14
Exhumation constraints for the lower Nevado-Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach ROMAIN AUGIER 1 ,GUILLERMO BOOTH-REA 2 ,PHILLIPE AGARD 1 ,JOSÉ MIGUEL MARTÍNEZ-MARTÍNEZ 2 , LAURENT JOLIVET 1 and JOSÉ MIGUEL AZAÑÓN 2 Key-words. – Betic Cordillera, Exhumation, Thermobarometry, Raman spectrometry, P-T paths. Abstract. – The HP/LT rocks of the Nevado-Filabride complex (eastern Betic Cordillera) were exhumed during the Ser- ravallian but knowledge of their retrograde P-T evolution remains fragmentary and not established for all its tectonic units. The present paper places detailed constraints on the P-T evolution of the two deeper units of the Nevado-Filabride complex, namely the Ragua and the Calar Alto units in order to constrain their exhumation and the role of the km-thick Dos Picos shear zone separating them. Our approach uses both TWEEQU software multiequilibrium thermobarometry and Raman spectrometry thermometry. The study enables to [i] estimate the peak-temperature P-T conditions (c. 520 o C) and then to establish the first P-T path of the Ragua unit, [ii] conclude that the Ragua and the Calar Alto units suffered comparable metamorphic evolutions with [iii] a well constrained HT excursion following a strong decompression cha- racterised by limited heating. The study also enables to infer that the major Dos Picos shear zone was a post-metamor- phic thrust occurring during the final retrogression stages. These results point to exhumation processes intermediate between those of syn– and post– orogenic contexts during the late evolution of the Betics. Conditions de l’exhumation de la partie inférieure du complexe Nevado-Filabride (Cordillères bétiques, Espagne) : les apports de la thermobarométrie multiéquilibres Tweequ et de la thermométrie Raman Mots-clés. – Cordillères bétiques, Exhumation, Thermo-barométrie, Spectrométrie Raman, Chemins P-T. Résumé. – Les roches de type HP/BT du complexe Névado-Filabride (Est des Cordillères Bétiques) ont été exhumées durant le Serravallien mais leur évolution P-T rétrograde demeure fragmentaire et non établie pour toutes ses unités tec- toniques constitutives. Cet article apporte de nouvelles contraintes sur l’évolution P-T sur les deux unités les plus pro- fondes du complexe Névado-Filabride: celles de Calar Alto et de Ragua afin de contraindre leur exhumation ainsi que le rôle de la zone de cisaillement majeure de Dos Picos qui les limite. Notre approche est basée sur des données ther- mo-barométriques TWEEQU ainsi que sur des données de spectrométrie Raman. Cette étude a permis [i] d’estimer les conditions P-T du pic de température (520 o C) et d’établir le premier chemin P-T de l’unité de Ragua, [ii] d’établir que les unités de Ragua et Calar Alto ont subi une évolution métamorphique relativement semblable avec [iii] une incursion bien contrainte vers les hautes températures après une décompression caractérisée par un réchauffement limité. Cette étude a également permis de montrer que la zone de cisaillement de Dos Picos est un chevauchement post-métamor- phique intervenant durant les stades finaux de rétromorphose. Ces résultats montrent l’existence de processus d’exhu- mation intermédiaires entre syn- et post-orogéniques durant l’évolution tardive des cordillères Bétiques. INTRODUCTION The initial thickening of the Betic Cordillera produced an Alpine high pressure-low temperature (HP/LT) metamor- phism in the Alpujarride and Nevado-Filabride complexes [Nijhuis, 1964; Gómez-Pugnaire and Fernández-Soler, 1987; Goffé et al. , 1989]. Two main extensional episodes later accompanied the well-documented Neogene collapse: a Langhian extensional event responsible for most of the ex- humation of the Alpujarride rocks was followed by a Serravallian extensional event permitting the exhumation of the Nevado-Filabride complex [Crespo-Blanc et al. , 1994; Crespo-Blanc, 1995; García-Dueñas et al. , 1992; Jabaloy et al., 1993; Martínez-Martínez et al. , 2002]. Knowledge of the P-T evolution of the Nevado- Filabride complex is, however, fragmentary and not estab- lished for all its tectonic units. For example, published P-T paths for the Nevado-Filabride complex include both cool- ing [Puga et al. , 2000; López Sánchez-Vizcaino et al. , 2001; De Jong, 2003] and heating during decompression P-T tra- jectories [Gómez-Pugnaire and Fernández-Soler, 1987], and the peak-temperatures undergone by these rocks range be- tween 500ºC [Bakker et al. , 1989; González-Casado et al. , Bull. Soc. géol. Fr., 2005, t. 176, n o 5, pp. 403-416 Bull. Soc. géol. Fr., 2005, n o 5 1 Laboratoire de Tectonique, UMR 7072, case 129, Université Pierre et Marie Curie, 75252, Paris, France. Corresponding author: [email protected]. Tel: (00 33) 144275260; Fax: (00 33) 144275085 2 Instituto Andaluz de Ciencias de la Tierra (C.S.I.C.-Universidad de Granada) and Dpt. de Geodinámica, Av. Fuentenueva s/n, E-18071 Granada, Spain. Manuscrit déposé le 30 septembre 2004; accepté après révision le 9 mars 2005.

Exhumation constraints for the lower Nevado-Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach

  • Upload
    j-m

  • View
    213

  • Download
    2

Embed Size (px)

Citation preview

Exhumation constraints for the lower Nevado-Filabride Complex(Betic Cordillera, SE Spain): a Raman thermometry and Tweequ

multiequilibrium thermobarometry approachROMAIN AUGIER1, GUILLERMO BOOTH-REA2, PHILLIPE AGARD1, JOSÉ MIGUEL MARTÍNEZ-MARTÍNEZ2,

LAURENT JOLIVET1 and JOSÉ MIGUEL AZAÑÓN2

Key-words. – Betic Cordillera, Exhumation, Thermobarometry, Raman spectrometry, P-T paths.

Abstract. – The HP/LT rocks of the Nevado-Filabride complex (eastern Betic Cordillera) were exhumed during the Ser-ravallian but knowledge of their retrograde P-T evolution remains fragmentary and not established for all its tectonicunits. The present paper places detailed constraints on the P-T evolution of the two deeper units of the Nevado-Filabridecomplex, namely the Ragua and the Calar Alto units in order to constrain their exhumation and the role of the km-thickDos Picos shear zone separating them. Our approach uses both TWEEQU software multiequilibrium thermobarometryand Raman spectrometry thermometry. The study enables to [i] estimate the peak-temperature P-T conditions (c. 520oC)and then to establish the first P-T path of the Ragua unit, [ii] conclude that the Ragua and the Calar Alto units sufferedcomparable metamorphic evolutions with [iii] a well constrained HT excursion following a strong decompression cha-racterised by limited heating. The study also enables to infer that the major Dos Picos shear zone was a post-metamor-phic thrust occurring during the final retrogression stages. These results point to exhumation processes intermediatebetween those of syn– and post– orogenic contexts during the late evolution of the Betics.

Conditions de l’exhumation de la partie inférieure du complexe Nevado-Filabride(Cordillères bétiques, Espagne) : les apports de la thermobarométrie multiéquilibres Tweequ et

de la thermométrie Raman

Mots-clés. – Cordillères bétiques, Exhumation, Thermo-barométrie, Spectrométrie Raman, Chemins P-T.

Résumé. – Les roches de type HP/BT du complexe Névado-Filabride (Est des Cordillères Bétiques) ont été exhuméesdurant le Serravallien mais leur évolution P-T rétrograde demeure fragmentaire et non établie pour toutes ses unités tec-toniques constitutives. Cet article apporte de nouvelles contraintes sur l’évolution P-T sur les deux unités les plus pro-fondes du complexe Névado-Filabride: celles de Calar Alto et de Ragua afin de contraindre leur exhumation ainsi que lerôle de la zone de cisaillement majeure de Dos Picos qui les limite. Notre approche est basée sur des données ther-mo-barométriques TWEEQU ainsi que sur des données de spectrométrie Raman. Cette étude a permis [i] d’estimer lesconditions P-T du pic de température (520oC) et d’établir le premier chemin P-T de l’unité de Ragua, [ii] d’établir queles unités de Ragua et Calar Alto ont subi une évolution métamorphique relativement semblable avec [iii] une incursionbien contrainte vers les hautes températures après une décompression caractérisée par un réchauffement limité. Cetteétude a également permis de montrer que la zone de cisaillement de Dos Picos est un chevauchement post-métamor-phique intervenant durant les stades finaux de rétromorphose. Ces résultats montrent l’existence de processus d’exhu-mation intermédiaires entre syn- et post-orogéniques durant l’évolution tardive des cordillères Bétiques.

INTRODUCTION

The initial thickening of the Betic Cordillera produced anAlpine high pressure-low temperature (HP/LT) metamor-phism in the Alpujarride and Nevado-Filabride complexes[Nijhuis, 1964; Gómez-Pugnaire and Fernández-Soler,1987; Goffé et al., 1989]. Two main extensional episodeslater accompanied the well-documented Neogene collapse:a Langhian extensional event responsible for most of the ex-humation of the Alpujarride rocks was followed by aSerravallian extensional event permitting the exhumation ofthe Nevado-Filabride complex [Crespo-Blanc et al., 1994;

Crespo-Blanc, 1995; García-Dueñas et al., 1992; Jabaloy etal., 1993; Martínez-Martínez et al., 2002].

Knowledge of the P-T evolution of the Nevado-Filabride complex is, however, fragmentary and not estab-lished for all its tectonic units. For example, published P-Tpaths for the Nevado-Filabride complex include both cool-ing [Puga et al., 2000; López Sánchez-Vizcaino et al., 2001;De Jong, 2003] and heating during decompression P-T tra-jectories [Gómez-Pugnaire and Fernández-Soler, 1987], andthe peak-temperatures undergone by these rocks range be-tween 500ºC [Bakker et al., 1989; González-Casado et al.,

Bull. Soc. géol. Fr., 2005, t. 176, no 5, pp. 403-416

Bull. Soc. géol. Fr., 2005, no 5

1 Laboratoire de Tectonique, UMR 7072, case 129, Université Pierre et Marie Curie, 75252, Paris, France. Corresponding author: [email protected]: (00 33) 144275260; Fax: (00 33) 1442750852 Instituto Andaluz de Ciencias de la Tierra (C.S.I.C.-Universidad de Granada) and Dpt. de Geodinámica, Av. Fuentenueva s/n, E-18071 Granada, Spain.Manuscrit déposé le 30 septembre 2004; accepté après révision le 9 mars 2005.

1995] and 700ºC [López Sánchez-Vizcaino et al., 2001; DeJong, 2003]. In addition, no P-T path is available for thelowermost Ragua unit traditionally described as devoid ofany HP/LT imprint [Martínez-Martínez, 1986; De Jong,1993; Puga et al., 2000].

A precise knowledge of the rocks P-T evolution, which re-sults from the competition between displacements in the crustdue to tectonic/erosional processes and rock thermal conduction[e.g., England and Richardson, 1977; England and Thompson,1984; Davy and Gillet, 1986; Molnar and Lyon-Caen, 1988], isnevertheless crucial to discriminate at least between syn- andpost-orogenic exhumation contexts [e.g., Selverstone and Spear,1985; Jolivet and Goffé, 2000] and to derive a reliablegeotectonic scenario [Dewey, 1988; Platt, 1993; Duchene et al.,1997; Ring et al., 1999]. Besides, although the geometry and thekinematics of the main extensional shear zones roofing theNevado-Filabride complex are well documented, the nature ofthick intra-Nevado-Filabride shear zones remains poorly studied[González-Casado et al., 1995].

The aim of the present paper is to place constraints onthe exhumation of the two deepest Nevado-Filabride units,namely the Ragua and the Calar Alto units. Our study fo-cussed on the western and central part of the Sierra de losFilabres and on the easternmost Sierra Nevada in order tostudy the metamorphic history of both units and of the ma-jor shear zone separating them (namely the Dos Picos shearzone; DPSZ, hereafter). Our approach is based on bothTWEEQU software multiequilibrium thermobarometry[Berman, 1991] and on Raman spectroscopy of carbona-ceous matter-rich rocks to assess maximum temperatures[Beyssac et al., 2002]. This double approach permits to (i)infer the first P-T path of the Ragua unit, (ii) compare themetamorphic evolution of the Calar Alto and the Raguaunits, (iii) discuss the nature of the Dos Picos shear zone(DPSZ) whose flat geometry and monotonous adjacent se-ries make its study difficult with classical methods only[Willians et al., 1989], and (iv) constrain the exhumation ofthe Nevado-Filabride complex.

GEOLOGICAL SETTING

The Gibraltar arc

The Gibraltar arc constitutes the western end of the Mediterra-nean Alpine chains, developed between the Eurasian and Afri-can plates. This highly-arched orogenic system connects theBetics, Rif and Tell chains through the Gibraltar Strait, whilethe internal part of the arc is formed by the thinned continentalcrust of the Alboran Sea and by the Algero-Balearic basin to-wards the east (fig. 1). This convergent orogenic system suf-fered approximately 200 km of N-NNE shortening from theUpper Cretaceous to the Tortonian (i.e., 9 Ma) and 50 km offurther NW-SE shortening until the present day [Dewey et al.,1989; Mazzoli and Helman, 1994].

The Gibraltar arc was formed by the collision of severalpre-Miocene crustal domains [Balanyá and García-Dueñas,1987]. These crustal domains comprise the Mesozoic-Ceno-zoic palaeo-margins of the Iberian and African plates, theFlyschs-Trough units formed by allochthonous sedimentarycovers originating from a deep trough floored bythinned-continental or oceanic basement [Durand-Delga etal., 2000] and the Alboran crustal domain.

The Alboran crustal domain has been traditionally di-vided in three metamorphic complexes, from top to bottom:the Malaguide, the Alpujarride and the Nevado-Filabridecomplexes. The contacts between these complexes, whichwere initially thought to be major thrusts [Egeler and Si-mon, 1969] were more recently reinterpreted as low-angleductile and brittle-ductile detachment faults [e.g.,García-Dueñas et al., 1986, 1988a, b; Platt and Behrmann,1986; Galindo-Zaldívar et al., 1989; Platt and Vissers,1989; García-Dueñas et al., 1992; Crespo-Blanc et al.,1994; Vissers et al., 1995; Martínez-Martínez et al., 2002].The Alpujarride/Nevado-Filabride boundary coincides withthe Filabres shear zone (FSZ), which permitted most of theNevado-Filabride exhumation with a consistent top-to-the-W sense of shear [García-Dueñas et al., 1992;Martínez-Martínez et al., 2002].

The Nevado-Filabride complex

The Nevado-Filabride complex consists of the tectonic su-perposition of at least three main tectonic units (fig. 2),from top to bottom: the Bédar-Macael, the Calar Alto(forming the so-called Mulhacén unit; García-Dueñas et al.[1988b]) and the Ragua units (i.e., ex Veleta unit;Martínez-Martínez et al. [2002]). These three units presenta roughly similar lithostratigraphic succession (as for theAlpujarride units) with a thick and monotonous sequence ofpresumably Palaeozoic dark schists [Lafuste and Pavillon,1976] topped by light coloured Permo-Triassic graphiticschists and quartzites [Nijhuis, 1964; Platt et al., 1984] andTriassic carbonate rocks [Kozur et al., 1985].

The Calar Alto unit shows the full succession with struc-tural thicknesses of 3500 m, 1500 m and 200 m, respectively[Nijhuis, 1964; Martínez-Martínez et al., 1985] while theBédar-Macael unit comprises a similar but significantly thin-ner lithostratigraphic succession with an overall structuralthickness of 600 m [García-Dueñas et al., 1988b]. The ap-proximately 4000 m thick Ragua unit is made up ofPalaeozoic rocks only [García-Dueñas et al., 1988b;González-Casado et al., 1995; Martínez-Martínez et al.,2002], with graphite schists and intercalated quartzites, meta-psammites and rare dark marbles [Martínez-Martínez, 1985].

The Nevado-Filabride rocks underwent a polyphased al-pine metamorphism with an initial HP-LT event character-ised by the formation of eclogites with garnet and omphacite[Nijhuis, 1964] in metabasites of the Bédar-Macael unit[Gómez-Pugnaire and Fernández-Soler, 1987; Morten et al.,1987]. These minerals have later been transformed andstrongly re-equilibrated into lower pressure and equal-to-higher temperature assemblages. In the Bédar-Macael unit,amphibole, plagioclase and epidote appear in the metabasites[Nijhuis, 1964; Gómez-Pugnaire and Fernández-Soler, 1987]whereas garnet, plagioclase, staurolite and biotite appear inthe surrounding schists [Martínez-Martínez, 1986; Platt andBehrmann, 1986; De Jong, 1993]. In the Calar Alto andRagua units, only garnet and biotite appear, accompanied bystaurolite at the base of the Calar Alto unit [Vissers, 1981].

The timing of the early Alpine metamorphic events issubject to controversy. There is neither consensus on theage of HP-LT metamorphism (from late Cretaceous to Mid-dle Miocene) [Portugal-Ferreira et al., 1988; De Jong, 1991,2003; Monié et al., 1991, 1994; De Jong et al., 1992; LópezSánchez-Vizcaino, 2001; Puga et al., 2002] nor on the age

Bull. Soc. géol. Fr., 2005, no 5

404 AUGIER R. et al.

of the HT-LP imprint. The final exhumation of theNevado-Filabride complex is much better constrained byphengite Ar/Ar cooling-ages [Monié et al., 1991; Augier,2004; Augier et al., 2005] around 18-16 Ma and fissiontrack cooling-ages on zircons (closure temperature,CT≈250-290oC, Tagami and Shimada [1996]) and apatite(CT≈60-110oC, Hurford [1990]; Gunnell [2000]) around13-11 Ma and 11-9 Ma, respectively [Johnson et al., 1997].

Dominant fabrics in the Nevado-Filabride complex

The main planar-fabric found in the Nevado-Filabride unitsis a crenulation-cleavage (S2) associated with the axialplane of similar folds showing mostly E-W-oriented axes

[Martínez-Martínez, 1986; De Jong, 1991]. These foldsand associated foliation (S2) developed under amphibolitefacies in the Bédar-Macael unit and upper greenschist fa-cies in the two lowest units (i.e., Calar Alto and Raguaunits [Martínez-Martínez, 1986; Platt and Behrmann,1986; García-Dueñas et al., 1988b; Martínez-Martínez andAzañón, 1997]).

In the Calar Alto and the Ragua units the S1 foliationis poorly preserved. The intensity of the planar-linearfabric and the strong metamorphic overprint makes theidentification and the study of earlier structures difficult.S1 was until recently interpreted as having formed undergreenschist facies conditions [Díaz de Federico et al.,

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 405

37 00'

MS

Z

DPSZ

FSZ

(B)

(A)

FIG. 1. – (A) Simplified geological map of the Internal eastern Betics showing the main metamorphic units and tectonic contacts, modified after Bo-oth-Rea et al. [2003]. The three “metamorphic complexes”, from top to bottom, the Malaguide (anchizonal conditions), the Alpujarride (reaching blues-chists to eclogite facies) and the Nevado-Filabride (reaching eclogite facies) complexes are shown. This study focuses on the area indicated by the blackbox (FIG. 2), providing the most complete section of the complex with, from top to bottom the Bédar-Macael, the Calar Alto and the Ragua tectonic units.DPSZ: Dos Picos shear zone (Ragua/Calar Alto boundary); MSZ: Marchall shear zone (Calar Alto/Bédar-Macael boundary); FZS: Filabres shear zone(Alpujarride/Nevado-Filabride boundary). Lower left inset (B) shows the main tectonic domains of the peri-Alboran orogenic system.Fig. 1. – (A) Carte géologique simplifiée des zones internes des Cordillères bétiques de l’Est montrant les principales unités métamorphiques et les princi-paux contacts tectoniques, modifiée d’après Booth-Rea et al. [2003]. Sont présentés les trois complexes métamorphiques, de haut en bas, les complexesMalaguide (conditions anchizonales), Alpujarride (schistes bleus et éclogites) et Nevado-Filabride (éclogites). Cette étude est focalisée sur la zone dé-signée par la boîte noire (fig. 2), fournissant la coupe la plus complète du complexe : de haut en bas, les unités de Bédar-Macael, Calar Alto et Ragua.DPSZ: Dos Picos shear zone (limite Ragua/Calar Alto); MSZ: Marchall shear zone (limite Calar Alto/ Bédar-Macael); FZS: Filabres shear zone (limiteAlpujarride/Nevado-Filabride). L’encart en bas à gauche (B) montre les principales unités tectoniques du système orogénique péri-Alboran.

1979; Martínez-Martínez, 1986; De Jong, 1991; De Jonget al., 1992]. However, geothermobarometry based on lo-cal equilibria of phengite-chlorite ± chloritoid ± garnet inthe Ragua schists indicate that these rocks underwent anAlpine HP-LT metamorphic event with a pressure peak of12-13 kbars at around 400-450ºC [Booth-Rea et al.,2003].

The contacts among the Nevado-Filabride units are thick(i.e., 500-600 m) ductile shear zones affecting monotonousrock series with a flat geometry, namely the Marchall shearzone between the Bédar-Macael and the Calar Alto units andthe Dos Picos shear zone between the Calar Alto and theRagua units [García-Dueñas et al., 1988b; Martínez-Martínezet al., 2002]. These shear zones are interpreted as initial majorthrusts that were reworked into extensional shear zones duringthe exhumation of the complex [González-Casado et al.,1995]. The main S2 foliation is thus replaced in these shearzones by microstructures, which are typical of moderate-tem-perature mylonites (i.e., ~450ºC; noted Sm), exhibiting a pene-trative foliation, ESE-WNW stretching lineations andconsistent top-to-the-west shear sense kinematic indicators[Soto et al., 1990; Gónzalez-Casado et al., 1995; Martínez-Martínez et al., 2002].

METHODOLOGY

Sampling

In order to establish the metamorphic evolution of theRagua and Calar Alto units, we have selected 23 metapelitesamples mostly located along a WSW-ENE section acrossthe two units (fig. 2). The samples show comparable com-positions and present the same structural features at thescale of the outcrop with both S1 and S2 preserved, exceptfor samples from the DPSZ, which are more deformed. Twoparageneses associated with two successive foliations (S1and S2) are recognised in the schists of the Ragua and CalarAlto units. The S1 foliation (e.g., sometimes preserved inquartz-rich domains of the S2 crenulation cleavage) is de-fined by quartz (Qtz), phengite (Phg), paragonite (Prg),chlorite (Chl), garnet (Grt) � chloritoid (Cld) � kyanite(Ky) � rutile (Rt, mineral abbreviations after Kretz [1983]).A similar mineral assemblage with ilmenite (Ilm) � albite(Ab) � epidote (Ep) � biotite (Bt) � staurolite (St) � ti-tanite (Sph) but devoid of Cld and Rt [Bakker et al., 1989;De Jong, 1991; Gómez-Pugnaire and Fernández-Soler,1987; Soto, 1993] defines the S2 foliation, which is alsohighlighted by large amounts of carbonaceous matter in theform of graphite grains (Gr).

Eight samples, four in each unit, were selected forTWEEQU thermobarometric study while 19 samples,mostly the finer grain schists, were selected for the Ramanthermometric approach (fig.2). Four samples have beenused for both methods to allow for detailed comparisons be-tween them (ES.02.06, 07, 08, 13; fig. 2).

In the following, we present thermobarometric resultsobtained from metapelite samples from the Ragua and CalarAlto units, which are devoid of albite, epidote or biotite.Chlorite is frequently altered to reddish oxychlorite. It lo-cally grows with a rosette-like shape in quartz-rich domains

and fractures together with phengite, which are locally al-tered by submicroscopic illitization [De Jong et al., 2001].

Analytical techniques

Raman spectroscopy of carbonaceous-rich rocks (and esti-mation of the amount of carbonaceous matter)

In order to quantify the amount of carbonaceous material(CM) still present in the rock, we measured the amount oftotal carbon in the rocks by 1200oC pyrolysis with a LECOfurnace (i.e., results are given on table I [Grant-Gross,1971]).

The Raman spectrum of CM was recently calibrated as ageothermometer in the range 330-650oC by Beyssac et al.[2002]. Since the evolution of the carbonaceous material to-wards graphite is irreversible, temperatures deduced from thespectra represent the peak-temperature conditions reached bythe rocks (hereafter noted Tmax). The Raman spectrum ofcarbonaceous material displays one graphite band (G band)and three “defect” bands (i.e. respectively D1, D2, D3)whose intensities decrease and tend to disappear with risingmetamorphic grade. In addition, with increasing temperatureconditions, the G band shift from ~1600 down to ~1580 cm-1

[Beyssac et al., 2002] thus shifted from its “usual” value(i.e., 1575 cm-1) by the heating induced by the laser beam[Tuinstra and Koening, 1970].

The Raman analysis was done on thin sections of graph-ite-bearing schists oriented perpendicular to the foliation byfocusing the laser beam beneath a transparent crystal. Weused a DILOR XY double substractive spectrograph withpre-monochromator, equipped with confocal optics beforethe spectrometer entrance and a liquid nitrogen-cooledSPECTRUM CCD detector. The exciting source was a mono-chromatic (514.5 nm) external argon LASER with a power of5 mW. Acquisition duration was 60 s divided in three 20 ssubstractive runs. We recorded 6 to 13 spectra for each sampleto take into account the CM heterogeneities. The programPeak Fit 4.0 was then used to process the spectra.

The following expression was used to derive peak-tem-perature conditions (Tmax [Beyssac et al., 2002]):

Tmax(oC) = –445R2 + 641where R2 = (D1/(G+D1+D2)) peak area ratio

The standard deviations (�) listed on table III do not in-clude the error associated with the method calibration,which is believed to be less than 50oC [Beyssac et al.,2002]. In any case, the variations of the R2 ratio for oursamples are small (c. 0.12; table III, fig. 3) so that errors re-lated to the method calibration are thus the same for all ourmeasurements.

Bull. Soc. géol. Fr., 2005, no 5

406 AUGIER R. et al.

TABLE. I. – Results from LECO furnace giving both the total carbonand the sulphur contents of the rock.TABLE. I. – Résultats du four LECO donnant le contenu en carbonetotal et le soufre de la roche.

Microprobe

The mineral analyses were performed with CAMEBAXelectron microprobes at University Paris VI and at theGranada University (15 kV, 10 nA, PAP correction proce-dure) using Fe2O3 (Fe), MnTiO3 (Mn, Ti), diopside (Mg,

Si), CaF2 (F), orthoclase (Al, K), anorthite (Ca) and albite(Na) as standards. XMg in minerals is calculated as XMg =Mg/(Mg + Fe2+ + Mn) and XFe = Fe2+/(Mg + Fe2+ + Mn).The analytical spot-size diameter was routinely set at 3 µmkeeping the same current conditions. Structural formulaewere calculated on the basis of 14 (anhydrous) oxygens for

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 407

FIG. 2. – (A) Simplified geological map of the eastern Sierra Nevada and the western/central Sierra de los Filabres (fig.1). The main ductile shear zones aswell as metamorphic units and lithostratigraphic boundaries are represented. Samples are located and the analytical method used is indicated (circles:TWEEQU; squares: Raman). (B) Schematic representative WSW-ENE cross-section of the central Sierra de los Filabres through the Dos Picos shear zone(DPSZ). The trend of the section corresponds to the direction of the late extensional sense of shear along the DPSZ. Samples are projected on the sectionwith respect to their relative structural position. (C) Relative structural position of the samples.FIG. 2. – (A) Carte géologique simplifiée de la Sierra Nevada et de l’ouest et du centre de la Sierra de los Filabres (fig. 1). Les principales zones de cisail-lement ainsi que les unités métamorphiques et les limites lithostratigraphiques sont représentées. Les échantillons sont positionés et sont représentés se-lon la méthode utilisée (TWEEQU et/ou Raman). (B) Coupe schématique représentative WSW-ENE de la partie centrale de Sierra de los Filabres autravers de la DPSZ. La direction de cette coupe correspond à la direction de cisaillement extensive tardive sur la DPSZ. Les échantillons sont projetés surla coupe selon leur position structurale relative. (C) Position structurale relative des échantillons.

chlorite, 11 oxygens for mica, 12 oxygens for garnet,6 oxygens for chloritoid. Approximately 100 analyses weredone on each of the 8 samples.

Multiequilibrium thermobarometry

A multi-equilibrium approach [Vidal and Parra, 2000] is ad-equate for deriving continuous P-T paths for rocks whichinclude phengite-chlorite pairs because (i) these mineralsrecrystallise rather than change composition by lattice dif-fusion (especially at the low temperatures of blueschist andgreenschist facies metamorphism [Frey et al., 1983; Chopinet al., 1991; Agard et al., 2001]) and (ii) a relative chronol-ogy of phyllosilicate growth can frequently be inferredbased on micro-structural criteria [Vidal and Parra, 2000;Parra et al., 2002].

In order to ensure selection of an equilibriumparagenesis, we combined criteria such as the habit of min-erals, their textural relationships, and only used minerals in-volved in the same microstructural domain, whichpresumably crystallised at the same time. In garnet-bearingparageneses, minerals in the pressure shadows were as-sumed to be in equilibrium with the garnet rim composi-tions.

The P-T location of the reactions involving suchparageneses was calculated with TWEEQU 2.02 software[Berman, 1991] and its associated database JUN92 togetherwith thermodynamic properties for Mg-amesite,Mg-sudoite, Mg-celadonite, chloritoid, and chlorite andphengite solid-solution models from Vidal et al. [1992;1994; 1999; 2001], Vidal and Parra [2000] and Parra et al.[2002]. The character and magnitude of these uncertaintieshave been discussed by Parra et al. [2001], Vidal et al.[2001] and Trotet et al. [2001]. Error brackets presented intable II and figure 7 correspond to standard deviations ofthe mean equilibrium intersections (i.e., fig. 6).

RESULTS

Raman spectroscopy of carbonaceous material

The Paleozoic rocks of both Ragua and Calar Alto units arecharacterised by high and constant CM content of the orderof 0.7-0.9 wt % (results are summarised in table I). Unfor-tunately, metamorphic conditions underwent by the CM donot allow recognition of the organic precursor type.

For the Raman study, R2 ratio values and correspondingTmax are presented for each sample on table III. The R2 ra-tio, along the entire section from the Ragua to the CalarAlto unit through the DPSZ, presents very low variationsfrom 0.21 to 0.33 without an obvious trend, correspondingto Tmax between 493 to 548oC. Tmax are often higher inthe Calar Alto than for the Ragua unit (table III and fig. 4).Both units seem to present a slight upward sequence lowTmax decrease upward sequence with variations of the or-der of 40-50oC, so that the two units are separated by a gapof the order of 50-60oC (fig. 4 and 6). The graphitisation re-action being irreversible, the thermal structure of both unitsand the positive temperature gap across the DPSZ (fig. 4)were thus fossilised after each unit reached peak-tempera-ture conditions.

Mineral compositions

Chlorite

According to Vidal and Parra [2000], the main variationsin the chlorite compositions can be accounted for by threesolid solution exchange reactions: (i) FeMg-1 substitutionbetween the daphnite [Daph: Fe2+

5Al2Si3O10[OH]4] andclinochlore [Clin: Mg5Al2Si3O10[OH]4 end-members,(ii) Tschermak substitution [Al2R2+

-1Si-1: TK] betweenclinochlore/daphnite and amesite [Am: [Fe,Mg]4Al4Si2O10[OH]4], and (iii) di-trioctahedral substitution[�Al2R2+

-3: DT] between daphnite, clinochlore and sudoite

Bull. Soc. géol. Fr., 2005, no 5

408 AUGIER R. et al.

FIG. 3. – Calibration diagram “R2 ratio (D1/(G + D1 + D2)) versuspeak-metamorphic temperature (ToC)” modified after Beyssac et al.[2002]. In grey, are presented the maximum variation of the R2 ratio andthe corresponding temperature for the studied samples. Each point corres-ponds to the average of 6 to 13 measurements.FIG. 3. – Diagramme de calibrage « Pic de température (ToC) en fonctiondu rapport R2 (D1/(G + D1 + D2)) », d’après Beyssac et al. [2002] modi-fié. En gris, est présentée la variation maximale du rapport R2 et de latempérature correspondante pour les échantillons étudiés. Chaque pointcorrespond à la moyenne de 6 à 13 mesures.

FIG. 4. – Results of the Raman spectra decomposition along the section(fig. 2). Samples are ranked with respect to their relative structural posi-tion (fig. 2C). Temperatures are presented with the standard deviation dueto the CM heterogeneities at the sample-scale (6-13 spectra).FIG. 4. – Résultats issus de la décomposition des spectres Raman deséchantillons le long de la coupe (fig. 2). Les échantillons sont rangés selonleur position structurale relative (fig. 2C). Les températures sont présen-tées avec l’erreur due aux hétérogénéités du matériel carboné à l’échellede l’échantillon (6-13 spectres).

[Sud: �[Fe,Mg]2Al4Si3O10[OH]4]. Most of the chloritecompositions plot along a line corresponding to the TKsubstitution with amesite contents between 20 and50 mol % (fig. 5). Di-trioctaedral substitution in theclinochlore-rich compositions varies between 5 and15 mol % (fig. 5). The compositional trend followed by thechlorites in both Ragua and Calar Alto units shows a cleardecrease in clinochlore + daphnite contents and a slightdecrease in the sudoite content towards amesite rich com-positions. Samples ES.02.06 and ES.02.13, from the baseof the Calar Alto unit, show higher XMg values than theRagua rocks underlying the DPSZ (i.e., XMg ranging be-tween 0.55-0.65 and 0.3-0.35 respectively, fig. 5). Giventhe general increase in Mg-content of chlorite with tempe-rature [Spear, 1993], these differences in the XMg of thechlorites in samples with a roughly similar bulk chemicalcomposition could indicate higher temperatures at the baseof the Calar Alto unit.

Phengite (Phg) shows Si contents from ~3.48 to 3.05 a.p.f.u(fig. 5). Variable Si contents are generally interpreted in termsof Tschermak substitution alone (between the celadonite andmuscovite end members), which is usually favoured by an in-crease of pressure [Velde, 1967; Massonne and Schreyer,1987; Massonne, 1995; Massonne and Szpurka, 1997]. How-ever, phengite also shows variable interlayer cation contents(IC) resulting from the pyrophyllitic substitution betweenmuscovite and pyrophyllite [KXII

-1AlIV-1SiIV�XII]. Celado-

nite/pyrophyllite-rich Phg (ca. 3.48-3.3 Si a.p.f.u. and IC be-tween 0.8 and 0.9 a.p.f.u.) were found inside lenticulardomains of the main foliation as porphyroblasts growing to-gether with chlorite and chloritoid, or defining the S1 foliation.Celadonite/pyrophyllite-poor Phg (ca. 3.3-3.1 Si a.p.f.u. andIC between 0.9 and 1) define the S2 crenulation cleavage oroccur in garnet pressure shadows. This tendency could indi-cate heating during decompression as IC deficiencies havebeen attributed to low temperature samples [Leoni et al.,1998; Vidal and Parra, 2000; Agard et al., 2001].

Garnet is Fe-rich and shows a chemical zoning character-ised by a Ca-Mn depletion and a Fe-Mg enrichment towardsthe rims. Core-rim compositions are XPrp = 0.06-0.07;Xalm = 0.78-0.82; XSps = 0.08-0.04; XGrs = 0.08-0.07 atthe base of the Calar Alto Unit (ES.02.06 and 13); and XPrp= 0.03-0.05; XAlm = 0.63-0.82; XSps = 0.06-0.07; XGrs =0.28-0.07 at the top of the Ragua unit. This zoning pattern(with trapped inclusions of high-pressure minerals such asRt or Cld) could indicate that the garnets grew duringdecompressive metamorphism [Spear and Selverstone,1983; Spear et al., 1990; Hoisch et al., 2002]. The higherpyrope content in samples ES.02.06 and ES.02.13 (fig. 1) isconsistent with higher temperature conditions at the base ofthe Calar Alto unit.

Chloritoid is Fe-rich and devoid of chemical zoning. Itscomposition is very homogeneous from one thin section toanother with XMg = 0.10-0.15.

Results from multiequilibrium thermobarometry

We focussed on peak-metamorphic conditions obtainedmainly for mineral assemblages defining the main S2 folia-tion of both Ragua and Calar Alto units. Results are pre-sented on table II.

P-T conditions in the Ragua unit (DPSZ footwall)

Thermobarometric conditions for Ragua unit were obtainedfrom several textural domains (e.g., fig. 6) showing S1 andS2 assemblages. S1 is characterised by Chl + Phg (Si~3.45-3.3 a.p.f.u.) + Qtz ± Cld whereas Grt + Phg (Si ~3.3a.p.f.u.) + Chl + Qtz assemblage occurs adjacent to the rimof pre– to syn-S2 garnets. Chl + Phg (Si ~3.2-3.1 a.p.f.u.) +Qtz ± Grt assemblage occurs [i] along the S2 foliation, [ii]in garnet pressure shadows, and [iii] without a clear orienta-tion (rosette-like shaped chlorite) in quartz-rich domains.

The calculated P-T conditions for S1, in the KMASHsystem using 8 end members (Mg-chloritoid, Al-celadonite,

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 409

TABLE. II. – Results from TWEEQU software [Berman, 1991]. Mineralsroutinely used for calculations are Phg, Chl and sometimes Grt whose in-volvement in the calculations is indicated in bold. Presented in bold anditalic are the calculations done on the Cld + Chl + Phg assemblage. The lo-cation and relative structural position of the samples along the section isgiven in figure 2. SD represents standard deviation of the mean equili-brium intersections (i.e., given by TWEEQU software; figure 6).TABLE. II. – Résultats des calculs avec le logiciel TWEEQU [Berman,1991]. Les minéraux utilisés en routine sont la Phg, la Chl et parfois leGrt, indiqué en gras quand il a été utilisé pour les calculs P-T. Sont repré-sentés en gras-italique les calculs P-T effectués sur l’assemblage Cld +Chl + Phg. La localisation et la position structurale relative des échantil-lons le long de la coupe sont données figure 2. SD représente l’incertitudesur l’intersection des équilibres (i.e., donnée par le logiciel TWEEQU ; fi-gure 6).

TABLE. III. – R2 and associated temperature results obtained from decom-position of 6-13 spectra for each sample. The location and relative structu-ral position of samples along the section are given in figure 2.TABLE. III. – Résultats de R2 et de température associée issus de la décom-position des spectres Raman (6/13 par échantillon). La localisation et laposition structurale relative des échantillons le long de la coupe sont don-nées figure 2.

muscovite, pyrophyllite, clinochlore, sudoite, quartz andwater), are constrained by the intersection of 17 equilibria,three of which are independent. For S2, using 9 end mem-bers (i.e., KMASH system; pyrope, Al-celadonite, musco-vite, pyrophyllite, Mg-amesite, clinochlore, sudoite, quartzand water), P-T conditions are constrained by the intersec-tion of 19 equilibria, three of which are independent. Thetwo lower P-T diagrams in figure 7B represent results ob-tained from the base and the top of the Ragua unit. Theequilibrium conditions results for these parageneses rangebetween 12 � 0.8 kbars/480 �31ºC and 10 � 0.9 kbars/489� 9ºC (fig. 7B). Temperatures are higher than those ob-tained from the S1 foliation (i.e., of the order 400-450ºC,fig. 6A and 8A) and are consistent with Booth-Rea et al.[2003]. They indicate a slight heating with decompressionduring garnet growth.

Phengite growing at right angle to the external foliationin contact with the garnet rim have a very low content in Si(~3.1 a.p.f.u.) and do not show equilibrium with the garnetrim in the TWEEQU calculations. However, older Chl andPhg (Si ~3.2-3.25 a.p.f.u.) pairs included farther away in thepressure shadow (ca. 500 �m) from the garnet rim do offerequilibrium P-T conditions with the garnet-rim composition(8.3 down to 3.2 � 1 kbars for 520 � 20ºC, table II and fig.7B): further growth of the pressure shadow during

formation of the S2 crenulation-cleavage probably separatedthe Chl-Phg pairs from the garnet rim with which they hadattained equilibrium. The results for phengite growing to-gether with rosette-like chlorite are constrained by the inter-section of 14 equilibria (8 end-members), three of which areindependent (fig. 7B). P-T conditions of 3.1 � 1.1 kbars at495 � 22ºC (ES.01.01, table II) show that the thermal peakin the Ragua unit was reached on decompression towardsthe end of the formation of the S2 crenulation cleavage.

P-T conditions in the Calar Alto unit (DPSZ hanging-wall)

Rocks at the base of the Calar Alto unit show the same tex-tural domains as the underlying Ragua rocks, as pointed outby De Jong [1991; 1993]. However, as discussed in the min-eral compositions chapter, compositional trends in theserocks seem to indicate higher temperatures than at the topof the Ragua unit. This hypothesis is confirmed by theTWEEQU results. Results are summarised in figure 7A.Equilibrium conditions between Chl, Phg (Si ~3.3-3.1a.p.f.u.) ± Grt defining the main S2 crenulation cleavage arein the range of 10 � 0.7 kbars/550 � 20ºC and 3.1 �0.3 kbars/535 � 6ºC (table II, fig. 7A). Temperatures around550oC at the base of the Calar Alto unit are well in line withthe occasional occurrence of staurolite at this level [Vissers,1981].

Bull. Soc. géol. Fr., 2005, no 5

410 AUGIER R. et al.

FIG. 5. – (A and B) Composition diagrams for studied phengite (Phg) and chlorite (Chl). Phg has been decomposed into muscovite, celadonite and pyro-phyllite; Chl into amesite, clinochlore and sudoite. The trend in the Phg compositions towards a decrease in both pyrophyllite and celadonite content isalso observed in a Si/IC diagram where the Phg show a linear tendency towards lower Si4+ contents and higher IC values. (C) Interlayer contents (IC) ver-sus Si4+ contents of Phg. (D) Si4+versus XMg contents of Chl.FIG. 5. – (A and B) Diagrammes triangulaires des Phg et des Chl étudiés. Phg a été décomposée en muscovite, céladonite et pyrophyllite ; Chl en amésite,clinochlore et sudoite. L’évolution de la composition de la Phg vers une diminution de son contenu en pyrophyllite et en céladonite est également observéedans le diagramme Si/IC où les Phg montrent une évolution linéaire vers des contenus en Si4+ plus faibles et en interfoliaires plus élevés. (C) Contenu eninterfoliaires (IC) en fonction du contenu en Si4+ des Phg. (D) Contenu en Si4+ des Chl en fonction du XMg.

Overall, the peak-temperatures determined byTWEEQU indicate a clear temperature decrease towards thetop of both units (table II and fig. 7A) and a temperaturegap between the top of the Ragua unit and the base of theCalar Alto unit of the order of ~60oC (fig. 7).

DISCUSSION AND CONCLUSIONS

P-T constraints for the lower Nevado-Filabridecomplex

Dark schists from the Paleozoic sequence of the Ragua andthe Calar Alto units were a test-area by providing (i) clearrelationships between deformation and parageneses succes-sion (ii) large amounts of graphite deriving from the evolu-tion of organic compounds required for the Raman

spectroscopy and then (iii) the possibility to compare bothtools. Comparison of the results from the TWEEQUmultiequilibrium thermobarometry and the Raman spectros-copy thermometry (i.e., Tmax) reveals concordantpeak-temperatures conditions.

Both Raman spectroscopy and multiequilibriumthermobarometric data show that the top of the Ragua unit,below the DPSZ underwent maximum temperatures of theorder of 490-500ºC (fig. 7B and 8A). The base of the CalarAlto unit within the DPSZ underwent slightly higher tem-peratures of the order of 550oC (fig. 4 and 7A) highlightinga temperature gap of 50-60oC between the two units. Theseresults for the Calar Alto unit contrast with the temperatureof 700oC of López Sánchez-Vizcaino [2001] and De Jong[2003]. Their temperature estimates, however pertain to mi-nor metabasite slivers located in highly deformed domains

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 411

FIG. 6. – (A) Example of relationships between S1 and S2 in a low strain domain of the Ragua unit. S1 underlined by Cld, is here roughly vertical while S2is sub-horizontal with syn-kinematic Grt. The locations of the analyses whose P-T conditions are presented below, are shown by the dots (B, C, D). (B, C,D) P-T results (intersections) from TWEEQU software [Berman, 1991] for (B) Phg + Chl + Cld and (C, D) Phg + Chl + Grt assemblages. Error bracketsrepresent standard deviation of the mean equilibrium intersections (i.e., given by TWEEQU software).FIG. 6. – (A) Exemple d’un échantillon prélevé dans une zone peu déformée de l’unité de Ragua montrant les relations entre S1 et S2. La S1, caractériséepar du Cld, est ici sub-verticale alors que la S2 est sub-horizontale, caractérisée par un Grt syn-cinématique. Noter la position des points d’analysesayant servis à effectuer les estimations P-T présentées ci-dessous (B, C, D). (B, C, D) Résultats P-T (intersections) du logiciel TWEEQU [Berman, 1991]pour les assemblages (B) Phg + Chl + Cld et (C, D) Phg + Chl + Grt. Les barres d’erreur représentent l’incertitude sur l’intersection des équilibres (i.e.,donnée par le logiciel TWEEQU).

at the top of the Calar Alto unit, whose attribution (to theBédar-Macael or Calar Alto unit) remains obscure.

Maximum temperatures in both units were maintained un-til the end of the S2 development at pressures as low as 3 kbarsas deduced from local equilibria of Chl-Phg pairs growing inpost-S2 veins coeval with the acquisition of Raman Tmax (fig.8A). In spite of different absolute P-T values, the P-T evolu-tion of both units appears remarkably similar.

The thermal peak reached by the Calar Alto graphiteschists (fig. 7A and 8A) decreases of about 50-60ºC be-tween the bottom (T ~ 550-560ºC) and the top of the unit(T ~ 490-500ºC). We can calculate a minimum value forthe temperature field gradient during the thermal peak usingthe thickness of the present-day graphite schists formation,which is approximately 3500 m thick [González-Casado etal., 1995]. The resulting field thermal gradient (dT/dz) is17ºC/km. This gradient contrasts with the 38-80ºC/km gra-dient obtained for peak-thermal conditions in the overlyingAlpujarride complex [Azañón et al., 1997; Argles et al.,1999; Azañón and Crespo-Blanc, 2000] as well as the60oC/km gradient obtained from the peak-thermal condi-tions for all the Nevado-Filabride units (as already proposedby Gómez-Pugnaire and Fernández-Soler [1987] andBakker et al. [1989]).

This study provides the first P-T path for the Ragua unitand complements the work of Booth-Rea et al. [2003]. ThisP-T path is characterised by a heating phase at relatively highpressure and then an almost isothermal decompression topressure values as low as 3 kbars. Such an evolution does in-dicate that the Ragua and the Calar Alto units underwent abroadly similar metamorphic history and refutes the claimthat the Ragua unit was characterised by both lower pressureand temperature conditions [Martínez-Martínez et al., 1986;Bakker et al., 1989; De Jong, 1991, 1993; Puga et al., 2000].

The Dos Picos shear zone

Unlike the FSZ roofing the Nevado-Filabride complex (i.e.,the major extensional shear zone; [Galindo-Zaldívar et al.,1989; Jabaloy et al., 1993; Martínez-Martínez et al., 2002]),the nature and kinematics of intra-Nevado-Filabride shearzones such as the DPSZ are difficult to assess because oftheir flat geometry and the presence of monotonous rock se-ries on both sides. Our study reveals a minimum gap of about50-60oC for the peak-temperature event between the CalarAlto and the underlying Ragua unit across the DPSZ. Theuse of two independent tools makes this temperature gap ageological evidence of the nature of the shear zone. In thiscontext, we interpret the DPSZ as a late, cold thrust, whichclearly post-dates the main exhumation stage of theNevado-Filabride complex (illustrated by roughly similarP-T evolutions; fig. 8D). Indeed, as shown by the fossilisedTmax gap across the DPSZ, the underlying Ragua unit didnot reequilibrate to match the high temperatures of the CalarAlto unit. The DPSZ could then represent an equivalent ofthe Calar Alto/Bédar-Macael shear zone (i.e., Marchall shearzone; García-Dueñas et al. [1992]), which shows a positiveupward pressure gap of the order of 6-8 kbars and a positive,upward 50oC temperature gap (fig. 8B).

Implications for the late orogenic evolution of thelower Nevado-Filabride complex

The shape of P-T paths results from a competition betweenthermal conduction and displacements in the crust (due totectonics and/or erosion [England and Richardson, 1977;England and Thompson, 1984]) and is useful to discriminatebetween syn-orogenic and post-orogenic extension [Platt,1993; Ring et al., 1999]. Syn-orogenic extension is oftencharacterised by a good preservation of HP/LT paragenesesdue to the continuous underthrusting of cold units

Bull. Soc. géol. Fr., 2005, no 5

412 AUGIER R. et al.

FIG. 7. – P-T results from TWEEQU software [Ber-man, 1991] for Phg + Chl � Grt compared with Ra-man results (in grey) of the same structural position.Results are displayed for each unit separating forboth units samples from the base and from the top:for the Calar Alto unit (A), samples ES.02.06, 13 forthe base and ES.02.22, 23 for the top (fig. 2C), andfor the Ragua unit (B), samples ES.02.01, 11 for thebase and ES.02.07, 08 for the top (table. II).FIG. 7. – Résultats P-T du logiciel TWEEQU [Ber-man, 1991] pour les associations Phg + Chl Grtcomparés aux résultats Raman (en grisé) pour lamême position structurale. Les résultats sont pré-sentés pour chaque unité et selon la position struc-turale relative le long de la coupe ; nous avonsdistingués pour les deux unités les échantillons pro-venant de la base et du sommet : pour l’unité de Ca-lar Alto (A), les échantillons ES.02.06, 13 pour labase et ES.02.22, 23 pour le sommet, pour l’unité deRagua (B), les échantillons ES.02.01, 11 pour labase et ES.02.07, 08 pour le sommet (table. II).

maintaining a HP-LT gradient [Davy and Gillet, 1986;Jolivet et al., 1998], whereas post-orogenic metamorphicdomes usually display HT parageneses acquired during aHT excursion which totally or partially overprints HP/LTassemblages [England and Thompson, 1984; Davy andGillet, 1986; Jolivet and Goffé, 2000]. Mixed examples in-clude “Z” type P-T paths, such as the one obtained by Parraet al. [2002] on the Cycladic blueschists.

The Calar Alto and Ragua units reached HP/LT condi-tions (i.e., of the order of 12-13 kbars for 400-450oC for theRagua unit; fig. 6B). This event is followed for both units(as for the Bédar-Macael unit [Soto, 1990; Martínez-Mart-ínez et al. 2002]) by a limited HT excursion in lower amphi-bolite or upper greenschist conditions during a syn-S2decompression (fig. 8A). This limited heating during de-compression suggests, at least partly, a syn-orogenic exhu-mation context [Jolivet et al., 1998; Trotet et al., 2001].

On the other hand, peak-temperatures of the order of500-550oC corresponding to the last mineral re-equilibra-tion in the S2 are found for the lower pressure assemblagesaround 3 kbars (consistent with the data of Jabaloy et al.[1993]; fig. 8D). Final exhumation through greenschistsconditions therefore took place along a high-temperature

cooling gradient of the order of 60oC.km-1 (as already pro-posed by Gómez-Pugnaire and Fernández-Soler [1987];Bakker et al. [1989] and Martínez-Martínez et al. [2004])diagnostic of a post-orogenic context [England and Ri-chardson, 1977; England and Thompson, 1984]. In anycase, the retrograde metamorphic evolution of both unitspoints to similar exhumation processes (fig. 8D), which aretentatively proposed to be related to the extensional activityalong the FSZ (fig. 8C). This HT excursion was however li-mited, perhaps due to the rapid exhumation from 20 Ma on-wards [Monié et al., 1991; Johnson et al., 1997; Augier,2004; Augier et al., 2005], coinciding with the onset ofwestward slab rollback below the Alboran Sea (fig. 8B)[Royden, 1993; Lonergan and White, 1997; Gutcher et al.,2002; Spakman et al., 2004].

Acknowledgements. – We gratefully acknowledge the CEPAGE (CNRS)and the CICYT Spanish projects REN2001-3868-CO3-01/MAR,REN2001-3378 and FEDER fund of the UE supported the field and labora-tory research. D. Neuville for the access to the Raman spectrometer and hisuseful comments during analysis and spectra treatment. F. Couffignal andM. Fialin for their assistance during microprobe analysis. F. Baudin and A.Riboullau for the TC and S measurements on the LECO furnace. R. Vissersand O. Vidal are thanked for their useful suggestions and constructive com-ments.

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 413

o

FIG. 8. – (A) Proposed P-T evolution for both Ragua and the Calar Alto units. Our data from TWEEQU software [Berman, 1991] are shown for the Raguaunit (white squares) and for Calar Alto unit (black circles). Results from the RAMAN spectrometry are represented by hachured temperature domains; thetemperature range of the Ragua unit being illustrated by vertical hatching while the horizontal hatching represents the Calar Alto unit. The P-T paths forthe Calar Alto unit are from Gómez-Pugnaire and Fernández-Soler [1987] and Bakker et al. [1989]. (B) Schematic W-E cross-section of the northernAlboran Sea. The box encompasses the region shown in the C sketch. (C) Schematic representation of the structural evolution of the Nevado-Filabridecomplex during exhumation mainly linked to the extensional activity on the FSZ: 1) the Ragua and the Calar Alto units were first exhumed followingroughly similar P-T paths (i.e., similar exhumation processes) until pressures as low as 3 kbars; 2) the DPSZ then acted as a post-metamorphic (i.e., postTmax) “cold” thrust.FIG. 8. – Evolution P-T proposée pour les unités de Ragua et de Calar Alto. Nos données issues du logiciel TWEEQU [Berman, 1991] sont représentéespour l’unité de Ragua (carrés blancs) et pour l’unité de Calar Alto (cercles noirs). Les résultats de la spectrométrie Raman sont représentés par des do-maines de température ; la gamme de température étant représentée avec des hachures verticales pour l’unité de Ragua alors que les hachures horizonta-les représentent l’unité de Calar Alto. Les chemins P-T pour l’unité de Calar Alto sont de Gómez-Pugnaire et Fernández-Soler [1987] et Bakker et al.[1989]. (B) Coupe W-E schématique de la mer d’Alboran. La boîte indique la position de la région illustrée par le schéma C. (C) Représentation schéma-tique de l’évolution structurale du complexe Névado-Filabride durant son exhumation, principalement liée à l’activité extensive sur la FSZ : 1) les unitésde Ragua et Calar Alto furent d’abord exhumée suivant des chemins P-T relativement similaires (i.e., processus d’exhumation similaires) jusqu’à des pres-sions aussi basses que 3 kbar ; 2) la DPSZ a alors joué en chevauchement post-métamorphique (post-Tmax) « froid ».

References

AGARD P., VIDAL O. & GOFFÉ B. (2001). – Interlayer and Si content ofphengite in HP-LT carpholite-bearing metapelites. – J. Met.Geol., 19, 477-493.

ARGLES T.W., PLATT J.P. & WATERS D.J. (1999). – Attenuation and excisionof a crustal section during extensional exhumation – The Carra-traca Massif, Betic Cordillera, southern Spain. – J. Geol. Soc.,156, 1, 149-162.

AUGIER R. (2004). – Evolution tardi-orogénique des Cordillères bétiques(Espagne): Apports d’une étude intégrée. – PhD Thesis, Univer-sité de Pierre et Marie Curie, France, 400 p.

AUGIER R., AGARD P., MONIÉ P., JOLIVET L., ROBIN C. & BOOTH-REA G.(2005). – Exhumation, doming and slab retreat in the Betic Cor-dillera (SE Spain): In-situ 40Ar/39Ar ages and P-T-d-t path forthe Nevado-Filabride complex. – J. Metam. Geol. (in press).

AZAÑÓN J.M. & CRESPO BLANC A. (2000). – Exhumation during a conti-nental collision inferred from the tectonometamorphic evolutionof the Alpujarride Complex in the central Betics (Alboran Do-main, SE Spain). – Tectonics, 19, 3, 549-565.

AZAÑÓN J.M., CRESPO BLANC A. & GARCÍA DUEÑAS V. (1997). – Continen-tal collision, crustal thinning and nappe forming during thepre-Miocene evolution of the Alpujarride Complex (AlboranDomain, Betic). – J. Struct. Geol., 19, 8, 1055-1071.

BAKKER H.E., DE JONG K., HELMERS H. & BIERMAN C. (1989). – The geo-dynamic evolution of the Internal Zone of the Betic Cordilleras(southeast Spain): a model based on structural analysis and geo-thermobarometry. – J. Metam. Geol., 7, 359-381.

BALANYÁ J.C. & GARCÍA-DUEÑAS V. (1987). – Les directions structuralesdans le domaine d’Alborán de part et d’autre du détroit de Gi-braltar. – C. R. Acad. Sci., Paris, 304, II, 15, 929-932.

BERMAN R.G. (1991). – Thermobarometry using multi-equilibrium calcula-tions: a new technique with petrological applications. – Can.Mineral., 29, 833-855.

BEYSSAC O., GOFFÉ B., CHOPIN C. & ROUZAUD N.J. (2002). – RAMANspectra of carbonaceous material in metasediments: a new geo-thermometer. – J. Metam. Geol., 20, 859-871.

BOOTH-REA G., AZAÑÓN J.M. & MARTÍNEZ-MARTÍNEZ J.M. (2003). – Meta-morfismo de AP/BT en metapelitas de la unidad de Ragua (com-plejo Nevado-Filábride, Béticas). Resultados termobarométricosdel estudio de equilibrios locales. – Geogaceta. 32, 26-35.

BOUSQUET R. (1998). – L´exhumation des roches métamorphiques de hautepression-basse température: de l´étude de terrain à la modélisa-tion numérique. Exemple de la fenêtre de l’Engadine et du do-maine Valaisan dans les Alpes centrales. – PhD Thesis,Université de Paris XI, France, 356 p.

CHOPIN C., HENRY C. & MICHARD A. (1991). – Geology and petrology ofthe coesite-bearing terrain, Dora Maira massif, western Alps. –Eur. J. Min., 3, 263-291.

CRESPO BLANC A. (1995). – Interference pattern of extensional fault sys-tems: a case study of the Miocene rifting of the Alboran base-ment (North of Sierra Nevada, Betic Chain). – J. Struct. Geol.,17, 11, 1559-1569.

CRESPO BLANC A., OROZCO M. & GARCÍA-DUEÑAS V. (1994). – Extensionversus compression during the Miocene tectonic evolution of theBetic chain. Late folding of normal fault systems. – Tectonics,13, 78-88.

DAVY P. & GILLET P. (1986). – The tacking of thrust slices in collision zo-nes and its thermal consequences. – Tectonics, 5, 913-929.

DE JONG K. (1991). – Tectono-metamorphic studies and radiometric datingin the Betic Cordilleras (SE Spain). – PhD Thesis, Vrije Univer-siteit, Amsterdan, the Netherlands, 241 p.

DE JONG K. (1993). – The tectono-metamorphic evolution of the VeletaComplex and the development of the contact with the MulhacenComplex (Betic Zone, SE Spain). – Geol. Mijnb., 71, 227-237.

DE JONG K. (2003). – Very fast exhumation of high-pressure metamorphicrocks with excess 40Ar and inherited 87Sr, Betic Cordilleras,Southern Spain. – Lithos, 70, 91-110.

DE JONG K., FÉRAUD G., RUFFET G., AMOURIC M. & WIJBRANS J.R. (2001). –Excess argon incorporation in phengite of the Mulhacén Com-plex: submicroscopic illitization and fluid ingress during lateMiocene extension in the Betic Zone, southeastern Spain. –Chem. Geol., 178, 159-195.

DE JONG K., WIJBRANS J.R. & FERAUD G. (1992). – Repeated thermal reset-ting of phengites in the Mulhacen Complex (Betic Zone, sou-theastern Spain) shown by 40Ar/39Ar step heating and singlegrain laser probe dating. – Earth Planet. Sci. Lett., 110, 1-4,173-191.

DEWEY J.F. (1988). – Extensional collapse of orogens. – Tectonics, 7, 6,1123-1139.

DEWEY J.F., HELMAN M.L., TURCO E., HUTTON D.H. W. & KNOTT S.D.(1989) – Kinematics of the western Mediterranean. In: M. P. CO-

WARD, D. DIETRICH and R. G. PARK, Eds, Alpine tectonics. –Spec. Publ. Geol. Soc. London, London, 265-283.

DÍAZ DE FEDERICO A., GÓMEZ PUGNAIRE M.T., PUGA E. & SASSI F.P. (1979). –New problems in the Sierra Nevada Complex (Betic Cordillera,Spain). – N. Jahrb. Geol. Paläontol., 10, 577-585.

DUCHÊNE S., LARDEAUX J.M. & ALBARÈDE F. (1997). – Exhumation ofeclogites: insights from depth-time path analysis. – Tectonophy-sics. 280, 125-140.

DURAND-DELGA M., ROSSI P., OLIVIER P. & PUGLISI D. (2000). – Situationstructurale et nature ophiolitique des roches basiques jurassi-ques associées aux flyschs maghrébins du Rif (Maroc) et de Si-cile (Italie). – C. R. Acad. Sci., Paris, 331, II, 29-38.

EGELER C.G. & SIMON O.J. (1969). – Orogenic evolution of the Betic Zone(Betic Cordilleras, Spain), with emphasis on the nappe structu-res. – Geol. Mijnb., 48, 296-305.

ENGLAND P.C. & RICHARDSON S.W. (1977). – The influence of erosionupon the mineral facies of rocks from different metamorphic en-vironments. – J. Geol. Soc. London, 134, 201-213.

ENGLAND P.C. & THOMPSON A.B. (1984). – Pressure-temperature-timepaths of regional metamorphism I. Heat transfer during the evo-lution of thickened continental crust. – J. Petrol., 25, 894-928.

FREY M., HUNZIKER J.C., JÄGER E. & STERN W.B. (1983). – Regional distri-bution of white K-mica polymorphs and their phengite contentin the central Alps. – Contrib. Miner. Petrol., 83, 185-197.

GALINDO-ZALDÍVAR J., GONZÁLEZ-LODEIRO F. & JABALOY A. (1989). – Pro-gressive extensional shear structures in a detachment contact inthe western Sierra Nevada (Betic Cordilleras, Spain). – Geodin.Acta, 3, 73-85.

GARCÍA DUEÑAS V. & BALANYÁ J. C. (1986). – Estructura y naturaleza delarco de Gibraltar. – Maleo, Bol. Inf. Soc. Geol. Portugal. 2, 23.

GARCÍA-DUEÑAS V., BALANYÁ J.C. & MARTÍNEZ-MARTÍNEZ J.M. (1992). –Miocene extensional detachments in the outcropping basementof the northern Alboran Basin (Betics) and their tectonic impli-cations. – Geo Mar. Lett., 12, 88-95.

GARCÍA-DUEÑAS V., MARTÍNEZ-MARTÍNEZ J.M., OROZCO M. & SOTO J.(1988a). – Plis-nappes, cisillements syn- à post-métamorphiqueset cisaillements ductiles-fragiles en distension dans les Neva-do-Filabrides (Cordillères bétiques, Espagne), – C. R. Acad.Sci., Paris, 307, II, 1389-1395.

GARCÍA-DUEÑAS V., MARTÍNEZ-MARTÍNEZ J.M. & SOTO J.I. (1988b). – LosNevado-Filábrides, una pila de pliegues mantos separados porzonas de cizalla. – II Congreso Geológico de España, Simpo-sios, 17-26.

GOFFÉ B., MICHARD A., GARCÍA-DUENAS V., GONZALES-LODEIRO F., MONIÉ P.,CAMPOS J., GALINDO-ZALDIVAR J., JABALOY A., MARTÍNEZ-MAR-

TÍNEZ J.M. & SIMANCA J.F. (1989). – First evidence of high pres-sure, low temperature metamorphism in the Alpujarride nappes,Betic Cordillera (SE Spain). – Eur. J. Miner., 1, 139-142.

GÓMEZ-PUGNAIRE M.T. & CAMARA F. (1990). – La asociación de alta pre-sión distena+talco+fengita coexistente con escapolita en meta-pelitas de origen evaporítico (Complejo Nevado-Filábride,Cordilleras Béticas). – Rev. Soc. Geol. España, 3, 373-384.

GÓMEZ-PUGNAIRE M.T. & SOLER J.M. (1987). – High-pressure metamor-phism in metabasite from the Betic Cordilleras (SE Spain) andits evolution during the Alpine orogeny. – Contrib. Miner. Pe-trol., 95, 231-244.

GONZÁLEZ-CASADO J.M., CASQUET C., MARTÍNEZ-MARTÍNEZ J.M. & GARC-

ÍA-DUEÑAS V. (1995). – Retrograde evolution of quartz segrega-tions from the Dos Picos shear zone in the Nevado-FilábrideComplex (Betic chains, Spain). Evidence from fluid inclusionsand quartz c-axis fabrics. – Geol. Rundsch., 84, 175-186.

Bull. Soc. géol. Fr., 2005, no 5

414 AUGIER R. et al.

GRANT GROSS M. (1971). – Carbon determination. In : R. E. CARVER, Ed,Procedures in sedimentary petrology, Chapter 25. – WileyInterscience, A division of John Wiley and Sons, New York,573-596.

GUNNELL Y. (2000). – Apatite fission track thermochronology: an over-wiew of its potential and limitations in geomorphology. – BasinRes., 12, 115-132.

GUTSCHER M.A., MALOD J., REHAULT J.P., CONTRUCCI I., KLINGELHOEFER

F., MENDES-VICTOR L. & SPAKMAN W. (2002). – Evidence foractive subduction beneath Gibraltar. – Geology. 30, 1071-1074.

HOISCH T.D., WELLS M.L. & HANSON L.M. (2002). – Pressure-temperaturepaths from garnet-zoning: Evidence for multiple episodes ofthrust burial in the hinterland of the Sevier orogenic belt. – Am.Miner., 87, 115-131.

HURFORD A. J. (1990). – Standardization of fission track dating calibration:recommendation by fission track working group of the IUGSsubcommission on geochronology. – Chem. Geol., 80, 171-178.

JABALOY A. (1993) – La estructura de la región occidental de la Sierra delos Filabres (Cordilleras Béticas). – PhD Thesis, University ofGranada, Spain, 325 p.

JABALOY A., GALINDO-ZALDÍVAR J. & GONZÁLEZ-LODEIRO F. (1993). – TheAlpujárride-Nevado-Filábride extensional shear zone, BeticCordillera, SE Spain. – J. Struct. Geol., 15 (3-5), 555-569.

JOHNSON C., HARBURY N. & HURFORD A.J. (1997). – The role of extensionin the Miocene denudation of the Nevado-Filábride Complex,Betic Cordillera (SE Spain). – Tectonics, 16, 2, 189-204.

JOLIVET L. & GOFFÉ B. (2000). – Les domes metamorphiques dans les chaînesde montagnes. Extension syn-orogénique et post-orogénique. –C. R. Acad. Sci., Paris. 330, II, 739-751.

JOLIVET L., GOFFÉ B., BOUSQUET R., OBERHÄNSLI R. & MICHARD A. (1998). –Detachments in high-pressure mountain belts, Tethyan examples. –Earth Planet. Sci. Lett., 160, 31-47.

KRETZ R. (1983). – Symbols for rock-forming minerals. – Am. Miner., 68,277-279.

KOZUR H., MULDER-BLANKEN C.W.H. & SIMON O.J. (1985). – On the Trias-sic of the Betic Cordilleras (S. Spain), with special emphasis onholothurian sclerites. – Proc. Kon. Ned. Akad. Wetensch., Ser. B.88, 83-110.

LAFUSTE M.L. J. & PAVILLON M.J. (1976). – Mise en évidence d´Eiféliendaté au sein des terrains métamorphiques des zones internes desCordillères bétiques. Intérêt de ce nouveau repére stratigra-phique. – C. R. Acad. Sci., Paris, 283, II, 1015-1018.

LEONI L., SARTORI F. & TAMPONI M. (1998). – Compositional variation inK-white micas and chlorites coexisting in Al-saturated metapeli-tes under late diagenetic to low-grade metamorphic conditions(Internal Liguride Units, northern Apennines, Italy). – Eur. J.Miner., 10, 1321-1339.

LONERGAN L. & WHITE N. (1997). – Origin of the Betic-Rif mountain belt. –Tectonics, 16, 3, 504-522.

LÓPEZ SÁNCHEZ-VIZCAINO V., RUBATTO D., GÓMEZ-PUGNAIRE M.T.,TROMMSDORFF V. & MÜNTENE O. (2001). – Middle Miocenehigh-pressure metamorphism and fast exhumation of the Néva-do-Filábride Complex, SE Spain. – Terra Nova, 13, 5,

MARTÍNEZ-MARTÍNEZ J.M. (1985). – Las sucesiones Nevado-Filábrides enla Sierra de los Filabres y Sierra Nevada. Correlaciones. – Cuad.Geol., 12, 127-144.

MARTÍNEZ-MARTÍNEZ J.M. (1986). – Evolución tectóno-metamórfica delComplejo Nevado-Filábride en el sector de unión entre SierraNevada y Sierra de los Filabres (Cordilleras Béticas). – Cuad.Geol., 13, 1-194.

MARTÍNEZ-MARTÍNEZ J.M. & AZAÑÓN J.M. (1997). – Mode of extensionaltectonics in the southeastern Betics (SE Spain). Implications forthe tectonic evolution of the peri-Alborán orogenic system. –Tectonics, 16, 2, 205-225.

MARTÍNEZ-MARTÍNEZ J.M., SOTO J.I. & BALANYÁ J.C. (2002). – Orthogonalfolding of extensional detachments: structure and origin of theSierra Nevada elongated dome (Betics, SE Spain). – Tectonics,21, 152-167.

MARTÍNEZ-MARTÍNEZ J.M., SOTO J. I. & BALANYÁ J.C. (2004). – Elongateddomes in extended orogens: A mode of mountain uplift in theBetics (SE Spain). In: D.L. WHITNEY, C. TEYSSIER and C.S. SID-

DOWAY, Eds, Gneiss domes in orogeny. – Geol. Soc. Amer. Sp.Paper 380-15, 243-265.

MASSONNE H.J. (1995). – Experimental and petrogenetic study of UHPM.In: R. G. COLEMAN and X. WANG, Eds, Ultra high pressure meta-morphism. – Cambridge University Press, Cambridge, 33-95.

MASSONNE H.J. & SCHREYER W. (1987). – Phengite geobarometry based onthe limiting assemblage with K-feldspar, phlogopite and quartz. –Contrib. Miner. Petrol., 96, 214-224.

MASSONNE H.J. & SZPURKA Z. (1997). – Thermodynamic properties ofwhite micas on the basis of high-pressure experiments in thesystems K2O-MgO-Al2O3-SiO2-H2O. – Lithos, 41, 229-250.

MAZZOLI S. & HELMAN M. (1994). – Neogene patterns of relative plate mo-tion for Africa-Europe: some implications for recent central Me-diterranean tectonics. – Geol. Rundsch., 83, 464-468.

MOLNAR P. & LYON-CAEN H. (1988). – Some simple physical aspects of thesupport, structure and evolution of mountains belt. – Geol. Soc.Amer. Sp. Pap., 218, 179-207

MONIÉ P., GALINDO-ZALDÍVAR J., GONZÁLEZ-LODEIRO F., GOFFÉ B. & JABA-

LOY A. (1991). – 40Ar/39Ar geochronology of Alpine tectonismin the Betic Cordilleras (southern Spain). – J. Geol. Soc. Lon-don, 148, 288-297.

MONIÉ P., TORRES-ROLDÁN R. L. & GARCÍA-CASCO A. (1994). – Coolingand exhumation of the western Betic Cordilleras, 40Ar/39Ar ther-mochronological constraints on a collapsed terrane. – Tectono-physics, 238, 353-379.

MORTEN L., BARGOSSI G.M., MARTÍNEZ-MARTÍNEZ J.M., PUGA E. & DÍAZ

DE FEDERICO A. (1987). – Metagabbro and associated eclogitesin the Lubrín area, Nevado-Filabride Complex, Spain. – J. Me-tam. Geol., 5, 155-174.

NIJHUIS H. J. (1964). – Plurifacial Alpine metamorphism in the southeas-tern Sierra de los Filabres, south of Lubrín, SE Spain. – PhDthesis, Univ. Amsterdam, the Netherlands, 253 p.

PARRA T., VIDAL O. & AGARD P. (2001). – A thermodynamic model forFe-Mg dioctahedral K-white micas using data from phase equili-brium experiments and natural pelitic assemblages. – Contrib.Miner. Petrol., 143, 706-732.

PARRA T., VIDAL O. & JOLIVET L. (2002). – Relation between the intensity ofdeformation and retrogression in blueschist metapelites of TinosIsland (Greece) evidenced by chlorite-mica local equilibria. – Li-thos, 63, 41-66.

PLATT J.P. (1993). – Exhumation of high-pressure rocks: a review ofconcepts and processes. – Terra Nova, 5, 119-133.

PLATT J.P. & BEHRMANN J.H. (1986). – Structures and fabrics in a crus-tal-scale shear zone, Betic Cordilleras, SE Spain. – J. Struct.Geol., 5, 519-538.

PLATT J.P., BEHRMANN J.H., MARTÍNEZ MARTÍNEZ J.M. & VISSERS R.L.M.(1984). – A zone of mylonite and related ductile deformationbeneath the Alpujarride Nappe Complex, Betic Cordilleras, S.Spain. – Geol. Rundsch., 73, 2, 773-785.

PLATT J.P. & VISSERS R.L.M. (1989). – Extensional collapse of thickenedcontinental lithosphere: A working hipothesis for the AlboranSea and Gibraltar arc. – Geology, 17, 540-543.

PORTUGAL FERREIRA M., FERREIRA J.T., E.P. & DÍAZ DE FEDERICO A. (1988). –Geochronological contribution to the petrogenetic picture of theBetic Chain (SE Spain). In: Congreso Geológico de España, Co-municaciones, 55-58.

PUGA E. & DÍAZ DE FEDERICO A. (1978) – Metamorfismo polifásico y de-formaciones alpinas en el Complejo de Sierra Nevada (Cordille-ra Bética). Implicaciones geodinámicas. In: Reun. Geod. Cord.Bét. y Mar de Alborán, Pub. Univ. de Granada, 79-114.

PUGA E., DÍAZ DE FEDERICO A. & NIETO J.M. (2002). – Tectonostratigra-phic subdivision and petrological characterisation of the deepestcomplexes of the Betic zone: a review. – Geodin. Acta, 15,23-43.

PUGA E., NIETO J.M., DÍAZ DE FEDERICO A., BODINIER J.L. & MORTEN L.(1999). – Petrology and metamorphic evolution of ultramaficrocks and dolerite dykes of the Betic ophiolitic association(Mulhacén Complex, SE Spain): evidence of eo-Alpine subduc-tion following an ocean-floor metasomatic process. – Lithos, 49,23-56.

PUGA E., NIETO J.M. & DÍAZ DE FEDERICO A. (2000). – Contrasting P-Tpaths in eglogites of the Betic ophiolitic association, MulhacénComplex, southeastern Spain. – Can. Miner., 38, 1137-1161.

RING U., BRANDON M.T., WILLETT S.D. & LISTER G.S. (1999). – Exhuma-tion processes. In: U. RING, M. T. BRANDON, G. S. LISTER and S.D. WILLETT, Eds, Exhumation processes : Normal faulting, duc-tile flow and erosion. – Geol. Soc. Sp. Publ., London, 1-27

Bull. Soc. géol. Fr., 2005, no 5

EXHUMATION CONSTRAINTS FOR THE LOWER NEVADO-FILABRIDE COMPLEX (SE SPAIN) 415

ROYDEN L. H. (1993). – The tectonic expression of slab pull at continentalconvergent boundaries. – Tectonics, 12, 303-325.

SELVERSTONE J. & SPEAR F.S. (1985). – Metamorphic P-T paths from peliticschists and greenstones from the south-west Tauern window. –J. Metam. Geol., 3, 439-465.

SOTO J.I., GARCÍA-DUEÑAS V. & MARTÍNEZ-MARTÍNEZ J.M. (1990). – El va-lor de la deformación dúctil asimétrica en el ortogneis deLubrín, Almería (Manto de Bédar-Macael, Complejo Neva-do-Filábride. – Geogaceta, 7, 92-94.

SOTO J.I. (1993). – Estructura y evolución metamórfica del Complejo Ne-vado-Filábride en la terminación oriental de la Sierra de los Fi-labres (Cordilleras Béticas). – PhD Thesis, University ofGranada, Spain, 297 p.

SPEAR F.S. (1993). – Metamorphic phase equilibria and pressure-tempera-ture-time paths. – Mineralogical Society of America, Washing-ton D.C., 799 p.

SPEAR F.S., HICKMOTT D.D. & SELVERSTONE J. (1990). – Metamorphicconsequences of thrust emplacement, Fall Mountain, NewHampshire. – Geol. Soc. Amer. Bull., 102, 1344-1360.

SPEAR F.S. & SELVERSTONE J. (1983). – Quantitative P-T paths from zonedminerals: theory and tectonic implications. – Contrib. Miner. Pe-trol., 83, 348-357.

SPAKMAN W. & WORTEL R. (2004). – A tomographic view on western Medi-terranean geodynamics. In: W. CAVAZZA, F.M. ROURE, W. SPAK-

MAN, G. STAMPFLI & P. A. ZIEGLER, Eds, The TRANSMED atlas. –Springer, Heidelberg, 31-51,

TAGAMI T. & SHIMADA C. (1996). – Natural long-term annealing of the fis-sion-track system around a granitic pluton. – J. Geophys. Res.,101, 8245-8255.

TROMMSDORFF V., LÓPEZ SÁNCHEZ-VIZCAÍNO V., GÓMEZ-PUGNAIRE M.T. &MÜNTENER O. (1998). – High pressure breakdown of antigoriteto spinifex-textured olivine and orthopyroxene, SE Spain. –Contrib. Miner. Petrol., 132, 139-148.

TROTET F., VIDAL O. & JOLIVET L. (2001). – Exhumation of Syros and Sif-nos metamorphic rocks (Cyclades, Greece). New constraints onthe P-T paths. – Eur. J. Miner., 13, 901-920.

TUINSTRA F. & KOENING J.L. (1970). – Raman spectrum of graphite. – J.Chem. Phys., 53, 1126-1130.

VELDE B. (1967). – Si4+ content of natural phengites. – Contrib. Miner. Pe-trol., 14, 250-258.

VIDAL O., GOFFÉ B. & THEYE T. (1992). – Experimental study of a new pe-trogenetic grid for the system FeO-MgO-Al2O3-SiO2-H2O. – J.Metam. Geol., 14, 381-386.

VIDAL O., GOFFÉ B., BOUSQUET R. & PARRA T. (1999). – Calibration andtesting of an empirical chloritoid-chlorite thermometer and ther-modynamic data for daphnite. – J. Metam. Geol., 10, 603-614.

VIDAL O. & PARRA T. (2000). – Exhumation paths for high pressure meta-pelites obtained from local equilibria for chlorite-phengite as-semblages. – Geol. J., 35, 139-161.

VIDAL O., PARRA T. & TROTET F. (2001). – A thermodynamic model forFe-Mg aluminous chlorite using data from phase equilibrium ex-periments and natural pelitic assemblages in the 100-600 ºC,1-25 kbars P-T range. – Am. J. Sci., 301, 557-592.

VIDAL O., THEYE T. & CHOPIN C. (1994). – Experimental study of chlori-toid stability at high pressure and various fO2 conditions. – Con-trib. Miner. Petrol., 118, 256-270.

VISSERS R.L.M. (1981). – A structural study of the central Sierra de los Fi-labres (Betic Zone, SE Spain) with emphasis on deformationalprocesses and their relation to the Alpine metamorphism. – GUAPap. Geol., 15, 1-154.

VISSERS R.L.M., PLATT J.P. & VAN DER WAL D. (1995). – Late orogenic ex-tension of the Betic Cordillera and the Alboran Domain: A li-thospheric view. – Tectonics, 14, 4, 786-803.

WILLIAMS G.D., POWELL C.M. & COOPER M.A. (1989). – Geometry and ki-nematics of inversion tectonics. In: M.A. COOPER and G.D. WIL-

LIAMS, Eds, Inversion tectonics. – Geol. Soc. London Sp. Publ.,3-15.

Bull. Soc. géol. Fr., 2005, no 5

416 AUGIER R. et al.