 is pulled low). Use the DMM to measure the output voltage at pin 3 as the input voltage is changed. Record the readings, indicating the polarities, in the Table 1 of the report.

c. Remove the 7400, and replace it with the 74LS00 and repeat step a and b. You can use the same circuit configuration because the pin locations for all two chips are exactly the same.

Page 17: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

17

Figure 3

2. Assemble the circuit in Figure 4 using the 7400. 3. Vary the input voltage from zero to maximum by adjusting the potentiometer. 4. Measure the indicated voltages, Vi and VO, using either the digital Multimeter or

the oscilloscope. Record the readings in Table 2 of the report.5. Remove the 7400, and replace it with the 74LS00 and repeat step 3 and 4.

Figure 4

Note: For the details of the pin-outs and other device characteristics, see the specification sheets at the back of your manual, or the Motorola Web site.

Page 18: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

18

Part B: Dynamic Behavior

1. Assemble the circuit in figure 5 using the 7400

2. Using the function generator, produce a 5V peak-to-peak triangular wave at 1 KHz. Adjust the DC Offset on the function generator to create a positive unipolar wave, which means the signal never drops below zero.

3. Use channel 1 of the oscilloscope to measure Vi and channel 2 to measure VO. Set both channels of the oscilloscope to DC coupling.

4. Sketch the waveform of VO versus Vi on the graphic 1 provided in the laboratory report. Indicate the scales that were used.

5. To display the output voltage (VO) versus the input voltage (Vi) waveform on the oscilloscope, Turn Time/division button to XY. The waveform that you obtain displays channel 2 (VO) versus channel 1 (Vi). Channel 2 is on the y-axis and channel 1 is on the x-axis.

6. Remove the 7400, and replace it with the 74LS00 and repeat step 2 to 5.

Figure 5

Part C: Fan-Out for the 7400 TTL NAND

1. Connect the circuit as shown in figure 6 using the 7400.

2. VS is a sine wave with amplitude of approximately 5 Volts and frequency approximately 100 Hz. Set the oscilloscope in the DC and X-Y modes.

3. Plot the DC transfer curve displayed on the oscilloscope for a fan-out of 6 on the graphic 2 of the report. Indicate the scales that were used.

Page 19: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

19

Figure 6

4. Connect the output of one gate to the six inputs of the remaining three NAND gates (as shown in Figure 7) and plot the DC transfer curve for a fan-out of 6 on the graphic 3 of the report. Indicate the scales that were used.

5. Determine the average power dissipation in the IC by measuring the current being

supplied by VCC. Use an analog DC Multimeter for the dc current measurement. Do NOT use the digital Multimeter for the current measurement.

6. Remove the 7400, and replace it with the 74LS00 and repeat the step 1 to 5.

Figure 7

Page 20: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

20

Laboratory Report

Table 1V-I Characteristic 7400 74LS00

Input current when pin 2 is high    Output voltage when pin 2 is high    Input current when pin 2 is low    Output voltage when pin 2 is low    

Table 2Voltage Characteristics

vi

7400vO

74LS00vO

0V   2V    4V   6V   8V  

 10V  

Graphic 1(7400 and 74LS00)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

1. From the input current values that were measured in Part A-1, which is the power dissipation for both chips? Explain your reasoning.

Page 21: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

21

2. Using the table of measured values that you obtained in Part A-4 plot VO versus Vi for the 7400 and 74LS00 in different colors.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

3. Refer to the data sheet of the DM7400 to obtain the value of VIH. VIH is the Manufacturer’s minimum level for an input 1. On the graph you just plotted, draw a vertical line at Vi =VIH. Does the chip operate within this specification? Explain your reasoning. You may want to look at the typical values for VOH and VOL.

4. From the data sheet of the DM7400, find the value of V IL. This is the manufacturer’s maximum level for and input 0. On the graph of the previous

Page 22: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

22

page, draw a vertical line at Vi = VIL. Does the chip operate within this specification? Explain your reasoning.

5. Compare the static and dynamic measurements of the transfer characteristics for the 7400 and explain your conclusions.

Graphic 2(7400 and 74LS00)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Graphic 3(7400 and 74LS00)

                                                          

Page 23: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

23

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

6. What are the noise margins (NML and NMH) for a fan-out of 2 and 6 for both

chips?

7. How much is average power dissipation in both chips?

Page 24: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

24

EXPERIMENT 03

Analysis of a Schottky RTL inverter

Objectives

7. Examine the Schottky RTL characteristics. 8. Familiarize with the internal working of the Schottky RTL circuits.9. Design and analyze a Schottky RTL inverter and determine its input-output characteristics,

Propagation delay, and noise margins.

Required Equipments

Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard

Required Parts list

10 K ¼-watt resistor.  470 ¼-watt resistor.  0.1uF capacitor. 1N4148 diode rectifier. 2N2222 NPN silicon transistor or equivalent. NTE583 or NTE584 Schottky diode.

Background

A serious problem that severely limits the switching speed of BJT inverter is the amount of time required to remove the enormous stored charge from the base of a saturated BJT. The Schottky-clamped transistor drawn in figure 1 was developed to solve this problem. The Schottky-clamped transistor consists of a metal semiconductor Schottky barrier diode (SBD) in parallel with the collector-base junction of the bipolar transistor.

When conducting, the forward voltage drop of the Schottky diode is designed to be approximately 0.30 to 0.45 V, so it will turn on before the collector-base diode of the bipolar transistor becomes strongly forward-biased. Referring to Figure 1, we see that

vCE = vBE − vSBD = 0.70V − 0.30V = 0.4 V

Page 25: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

25

Figure 1: Schottky-clamped transistor.

If the input current in increased, the SBD will begin to conduct at VSBD(ON) = 0.3V. Hence, the base-collector junction reaches the forward-bias of VBC = 0.3V. Any further increase in current i’

B entering this configuration will be diverted from the base of the BJT, though the SBD, and turn into the collector of the BJT. Thus, VBC is limited to VSBD(ON) = VBC(HARD)= 0.3V. This BJT – SBD combination is called a Schottky-clamped BJT (SBJT) or Schottky transistor and the BJT cannot operate in saturation. Hence, the time consuming saturation stored-charge removal (and insertion) for the base is eliminated.

The mode of operation where the BJT is forward active and the Schottky diode is conducting is referred to as the “on hard” mode. This mode is similar to saturation with VBE increased to 0.8V, except VBC is only forward biased to 0.3V. An SBJT inverter is shown in Figure 2.

Figure 2: Schottky RTL inverter

Invention of this circuit required a good understanding of the exponential dependence of the BJT collector current on base-emitter voltage as well as knowledge of the differences between Schottky and PN junction diodes. Successful manufacture of the circuit relies on tight process control to maintain the desired difference between the forward drops of the base-emitter and Schottky diodes.

Page 26: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

26

Pre – LaboratorySchottky RTL Inverter Propagation Delay

In this laboratory the concept of propagation delay is addressed for the Schottky RTL inverter using PSPICE to simulate Transient behavior. The Schottky RTL inverter circuit is shown in Figure 3.

Figure 3: Schottky RTL Inverter

Circuit description and specific parameters

The input voltage VS is a PULSE waveform with an amplitude of 5V, the rise time (TR) and fall time

(TF) equal to 10 NS, delay time (TD) equal to 0 NS, a duration (PW) of 200 NS and a period (PER) of

approximately 500 NS. The transistor used in all simulations will be a 2N2222.

Pre – Laboratory Procedure

6. Use PSPICE to get the transient response for the circuit shown in Figure 3.

7. Plot both vin and vOUT as outputs superimposed on the same plot.

8. Determine VIL, VIH, VOL, and VOH for the simulation and record the values in the report's questions.

Page 27: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

27

9. Determine τPHL and τPLH for the simulation and record the values in the report's questions.

10. Print the plot.

Pre – Laboratory Report

4. What are the values for :

VIL = _____ VIH = _____VOL = _____ VOH = _____

5. Calculate τPLH and τPHL for the simulation.

τPLH = __________________ τPHL = _________

6. What is the propagation delay of the gate?

τP = _________

Laboratory ProcedureSchottky RTL Inverter Voltage Transfer Characteristic

8. Wire the circuit shown in Figure 4, the input voltage VS = 0V.

9. With your Multimeter, measure the base-emitter, base-collector, collector-emitter, and collector

DC voltages, with respect to ground, and measure the DC currents and record your values in table

1 of the report.

10. Set the input voltage at 5V and repeat the step 2.

11. Use the Oscilloscope with the Y-axis sensitivity set to 1 Volt/division and the X-axis sensitivity at

0.5 Volts/division.

12. Adjust the X zero reference to the screen center and the Y reference below the center.

Page 28: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

28

Figure 4

13. Wire the circuit shown in Figure 5.

14. The input vS is a sine wave from a function generator with a peak amplitude of 5 Volts and

frequency of 100 Hertz.

15. Draw a rough sketch of the characteristic displayed on the oscilloscope in the Graphic 1(Indicate

the scales that were used) of the report and ask the question.

16. Determine VIL, VIH, VOL, and VOH for the VTC displayed on the oscilloscope and record the values

in the report's questions.

Figure 5

Page 29: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

29

Laboratory ReportTable 1

DC Parameters

Measured Valued Vs = 0V

Measured Valued

Vs = 5VVC

VBC

VBE

VCE

I’B IB

ISBD

I’C IC

Graphic 1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

Page 30: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

30

4. Record the values of VS corresponding to the VC values given below from the transfer curve

displayed on the oscilloscope.

VC = 4V VS =______V.

VC = 3V VS =______V.

VC = 2V VS =______V.

5. What are the values for :

VIL = _____ VIH = _____

VOL = _____ VOH = _____

6. What are the noise margins for the Gate?

NMH = ____________

NML = ____________

7. Compare this experiment’s results with experiment one’s result.

Page 31: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

31

EXPERIMENT 04

NMOS Inverter

Objectives

1. Design and analyze an NMOS Inverter.2. Determine the voltage transfer characteristic (VTC) of NMOS inverter3. Calculate and measure the propagation delays of the NMOS inverter.

Required Equipments

Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard

Required Parts list

10 K ¼-watt Potentiometer 100 nF capacitor. NMOS

Background

A MOSFET can be used to achieve logic inversion in the same fashion as the BJT inverter. The generalized NMOS inverter is shown in Figure 1. The load device may be a resistor, like that used in the BJT inverter, but in an actual MOSFET inverter a better choice for a load is another MOSFET. The input to this inverter is applied directly to the gate. Hence, the input voltage is equal to the gate to source voltage

VIN = VGS

No input resistor is needed to limit the input current since the gate current IG of a MOSFET is essentially Zero. The output is taken at the drain, and thus

VOUT = VDS

Note that the voltage VL across the load in Figure 1 can be directly expressed as a function of the output as follows

VL = VL(VOUT) = VDD - VOUT

Also, since the input current is negligible, the current though the load is equal to the drain current through the channel of the MOSFET

IL = ID

These relations between the voltages and currents of the inverting NMOS and the load device are used to determine the VTC and power dissipation for NMOS.

Page 32: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

32

Figure 2 shows the NMOS inverter with resistive load, RL. The input to the inverter is at the gate of the N-channel output transistor NO and VIN= VGS. The output is at the drain and VOUT = VDS = VDD - IL RL. For VIN < VT, NO is cutoff and does not conduct drain current. Since the resistor current is equal to the drain current, with VIN < VT, IRL = ID (OFF) = 0 and the output is VOUT = VDD.

As the input in increased slightly above the threshold voltage, NO begins to conduct. At this point,

only a small current flows and the drain voltage is slightly less than VDD. As long as VDS VGS – VT NO is operating in the saturation region. With further increase of the input, a larger drain current conducts and the output voltage continues to fall. The analytical form of the VTC can be found by equating the drain current with the resistor current to obtain

ID (sat) =IRL or

k2 (V GS−V T )2=

V DD−V DS

RL

Substituting VGS = VIN and VDS = VOUT yields

k2 (V IN−V T )2=

V DD−V OUT

RLSolving for VOUT, we have

V OUT=−kRL

2 (V IN−V T )2+V DD

As VIN is further increased, ID increases and the voltage drop across RL can become sufficient to

reduce the drain voltage such that VDS VGS – VT. Under this condition NO operates in the linear region. The VTC of the resistor loaded NMOS inverter has the form shown in Figure 3.

Page 33: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

33

Propagation Delay

MOS logic families have the lowest power dissipation per gate of any of the logic families. This is because of the large values of MOSFET resistance and consequently small current levels.

An NMOS gate dissipates power in the same manner form as the BJT gates. That is, the power dissipated is given by the product of the power supply voltage and average current for a NMOS inverter

PDD=V DDI DD (OH )+ I DD(OL)

2

Significant additional power dissipation also occurs for NMOS families driving switching from one logic state to another. An expression for the MOS power dissipation during transient switching, called the dynamic power dissipation, is given by

PD=CL vV DD2

where CL is the total capacitance at the output of the gate and v is the frequency at which the gate is switched.

Since the gate terminal is always an input terminal and the gate sinks zero current for all input voltages fan-out for MOS families is unlimited. This is true for all load devices including a P-channel MOSFET as is the case for the CMOS inverter. Thus, the fan-out based upon current limitations is infinite for all NMOS gates. The maximum fan-out is restricted, however, by the maximum propagation delay tolerable.

Resistor Loaded NMOS Inverter Dynamic Response

Page 34: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

34

A capacitance is present between every pair of terminals for a MOSFET. The gate capacitance is the dominant capacitance and can be evaluated as the approximated sum of the gate-source, gate-drain, and gate-body capacitance.

The total gate capacitance is the input capacitance between the gate and ground of a resistor loaded NMOS inverter. When the input logic state to a resistor loaded NMOS inverter is switched low-to-high or high-to-low, this input (gate) capacitance must be charge or discharged, depending upon the direction of the input change.

Load Capacitance on a Resistor Loaded NMOS Inverter

When one resistor loaded NMOS inverter drives other resistor loaded NMOS inverters, the input capacitance of each load inverter must be charged or discharge simultaneously. A load capacitance on a resistor loaded NMOS inverter is shown in Figure 4.

The dynamic response of a resistor loaded NMOS inverter is determined considering this capacitance load.

Page 35: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

35

Output High-to-Low Transition

The transient characteristics of interest during the Output High-to-Low Transition are the fall time

τf and the High-to-Low propagation time τPHL.

The fall time τf and the High-to-Low propagation time τPHL are expressed as

τ f=CL

WL

[ 2(V T +0 .1 V OL−0 . 1V DD )k ' (V DD−V T )2

+ 1k ' (V DD−V T )

ln(1 . 9 V DD−2V T−0 .9 V OL

0 .1 V DD+0.9 V OL )]and

τ PHL=2CLV T

k ' (V DD−V T )2+

CL

k ' (V DD−V T )ln ( 1. 5 V DD−2V T−0 .5 V OL

0 .5 V DD−0 .5 V OL)

As with τf, τPHL is directly proportional to the load capacitance and inversely proportional to W/L.

Output Low -to-High Transition

The analysis of the output low-to-high transition involves the charging of the output load capacitance through the load resistor RL of the inverter. The transient characteristics of interest during the

output low-to-high transition are the rise time τr and the low-to-high propagation time τPLH.

The rise time τr and the low-to-High propagation time τPLH are expressed as

τ r=RLCL ln [0 . 9V DD−0. 9V OL

0. 1V DD−0. 1V OL ]and

τ PLH=RL CL ln(2 )

Page 36: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

36

Pre-LaboratoryNMOS Inverter Propagation Delay

Simulate the NMOS inverters using PSPICE to determine the voltage transfer characteristic (VTC) and calculate and measure the propagation delays. The NMOS inverters are shown in Figures 5, 6 and 7.

Circuit description and specific parameters

Page 37: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

37

The input voltage VIN is a PULSE waveform with an amplitude of 5V, the rise time (TR) and fall time

(TF) equal to 2 S, delay time (TD) equal to 0 S, a duration (PW) of 500 S and a period (PER) of

approximately 1 S. VGG = 10V.

The transistors used in the simulation will be a NMOS with the following model parameters for both

Netlist and Schematic circuit.

.MODEL parameters for the NMOS are:(VTO=1 KP = 20u GAMMA = 0.37 PHI = 0.6 CBD = 3.1E-15 CBS=3.1E-15)M1 (W=10u L =5u)M2 (W=5u L =20u)

Pre – Laboratory Procedure

11. Use PSPICE to get the DC operating point for the circuits shown in Figures 5, 6, and 7 and

complete the Table 1 of the pre-laboratory report.

12. Use PSPICE to get the transient response for the circuit shown in Figure 5.

13. Plot both VIN and VDS as outputs superimposed on the same plot.

14. Determine VIL, VIH, VOL, and VOH for the simulation and record the values in the report's questions.

15. Determine τPHL and τPLH for the simulation and record the values in the report's questions.

16. Print the plot.

17. Vary W/L ratio of the NMOS M1 for the circuit shown in Figure 5 and repeat step 2 to 5

18. Vary RL for the circuit shown in Figure 5 and repeat step 2 to 5

Page 38: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

38

Pre – Laboratory Report

Table 1

NMOS Inverters DC ParametersMeasured

Valued VIN=0V

Measured Valued VIN=5V

Resistor Load

ID

   VDS(OUT)

   

Saturated Load

ID

   VDS(OUT)

   

Linear Load

ID

   VDS(OUT)

   

7. What are the values for :

VIL = _____ VIH = _____VOL = _____ VOH = _____

8. Calculate τPLH and τPHL for the simulation.

τPLH = __________________ τPHL = _________

9. What is the propagation delay of the gate?

τP = _________

10. Make a comparative analysis of the table 1 data and explain yours reasoning.

Page 39: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

39

Laboratory ProcedureNMOS Inverter Voltage Transfer Characteristic

1. Connect the NMOS inverter shown in figure 5.

2. Using the DC power supply, vary the input voltage

from 0 to 5 V and use the digital Multimeter to

determine the voltage at the output, and measure the

drain current, recording your values in table 1 of the

report.

3. Vary the 10 k potentiometer and record the values in

Table 1 of the report.

4. Replace the DC input voltage VIN with a sine wave

from a function generator with peak amplitude of 5

Volts and frequency of 100 Hertz.

5. Use the Oscilloscope with the Y-axis sensitivity set to 1 Volt/division and the X-axis sensitivity at

0.5 Volts/division. Adjust the X zero reference to the screen center and the Y reference below the

center.

6. Draw a rough sketch of the characteristic displayed on the oscilloscope in the Graphic 1(Indicate

the scales that were used) of the report. Comment on the important points of the graph such as

VOH, VOL, VM, noise margins, etc.

7. Attach a load capacitance of 100 nF to the output node.

8. Apply a 200 Hz 0 to 5 volt square wave to the input of the inverter. Set the DC offset to be 2.5V.

Use the oscilloscope to plot vIN and vOUT. Determine the propagation delays, τPHL and τPLH, of the

inverter.

9. Draw a rough sketch of the characteristic displayed on the oscilloscope in the Graphic 2(Indicate

the scales that were used) of the report. Comment on the important points of the graph such as τf,

τr, τPHL and τPLH.

Page 40: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

40

Laboratory Report

Table 1

PotentiometerPosition DC Parameters

Measured Valued VIN=0V

Measured Valued VIN=5V

1KID    

VDS    

5 KID    

VDS    

10KID    

VDS    

Graphic 1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Page 41: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

41

Graphic 2

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

8. Record the values of VIN corresponding to the VDS values given below from the transfer curve

displayed on the oscilloscope.

VDS = 4V VIN =______V.

VDS = 3V VIN =______V.

VDS = 2V VIN =______V.

9. What are the values for :

VIL = _____ VIH = _____

VOL = _____ VOH = _____

10. What are the noise margins for the Gate?

NMH = ____________

NML = ____________

Page 42: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

42

EXPERIMENT 05

CMOS Technology

Objectives

4. Familiarize with the CMOS structure.5. Design and analyze a CMOS Inverter.6. Determine the voltage transfer characteristic (VTC) of CMOS inverter7. Calculate and measure the propagation delays of the CMOS inverter.

Required Equipments

Oscilloscope Power supply Function generator Digital Multimeter Bread-Board o Protoboard

Required Parts list

.22 nF capacitor. 22 nF capacitor. NMOS and PMOS transistors

Background

A CMOS inverter is an ingenious circuit which is built forms a pair of NMOS and PMOS transistors operating as complementary switches as illustrated in Figure3.2. The main advantage of a CMOS inverter over many other solutions is that it is built exclusively out of transistors operating as switches, without any other passive elements like resistors or capacitors.

From Figure 1 note that the PMOS (pull-up transistor) is connected between VDD and the output node, VOUT, whereas the NMOS (pull - down transistor) is connected between the output node, VOUT, and the ground, GND.

The principle of operation is as follows (refer also to the right part of Figure 2).

For small values of the input voltage, VIN, the NMOS transistor is switched off, whereas the pull-up PMOS transistor is switched on and connects the output mode to VDD.

For large values of the input voltage, VIN, the PMOS transistor is switched off, whereas the pull-down NMOS transistor is switched on and connects the output mode to GND = 0V.

A better inside into the working of the CMOS inverter can be obtain by

Page 43: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

43

looking at its transfer and current characteristics presented in Figure 2.

The transfer characteristic presents the output voltage vOUT versus the input voltage vIN. Note that when the input voltage increases from 0V to 5V the output voltage decreases from 5V to 0V.

The current characteristic presents the current flowing through the transistors between VDD and GND also versus the input voltage VIN.

From the above characteristics we can observe the existence of three basic regions of operations denoted 1, 2, 3 in Figure 2.

In region 1 when 0 _ VIN < VTN

The NMOS transistor is cut off, the PMOS switch is closed and VOUT = VDD iD = 0

In region 3 when VIN > VDD - VTN The PMOS transistor is cut off, the NMOS switch is closed and VOUT = 0 and iD=0

The fact that in regions 1 and 3 no current flows between VDD and GND, is very attractive because there is no power dissipation at this stages. This very fact is the reason that all digital circuitry is now build in the CMOS technology.

In region 2 when VN < VIN < VP

The transistor remains only for a short period of time, when the input voltage switches between VL

and VH.

In this region there is non-zero current flowing between VDD and GND, and some power dissipation, which is converted into heat.

Note that the same current flows through the PMOS and NMOS transistors, that is,

Page 44: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

44

IDp = IDn

Transient properties of the CMOS inverterIn this section we will investigate basic transient properties of the CMOS inverter, that is, its dynamic behavior during switching the input signals from low-to-high or high-to-low voltages and associated power dissipation.

Propagation delayLet us consider a CMOS inverter driven by a voltage pulse. Typical input/output waveforms are shown in Figure 3. Basic characterization of the dynamic behavior of an inverter is given by its two propagation delay times, HL and LH as illustrated in Figure 3. Note that these propagation times are specified with respect to the mid voltage V0.5:

Figure 3.7: Input/output waveforms for a CMOS inverter.

The propagation delay times, HL (LH) specifies the input-to-output time delay during the high-to-low (low-to-high) transition of the output voltage.

Often, it is convenient to refer to the average propagation delay, p which specifies the average time required for the input signal to propagate through the inverter:

Similarly, we can define the fall time, F , and the rise time, R, as the time required for the output voltage to change between V90% and V10% .

Where V10% = VL + 0.1(VH − VL) , and V90% = VL + 0.9(VH − VL)

Page 45: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

45

The physical reason for the propagation time delay is the existence of the parasitic capacitances associated with a MOS transistor. We can combine all such capacitances into an equivalent load capacitance, Cld, as illustrated in Figure 4.

As illustrated by the voltage and current characteristics from Figure 2, during transition between low and high input voltages, there is a current flowing through the transistors forming the inverter. A part of this current charges and discharges the load capacitance which is responsible for propagation delays.

If we approximate the current flowing through the load capacitance by its average value, Iavg, then the propagation time can be estimated as:

where ΔV indicates the voltage change across the load capacitance, that is, the change of the output voltage.

The value of the load capacitance of the inverter without the interconnecting lumped capacitance is in the order of 0.01pF = 10fF. We can estimate that the propagation time is in the order of p = 100ps = 0.1ns

Pre-LaboratoryCMOS Inverter Propagation Delay

Simulate the CMOS inverters using PSPICE to determine the voltage transfer characteristic (VTC) and calculate and measure the propagation delays. The CMOS inverter is shown in Figure 5.

Page 46: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

46

Figure 5: CMOS Inverter

Circuit description and specific parameters

The input voltage VIN is a PULSE waveform with an amplitude of 5V, the rise time (TR) and fall time

(TF) equal to 2 S, delay time (TD) equal to 0 S, a duration (PW) of 500 S and a period (PER) of

approximately 1 S.

The transistors used in the simulation will be a NMOS and PMOS with the following model

parameters for both Netlist and Schematic circuit.

Pre – Laboratory Procedure

19. Use PSPICE to get the DC operating point for the circuits shown in Figures 5 and complete the

Table 1 of the pre-laboratory report.

20. Use PSPICE to get the transient response for the circuit shown in Figure 5.

21. Plot both VIN and VOUT as outputs superimposed on the same plot.

22. Determine VIL, VIH, VOL, and VOH for the simulation and record the values in the report's questions.

23. Determine τPHL and τPLH for the simulation and record the values in the report's questions.

24. Print the plot.

25. Vary W/L ratio of the MOSFETs for the circuit shown in Figure 5 and repeat step 2 to 5

Page 47: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

47

26. Vary CL for the circuit shown in Figure 5 and repeat step 2 to 5

Page 48: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

48

Pre – Laboratory Report

Table 1

Circuit DC ParametersMeasured

Valued VIN=0V

Measured Valued VIN=5V

CMOS Inverter

ID

   VOUT

   VOUT

   

11. What are the values for :

VIL = _____ VIH = _____VOL = _____ VOH = _____

12. Calculate τPLH and τPHL for the simulation.

τPLH = __________________ τPHL = _________

13. What is the propagation delay of the gate?

τP = _________

Page 49: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

49

Laboratory ProcedureCMOS Inverter Voltage Transfer Characteristic

10. Connect the CMOS inverter shown in figure 6.

11. Using the DC power supply, vary the

input voltage from 0 to 5 V and use

the digital Multimeter to determine

the voltage at the output, and measure

the drain current, recording your

values in table 1 of the report.

12. Replace the DC input voltage VIN

with a sine wave from a function

generator with peak amplitude of 5

Volts and frequency of 100 Hertz.

13. Use the Oscilloscope with the Y-axis sensitivity set to 1 Volt/division and the X-axis sensitivity at

0.5 Volts/division. Adjust the X zero reference to the screen center and the Y reference below the

center.

14. Draw a rough sketch of the characteristic displayed on the oscilloscope in the Graphic 1(Indicate

the scales that were used) of the report. Comment on the important points of the graph such as

VOH, VOL, VM, noise margins, etc.

15. Attach a load capacitance of 22 nF to the output node.

16. Apply a 200 Hz 0 to 5 volt square wave to the input of the inverter. Set the DC offset to be 2.5V.

Use the oscilloscope to plot vIN and vOUT. Determine the propagation delays, τPHL and τPLH, of the

inverter.

Page 50: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

50

17. Draw a rough sketch of the characteristic displayed on the oscilloscope in the Graphic 2(Indicate

the scales that were used) of the report. Comment on the important points of the graph such as τf,

τr, τPHL and τPLH.

Page 51: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

51

Laboratory Report

Table 1

CL DC ParametersMeasured Valued VIN=0V

Measured Valued VIN=5V

.22nFID    

VOUT    

22nFID    

VOUT    

Graphic 1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Page 52: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

52

Graphic 2

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

11. Record the values of VIN corresponding to the VOUT values given below from the transfer curve

displayed on the oscilloscope.

VOUT = 4V VIN =______V.

VOUT = 3V VIN =______V.

VOUT = 2V VIN =______V.

12. What are the values for :

VIL = _____ VIH = _____

VOL = _____ VOH = _____

13. What are the noise margins for the Gate?

NMH = ____________

NML = ____________

Page 53: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

53

EXPERIMENT 06

Logic Interfacing

Objectives

8. Familiarize with TTL open-collector devices, three state outputs and transceivers.9. Design logic interface between different logic families.

Required Equipments

Digital Multi-meter Digit-lab Bread-Board o Protoboard

Required Parts list

10 K ¼-watt Potentiometer 470 TTL Open-collector NAND Gate 7401 TTL NAND Gate 7400 74244 Three stage buffer gate 2 LEDs

Background

Situation often arise where many components in digital system must share a common path to be able to transfer data to one another. To reduce the number of interconnections, a small set of shared lines called bus may be used. In general, outputs from different devices cannot be simultaneously present on the bus. Consequently, for proper operation, that is, to prevent bus contention, only one of the devices connected to a shared bus can place information on the bus at any time. TTL open-collector devices permit the simultaneous connection of the outputs of two or more devices to form a bus.

In many applications such as bus-organized digital systems where various outputs must be ANDed, using TTL gates with totem-pole outputs would require an AND gate with as many input lines as there are signals to be ANDed.

Additional logic is created when the outputs of two or more open-collector gates are tied together, as in Figure 1. This scheme is called the wired-AND and is used to save logic gates in comparison with other methods.

Page 54: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

54

It is not possible to interconnect TTL gates with totem-pole output stages in the configuration. Figure 2 depicts the high level current path when the outputs of totem-pole gates are tied together. Gate A dissipate a large amount of power, and Q3B is required to sink a current which may exceed its guaranteed 16mA sink capacity.

Although the main application of the open collector gate is to allow the formation of the wire-AND, it is also useful for driving an individual load like an LED or relay. The output stage for the two-input open-collector NAND gate 7401 consists solely of the common-emitter transistor without even a collector resistance. This gate, when supplied with a proper load resistor RL, may be paralleled with other similar TTL gates. At the same time, it will drive from one to nine standard loads of its own series. When no other open-collector gates are tied, it may be used to drive ten loads. Their main disadvantage is that these gates are inherently slowly and more subject to noise than their totem-pole counterpart. The pull-up resistor bias can be raised to any voltage within the

Page 55: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

55

breakdown voltage of the driver transistor to enable interfacing to a system employing voltage swings, like a CMOS.

To determine the value of the external pull-up resistor, we should find the upper and lower limits of the range of values the resistor can take. A maximum value is found which will ensure that sufficient source current to the loads and off current through paralleled outputs will be available when the output is logical 1. Therefore, the total leakage current determines the maximum value of RL when all driving transistors are off, as shown in Figure 4. When Vo is high so that the drivers are off, the voltage drop across RL must be less than

VRL(max) = VCC – VOH(min)

On the other hand, the total current through RL is the sum of the load current IIH and the leakage current IOH through each driver. Therefore,

IRL = IOH + NIIH

Where is the number of gates wired-AND connected, and N is the number of standard loads. Note that IOH is into the output terminal and hence positive. Using equations 1 and 2, we find

RL(max) = VRL(max)/IRL

RL(max) = (VCC – VOH(min))/ (IOH + NIIH)

A minimum value for the pull-up resistor is established when Vo is logical 0, so that the current through RL and the total sinking current from the load gates do not cause the output voltage to rise

above VOL(max) even if only one driving gate is sinking all the current. Therefore, the current must be limited to the recommended maximum IOL, which will ensure that the low-level output voltage will be below VOL(max). Since part of IOL will be supplied from the loads, the amount of current that can be allowed through RL will be reduced. Hence, neglecting the leakage currents of the turned-off drivers, we have

RL(min) = VRL(min)/IRL

RL(min) = (VCC – VOL(max))/ (IOL(max) – N|IIL|)

Logical 0 circuit conditions to calculate RL(min) are illustrated in Figure 5. Table 1 provides the electrical characteristics of the 7401 open-collector NAND gate.

Page 56: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

56

Table1: Electrical Characteristics of the two-Input NAND Gate 7401

VOH (min)2.4V

IOH (min)250uA

PLH

35nsVIH (min)

2VIIH (min)

40uAPHL

8nsVOL (max)

.4VIOL (max)

16mACL

15pF

VIL (max).8V 

IIL (max) -1.6mA RL

4k for PLH

400 for PHL

Page 57: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

57

Three-State Outputs

Another useful variant of TTL that can solve the problem of driving a common bus line by two or more logic circuits is the three-state output arrangement shown in Figure 6. The term tri-state is also used. However, it is registered trademark of National Semiconductor Corporation, which introduced this design concept in 1970.

Figure 6

By combining the high-speed advantage of the totem-pole output with the advantages of an open-collector output, the three-state gates enable the connection of a number of gates to a common output line or bus. In addition to a totem-pole output, these gates have another terminal, called the output enable, which permits the device to function normally or the output signal to be disconnected from the rest of the circuit by going into a third state in which both output transistors are turned off, resulting in an extremely high output impedance. Therefore, a disabled gate can be assumed to have an open circuit in its output line, so that the high impedance state may be equated to the voltage level of a conductor that has no sources connected to it, that is, it is floating.

The two most frequently used three-state ICs in the standard TTL logic subfamily are the 74125 and 74126 quadruple-bus buffers with independent output controls. Both are non-inverting buffers, but the former’s output for the 74125 is enabled by a logical 0 while the 74126 is enabled by an active high signal.

Three-State CMOS Buffers

The CMOS three-state output buffer has logic elements in the gate connections to each of the transistors in the final inverter, so that both may be turned off under the control of an enable function. Figure 7 illustrates the logic diagram of such a buffer with active low-enable input. Note that additional inverters are added as buffers or to optimize timing. The truth table of the CMOS Buffers is shown in table 2.

Page 58: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

58

G' A

VGP

VGN Y

0 0 0 0 10 1 1 1 01 0 1 0 Z1 1 1 0 Z

Table 2: Truth table

Page 59: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

59

Pre-LaboratoryTTL Open-Collector Outputs

Page 60: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

60

Pre – Laboratory Procedure

27. Simulate the circuit shows in Figure 8 using

PSPICE. Use 7401 and 7400 TTL Open-

Collector NAND and standard NAND

respectively.

28. Sweep the value of the pull-up resistor and

determine the value maximum and minimum for

optimum performance and complete the Table 1

of the pre-laboratory report.

29. Connect the circuit shows in Figure 9 using

PSPICE and determine how many TTL inputs

can drive.

30. Simulate the circuit of Figure 10 using PSPICE

and find the DC operating point and complete

the Table 2 of the pre-laboratory report.

31. Simulate the circuit shows in Figure 11 using

PSPICE and prove the truth table of the circuit.

Pre – Laboratory Report

Table 1

TTL 7401Figure 8 RL(Max) RL(Min) IRL(Max) IRL(Min)

DC parameters

Page 61: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

61

How many TTL inputs can drive the circuit of Figure 7

Table 2

Figure 10 VRL

(High) VOL IOL

DC parameters

Page 62: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

62

Laboratory ProcedureOpen-Collector TTL Outputs

18. Connect the circuit of Figure 12 with the 7401 and 7400 TTL Open-Collector NAND and standard

NAND respectively. Vcc = +5V

19. Add load to the output in order to

determine the fan-out of the gate. Use the

digital Multimeter to determine the output

voltage and the currents in the circuit

when you are adding a gate and record

your values in table 1 of the report.

20.

Connect

the

circuit of Figure 13 using 7401 and 7400 TTL NAND and

AND gate respectively with high input voltages and record

your values in Table 1 of the report. Vcc = +5V

21. Vary the 10 k potentiometer and record the values in

Table 1 of the report.

22. Using the Digit lab DC switch to vary the input voltage from

0 to 5 V and use the digital Multimeter to determine the

voltage at the output, and the currents in the circuit

recording your values in table 1 of the report.

23. Connect the circuit shown in Figure 14.

24. Using the Digit lab DC switch to vary the input

voltage from 0 to 5 V and use the digital Multimeter

to determine the voltage at the output, and the

currents in the circuit recording your values in table 3

of the report.

25. Change the 7401 TTL Open-Collector NAND by the

7400 standard NAND and repeat step 7.

Page 63: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

63

26. Connect the circuit shown in Figure 15.

27. Using the Digit lab DC switch to vary the input

voltage from 0 to 5 V and use the digital

Multimeter to determine the voltage at the output,

and the currents in the circuit recording your

values in table 4 of the report.

Page 64: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

64

Laboratory Report

Table 1

LoadsVOL VOH IOH IIH IOL IIL

1   

  

  

  

  

  

2345

Table 2

DC Parameters

RL

Value VOL VOH IOH IIH IOL IIL

IRL(OH)= 410   

  

  

  

  

  IRL(OL)=

IRL(OH)= 1k   

  

  

  

  

  IRL(OL)=

IRL(OH)= 2.3 k   

  

  

  

  

  IRL(OL)=

IRL(OH)= 5 k   

  

  

  

  

  IRL(OL)=

Page 65: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

65

Table 3

Figure 14 VRL

(High) VOL IOL VOH IOH

7401

7400

Table 4

Figure 15 VRL

(High) VOL IOL VOH IOH

7400

Compare the results obtain in table 3 and table 4 and explain your conclusions

Conclusions

Page 66: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

66

EXPERIMENT 07

Regenerative circuitsObjectives

1. Wire and observe the operation of an R-S flip-flop.2. Wire and observe the operation of a Master-Slave J-K flip-flop level and edge triggered.3. Compare the wave shaping action of a regular TTL IC with a Schmitt trigger IC.

Required Equipments

Digit-lab Bread-Board o Protoboard Function Generator Oscilloscope

Required Parts list

7402 2-input NOR gate IC 7404 inverter TTL IC 7414 Schmitt trigger inverter TTL IC 74104 or 74105 J-K Master-Slave flip flop 74109 Dual J-K Positive-Edge-Triggered Flip-Flop with Clear and Preset 74112 Dual J-K Negative-Edge-Triggered Flip-Flop with Clear and Preset 74279 S-R flip flop with NAND 3 LEDs (2) 150Ohms resistors

Background

Multivibrators are regenerative circuits that are used used to implement a variety of simple two-state systems such as oscillators, timers and flip-flops. The most common form is the astable or oscillating type, which generates a square wave - the high level of harmonics in its output is what gives the multivibrator its common name.

There are three types of multivibrator circuit:

Astable, in which the circuit is not stable in either state - it continuously oscillates from one state to the other.

Monostable, in which one of the states is stable, but the other is not - the circuit will flip into the unstable state for a determined period, but will eventually return to the stable state. Such a circuit is useful for creating a timing period of fixed duration in response to some external event. This circuit is also known as a one shot. A common application is in eliminating switch bounce.

Bistable, in which the circuit will remain in either state indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. Such a circuit is important as the fundamental building block of a register or memory device. This circuit is also known as a flip-flop. A similar circuit is a Schmitt trigger.

In electronics and digital circuits, the flip-flop or bistable multivibrator is a pulsed digital circuit capable of serving as a one-bit memory. A flip-flop typically includes zero, one, or two input signals; a clock signal; and an output signal, though many commercial flip-flops additionally provide the complement

Page 67: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

67

of the output signal. Some flip-flops include a clear input signal, which resets the current output. Because flip-flops are implemented as integrated circuit chips, they also require power and ground connections.

Pulsing, or strobing, the clock causes the flip-flop to either change or retain its output signal, based upon the values of the input signals and the characteristic equation of the flip-flop. Strobing here means changing the clock; some flip-flops change output on the rising edge of the clock, and other change on the falling edge.

Flip-flops can be split into two main categories: level-triggered and edge-triggered. They can further be divided into four types that have found common applicability in clocked sequential systems: these are called the T ("toggle") flip-flop, the SR ("set-reset") flip-flop, the JK flip-flop, and the D ("Data") flip-flop. The behavior of the flip-flop is described by what is termed the characteristic equation, which derives the "next" (i.e., after the next clock pulse) output, Q(next), in terms of the input signal(s) and/or the current output, Q.

Level-triggered flip-flops respond whenever a signal level changes.

Set-reset flip-flops (SR flip-flops)

The SR (set-reset) flip-flop has two inputs: S (set) and R (reset). If R is active, the output goes to zero. If S is active, the output goes to one. If neither is activated, the previous state is maintained. Both inputs should not be activated simultaneously; however, if they are, the typical response is for both the inverted and non inverted outputs to have the same level.

The behavior of an SR flip-flop can be written in the form of a truth table:

NOR NANDS R Q Q(next) S R Q Q(next)0 0 Q Q(next) 0 0 undetermine0 1 1 0 0 1 x 01 0 0 1 1 0 x 11 1 Undetermined 1 1 Latch Latch

Truth table for an SR flip flop with NOR and NAND gates

We can implement a SR flip-flop with a pair of either NAND or NOR gates. The NOR version is conceptually easier as it has active high inputs. However, the NAND version is more widely known and used, as NAND gates were cheaper in transistor-transistor logic.

We can also easily add an enable input. If this is implemented in the same gates as the flip-flop, then it serves to further invert the inputs - meaning a NAND based device will now have active high inputs. This input may be regarded as a clock but the flip-flop is still unsuitable for sequential design. When the clock goes high, the signal will propagate through all flip-flops, not just from one to the next.

Page 68: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

68

SR flip-flops circuit diagrams and the symbols for an un-clocked SR flip-flop

A clocked SR flip-flop and the symbol for a clocked SR flip-

flop

Edge-triggered flip-flops only change state on a particular edge (rising, falling, or very occasionally both directions) of a designated clock signal.

JK flip-flop

The JK flip-flop augments the behavior of the SR flip-flop by interpreting the S = R = 1 condition as a "flip" command. Specifically, the combination J = 1, K = 0 is a command to set the flip-flop; the combination J = 0, K = 1 is a command to reset the flip-flop; and the combination J = K = 1 is a command to toggle the flip-flop, i.e., change its output to the logical complement of its current value. Setting J = K = 0 results in a D-type flip-flop. The JK flip-flop is therefore a universal flip-flop, because it can be configured to work as an SR flip-flop, a D flip-flop or a T flip-flop.

The symbol for a clocked J-K flip-flop

A circuit symbol for a JK flip-flop, where > is the clock input, J and K are data inputs, Q is the stored data output, and Q' is the inverse of Q.

The characteristic equation of the JK flip-flop is:

and the corresponding truth table is:

J K QQ(ne

xt)

0 0Latch Latch

0 1 1 01 0 0 11 1 0 1

Page 69: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

69

1 1 1 0

SCHMITT TRIGGER

In electronics, a Schmitt (or Schmidt) trigger is a comparator circuit that incorporates positive feedback.

When the input is higher than a certain chosen threshold, the output is high; when the input is below another (lower) chosen threshold, the output is low; when the input is between the two, the output retains its value. The trigger is so named because the output retains its value until the input changes sufficiently to trigger a change. This dual threshold action is called hysteresis, and implies that the Schmitt trigger has some memory.

The benefit of a Schmitt trigger over a circuit with an only single input threshold is greater stability (noise immunity). With only one input threshold, a noisy input signal near that threshold could cause the output to switch rapidly back and forth from noise alone. A noisy Schmitt Trigger input signal near one threshold can cause only one switch in output value, after which it would have to move to the other threshold in order to cause another switch.

The Schmitt trigger was invented by US scientist Otto H. Schmitt.

The symbol for Schmitt triggers in circuit diagrams is a triangle with a hysteresis symbol.

Pre-LaboratoryRegenerative circuits

Wire and test one J-K flip flop from the CMOS 4027 dual J-K flip flop IC. Observe and record your values in table 1.

Pre – Laboratory ReportTable 1

Mode of operationInputs Outputs

Asynchronous Synchronous

PS CLR CLK J K Q Q'Asynchronous Set 0 1 x x x    

Asynchronous reset 1 0 x x x    Prohibited 0 0 x x x 1 1

Hold 1 1 0 0 No changeReset 1 1 0 1    Set 1 1 1 0    

Toggle 1 1 1 1      Preset Clear Clock Data Data    

Laboratory Procedure

Page 70: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

70

Regenerative circuits

1. Wire the logic circuit of the R-S flip-flop shown in Figure. Wire outputs Q and Q’ to two LEDs.

2. Operate the input switches R and S as shown in the truth table in Table 2. Observe and record the

results in the Q and Q’ columns.

3. In the right column of Table 1, write the name of the condition of the outputs. Use the term

“Hold,” “Set,” or “reset.”

4. Operate the input switches R and S as shown in the truth table in Table 3 using the 74279 R-S flip-

flop and record the results in the Q and Q’ columns. Wire outputs Q and Q’ to two LEDs.

5. In the right column of Table 2, write the name of the condition of the outputs. Use the term

“Hold,” “Set,” or “reset.”

6. Construct the circuit of the clocked R-S flip flop with NAND. Wire outputs Q and Q’ to two

LEDs.

7. Operate the input switches R and S as shown in the truth table in Table

4. Observe and record the results in the Q and Q’ columns.

8. Insert the 74LS112 IC into the mounting board.

Page 71: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

71

9. Wire the synchronous inputs PS and CLR to two switches. Wire the asynchronous inputs J and K

to switches and the CLK input to a single-pulse clock. Wire outputs Q and Q’ to two LEDs.

10. Operate the asynchronous inputs PS and CLR and record the results in Table 5.

11. In the right-hand column of Table 5 write the condition of the output. Choices are listed.

12. Disable the asynchronous inputs (PS and CLR to 1).

13. Operate the synchronous inputs J, K and CLK of the 74LS112 IC according to the truth table in

Table 6. Observe and record the results in column Q and Q’.

14. In the right-hand column of Table 6 write the condition of the output. Choices are listed.

15. Insert the 7404 and 7414 ICs into the mounting board and wire the circuits shown in the Figure.

16. Set Vin with the function generator. Set the function generator to sine wave. Set the frequency

from 50 to 200 Hz. Adjust the function generator voltage to 2 to 4 V p-p.

17. Use the Oscilloscope to observe the output waveforms for the circuits. Draw a rough sketch of the

characteristic displayed on the oscilloscope in the Graphic 1 and 2(Indicate the scales that were used)

of the report.

Page 72: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

72

Laboratory ReportTable 2

NOR

S R Q Q(next)

Name of

condition

0 0

0 1

1 0

1 1

Table 3

R-S flip-flop 74279

S R Q Q(next)

Name of

condition

0 0

0 1

1 0

1 1

Table 4

Inputs Outputs

Clock Data Before clock pulse After clock pulseName of condition

CLK S R Q Q' Q Q'

 

0 0 0 1        

 

0 1 0 1        

 

1 0 0 1        

 

1 1 0 1     Prohibited

 

0 0 1 0        

 

0 1 1 0        

 

1 0 1 0        

  1 1 1 0     Prohibited

Page 73: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

73

Hold, reset, or set

Page 74: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

74

Table 5

Inputs Outputs

Clear Preset Q Q' Name of Condition

0 0 Prohibited

0 1

1 0

1 1

Clear Q to 0

Disable

Preset Q to 1

Table 6

Inputs Outputs

Clock Data

Before clock

pulse

After clock

pulse Name of condition

CLK J K Q Q' Q Q'

0 0 0 1      

0 1 0 1      

1 0 0 1      

1 1 0 1      

0 0 1 0      

0 1 1 0      

1 0 1 0      

1 1 1 0      

PS and CLR=1 Hold, reset, set, or toggle

Page 75: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

75

Graphic 1(7404)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

Graphic 2(7414)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

Which IC seems to do the best job of converting the sine wave into a sharp square wave?

Page 76: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

76

EXPERIMENT 08

D\A and A/D converters

Objectives

4. To connect an analog-to-digital (A/D) circuit and perform an A/D conversion5. To calculate A/D accuracy and resolution6. To connect an analog-to-digital (D/A) circuit and perform an D/A conversion7. To calculate D/A accuracy and resolution

Required Equipments

Digit-lab Bread-Board o Protoboard Function Generator Oscilloscope Digital Multimeter

Required Parts listResistors Integrated Circuits Potenciometers Diodes Capacitors

1 K (3) LM741 10 K (2) Led (2) 15 pF 2 K (6) DAC0808 10 K 30 K 100 2.5k

BackgroundAnalog-to-Digital Converter

The process of converting an analog voltage to a digital coded signal is known as analog-to-digital conversion. It is usually referred to as A-to-D (A/D) conversion.

When an analog signal is digitized, the signal is converted to an equivalent digital number at regular intervals, called sample intervals, as seen in Figure

Figure 1: Analog signal is sampled at regular intervals

Page 77: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

77

The typical A/D converter will have eight output lines. Each line is capable of being a logic 1 or 0. Each binary digit is called a bit –an acronym for binary digit. Thus such an A/D device is called an 8 nit A/D converter. Now assuming that each of the eight output lines could be a logic 1 or 0, there are 28, or 256, different binary codes which can be represented by the 8-bit A/D converter. Assume an input voltage of 0V to the A/D converter; its output would be the binary equivalent, or 00000000. For each input voltage level there will be a specific equivalent binary output on the eight output lines.

Resolution and accuracy

Resolution of an A/D converter is defined as the smallest increment input voltage that can be determined by the converter. Resolution is primarily a function of the number of output bits. For example, if the converter has 256 different outputs codes, the input signal is represented by binary numbers from 00000000 to 11111111. If the input ranges from 0 to 5 V, the resolution is

5 V256

=0 .0195VThus, the binary output of 00000001 represents 0.0195 V. Likewise, 00000010 represents 0.039

V, and so on. What would be the binary representation of, say, 3.042V? Clearly,3. 042 V0 . 0195

=156

which, when converted to binary, is 10011100.

The accuracy of the A/D converter is determined by how closed the actual converter output is to the theoretical output. For example, if the 8-bit A/D converter had an accuracy expressed as 1 least significant bit (LSB), the accuracy could be expressed as

accuracy= 128

∗100= 1256

∗100=0. 4 %

Digital-to-Analog converter

In electronics, a digital-to-analog converter (DAC or D-to-A) is a device for converting a digital (usually binary) code to an analog signal (current, voltage or electric charge). Digital-to-analog converters are the interface between the abstract digital world and the analog real life. Simple switches, a network of resistors, current sources or capacitors may implement this conversion.

The DAC fundamentally converts finite-precision numbers (usually fixed-point binary numbers) into a physical quantity, usually an electrical voltage. Normally the output voltage is a linear function of the input number. Usually these numbers are updated at uniform sampling intervals and can be thought of as numbers obtained from a sampling process. These numbers are written to the DAC, sometimes along with a clock signal that causes each number to be latched in sequence, at which time the DAC output voltage changes rapidly from the previous value to the value represented by the currently latched number. The effect of this is that the output voltage is held in time at the current value until the next input number is latched resulting in a piecewise constant output (Figure 2). This is equivalently a zero-order hold operation and has an effect on the frequency response of the reconstructed signal.

The fact that practical DACs do not output a sequence of dirac impulses (that, if ideally low-pass filtered, result in the original signal before sampling) but instead output a sequence of piecewise constant values or rectangular pulses, means that there is an inherent effect of the zero-order hold on the effective frequency response of the DAC resulting in a mild roll-off of gain at the higher frequencies (a 3.9224 dB loss at the Nyquist frequency). This zero-order hold effect is a consequence of the hold action of the DAC

Page 78: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

78

and is not due to the sample and hold that might precede a conventional analog to digital converter as is often misunderstood.

Figure 2: Piecewise constant signal typical of a practical DAC output.

Page 79: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

79

Laboratory ProcedureD\A and A/D converters

1. Wire the circuit of the D/A converter as shown in Figure 1.

Figure 1: Digital-to-Analog Converter

2. Operate the input switches as shown in the Table 1. Observe and record the results of the

OPAMP output voltage. The output voltage can be calculated with the standard op-amp

theory.

3. Connect the circuit shown in Figure 2.

4. Apply the digital inputs shown in Table 2. For each input measure the analog output voltage

and record it in the table 2.

5. Wire the circuit of the D/A converter as shown in Figure 3.

6. Vary the potentiometers to change the comparator input voltage.

7. Determine the switches combination to set on the LED indicator. Observe and record the

results of the OPAMP output voltage.

8. Repeat steps 5 to complete the table 3.

Page 80: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

80

Page 81: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

81

Laboratory ReportTable 1

Input Voltage Output Voltage% ErrorCalculated Measured

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Table 2

Binary Inputs Measured analog output00000001000000100000001100000100000010000001000000100000010000001000000011111111

Table 3

Page 82: EXPERIMENT 01 - Recinto Universitario de Mayagüez · Web viewFunction generator Digital Multimeter Bread-Board o Protoboard Required Parts list 10 K ¼-watt resistor. 0.1 F capacitor

82

Input Voltage Output Voltage% ErrorCalculated Measured

1V

3V

5V

10V

12V

15V