27
American Mathematical Society Terence Tao Graduate Studies in Mathematics Volume 164 Expansion in Finite Simple Groups of Lie Type

Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

American Mathematical Society

Terence Tao

Graduate Studies in Mathematics

Volume 164

Expansion in Finite Simple Groups of Lie Type

Page 2: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Expansion in Finite Simple Groups of Lie Type

Page 3: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s
Page 4: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Expansion in Finite Simple Groups of Lie Type

Terence Tao

American Mathematical SocietyProvidence, Rhode Island

Graduate Studies in Mathematics

Volume 164

https://doi.org/10.1090//gsm/164

Page 5: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

EDITORIAL COMMITTEE

Dan AbramovichDaniel S. Freed

Rafe Mazzeo (Chair)Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 05C81, 11B30, 20C33, 20D06, 20G40.

For additional information and updates on this book, visitwww.ams.org/bookpages/gsm-164

Library of Congress Cataloging-in-Publication Data

Tao, Terence, 1975Expansion in finite simple groups of Lie type / Terence Tao.

pages cm. – (Graduate studies in mathematics ; volume 164)Includes bibliographical references and index.ISBN 978-1-4704-2196-0 (alk. paper)1. Finite simple groups. 2. Lie groups. I. Title.

QA387.T356 2015512′.482–dc23 2014049154

Copying and reprinting. Individual readers of this publication, and nonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy select pages foruse in teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Permissions to reuseportions of AMS publication content are handled by Copyright Clearance Center’s RightsLink�service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to [email protected] from these provisions is material for which the author holds copyright. In such cases,

requests for permission to reuse or reprint material should be addressed directly to the author(s).Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of thefirst page of each article within proceedings volumes.

c©2015 by Terence Tao. All rights reserved.Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

Page 6: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

In memory of Garth Gaudry, who set me on the road

Page 7: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s
Page 8: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Contents

Preface xi

Notation xii

Acknowledgments xiii

Part 1. Expansion in Cayley Graphs

Chapter 1. Expander graphs: Basic theory 3

§1.1. Expander graphs 4

§1.2. Connection with edge expansion 9

§1.3. Random walks on expanders 15

§1.4. Random graphs as expanders 17

Chapter 2. Expansion in Cayley graphs, and Kazhdan’s property (T) 23

§2.1. Kazhdan’s property (T) 27

§2.2. Induced representations and property (T) 37

§2.3. The special linear group and property (T) 47

§2.4. A more elementary approach 55

Chapter 3. Quasirandom groups 57

§3.1. Mixing in quasirandom groups 62

§3.2. An algebraic description of quasirandomness 67

§3.3. A weak form of Selberg’s 3/16 theorem 67

Chapter 4. The Balog-Szemeredi-Gowers lemma, and the Bourgain-Gamburd expansion machine 85

§4.1. The Balog-Szemeredi-Gowers lemma 87

vii

Page 9: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

viii Contents

§4.2. The Bourgain-Gamburd expansion machine 97

Chapter 5. Product theorems, pivot arguments, and the Larsen-Pinknonconcentration inequality 101

§5.1. The sum-product theorem 104

§5.2. Finite subgroups of SL2 110

§5.3. The product theorem in SL2(k) 120

§5.4. The product theorem in SLd(k) 125

§5.5. Proof of the Larsen-Pink inequality 129

Chapter 6. Nonconcentration in subgroups 135

§6.1. Expansion in thin subgroups 137

§6.2. Random generators expand 140

Chapter 7. Sieving and expanders 143

§7.1. Combinatorial sieving 146

§7.2. The strong approximation property 156

§7.3. Sieving in thin groups 160

Part 2. Related Articles

Chapter 8. Cayley graphs and the algebra of groups 167

§8.1. A Hall-Witt identity for 2-cocycles 177

Chapter 9. The Lang-Weil bound 187

§9.1. The Stepanov-Bombieri proof of the Hasse-Weil bound 194

§9.2. The proof of the Lang-Weil bound 198

§9.3. Lang-Weil with parameters 200

Chapter 10. The spectral theorem and its converses for unboundedself-adjoint operators 203

§10.1. Self-adjointness and resolvents 207

§10.2. Self-adjointness and spectral measure 212

§10.3. Self-adjointness and flows 218

§10.4. Essential self-adjointness of the Laplace-Beltrami operator 224

Chapter 11. Notes on Lie algebras 227

§11.1. Abelian representations 233

§11.2. Engel’s theorem and Lie’s theorem 235

§11.3. Characterising semisimplicity 237

§11.4. Cartan subalgebras 242

Page 10: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Contents ix

§11.5. sl2 representations 245

§11.6. Root spaces 247

§11.7. Classification of root systems 251

§11.8. Chevalley bases 258

§11.9. Casimirs and complete reducibility 263

Chapter 12. Notes on groups of Lie type 267

§12.1. Simple Lie groups over C 268

§12.2. Chevalley groups 278

§12.3. Finite simple groups of Lie type 288

Bibliography 293

Index 301

Page 11: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s
Page 12: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Preface

Expander graphs are a remarkable type of graph (or more precisely, a familyof graphs) on finite sets of vertices that manage to simultaneously be bothsparse (low-degree) and “highly connected” at the same time. They enjoyvery strong mixing properties: if one starts at a fixed vertex of an (two-sided)expander graph and randomly traverses its edges, then the distribution ofone’s location will converge exponentially fast to the uniform distribution.For this and many other reasons, expander graphs are useful in a wide varietyof areas of both pure and applied mathematics.

There are now many ways to construct expander graphs, but one of theearliest constructions was based on the Cayley graphs of a finite group (or ofa finitely generated group acting on a finite set). The expansion property forsuch graphs turns out to be related to a rich variety of topics in group the-ory and representation theory, including Kazhdan’s property (T), Gowers’notion of a quasirandom group, the sum-product phenomenon in arithmeticcombinatorics, and the Larsen-Pink classification of finite subgroups of alinear group. Expansion properties of Cayley graphs have also been appliedin analytic number theory through what is now known as the affine sieve ofBourgain, Gamburd, and Sarnak, which can count almost prime points inthin groups.

This text is based on the lecture notes from a graduate course on thesetopics I gave at UCLA in the winter of 2012, as well as from some additionalposts on my blog at terrytao.wordpress.com on further related topics.The first part of this text can thus serve as the basis for a one-quarteror one-semester advanced graduate course, depending on how much of theoptional material one wishes to cover. While the material here is largelyself-contained, some basic graduate real analysis (in particular, measure

xi

Page 13: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

xii Preface

theory, Hilbert space theory, and the theory of Lp norms), graph theory,and linear algebra (e.g., the spectral theorem for unitary matrices) will beassumed. Some prior familiarity with the classical Lie groups (particularlythe special linear group SLn and the unitary group Un) and representationtheory will be helpful but not absolutely necessary. To follow Section 3.3(which is optional) some prior exposure to Riemannian geometry would alsobe useful.

The core of the text is Part 1. After discussing the general theory ofexpander graphs in the first section, we then specialise to the case of Cayleygraphs, starting with the remarkable observation1 of Margulis linking Kazh-dan’s property (T) with expansion, and then turning to the more recentobservations of Sarnak, Xue, Gamburd, and Bourgain linking the propertyof finite groups now known as quasirandomness with expansion, which isalso related to the famous “3/16 theorem” of Selberg. As we will presentin this text, this sets up a general “machine” introduced by Bourgain andGamburd for verifying expansion in a Cayley graph, which in addition toquasirandomness requires two additional ingredients, namely a product the-orem and a nonconcentration estimate. These two ingredients are then thefocus of the next two sections of this part. The former ingredient uses tech-niques from arithmetic combinatorics related to the sum-product theorem,as well as estimates of Larsen and Pink on controlling the interaction be-tween finite subgroups of a linear group and various algebraic varieties (suchas conjugacy classes or maximal tori). The latter ingredient is perhaps themost delicate aspect of the theory, and often requires a detailed knowledgeof the algebraic (and geometric) structure of the ambient group. Finally, wepresent an application of these ideas to number theory by introducing thebasics of sieve theory, and showing how expansion results may be insertedinto standard sieves to give new bounds on almost primes in thin groups.

Part 2 contains a variety of additional material that is related to oneor more of the topics covered in Part 1, but which can be omitted for thepurposes of teaching a graduate course on the subject.

Notation

For reasons of space, we will not be able to define every single mathematicalterm that we use in this book. If a term is italicised for reasons other thanemphasis or for definition, then it denotes a standard mathematical object,result, or concept, which can be easily looked up in any number of references.

1This material in Section 2 is not absolutely required for subsequent sections of this part,although it does provide some helpful context for these later sections. Thus, this section may beabridged or even omitted altogether in a lecture course if desired.

Page 14: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Acknowledgments xiii

(In the blog version of the book, many of these terms were linked to theirWikipedia pages, or other on-line reference pages.)

Given a subset E of a space X, the indicator function 1E : X → R isdefined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for x �∈ E.

The cardinality of a finite set E will be denoted |E|. We will use2 theasymptotic notation X = O(Y ), X � Y , or Y � X denote the estimate|X| ≤ CY for some absolute constant C > 0. In some cases we will needthis constant C to depend on a parameter (e.g., d), in which case we shallindicate this dependence by subscripts, e.g., X = Od(Y ) or X �d Y . Wealso sometimes use X ∼ Y as a synonym for X � Y � X. If n is aparameter going to infinity, we let on→∞(1) denote a quantity depending onn and bounded in magnitude by c(n) for some quantity c(n) that goes tozero as n → ∞. More generally, given an additional parameter such as k, welet on→∞;k(1) denote a quantity that may depend on both k and n, whichis bounded by ck(n) for some quantity ck(n) that goes to zero as n → ∞ foreach fixed k.

Acknowledgments

I am greatly indebted to my students of the course on which this textwas based, as well as many further commenters on my blog, including IanAgol, Abhishek Bhowmick, Nick Cook, Sean Eberhard, Alireza Golsefidy,Joerg Grande, Ben Green, Dick Gross, Harald Helfgott, Arie Israel, DavidJoyner, Matthew Kahle, Emmanuel Kowalski, Wolfgang Moens, Vipul Niak,William Orrick, Mikhail Ostrovskii, David Roberts, Misha Rudnev, Alexan-der Shaposhnikov, Lior Silberman, Vit Tucek, Yilong Yang, and Wei Zhou.These comments can be viewed online at:

terrytao.wordpress.com/category/teaching/254b-expansion-in-groups/

The author was supported by the NSF grant DMS-0649473, the Jamesand Carol Collins Chair, the Mathematical Analysis & Application ResearchFund Endowment, and the Simons Foundation.

2Once we deploy the machinery of nonstandard analysis in Section 6, we will use a closelyrelated, but slightly different, asymptotic notation.

Page 15: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s
Page 16: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Bibliography

[Al1996] N. Alon, On the edge-expansion of graphs, Combin. Probab. Comput. 6 (1997),no. 2, 145–152.

[AlMi1985] N. Alon, V. D. Milman, λ1, isoperimetric inequalities for graphs, and super-concentrators, J. Combin. Theory Ser. B 38 (1985), no. 1, 73–88.

[BaNiPy2008] L. Babai, N. Nikolov, L. Pyber, Product growth and mixing in finite groups,Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-rithms, 248–257, ACM, New York, 2008.

[BaSe1992] L. Babai, A. Seress, On the diameter of permutation groups, European J.Combin. 13 (1992), no. 4, 231–243.

[BaSz1994] A. Balog, E. Szemeredi, A statistical theorem of set addition, Combinatorica14 (1994), no. 3, 263–268.

[BedeVa2008] B. Bekka, P. la Harpe, A. Valette, Kazhdan’s property (T), New Mathe-matical Monographs, 11. Cambridge University Press, Cambridge, 2008.

[Bo2001] B. Bollobas, Random graphs. Second edition. Cambridge Studies in AdvancedMathematics, 73. Cambridge University Press, Cambridge, 2001.

[Bo1974] E. Bombieri, Counting points on curves over finite fields (d’apres S. A.Stepanov), Seminaire Bourbaki, 25eme annee (1972/1973), Exp. No. 430, pp. 234–241. Lecture Notes in Math., Vol. 383, Springer, Berlin, 1974.

[BoSt2007] A. Booker, A. Strombergsson, Numerical computations with the trace formulaand the Selberg eigenvalue conjecture, J. Reine Angew. Math. 607 (2007), 113–161.

[BoHaReSe2011] R. Borcherds, M. Haiman, N. Reshetikhin, V. Serganova, Berkeley Lec-tures on Lie Groups and Quantum Groups, edited by Anton Geraschenko and TheoJohnson-Freyd. available at math.berkeley.edu/∼theojf/LieQuantumGroups.pdf.

[BoGa2008] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs ofSL2(Fp), Ann. of Math. (2) 167 (2008), no. 2, 625–642.

[BoGaSa2010] J. Bourgain, A. Gamburd, P. Sarnak, Affine linear sieve, expanders, andsum-product, Invent. Math. 179 (2010), no. 3, 559–644.

[BoGlKo2006] J. Bourgain, A. Glibichuk, S. Konyagin, Estimates for the number of sumsand products and for exponential sums in fields of prime order, J. London Math. Soc.(2) 73 (2006), no. 2, 380–398.

293

Page 17: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

294 Bibliography

[BoKaTa2004] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, andapplications, Geom. Funct. Anal. 14 (2004), no. 1, 27–57.

[BoKo2003] J. Bourgain, S. V. Konyagin, Estimates for the number of sums and productsand for exponential sums over subgroups in fields of prime order, C. R. Math. Acad.Sci. Paris 337 (2003), no. 2, 75–80.

[BoVa2012] J. Bourgain, P. Varju, Expansion in SLd(Z/qZ), q arbitrary, Invent. Math.188 (2012), no. 1, 151–173.

[BrGa2010] E. Breuillard, A. Gamburd, Strong uniform expansion in SL(2, p), Geom.Funct. Anal. 20 (2010), no. 5, 1201–1209.

[BrGrTa2011] E. Breuillard, B. Green and T. Tao, Approximate subgroups of linear groups,Geom. Funct. Anal. 21 (2011), no. 4, 774–819.

[BrGrTa2011b] E. Breuillard, B. Green and T. Tao, The structure of approximate groups,preprint. arXiv:1110.5008

[BrGrTa2011c] E. Breuillard, B. Green, T. Tao, Suzuki groups as expanders, GroupsGeom. Dyn. 5 (2011), no. 2, 281–299.

[BrGrTa2012] E. Breuillard, B. Green, B. Guralnick, and T. Tao, Strongly dense freesubgroups of semisimple algebraic groups, Israel J. Math. 192 (2012), no. 1, 347–379.

[BrGrTa2013] E. Breuillard, B. Green, B. Guralnick, and T. Tao, Expansion in finitesimple groups of Lie type, preprint.

[Bu1982] P. Buser, A note on the isoperimetric constant, Ann. Sci. Ecole Norm. Sup. (4)15 (1982), no. 2, 213–230.

[Ca1993] R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters.Reprint of the 1985 original. Wiley Classics Library. A Wiley-Interscience Publication.John Wiley & Sons, Ltd., Chichester, 1993.

[Ch1984] I. Chavel, Eigenvalues in Riemannian geometry. Including a chapter by BurtonRandol. With an appendix by Jozef Dodziuk. Pure and Applied Mathematics, 115.Academic Press, Inc., Orlando, FL, 1984.

[Ch1970] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problemsin analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. PrincetonUniv. Press, Princeton, N. J., 1970.

[Ch1973] J. R. Chen, On the representation of a larger even integer as the sum of a primeand the product of at most two primes, Sci. Sinica 16 (1973), 157–176.

[ChGrWi1989] F. R. K. Chung, R. L. Graham, R. M. Wilson, Quasi-random graphs,Combinatorica 9 (1989), no. 4, 345–362.

[CoCuNoPaWi1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson,Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for SimpleGroups, Oxford, England 1985.

[Co2007] M. Collins, On Jordan’s theorem for complex linear groups, Journal of GroupTheory 10 (2007), 411–423.

[DaSaVa2003] G. Davidoff, P. Sarnak, A. Valette, Elementary number theory, group the-ory, and Ramanujan graphs, London Mathematical Society Student Texts, 55. Cam-bridge University Press, Cambridge, 2003.

[deRoVa1993] P. de la Harpe, A. G. Robertson, A. Valette, On the spectrum of the sumof generators for a finitely generated group, Israel J. Math. 81 (1993), 65–96.

Page 18: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Bibliography 295

[De1977] P. Delorme, 1-cohomologie des representations unitaires des groupes de Liesemisimple et resolubles. Produits tensoriels continus et representations, Bull. Soc.Math. France 105 (1977), 289–323.

[Di1901] L. E. Dickson, Linear groups: with an exposition of the Galois field theory,Leipzig: B. G. Teubner (1901).

[Di2010] O. Dinai, Expansion properties of finite simple groups, preprint.arXiv:1001.5069

[Do1984] J. Dodziuk, Difference equations, isoperimetric inequality and transience of cer-tain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787–794.

[DvKoLo2012] Z. Dvir, J. Kollar, S. Lovett, Variety Evasive Sets, preprint.

[ElObTa2010] J. Ellenberg, R. Oberlin, T. Tao, The Kakeya set and maximal conjecturesfor algebraic varieties over finite fields, Mathematika 56 (2010), no. 1, 1–25.

[ErSz1983] P. Erdos, E. Szemeredi, On sums and products of integers, Studies in PureMathematics, 213–218, Birkhauser, Basel, 1983.

[Fo1995] G. Folland, A course in abstract harmonic analysis. Studies in Advanced Math-ematics. CRC Press, Boca Raton, FL, 1995.

[Fr1973] G. A. Freiman, Foundations of a structural theory of set addition. Translatedfrom the Russian. Translations of Mathematical Monographs, Vol 37. American Math-ematical Society, Providence, R. I., 1973.

[Fr1973b] G. A. Freiman, Groups and the inverse problems of additive number theory,Number-theoretic studies in the Markov spectrum and in the structural theory of setaddition, pp. 175–183. Kalinin. Gos. Univ., Moscow, 1973.

[FrIw1998] J. Friedlander, H. Iwaniec, The polynomial X2 +Y 4 captures its primes, Ann.of Math. (2) 148 (1998), no. 3, 945–1040.

[FrIw2010] J. Friedlander, H. Iwaniec, Opera de cribro. American Mathematical SocietyColloquium Publications, 57. American Mathematical Society, Providence, RI, 2010.

[FuHa] W. Fulton, J. Harris, Representation theory. A first course. Graduate Texts inMathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.

[GaGa1981] O. Gabber, Z. Galil, Explicit constructions of linear-sized superconcentrators,Special issued dedicated to Michael Machtey. J. Comput. System Sci. 22 (1981), no.3, 407–420.

[Ga1951] M. Gaffney, The harmonic operator for exterior differential forms, Proc. Nat.Acad. Sci. U. S. A. 37, (1951). 48–50.

[Ga2002] A. Gamburd, On the spectral gap for infinite index “congruence” subgroups ofSL2(Z), Israel J. Math. 127 (2002), 157–200.

[GiHe2010] N. Gill, H. Helfgott, Growth in solvable subgroups of GLr(Z/pZ), preprint.arXiv:1008.5264

[GoLySo1998] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simplegroups. Number 3. Part I. Chapter A. Almost simple K-groups. Mathematical Surveysand Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.

[Go1998] W. T. Gowers, A new proof of Szemeredi’s theorem for arithmetic progressionsof length four, Geometric And Functional Analysis 8 (1998), 529–551.

[Go2008] W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no.3, 363–387.

[GrSo2004] A. Granville, K. Soundararajan, The number of unsieved integers up to x,Acta Arith. 115 (2004), no. 4, 305–328.

Page 19: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

296 Bibliography

[GrTa2010] B. Green, T. Tao, Linear equations in primes, Annals of Math. 171 (2010),1753–1850.

[GrTa2012] B. Green, T. Tao, The Mobius function is strongly orthogonal to nilsequences,Ann. of Math. (2) 175 (2012), no. 2, 541–566.

[GrTaZi2012] B. Green, T. Tao, T. Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, Ann. of Math. (2) 176 (2012), no. 2, 1231–1372.

[Gr1994] P. Griffiths, J. Harris, Principles of algebraic geometry. Reprint of the 1978original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.

[Gu1980] A. Guichardet, Cohomologie des groups topologiques et des algebres de Lie,Cedic-F. Nathan, 1980.

[HaRi1974] H. Halberstam, H.-E. Richert, Sieve methods. London Mathematical SocietyMonographs, No. 4. Academic Press [A subsidiary of Harcourt Brace Jovanovich,Publishers], London-New York, 1974.

[Ha1995] J. Harris, Algebraic geometry. A first course. Corrected reprint of the 1992original. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995.

[Ha1936] H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkorper. I, II & III,Crelle’s Journal 175 (1936).

[He2001] D. R. Heath-Brown, Primes represented by x3 + 2y3, Acta Math. 186 (2001),no. 1, 1–84.

[He2008] H. A. Helfgott, Growth and generation in SL2(Z/pZ), Ann. of Math. (2) 167(2008), no. 2, 601–623.

[He2011] H. A. Helfgott, Growth in SL3(Z/pZ), J. Eur. Math. Soc. (JEMS) 13 (2011),no. 3, 761–851.

[HeSe2011] H. A. Helfgott, A. Seress, On the diameter of permutation groups, preprint.arXiv:1109.3550

[HoLiWi2006] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications,Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561.

[Hr2012] E. Hrushovski, Stable group theory and approximate subgroups, J. Amer. Math.Soc. 25 (2012), no. 1, 189–243.

[HrWa2008] E. Hrushovski, F. Wagner, Counting and dimensions. Model theory withapplications to algebra and analysis. Vol. 2, 161–176, London Math. Soc. LectureNote Ser., 350, Cambridge Univ. Press, Cambridge, 2008.

[Hu1975] J. E. Humphreys, Linear algebraic groups. Graduate Texts in Mathematics, No.21. Springer-Verlag, New York-Heidelberg, 1975.

[Iw1978] H. Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math.47 (1978), no. 2, 171–188.

[IwKo2004] H. Iwaniec, E. Kowalski, Analytic number theory. American MathematicalSociety Colloquium Publications, 53. American Mathematical Society, Providence,RI, 2004

[JiMa1987] S. Jimbo, A. Maruoka, Expanders obtained from affine transformations, Com-binatorica 7 (1987), no. 4, 343–355.

[Jo1878] C. Jordan, Memoire sur les equations differentielles lineaires ‘a integralealgebrique, J. Reine Angew. Math. 84 (1878), 89–215.

[Ka1967] D. Kazhdan, On the connection of the dual space of a group with the structureof its closed subgroups, Functional Analysis and Its Applications 1 (1967), 63–65.

[Ke1959] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92(1959), 336–354.

Page 20: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Bibliography 297

[Ki2003] H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourthof GL2. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and PeterSarnak, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183.

[Kn2002] A. Knapp, Lie groups beyond an introduction. Second edition. Progress in Math-ematics, 140. Birkhauser Boston, Inc., Boston, MA, 2002.

[KoBa1967] A. N. Kolmogorov, Y.M. Barzdin, On the realization of nets in 3-dimensionalspace, Probl. Cybernet, 8 261–268, 1967. See also Selected Works of A.N. Kolmogorov,Vol 3, pp 194–202, Kluwer Academic Publishers, 1993.

[Ko2012] E. Kowalski, Explicit growth and expansion for SL2, preprint. arXiv:1201.1139.

[Ko2010] E. Kowalski, Exponential sums over finite fields, I: elementary methods, preprint.www.math.ethz.ch/ kowalski/exponential-sums.html

[KuSt1960] R. A. Kunze, E. M. Stein, Uniformly bounded representations and harmonicanalysis of the 2× 2 real unimodular group, Amer. J. Math. 82 (1960), 1–62.

[LaSe1974] V. Landazuri, G. Seitz, On the minimal degrees of projective representationsof the finite Chevalley groups, J. Algebra 32 (1974), 418–443.

[LaWe1954] S. Lang, A. Weil, Number of points of varieties in finite fields, Amer. J. Math.76, (1954). 819–827.

[LaPi2011] M. Larsen, R. Pink, Finite subgroups of algebraic groups, J. Amer. Math. Soc.24 (2011), 1105–1158.

[LiRo2011] L. Li, O. Roche-Newton, An improved sum-product estimate over finite fields,preprint. arXiv:1106.1148

[Lu2012] A. Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer.Math. Soc. (N.S.) 49 (2012), no. 1, 113–162.

[LuPhSa1988] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8(1988), no. 3, 261–277.

[LuWe1993] A. Lubotzky, B. Weiss, Groups and expanders, Expanding graphs (Princeton,NJ, 1992), 95–109, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 10, Amer.Math. Soc., Providence, RI, 1993.

[Ma1973] G. A. Margulis, Explicit constructions of expanders, Problemy Peredaci Infor-macii 9 (1973), no. 4, 71–80.

[Ma1993] Y. Matiyasevich, Hilbert’s 10th Problem. MIT Press Series in the Foundationsof Computing. Foreword by Martin Davis and Hilary Putnam. Cambridge, MA: MITPress, 1993.

[MaVeWe1984] C. R. Matthews, L. N. Vaserstein, B. Weisfeiler, Congruence properties ofZariski-dense subgroups. I, Proc. London Math. Soc. (3) 48 (1984), no. 3, 514–532.

[Ma1957] F. I. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math. (2)65 (1957), 416–431.

[MeWi2004] R. Meshulam, A. Wigderson, Expanders in group algebras, Combinatorica 24(2004), 659–680.

[Mo1966] C. C. Moore, Ergodicity of flows on homogeneous space, Amer. J. of Math. 88(1966), 154–178.

[Mu1999] D. Mumford, The red book of varieties and schemes. Second, expanded edition.Includes the Michigan lectures (1974) on curves and their Jacobians. With contri-butions by Enrico Arbarello. Lecture Notes in Mathematics, 1358. Springer-Verlag,Berlin, 1999.

[Ne2006] M. Neuhauser, Kazhdan constants for compact groups, J. Aust. Math. Soc. 81(2006), no. 1, 11–14.

Page 21: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

298 Bibliography

[NiPy2011] N. Nikolov, L. Pyber, Product decompositions of quasirandom groups and aJordan type theorem, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1063–1077.

[No1987] M. Nori, On subgroups of GLn(Fp), Invent. Math. 88 (1987), no. 2, 257–275.

[Pi1973] M. S. Pinsker, On the complexity of a concentrator, 7th International TeletrafficConference, pages 318/1-318/4, 1973.

[PySz2010] L. Pyber, E. Szabo, Growth in finite simple groups of Lie type, preprint,arXiv:1001.4556

[PySz2012] L. Pyber, E. Szabo, Growth in linear groups, preprint, arXiv:1208.2538

[Ra1930] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. Series 230 (1930), 264–286.

[ReSi1975] M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourieranalysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers],New York-London, 1975.

[Ro1960] W. Roelcke, Uber den Laplace-Operator auf Riemannschen Mannigfaltigkeitenmit diskontinuierlichen Gruppen, Math. Nachr. 21 (1960) 131–149.

[Ru1990] W. Rudin, Fourier analysis on groups. Reprint of the 1962 original. Wiley Clas-sics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York,1990.

[Ru2011] M. Rudnev, On new sum-product type estimates, preprint. 1111.4977

[Ru2012] M. Rudnev, An improved sum-product inequality in fields of prime order, Int.Math. Res. Not. IMRN 2012, no. 16, 3693–3705.

[SGVa2012] A. Salehi-Golsefidy, P. Varju, Expansion in perfect groups, Geom. Funct.Anal. 22 (2012), no. 6, 1832–1891.

[Sa2013] T. Sanders, The structure theory of set addition revisited, Bull. Amer. Math. Soc.50 (2013), 93–127.

[Sa2004] P. Sarnak, What is... an expander?, Notices Amer. Math. Soc. 51 (2004), no. 7,762–763.

[SaXu1991] P. Sarnak, X. Xue, Bounds for multiplicities of automorphic representations,Duke Math. J. 64 (1991), no. 1, 207–227.

[Sc1980] J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,Journal of the ACM 27 (1980), 701–717.

[Se1965] A. Selberg, On the estimation of Fourier coefficients of modular forms, in White-man, Albert Leon, Theory of Numbers, Proceedings of Symposia in Pure Mathematics,VIII, Providence, R.I.: American Mathematical Society, pp. 1–15, 1965.

[Se2007] M. Sepanski, Compact Lie groups. Graduate Texts in Mathematics, 235.Springer, New York, 2007.

[Se1956] J.-P. Serre, Geometrie algebrique et geometrie analytique, Universite de Greno-ble. Annales de l’Institut Fourier 6 (1956), 1–42.

[Se1966] J.-P. Serre, Algebres de Lie semi-simples complexes, W. A. Benjamin, Inc., NewYork-Amsterdam 1966.

[Sh1997] I. R. Shafarevich, Basic Algebraic Geometry. Translated from the Russian byK. A. Hirsch. Revised printing of Grundlehren der mathematischen Wissenschaften,Vol. 213, 1974. Springer Study Edition. Springer-Verlag, Berlin-New York, 1977.xv+439 pp.

[Sh2000] Y. Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math.141 (2000), no. 1, 1–54.

Page 22: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Bibliography 299

[So2009] J. Solymosi, Bounding multiplicative energy by the sumset, Adv. Math. 222(2009), no. 2, 402–408.

[St1967] R. Steinberg, Lectures on Chevalley groups, 1967. Prepared by John Faulknerand Robert Wilson. Available at www.math.ucla.edu/∼rst/YaleNotes.pdf.

[St1932] M. H. Stone, On one-parameter unitary groups in Hilbert Space, Annals of Math-ematics 33 (3), 643–648.

[Sz1975] E. Szemeredi, On sets of integers containing no k elements in arithmetic pro-gression, Acta Arithmetica 27 (1975), 199–245.

[Sz1978] E. Szemeredi, Regular partitions of graphs, Problemes combinatoires et theoriedes graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401, Colloq.Internat. CNRS, 260, CNRS, Paris, 1978.

[Ta2008] T. Tao, Structure and Randomness: pages from year one of a mathematical blog,American Mathematical Society, 2008.

[Ta2009] T. Tao, Poincare’s Legacies: pages from year two of a mathematical blog, Vol.I, American Mathematical Society, Providence RI, 2009.

[Ta2009b] T. Tao, Poincare’s Legacies: pages from year two of a mathematical blog, Vol.II, American Mathematical Society, Providence RI, 2009.

[Ta2009c] T. Tao, The sum-product phenomenon in arbitrary rings, Contrib. DiscreteMath. 4 (2009), no. 2, 59–82.

[Ta2010] T. Tao, An epsilon of room, Vol I., Graduate Studies in Mathematics, 117,American Mathematical Society, 2010.

[Ta2010b] T. Tao, An epsilon of room, Vol II., American Mathematical Society, 2010.

[Ta2011] T. Tao, An introduction to measure theory, American Mathematical Society,Providence RI, 2011.

[Ta2012] T. Tao, Higher order Fourier analysis, American Mathematical Society, Provi-dence RI, 2012.

[Ta2013] T. Tao, Hilbert’s fifth problem and related topics, Graduate Studies in Mathe-matics, 153. American Mathematical Society, Providence, RI, 2014.

[Ta2013b] T. Tao, Compactness and contradiction, American Mathematical Society, Prov-idence, RI, 2013.

[Ta2013c] T. Tao, Spending symmetry, in preparation.

[TaVu2006] T. Tao, V. Vu, Additive combinatorics. Cambridge Studies in AdvancedMathematics, 105. Cambridge University Press, Cambridge, 2006.

[Te1985] A. Terras, Harmonic analysis on symmetric spaces and applications. I. Springer-Verlag, New York, 1985.

[Ti1966] J. Tits, Sur les constantes de structure et le theoreme d’existence des algebres de

Lie semi-simples, Inst. Hautes Etudes Sci. Publ. Math. No. 31 (1966) 21–58.

[Ti1972] J. Tits, Free subgroups in linear groups, Journal of Algebra, 20 (1972), 250–270.

[Va2012] P. Varju, Expansion in SLd(OK/I), I squarefree, J. Eur. Math. Soc. (JEMS) 14(2012), no. 1, 273–305.

[Wa1991] S. Wassermann, C∗-algebras associated with groups with Kazhdan’s property T ,Ann. Math.134 (1991), 423–431.

[We1949] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math.Soc. 55 (1949), 497–508.

[Wo1999] N. C. Wormald, Models of random regular graphs, Surveys in combinatorics,1999 (Canterbury), 239–298, London Math. Soc. Lecture Note Ser., 267, CambridgeUniv. Press, Cambridge, 1999.

Page 23: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

300 Bibliography

[Zi1979] R. Zippel, Probabilistic algorithms for sparse polynomials, Proceedings of Sym-bolic and Algebraic Computation, EUROSAM ’79, An International Symposium onSymbolic and Algebraic Computation, Marseille, France, June 1979.

Page 24: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Index

(B,N)-pair, 283

abelianisation, 230adjacency matrix, 5adjoint, 208adjoint form, 271adjoint representation, 231affine algebraic variety, 187almost prime, 144approximate group, 86asymptotic notation, xiiiautocorrelation function, 50

Balog-Szemeredi theorem, 91Balog-Szemeredi-Gowers lemma

approximate group form, 93product set form, 92

Bertini’s theorem, 198beta sieve, 154bipartite graph, 88Bochner’s theorem, 49Bonferroni inequalities, 19Borel subgroup, 111, 281bounded functional calculus, 214Bourgain-Gamburd expansion machine,

87Bruhat decomposition, 283Brun’s theorem, 155

Cartan decomposition, 247Cartan matrix, 261Cartan semisimplicity criterion, 232Cartan solvability criterion, 240Cartan subalgebra, 242

Cartan’s theorem, 270

Casimir operator, 264

Cayley graph, 23, 167

Cayley transform, 69

centre of a Lie algebra, 231

characteristic subalgebra, 239

Cheeger constant, 10

Chevalley basis, 263

Chevalley group, 281

Chevalley normalisation, 262

chromatic number, 14

class equation, 117

classical Lie algebra, 260

closure of an operator, 207

coboundary, 183

cochain, 177

cocycle, 35, 179

combinatorial sieve, 150

compact form, 272

complemented subspace, 241

complete graph, 4, 8

complexity of an algebraic variety, 187

composition factors, 157

composition series, 157

concentration of measure, 15

concrete Lie algebra, 228

conjugacy class, 114

conjugacy of Cartans, 244

Connectivity of an expander graph, 14

converse to Balog-Szemeredi-Gowers, 95

convolution, 62

coroot, 249

coweight lattice, 276

301

Page 25: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

302 Index

Coxeter diagram, 253cusp, 70cyclic vector, 217

depolarisation, 214derivation, 229derived algebra, 230derived series, 230diagram, 169Diameter of an expander graph, 14dimension, 126dimension of an algebraic variety, 187direct product, 229direct sum, 229direct sum of representations, 29discrete Cheeger inequality, 13discrete Cheeger inequality, weak, 10Dynkin diagram, 255

edge expansion, 9Engel’s theorem, 236escape from subspaces, 121essentially self-adjoint operator, 209exceptional Lie algebra, 260expander family, 6expander mixing lemma, 13extended Dynkin diagram, 257

flattening lemma, 83, 98Fokker-Planck equation, 81Frobenius endomorphism, 190Frobenius lemma, 59functional calculus, 203fundamental domain, 70

generalised eigenspace, 233girth, 14Goursat’s lemma, 159graph, 4graph Laplacian, 6graph metric, 14

Hardy’s inequality, 73Hasse-Weil bound, 190heat flow, 218Hellinger-Toeplitz theorem, 209Herglotz representation theorem, 213horocycle flow, 54hyperbolic plane, 68

indecomposable representation, 241independent set, 14indicator function, xiii

induced representation, 39invariant subspace, 217invariant vector, 30involved torus, 124irreducible representaiton, 57irreducible representation, 241irreducible root system, 250isogeny, 286

Jacobi identity, 227Jacobi operator, 212Jordan’s theorem, 67Jordan-Chevalley decomposition, 234Jordan-Holder theorem, 157

Katz-Tao lemma, 107Kazhdan constant, 30Killing form, 231

Landau conjectures, 143, 155Lang-Weil bound, 189Lang-Weil with parameters, 192large sieve, 156Larsen-Pink inequality, 113, 115, 122Lefschetz principle, 140Legendre identity, 148Legendre sieve, 148Leibniz rule, 229Levi decomposition, 232Lie algebra, 227Lie algebra ideal, 229Lie’s second theorem, 269Lie’s theorem, 237Lie’s third theorem, 269linear, 45Littlewood-Paley projection, 223lower central series, 230Lubotzky’s 1-2-3 problem, 136

Mobius function, 148Mautner phenomenon, 53maximal torus, 111, 281Mersenne prime, 143mixing inequality, 63modular curve, 193Moore ergodic theorem, 54multiplicative energy, 92

nilpotent Lie algebra, 230nilpotent operator, 234nonconcentration estimate, 87normaliser, 242notation, xii

Page 26: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

Index 303

one-sided expander, 6

parabolic subgroup, 284perfect group, 59perfect Lie algebra, 230pivot argument, 106Poincare disk, 69Poincare half-plane, 68Poincare inequality, 9polar decomposition, 272polarisation identity, 51polycyclic Lie algebra, 231primorial, 148principal congruence subgroup, 74principal modular curve, 70principal series representation, 60product theorem, 87, 101, 120

quasirandom group, 57quasiregular representation, 29quasisimple group, 271

radical of a Lie algebra, 232Ramanujan graph, 7rank of a Lie algebra, 244Rayleigh quotient, 72Ree groups, 290regular element, 277regular element of a Lie algebra, 242regular graph, 4regular representation, 29regular semisimple element, 111regular unipotent element, 111representation (of a Lie algebra), 228resolvent, 210Resolvent identity, 210root system, 250root vector, 248Ruzsa covering lemma, 95, 107Ruzsa triangle inequality, 93, 107

Schrodinger propagator, 220Schreier graph, 24Schwarz-Zippel type bound, 188Selberg sieve, 156Selberg’s 3/16 theorem, 75Selberg’s conjecture, 74Selberg’s expander construction, 68self-adjoint operator, 209semidirect product, 229semisimple Jordan decomposition, 241semisimple Lie algebra, 232semisimple operator, 234

short exact sequence, 228simple Lie algebra, 231simple Lie group, 271solvable Lie algebra, 230spectral gap, 71split extension, 229Steinberg group, 290Steinberg representation, 60Stone’s theorem, 220strong approximation property, 159subrepresentation, 30sum-product theorem, 105sumset estimates, 107Suzuki groups, 290

Tits alternative, 138transitivity of induction, 40trivial representation, 28twin prime, 143twisted group of Lie type, 291two-sided expander, 6

unipotent group, 111unitary representation, 28universal cover, 269

variety, 126virtually quasirandom group, 66

wedding cake decomposition, 12weight vector, 235weighted Balog-Szemeredi-Gowers

lemma, 86weighted Balog-Szemeredi-Gowers

theorem, 91Weyl alcove, 277Weyl chamber, 258Weyl group, 257Weyl’s complete reducibility theorem,

232, 263Whitehead’s lemma, 264

Page 27: Expansion in Finite Simple Groups of Lie Type · Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,Oxford,England1985. [Co2007] M. Collins, On Jordan’s

GSM/164

For additional information and updates on this book, visit

www.ams.org/bookpages/gsm-164

www.ams.orgAMS on the Webwww.ams.org

Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expan-sion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combina-torics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan’s property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog–Szemerédi–Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with addi-tional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang–Weil bound, as well as numerous exercises and other optional material.

Cou

rtes

y of

Ree

d H

utch

inso

n, U

CLA