36
EXECUTING CYBER SECURITY ATTACKS ON A SMART GRID TESTBED by Olaoluwa Olayokun Bachelor, Bells University of Technology, 2013 A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ENGINEERING in the Department of Electrical & Computer Engineering © Olaoluwa Olayokun, 2016 University of Victoria All rights reserved. This project report may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

EXECUTING CYBER SECURITY ATTACKS ON A SMART GRID …

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

EXECUTINGCYBERSECURITYATTACKSONASMARTGRIDTESTBED

by

OlaoluwaOlayokunBachelor,BellsUniversityofTechnology,2013

AProjectReportSubmittedinPartialFulfillmentoftheRequirementsfortheDegreeof

MASTEROFENGINEERING

intheDepartmentofElectrical&ComputerEngineering

©OlaoluwaOlayokun,2016UniversityofVictoria

Allrightsreserved.Thisprojectreportmaynotbereproducedinwholeorinpart,byphotocopy

orothermeans,withoutthepermissionoftheauthor.

2

SUPERVISORYCOMMITTEE

EXECUTINGCYBERSECURITYATTACKSONASMARTGRIDTESTBED

by

OlaoluwaOlayokunBachelor,BellsUniversityofTechnology,2013

SupervisoryCommittee

Dr.IssaTraore(DepartmentofElectrical&ComputerEngineering)SupervisorDr.AshokaBhat(DepartmentofElectrical&ComputerEngineering)DepartmentalMember

3

ABSTRACT

SupervisoryCommittee

DrIssaTraore(DepartmentofElectrical&ComputerEngineering)SupervisorDr.AshokaBhat(DepartmentofElectrical&ComputerEngineering)DepartmentalMember

Smart Grids have emerged as a very crucial platform for providing timely, efficient, anduninterrupted power supply to consumers. Communication networks in smart grid bringincreasedconnectivitywithincreasedseveresecurityvulnerabilitiesandchallenges.Smartgridcanbeaprimetargetforcyberattackbecauseofitscriticalnature.Asaresult,smartgridsecurityisalreadygettingalotofattentionfromgovernments,energyindustries,andconsumers.Thethreat of malicious attacks against the security of the Smart Grid infrastructure cannot beoverlooked. In this project we created a testbed to simulate attacks on a smart grid powerdistributionenvironment.Thisallowsstudyingtheimpactandextentofdamageanattackcancausetoagrid,andprovidesaplatformtoinvestigate,infutureresearch,adequateempiricalprotectionmodelsandtoolsforsmartgrid.

4

TABLEOFCONTENTS

SupervisoryCommittee…………………………………………………………………………………………………………….2Abstract………………………………………………..………………………………………………………………………………….3TableofContents………………………………………………………………………………..…………………………………..4ListofFigures……………………………………………………………………………………………………………………………5Acknowledgments………………………………………………..………………………………………………………………….6Dedication…………………………………………………………………………………………………………………………………71.Introduction………………………………………………………………………..…………………………………………….82.RelatedWorks…………………………………………………………………………………………………..……………..102.1 RealHardwareTestbedApproach………..……………………………………………………………….…….102.2 SoftwareSimulationApproach……………………………………………………………………………………103.SmartGridNetworkSecurityandSimulator..………………………………………………..………………..123.1 FeaturesofSmartGridNetworks………………………………………………………………………………..123.2 SmartGridNetworkSimulator:TheScoreApplication…………………………………….…………..123.3 SmartGridSecurityRequirementsandObjectives………………………………………………………163.4 SmartGridAttacks………………………………………………………………………………………………………194.SmartGridSecurityTestbed………..…………………….……………………………………………………………224.1 TestbedRequirements……..…………………………………………………………………………………………224.2 TestbedConfigurationandSetup………………………………………………………………………………..234.3 AttacksontheSmartGridTestbed………………………………………………………………………………275.Conclusion………………………………………………………………………………………………………………………..32Appendix…………………………………………………………………………………………………………………….……33Reference………………………………………………………………………………….……………………………………..35

5

LISTOFFIGURES

Figure1:SCOREArchitecture………………………………………………………………………………………………….14

Figure2:Evaluatingtherisksinsmartgridsystems……………………………………………………………….…17

Figure3:TheCIAtriadforsmartgridsecuritysystems………………………………………………………..…..17

Figure4:RunningSCORE…………………………………………………………………………………………………………23

Figure5:SmartGridPowerDistributionNetworkSet-UponTargetMachine…………………………24

Figure6:ScreenshotshowingtheThroughputoneachlinkwhenrunning..……………………………25

Figure7:Showingtheconnectivitytestbetweenallnodesinthesystem………………………………26

Figure8:FisheyeTopologyViewoftheSmartGridNetwork………………………………………………….27

Figure9:NmapOutput……………………………………………………………………………………………………………28

Figure10:DoScommandusinghping3……………………………………………………………………………………28

Figure11:ScreenshotoftheDoSattack………………………………………………………………………………….29

Figure12:ApingfromanodetothetargetduringtheDoSattack………………………………………….30

6

ACKNOWLEDGMENTS

IamreallythankfultoGodforgivingmethegracetocompletethisprojectwithinthetimeframeset.ThisProjectwouldnothavebeencompletedwithouttheguidanceofmysupervisor,Dr.IssaTraore.Iwouldalsolovetoacknowledgemyparents;OlanrewajuandOluwatoyinOlayokunfortheirphysical,financialandspiritualsupportduringmypostgraduatestudy.Lastly,Iwouldliketoappreciatemyfriendsandcolleaguesfortherecontinuoussupportduringthecourseofthisproject.

7

DEDICATION

Iwouldliketodedicatethisworktomysiblings;Dara,MoyoandOlamidefortheconstantsupportandlovetheyhaveforme.

8

CHAPTERONE

INTRODUCTION

By using the literal definition, a smart grid can be defined as the integration of InformationCommunication Technology into Power Network using both electrical and informationcommunication layer.Eventhoughtheuseofsmartgridhasbeen increasing, there isstillnoagreeduniquedefinition.However,wetakeintoconsiderationtwomaindifferentdefinitions,oneprovidedby theEuropeanTechnologyPlatform [1]and theotherone from theNationalInstituteofStandardsandTechnology(NIST)[2].TheEuropeandefinitionofsmartgridis:

“A smart grid is anelectricitynetwork that can intelligently integrate the actionsof all usersconnectedtoit-generators,consumersandthosethatdoboth-inordertoefficientlydeliversustainable,economicandsecureelectricityissues.”[3]

Thisdefinition ismoreorientedtowards theactors involved in thepowernetwork,while theAmericandefinitionismoreorientedtowardsthetechnicalspecificitiesofthesmartgrid:

“. . .advancedpowergrid for the21stcentury include theadditionand integrationofmanyvarieties of digital computing and communication technologies and services with the powerdelivery infrastructure.Bidirectionalflowsofenergyandtwo-waycommunicationandcontrolcapabilities will enable an array of new functionalities and applications that gowell beyond‘smart’metersforhomesandbusinesses.”[4]

Despite the littledifferences in the smart griddefinitions, bothparties agreeonmostof thebenefitinusingsmartgrid,whichinclude:

Ø Increasequalityandpowerreliability,whichaffectnotonlynormaloperation,butalsoallowrefiningthegridresiliencetodisruptioncausedbynaturaldisastersandattacks.

Ø Provide the users with energy usage information, allowing the implementation of anenergyawarenesssystem.

Ø Allow a more active role of the consumer, increasing their choices by enabling newproducts,services,andmarkets.

Ø IncreaseenvironmentalbenefitsandreducegreenhouseemissionsbyenablingEVandRESintegration.

Ø Preventivemaintenancethroughthecontinuouspowernetworkmonitoringsystem.

Asmartgridisacriticalinfrastructurenetworkwithverystringentdependabilityrequirements.Theresilienceofsuchnetworktodisasters,bothnaturalandman-madeiscrucial.Cybersecurityattacksareamongtheman-madedisastersfacingsmartgridnetwork.

9

Understandinghowsuchattacksoperateisanimportantstepindesigningadequateprotectionstrategies against the underlying threats. The purpose of this project is to set up an attackplatform,whichallowsresearcherstoexecuteandstudytheeffectofvariousattackscenariosagainstasmartgridsimulationplatform.

Therestofthereportisstructuredasfollows.Chapter2summarizesanddiscussesrelatedwork.Chapter 3 gives an overview of smart grid network security requirements and presents thesimulationplatformusedinthisproject.Chapter4presentsthesmartgridsecuritytestbedandattackstothetestbed.Chapter5makessomeconcludingremarks.

10

CHAPTERTWO

RELATEDWORKS

Creating testplatformforcyber-physicalanalysis inSmartGrid ischallengingand ithasbeenstudiedforyears.Theapproachestechnicallyusedtosolvethisissuegenerallybreaksdownintotwocategories:realhardwaretestbedandsoftwaresimulation.Theapproachusedinthisprojectissoftwaresimulation.

2.1 RealHardwareTestbedApproach

Realhardwaretestbedsarefurtherdividedintotwocategories:flat-outhardwareplatformsandhardwareintheloopplatforms.

2.1.1 Flat-OutHardwarePlatform

Flat-out hardware platforms are the ones consisting of total hardware devices. The KoreangovernmentselectedthewholeJejuIslandtobuildtheSmartGridtestbedtoallowthetestingofSmartGridtechnologiesandbusinessmodels[5].ARenewableEnergyLaboratoryinGreecewascreatedtosetupacentral-controlledmicrogridtestbedwhichhadPV-panels,batterybanksandinverterstoinvestigatetheproposedSmartGridtopologies[6].SensorwebReserachLaboratoryfromGeorgiaStateUniversitydesignedSmartGridLab testbed to test thedistributeddemandresponse algorithm. It includes intelligent power switch, power generator, renewable energysources,smartappliances,andpowermeter[7]

2.1.2 Hardware-In-The-LoopPlatform

Hardware-in-the-loopplatformaretheonesthathaveamixtureofbothhardwaredevicesandsoftwaresimulatorstoachievethecyberphysicalanalysisofSmartGrid.Hahnetal.in[8]employdevices like Programmable Logic Units (PLUs) and Intelligent Electronic Devices (IEDs) forcommunicationnetworksandReal-TimeDigitalSimulatorsforpowernetworksimulation.

2.2 SoftwareSimulationApproach

ThesoftwaresimulationapplicationsforSmartGridcyberphysicalanalysiscanbefurtherdividedintotwocategories:individualsimulationplatformsandco-simulationplatforms.

2.2.1 IndividualSimulationPlatforms

IndividualsimulationplatformsarethosewhichbringtogetherthesimulationfeaturesforSmartGridintooneentity.Thesetypesofsimulationsusuallyaimatandfocusononeparticularareaof interests for Smart Grid. In 2008, Guo et al. designed and created an energy demandmanagementsimulator(EDMS)tocalculatetheresponsefromdifferentdeploymentstrategiesofdistributeddomesticenergymanagement[9].

11

In2009,Molderinketal.createdfromscratchasimulationenvironmenttoanalyzeandcontrolalgorithmsforenergyefficiency[10].Inthesimulationcreated,microgenerators,energybuffersandapplianceswereallmodeledanddifferentenergystreamslikeheatandgaswerestudied.

In2012,Narayanetal.presentedGridSpice[11]acloudbasedsimulationpackageforSmartGrid.LeveragingthepowerfulcomponentofGridlab-DandMatpower,GridSpicewasdevelopedwiththe main purpose of modeling the interactions between all parts of the electrical network,includinggeneration, transmission,distribution, storageand loads.All the individual softwareplatformscancompleteaparticularsettaskontheirown,buttheyalljustconcentrateonthepowernetworksimulation.ButoneofthelimitationsofthesetypesofsimulationplatformsisthatthecommunicationnetworkwhichisacriticalcomponentofaSmartGridisnotconsideredintheseplatforms.Thisiswhyco-simulationplatformswereintroduced.

2.2.2 Co-SimulationPlatforms

Co-simulation also known as co-operative simulation is a simulation approach that allowsindividualcomponentstobesimulatedbydifferentsimulationtoolsrunningconcurrentlyandexchanginginformationinacombinedmanner.In[12]Godfreyetal.simulatedaSmartGridusingNS2andOpenDSSwhich is apowernetwork simulator. In [13],Mallouhietal.createda co-simulationtestbedjustforsecurityanalysisofSCADAsystembyutilizingPowerWorldsimulatorand OPNET. The co-operative approach typically needs simultaneously running separateelectricalandcommunicationnetworksimulationsatthesametime.Thecollaborationbetweencommunicationsandpowersystemmodelsisusuallylimitedtoafixedsynchronizationinterval.Reliability is an issue regarding systems like this because mismatches occurs between thesimulations.Animprovementaboutthisissueistointegrateonesimulationcomponentintotheother.In[14]electricnetworkismadeintoacomponentwithinOMNET++,anetworksimulator.

Fromtheabovediscussion,wecanseethepropertiesoftherealhardwaretestbedapproachandthesoftwaresimulationapproachforcyber-physicalanalysisinSmartGrid.

Therealhardwaretestbedapproachattainshighfidelitybyincludingdedicateddevicesaspartof the testbeds. The critical control programs, such as demand response algorithms, routingprotocolsetc.canbetestedinrealhardwaretestbedsandtheycouldbedirectlymigratedtotheactualSmartGridembeddeddevices.However, theproblemswiththerealhardwaretestbedapproachisthescalabilityandaccessibilityfactors.Thededicatedandspecializedhardwareareintegralpartsofthetestbedsthereforetheycannotbeeasilyaccessedandusedbythepublicresearchcommunityandtheybecomedifficulttoscalewhenthetestcasebecomesquitelarge.

The software simulation approach, on theotherhand, achievesbetter scalability and canbeeasilyaccessedanddistributed.Thesoftwaresimulationtoolscannotduplicatetheexecutionenvironmentwhichisimportant,itcanonlyduplicatebehaviorsoftheSmartGridsystembutnottheexecutionenvironment.Therefore,thecriticalcontrolprogramsofSmartGridapplicationseithercannotbetestedorcanbetestedbutcannotbemigratedtophysicalSmartGriddevicesdirectly.

12

CHAPTERTHREE

SmartGridNetworkSecurityandSimulator

3.1 FeaturesofSmartGridNetworksThesmartgridnetworkisexpectedtosharesimilararchitecturewiththealreadyexistingInternet.However,thereareimportantdifferencesbetweenthem:

1. Latencyrequirements:Theinternetiscreatedwiththepurposeofprovidingdataservices

totheuserslikesurfingordatasharingsupportedwithhighspeeddatarate.However,insmartgridthisisquitenotthecase.Smartgridnetworksareintendedforreliable,secureandreal-timecommunicationswhicharesupportedwithlowlatency.

2. Communicationmodel:Intraditionalpowergrids,thetypicalmodelforcommunicationisone-waywhereelectronicdevicesreporttheirreadingstothecontrolcenter.But insmartgrid,communicationisbi-directionalandreal-time.

3. Datasizeandflow: Internethasgenerallyburstytypecommunicationshoweversmartgridisexpectedtobebulky[15]andhasperiodicdatacommunicationsbecauseofthebigsizeofthenetworkandrealtimecommunicationandmonitoringrequirements[1].

3.2 SmartGridNetworkSimulator:TheScoreApplication

Inthisproject,weusedSCOREforoursimulations,anopenresearchemulationenvironmentforSmartGrid.SCOREisbuiltuponCORE[16],anopensourcecommunicationnetworkemulatorfrom theNavalResearch Laboratory. IntegratingCORE’s communication featureswithpowermodule,SCOREdifferentiatesitselffrommanyexistingapproachesbyenablinglargescaleSmartGrid applicationsusing general purposePCswhilewith little or no codemigrationproblems.SCOREdifferentiatesitselffromtherestwiththefollowingspecificfeatures[23]:

§ Firstly,softwareemulation inSCOREachieveshighfidelitybyreplicatingtheexecutionenvironment so that the programs running in the emulation platform can be directlyportedtotheembeddeddevicesasfirmware.

§ Secondly,SCOREenablesdistributedemulationfeatureinorderforverylargescaletestcasestobesupported.

13

§ Finally,SCOREsupportsdynamicconnectionanddisconnectionbetweenmultipleSmartGridemulationinstancesinrealtime.

Thesignificanceofthisfeatureiswhenusersfrommultiplepartiesindifferentlocationswanttoconduct the integration testing together, but want to preserve the privacy of power andcommunicationnetworksconfigurations,thisfeaturewouldmakeithappenwithoutrequiringexplicit synchronization from all parties. The design of SCORE takes advantage of CORE’sstructure.Figure1providesanabstractoverviewofSCORE’sarchitectureandthe integrationapproach.Asshown,SCOREconsistsofGUI,ServiceLayer,CommunicationModuleandPowerModule.

3.2.1 GraphicsUserInterface(GUI)

TheSCOREGUIisbuiltusingTcl/Tk.TheTktoolkitprovidesalmostsufficientwidgetsforalltheXwindowsysteminterfaceneeds.TheTcl/TkGUIprovidesaneasilydrag-and-drawcanvaswithvariousSmartGriddevices(Host,SolarPanel,WindTurbine,PowerPlantetc.),whichcanbeplacedandconnectedtoeachotherwithcommunication linksorpowerlines. Also, the communication interfaces, power interfaces and energy modelparametersofeachnodecanbeself-configured.

Duringtheexecution,aterminalispoppedoutwhendoubleclickinganyselectednode.Userscannavigatethe local filesystemorexecutebashscript throughthe interactiveshellwindow.Distributedemulationcanbeconductedbyassigningaselectionofnodesto another emulation server in GUI. The message broker in Service Layer is used toforwardmessagesfromtheGUItotheappropriateemulationserver.

14

Fig.1.SCOREArchitecture[23]

3.2.2 ServiceLayer

The Service Layer consists of python frameworks that are used for creating sessions,instantiating the virtual nodes, communication and power interfaces, communicationlinksandpowerlines,inregardstotheGUIinput.Thestart-updaemoninservicelayercooperateswithGUIusingaTCPsocket-basedAPIsuchthattheemulationcanrunonadifferentmachinewiththeGUIorevenwithoutaGUI.Pre-definedenergymodelsandcommunicationprotocols,whichareusuallydaemonizedintheLinuxoperatingsystemof the emulation server, are all wrapped as Smart Grid services in this layer. ThesecommunicationandenergyservicescanallbeemployedtodevelopvariousSmartGridApplications.UsersarealsoallowedtoaddtheirowncustomizedservicestoSCOREbyprovidingtheirownimplementations.

15

3.2.3 LightWeightedVirtualizationTheemulationfeaturesofSCOREareexecutedusingaLinuxnamespacetechnique,whichisthelightweightedparavirtualizationtechniquesupportedbymainstreamLinuxkernel.ItisdifferentfromthenormalvirtualmachinestechniqueslikeVMwareorVirtualBox.Each emulated virtual node in SCORE has its separated copy of network interface,protocolstackandprocesscontrolgroup.Allotherresourcesliketheoperatingsystemandlocalfilesystemareallsharedbythevirtualnodes.Thelight-weightedvirtualizationfeatureisthebasisofSCOREscalabilityability.Furthermore,fromtheevaluationofthecodesrunninginsidethevirtualnode,eachemulateddeviceisgiventheimpressionofjustanotherpieceofhardwareplatformcontrolledbytheLinuxOS.ThisequipsSCOREwith thepropertyofportability inorder for theemulatednode tobeable toexecuteunmodified Smart Grid application codes running inside a real physical Linux-runninghardwaredevices,andviceversa.

3.2.4 CommunicationModule

ThecommunicationmoduleinSCOREleveragestheacross-the-boardsupportofvariouswired and wireless communication network models and protocols from CORE. EachemulateddevicehasitsowninstanceofoperatingsystemimplementedTCP/IPstackfromtheperspectiveofOpenSystemsInterconnection(OSI)model.ThismakesSCOREhavethehighfidelityemulationofnetworklayerandabove.Statisticalnetworkeffectssuchasbandwidth,biterrorrate,lossrate,etc.canalsobeconfiguredandapplied.Inaddition,thevirtualizedEthernetinterfacecanbeeasilymappedtoaphysicalEthernetinterfaceon the emulation host so that all traffic going through the physical port would betransmitted to the emulation environment. Thus, allowing real time communicationbetweentheexternalphysicalnetworksandthevirtualnodesinsidearunningemulation.

Byusingthevirtualizedinterfacesoneachemulatedhost,thecommunicationnetworkthatisemulatedondifferenthostscanthenbedirectlyconnectedwitheachotherinruntime,whichenablesthedynamicemulationofthecommunicationnetworks.Thisfeatureis used to enable the interactions and synchronization between the communicationmoduleandthepowermodule.Theconceptisthatthepowermoduleisrunningonahostphysicallyinthesamenetworkwiththecommunicationemulationhostsothatthepowermodulecanobtainandreacttothequeued-upmessagessentbyalltheemulatedvirtualnodeinrealtime.

16

3.2.5 PowerModule

ThepowermoduleinSCOREemulatesthepowerflowsanalysiswithinSmartGridandalsogivesimplementationsofpre-definedenergymodels.Thepowermodulegathersinitialpowernetworktopology,energymodelconfiguration informationandthedynamicconnection/disconnectionrequestfromservicelayertocreatethepowernetworkmodel.ThepowernetworkmoduleofSCOREisunderlinedbythefollowingqualities:

• SCORE accepts incremental model updating in computation to respond more

efficientlytothesystemstatuschanges.

• Assizeofpowernetworkincreases,distributedcomputationforpowernetworkbecomesarequirementforanefficientSmartGridemulation.Therefore,SCOREhighlightsitselfinscalabilitybyenablingtheusertoconducttheemulationinadistributedwaywhenasinglePCcannotprovideenoughcomputationcapabilities.Thepowernetworkmodelissplitintoseveralsubdomainsandeachsubdomainsiscomputedandupdatedseparatelyinparallel.Withappropriatesynchronizingamongthedifferentcomputingandupdatingprocesses,themergedresultofthepowerflowinSmartGridiscompactwithoutanylossofprecisionwhencomparedwithcentralizedcomputation.

• SCORE allows dynamic connections and disconnections ofmultiple Smart Gridinstancesrunningondifferenthostsbyonlyusingthe interfacesbetweeneachpowernetwork. The importanceofdoing this is in the casewheneachuser isunwillingtorevealtheirownSmartGridtopologydetailstoanotheruser,theycanstillconductthecombinedemulationwitheachothertoseetheimpactofexternalnetworksontheirownnetwork.

3.3 SmartGridSecurityRequirementsandObjectives

Therearedifferentfactorstoconsiderwhendiscussingcyberattacksinsmartgridsystems.Thesefactors include integrationofbi-directional communicationnetworks, incentives to attackers,socioeconomic impactoftheblackouts,etc.Basically,theattackrisk inthesmartgridsystemreliesonthreefactorsasshowninFig.2.

Formally,theriskcanbedefinedas[17]:

Risk=Assets×Vulnerabilities×Threats,

17

Fig.2.Evaluatingtherisksinsmartgridsystems[17].

Assetsarethesmartgriddevices(suchassmartmeters,renewableenergydevices,data,networkdevices,etc.).Vulnerabilitiesallowanattackertoreduceasystem’sinformationassurance,andThreatsmayleadtopotentialattackscomingfromoutsideorinsideofthesmartgridsystemswhichareassociatedwiththeexploitationofavulnerability.Therisk is theprobability thatathreatagentwillexploitavulnerabilityandtheimpactifthethreatiscarriedout.The‘Risk’intheaboveequationcanbeminimizedormadezeroifoneofthequantitiesontherightsideisminimizedormadezero.Itisthereforeimportanttonotethatassetsinsmartgridsystemscannotbezeroandalsothreatscannotbemadezerobecausetheyareoriginatingfromunknownplacesorattackers.Thus,themainaimandfocuswillbetominimizethevulnerabilitiesinthesmartgridtominimizetheoverall‘Risk’.SmartgridsecurityobjectivesshouldbetocomplywithpolicieswhileensuringinformationConfidentiality,IntegrityandAvailability,alsoknownastheCIAtriad.TheCIAtriad[18]whichisthefundamentalprincipleofsecurity isamodeldesignedtoguidepoliciesforinformationsecurityinsmartgridsystems.ItisshowninFig.3.

Fig.3.TheCIAtriadforsmartgridsecuritysystems[18].

Vulnerabilities

ThreatsSmartGridAssets

Risk

Availability

SmartGridSystems,Assets,andOperation

18

Confidentiality inthesmartgridsystemsisneededtomakesurethataccesstoinformationisrestricted to only authorized people and it is designed to prevent unauthorized access.Confidentialityisoneofthekeycomponentsofprivacy.Insmartgridsystems,privacyisoneofthemostimportantconcernstocustomers.Thisisbecauseofthevarioushomeapplianceswhichareconnectedtopowergridsforreal-timebi-directionaldatacommunicationandelectricityflowandifthisinformationfallsintothewronghands,theycanbeusedtokeeptrackofthelifestyleof thepeople,whatappliancestheyuse,whetherthepeoplearecurrentlyathome,etc.andmisusethisinformation.

Integrityofinformationinsmartgridisneededtoensuretheaccuracyandreliabilityofdata.Theinformationshouldnotbealteredinanyformorundetectedmanner.Thisfeaturesupportsthesmartgridinprovidingstrongreal-timemonitoringcapabilities.

Availabilityinthesmartgridsimplymeansthattheinformationmustbeavailabletoauthorizedparties at all times when it is needed and where ever it is needed without any securitycompromise.Powersystemsaretobeavailable100%ofthetime,thereforepreventingattackerfromimplementingablackoutusingdenial-of-service iscrucial.Additionally,Authenticityalsoplays a very important part in a smart grid systembecause it is essential tomake sure thatidentitiesofbothpartiesinvolvedincommunicationaregenuine.

InadditiontotheCIAtriad,otherspecificsecurityrequirementsforthesmartgridrecommendedbyNISTareoutlinedbelow[17],[18]:

1) Self-healing and Resilience Operations in the Smart Grid: In smart grid systems, thecommunication network is open as smart grid assets are distributed over largegeographicalarea.Therefore,itisdifficulttoensurethateverysingledeviceinthesmartgridisinvulnerabletocyber-attacks.Becauseofthese,itisadvisableforthesmartgridnetwork to have some self-healing capability against cyber attacks. A networkadministratormustcontinuallyperformsomesortofprofilingandestimatingtomonitorthedataflowandperformpowerflowstatustodetectanyabnormalincidentsthatwillbeaproductofcyberattacks.Havingresilientdatacommunicationisveryimportanttoachieveavailabilityofdatacommunicationforpowersystemoperations.

2) Authentication and Access Control: Because we have millions of home appliancesconnectedinasmartgrid,weneedtheauthenticationprocesstoverifytheidentityofeachdeviceoruser inorder toprotect smart grid systems fromunauthorizedaccess.Likewise, access control is used in smart grid to ensure that resources in the grid areaccessedonlybytheauthorizedusers.

19

3) Communication Efficiency and Security: In order to support real timemonitoring, thesmartgridcommunicationneedstobeefficientandhighlysecuretogetherwiththeabilitytouseselfhealingcyberdefensesolutionstoprotectfromanysecurityattacks.Trade-offsbetweenthesetwoparametersshouldbeconsideredinsmartgrids.

3.4 SmartGridAttacks

TheThreecategoriesofsmartgridcyber-attacksthatwewilldiscussinthisprojectarelistedasfollows:

1. PhysicalLayerAttacks,2. DataInjectionandReplayAttacks,and3. Network-basedAttacks.

3.4.1 PhysicalLayerAttacks.

Thereareseveralformsofphysicallayerattacksandadetailedanalysisofsomeoftheattacksandtheircountermeasuresaregivenbelow[19]:

A.Eavesdropping

Wireless signals are transmitted in the airwhich is an open space and it is thereforesusceptible to eavesdropping by an attacker. Sensitive information from a smartappliance can easily be observed, and compromised through such an attack.Eavesdroppersarereadilyavailableandaffordableintoday’smarketwhichencouragessuchattacks.Onewaytoprotectagainstsuchattackistousedataencryptionsoastoprotectsomesensitiveinformationfromfallingintothehandsofanenemy.However,ifa certain pattern is illustrated by the transmitted data, a smart hackermay use thispatterntocreateawaytodecipherthemessagestransferred.Forexample,ifeveryoneinaparticularhouseisoutforvacation,theelectricityusagewilldrop.Ifthesmartmeterisinstructedtocommunicatewiththedataconcentratorunitifthelengthofthemessageto be transmitted is directly proportional to energy consumption, then a pattern ofactivityofthehousecanbegeneratedbyanattacker.

B.Jamming

Themainaimofthistypeofattackistodisturbthewirelessmediumbyjammingitwithnoisesignalssothatthesmartmeterscan’tcommunicatewiththeutilityprovider.Suchattackscanbeeitherproactivejammingorreactivejamming.

20

Theformeriswhenthejammeremitsnoisesignalscontinuouslytocompletelyblockthewirelesschannel,whilethelatteristhecasewherethejammerfirsteavesdropsontheradiochannelandlaunchestheattackonlywhensignalsaresensedonthechannel.Thisattackgivesabadresultandaffectswhenalegitimatesmartmetertriestoinitiatearealconnection.Thechannelmaybetaggedbusyforanycarriersensingdonebythelegitimatesmartmeteroritmayevenpreventitfromreceivingpacketsingeneral.Itisquitedifficultto differentiate between reactive jammer attacks that may be result from routinecommunicationsignalsandfromadversary-initiatedsignals.

C.InjectingRequests

Themaingoalofthisattackistodisrupttheregularoperationsatthehardwarelevelofdevicesinthesmartgrid.Theattackercausespacketcollisionanditissimilartoreactivejammingbecause it alsoblocks the communication channel. In injecting requests, theattacker sets the system in such a way that the channel prioritizes the attacker’scommunicationrequestwhiledenyingaccesstolegitimatedevicesinthesmartgrid.

D.InjectionAttacks

Thisattackinsertsformattedmessagesintothewirelessnetworkunliketheearliertwoattacksthatdependonfalsesignals.Thistypeofattackinvolvesanattackermimickingeitheralegitimatesenderorareceivertogetunauthorizedaccesstoawirelessnetwork.ThisattackisalsoverysimilartotheTCP-SYNflooding(denialofservice)attackwherein,thetarget'sresourcesareoverwhelmedthroughprocessingoffalsemessagesreceived.Suchanattack canbeavoided throughproviding the suitable securitymechanisms toensuremessageauthentication.

3.4.2 DataInjectionandReplayAttacks

Anotherclassofmaliciousattacksinthesmartgridisthedatainjectionandreplayattack.Falsedatainjectionattacksoccurwhenfalsifieddataisinjectedintotheneighborhoodareaobservedby thenetworkoperator.Theattacksusually target thesmartgrid infrastructure,particularlymeasurementandmonitoringsub-systemswiththeaimofmanipulatingmetersoastodeceivetheoperationandcontroloftheutilityprovider.

Messagereplayattackshappenwhenanattackergainselevatedprivilegetosmartmetersandas a result can then inject control signals into the system. For this attack to take place, theattackerneeds to firstcaptureandanalyze thedata that is transmittedbetweendevicesandsmartmeterstogainthetargetscharacteristicsofpowerusage,andthentrytofabricateand

21

injectfalsecontrolsignalsintothesystem.Themainpurposeofthereplayattackistocontrolenergybydirectingpowertoanotherlocation,andanotheraimistocausephysicaldamagetothesystem.Awell-knownexampleofsuchanattackisStuxnet.

In [20] a scheme is proposed for detecting message replay attacks in the smart grid. Thehouseholddevicesinthesmartgridaretreatedaslineartimeinvariantsystems,withthesmartmeterassignedtheroleofobservingthehouseholddevices.Thereplayattackisdefinedsimplyasamodificationtothecontrolsignalwhichiscommunicatedbyaconsumerdevicetothesmartmeter.

3.4.3 Network-BasedAttacks

Theman-in-the-middleattackisaverycommonexampleoftopologyattacksofaSmartGrid.Thisattackhappenswhenthehackercapturesnetworkdataandmeterdatafromremoteterminalunits,andthentweakpartoftheseinothertoformatandforwardthealteredversiontothecontrolcenter. Ifthesmartgrid ismissingdataalerts,theattackercansuccessfullyalterbothnetworkandmeterdataefficientlysuchthattheyareconsistentwiththe“target”topology.

Afusion-baseddefensetechniquewasproposedin[21]foridentifyingattacksinthesmartgridbasedonfeedbackreceivedfromindividualnodesinthenetwork.Throughthesupportofthenecessarycommunicationprotocol,eachnode is required tocommunicatewithacentralizedfusion center to convey their individual observations. It is highlighted in the paper, thatintentional attacksmaybe targeted toonlya specific subsetofnodesof the smartgrid, andtherefore feedback fromallnodes isessential foraccuratelydetecting theseattacks.Agametheoreticanalysisissubsequentlyprovided,wherein,theattackeristreatedasoneplayerandthedefenderasanother.Basedonthenotionthattheattackerwillintendtocompromisethemostcriticalnodes,thedefensestrategyistoensurethattimelylocalobservationbyindividualcritical nodes, and subsequent communicationof findings to the centralized fusion center, isessential.

In[22],theeffectsofDenialofService(DoS)attacksagainsttheloadfrequenciesofsmartgridswas studied. Smart grid datameasured by remote terminalswas sent to centralized controlcenters. If the communication channel between these sensors and the control center iscompromisedfromdeliveringmessagestothedestination,theDoSattackcansignificantlyaffectthesmartgridoperations.Theattackercanthenlaunchsuchanattackonthecommunicationchannelbyjammingthechannelthroughinjectingalargenumbersofpackets.

22

CHAPTERFOUR

SMARTGRIDSECURITYTESTBED

4.1 TestbedRequirements

The following requirements are necessary when configuring a testbed and they wereimplementedinoursystem:

R1 ModelingofSmartAppliance:Thisisconsideredtobeafunctionalrequirement.Forthehomeareanetworkemulation,thetestbedshouldimplementapplianceemulation.Thereisaneedformodellingsmartappliancestobeabletotestthefunctionality of such devices, not only for technical reasons such as securityassessment purposes, but also for operational reasons, such as to ensure thatsmartappliancesareabletorespondtopriceanddemandsignalstoensurethatsmartgridobjectivesandcharacteristicsarefulfilled.Oursystemmodelsdifferentappliancesinthegrid.

R2 Hardware Integration: The test bed is expected to enable actual hardwareintegration or at least provide an interface to be able to integratewith actualhardware.Thisrequirement isconsidered importantas itwillprovidearealisticimplementationofthetestbed.Usingphysicalhardwarewithinthetestbedwillenable theevaluationand testingof real timecharacteristics. This alsoenableshardware testingwithout theneed to setupandmanageahardware testbedenvironment.

R3 IP-basedcommunication: Toenabledistributeduseandremoteaccess,IPbasedcommunicationshouldbeusedbetweenallmajornodesofthetestbed.Thisisanessentialrequirementnotonlyforcorrectemulationofthecurrentgenerationofsmartgridnetworkbutalsotoenabledistributedemulation,i.e.componentsofthe test bed may be implemented and shared from geographically diversenetworkstoenablebetterutilizationofresources.Thiswouldenablenotonlyacollaborativetestbeddevelopmentandutilizationbutalsofoster innovation. IPbasedcommunicationisinherentinsmartgridtestbed,asamajorityofnetworkcommunicationpathsinactualsmartgridsarebasedonIPnetworks.Thussmartgrid networks are given greater flexibility, but also introduced to highervulnerabilitiesthatexistinIPbasednetworks.UsingIPbasedcommunicationsinsmartgridtestbedswouldalsoenabletherapidprototypingandassessmentofIPbasedattacksandvulnerabilities.

R4 GraphicalUser Interface:Agraphicaluser interface isanotherrequirementthatmaybeusefulforanimplementedtestbed.AGUIwillenablegreatereaseofuseof the testbed.Thiswill encouragegreaterparticipation,aswell asprovideaneffectivemeans to interactwith the testbed for thedesign,development, andexecutionoftestscenarios.

23

4.2 TestbedConfigurationandSetup

The testbed for simulating the cyber securityattackwas implementedona Linux-basedhostrunning a virtual machine using Oracle VirtualBox. The installation details for the OracleVirtualBoxareavailableintheAppendix.Oneoftheprimaryareasoffocusduringthesetupofourtestbedwastoemployopensourceandfreelyavailablesoftwaretools.

ThetestbedconsistsoftwoLinux-basedvirtualmachines,oneisdedicatedtotheattackerwhilethesecondsystemservesasthetargetmachine.TheattackersystemrunstheKaliLinuxwhichisaDebian-derivedLinuxdistributiondesignedfordigital forensicsandpenetrationtesting.TheTargetmachineontheotherhandrunstheUbuntuLinuxwhichisaDebian-basedLinuxoperatingsystemforpersonalcomputers,smartphonesandnetworkservers.TheInstallationstepsforbothLinuxmachinescanbefoundintheAppendixsection.

Onthetargetmachine,wecreatedaSmartGridPowerDistributionnetworkusingScore.Scorewas installed in the Ubuntu-based target machine to also show the result of distributedemulationanddynamicconnection/disconnection involved inasmartgrid.Thetargetsystemnamed “target@ubuntutarget”was given amemory of 1.2GB, using processor Intel Core i5-4200UCPU@1.60GHzandhasa64-bitOSArchitecturerunningontheUbuntu15.10version.

We generated a smart grid networkwith one power plant and three houses. Each house isconnectedwith thepowernetwork throughan intelligentpower switch,which servesas theenergycontrolcenterforthehouse.Eachpowerswitchwithineachhouseisconnectedtofourdifferenttypesofnodes:

§ Loads(representedbywasher)§ PowerStorage(representedbybattery)§ Renewableresources(representedbywindturbineandsolarpanel)

Fig.4RunningScore

24

Inordertobeginsettingupthesmartgridnetworkonthetargetmachine,wehavetostarttheSCORE services. This automatically runs the score-daemon program and starts the service.Afterwards,wegointothedirectorywherescoreisinstalledandlaunchtheSCOREGUI.AllthesestepscanbeseeninFig.4above.

The smart grid network was initially set up with 16 nodes. Each node’s new interfaces areautomaticallyassignedIPaddresseswithintherange10.0.0.0/8andalsosupportIPv6address.Virtual networks generally require some form of routing in order to work, for example topopulate routing packets from one subnet to another. Therefore, Score builds OSPF routingprotocolconfigurationsbydefault.TheOSPFprotocolismadeavailablefromtheQuaggaopensourceroutingsuite.

Fig.5SmartGridPowerDistributionNetworkset-uponTargetMachine

25

Figure5aboveshowsallthenodesinthesmartgridnetwork.Eachnodeisconnectedthroughawirednetwork,whichiscreatedusingtheLinkTool,whichallowsdrawinglinksbetweennodes.ThisautomaticallydrawsagreenlinerepresentinganEthernetlinkandcreatesnewinterfacesonnetwork-layernodes.DoubleclickingoneachlinkwillinvokethelinkconfigurationdialogboxwherewecanchangetheBandwidth,Delay,Lossandduplicaterateparametersforthatlink.Thefollowing services zebra,OSPFv2,OSPFv3, vtysh, and IPForward for IGP link-state routingarerunningonallnodes.

Fig.6.ScreenshotshowingtheThroughputoneachlinkwhenrunning.

The rateofall successfulmessagesdeliveredover thecommunication linkalsoknownas thethroughput can be displayed on each link as seen in Fig.6. TheWidget Throughput in scoredisplaysthethroughputmeasureinkilobit-per-secondoneachlink.

26

Totestandverifythecommunicationbetweenallnodesinthesmartgrid,weusetheping–Rcommand.Weissuethecommandfromnode4whichisapowerswitchinoneofthehousestocontactnode-20whichisthepowerplantsupplyingenergytothegrid.Thepowerswitchhastheaddress10.0.15.2andthenode-4addressis10.0.1.1.WeDoubleclickonanodetopopoutaLinuxterminalwindow,justlikeaccessingarealLinuxdevice.Fig.7showstheresultoftheroutecommandfromtheterminalofthepowerswitchinthehouseandalsotheresultoftheping–Rcommand.

Fig.7Showingtheconnectivitytestbetweenallnodesinthesystem

27

4.3 AttacksontheSmartGridTestbed

ThemainaimofthisprojectistoenablethesimulationofattacksfromtheKaliLinuxplatformtothetargetUbuntusystemwhich is runningthesmartgridpowerdistributionnetwork.AGREtunnelwascreatedtoenabletheconnectionbetweentheattackersystemandthetargetsystem.Thetunnelwasonarouterconnectedtonode-3inthesmartgridonthetargetsystem.ThisGREtunnel connection enables the outside network connection of the attacker to have fullconnectivitytoallthecomponentsinthesmartgrid.

Fig.8FisheyeTopologyViewoftheSmartGridNetwork

Beforewestartwiththeattack,weuseanetworkdiscoverytoolcalledNmap toexplorethenetworkweareabouttotarget.ThistoolispreinstalledonKali-LinuxandisusefulingatheringimportantinformationaboutanetworklikeIPaddresses,hostdetails,services,portdetailsandmuch more. This tool will enable us to map out the network and understand the networktopology.Fig.8showsaviewofthetopologyofthetargetsystemusingthefisheyeviewinNmap.

28

HereistheendoftheNmapoutputinFig.9.Itshowsthetotalnumberofhostsup,theservicesrunningoneachdeviceandalotofotherusefulinformation.

Fig.9NmapOutput

Asdiscussedearlier,therearemanyattacksthatcanaffectthesmartgridsystem.Asanexampleandcasestudy,inthisprojectwearegoingtolaunchadenialofservice(DoS)attackagainstthepowergrid.OneoftheworstattacksagainstasmartgridistheDoSattack,asasuccessfulattackcanseverelylimitorpreventaccesstoimportantdevicesorservices.WelaunchtheDoSonthepowerplantwhichsuppliesenergytothegrid.Bydoingthis,thesmartgridiscompromisedbyeventuallyshuttingdownthelinkthatprovidestheenergyandbroadcaststherealtimeenergypricestoalltheintelligentpowerswitchesinthegrid.

Fig.10DoScommandusinghping3

29

OurDoSattackwasperformedusingafreepacketgeneratorandanalyzertoolfortheTCP/IPprotocolcalledhping3tool.Fig.10showsthelineofcommandusedtoperformtheDoSattack.Thehping3toolispre-installedonKaliLinuxlikemanyothertools.Thesyntaxofthecommandisexplainedasfollows:

§ -c100000=Numberofpacketstosend.§ -d120=Sizeofeachpacketthatwassenttotargetmachine.§ -S=SendSYNpacketsonly.§ -w64=TCPwindowsize.§ -p2601=Destinationport(2601beingtheTCPportanalyzedfromNmap).§ --flood=Sendpacketsasfastaspossible,withouttakingcaretoshowincomingreplies.

Floodmode.

Fig.11ScreenshotoftheDoSattack

30

Following the DoS attack initiated from the attacker’s Kali Linux box, we can see from thescreenshot in Fig. 11 theeffectof theattackoneach link leading to the targetwith address10.0.15.2.TheThroughputontheselinksjumpedfrom8.7kpbsinFig.6toabout8700kbpsduringtheattack.ASYNFloodtypeofDoSwasusedinthisattack.TCPSYNfloodalsoknownasSynfloodisatypeofDoSattackthatexploitspartofthenormalTCPthree-wayhandshaketoconsumeresources on the targeted system and render it unresponsive. In this case it renders thepowerplantunresponsive.ThenormalTCPthree-wayhandshakefollowsthisstep:

1. ClientrequestsconnectionbysendingSYN(synchronize)messagetotheserver.2. ServeracknowledgesbysendingSYN-ACK (synchronize-acknowledge)messageback to

theclient.3. ClientrespondswithanACK(acknowledge)message,andtheconnectionisestablished.

IntheSYNfloodattack,theattackersystemsendsrepeatedSYNpacketsusinghping3toknownport2601onthetargetsystem.Thetarget,unawareoftheattack,receivesmultiple,apparentlylegitimate requests toestablish communication. It responds toeachattemptwithaSYN-ACKpacketfromtheopenport.

Fig.12.ApingfromanodetothetargetduringtheDoSattack

31

TheattackerdoesnotsendtheexpectedACKwhilethepowerplantunderattackstillwaitsforacknowledgementofitsSYN-ACKpacketforsometime.Duringthistime,thepowerplantcannotclosedowntheconnectionbysendinganRSTpacket,andtheconnectionstaysopen.Beforetheconnection can time out, another SYN packet will arrive from the attacker. This leaves anincreasingly large number of connections half-open. Eventually, as the target’s connectionoverflow tables fill, service to legitimate nodes in the smart grid distributionwill be denied,leadingtothetargetbecomingunreachable.Averificationofoursuccessfulattackcanbeseenin Fig.12. Herewe launch aping fromnode-4 with address10.0.1.2 to the powerplantwithaddress10.0.1.15rightbeforeandaftertheDoSattack.

32

CHAPTERFIVE

CONCLUSION

Inthisreport,wediscussedaboutsmartgridandvariousattacksaffectingit.Wealsodesigned,implementedandattackedasimulatedsmartgridpowersystemusingaformofDenialofService.A smart grid infrastructure attack does not affect the consumers alone, rather, the utilityproviders'businessaswell.

Extensiveresearchworkisstillneededtoensurethatthesmartgridishighlysecureagainsttheadversarialthreat,withoutaffectingtheconsumerconfidenceintheutilityprovider,andwithoutsignificantlyinconveniencingtheconsumersthroughdeploymentofstrongsecuritycontrols.

Thetestbedwillprovideaplatformforresearcherstoexecutevariousattackscenariosandstudytheirimpactonsmartgridnetworks.Thiswouldallowdesigningadequateprotectionforsmartgridinfrastructurenetworks.

OnefuturedirectionwouldbeintegratingSCOREwithrealhardwaretestbedtocreateauniformcyber-physicalanalysisplatform.

33

APPENDIXA

INSTRUCTIONS

Theinstructionsprovideastep–by–stepguidetowhatcommandswhereexecuted.Thisincludesinstructions for the installation, configuration and execution of components of the test bedimplementation.

A.1SCORE

SCORE isbuiltbasedonCORE,anopensourcecommunicationnetworkemulator fromNavalResearch Laboratory. TCL/TKGUIand the communicationnetwork componentareoriginatedfrom IMUNES project from theUniversity of Zagreb. The Linux virtualization and the pythonframeworks for Linux namespace and communication network have developed by BoeingResearchandTechnology’sNetworkTechnologyresearchgroupsince2004.

A.1.1

1. tarxvzfSCORE1.0.tar.gz2. cdSCORE1.03. make4. sudomakeinstall

A.2OracleVirtualbox

VirtualBox is a cross-platform virtualization application. It is deceptively simple yet also verypowerful.Itcanruneverywherefromsmallembeddedsystemsordesktopclassmachinesallthewayup todatacenterdeploymentsandevenCloudenvironments.Youcan install and runasmanyvirtualmachinesasyoulike–theonlypracticallimitsarediskspaceandmemory.

A.2.1

1. sudoapt-getinstalldkms2. sudodpkg-ivirtualbox-5.0_5.0.16_Ubuntu_raring_i386.deb3. sudo./VirtualBox.runinstall4. ./VirtualBox.run--keep–noexec5. sudomkdir/opt/VirtualBox6. sudotarjxf./install/VirtualBox.tar.bz2-C/opt/VirtualBox7. make

34

8. sudomakeinstall9. makeinstall10. cp/opt/VirtualBox/vboxdrv.sh/sbin/rcvboxdrv11. mkdir/etc/vbox12. echoINSTALL_DIR=/opt/VirtualBox>/etc/vbox/vbox.cfgand,forconvenience,createthe

followingsymboliclinks:13. ln-sf/opt/VirtualBox/VBox.sh/usr/bin/VirtualBox14. ln-sf/opt/VirtualBox/VBox.sh/usr/bin/VBoxManage15. ln-sf/opt/VirtualBox/VBox.sh/usr/bin/VBoxHeadless16. ln-sf/opt/VirtualBox/VBox.sh/usr/bin/VBoxSDL

A.3KALILINUX

KaliLinux isaDebian-derivedLinuxdistributiondesignedfordigital forensicsandpenetrationtesting.KaliLinuxispreinstalledwithover300penetration-testingprograms.KaliLinuxcanrunnativelywheninstalledonacomputer'sharddisk,canbebootedfromaliveCDorliveUSB,oritcanrunwithinavirtualmachine.ItisasupportedplatformoftheMetasploitProject'sMetasploitFramework,atoolfordevelopingandexecutingsecurityexploits.

A3.1

1. DownloadKaliLinux(https://www.kali.org/downloads/)2. BurnTheKaliLinuxISOtoDVDorImageKaliLinuxLivetoUSB.3. EnsurethatyourcomputerissettobootfromCD/USBinyourBIOS.4. Boot your system with your chosen installation medium and follow on screen

instructions.

A.4UBUNTULINUXUbuntuisaDebian-basedLinuxoperatingsystemanddistributionforpersonalcomputers,smartphonesandnetworkservers.ItusesUnityasitsdefaultuserinterface.ItisbasedonfreesoftwareandnamedaftertheSouthernAfricanphilosophyofubuntu(literally,"human-ness"),whichoftenistranslatedas"humanitytowardsothers".A4.1

1. DownloadUbuntufromtheofficialdownloadpage(http://www.ubuntu.com/download)2. BurnUbuntuLInuxISOtoDVDorImageUbuntuLinuxLivetoUSB.3. EnsurethatyourcomputerissettobootfromCD/USBinyourBIOS.4. Boot your system with your chosen installation medium and follow on screen

instructions.

35

REFERENCES

[1] SmartGrids,E.T.P."StrategicDeploymentDocumentforEurope’sElectricityNetworksoftheFuture."EuropeanTechnologyPlatformSmartGrids.Brussels(2008).

[2] Framework, N. I. S. T. "Roadmap for smart grid interoperability standards."NationalInstituteofStandardsandTechnology(2010).

[3] SmartGrids, E. T. P. "SmartGrids SRA 2035 Strategic Research Agenda Update oftheSmartGridsSRA2007fortheneedsbytheyear2035."(2012).

[4] Framework,N.I.S.T."RoadmapforSmartGridInteroperabilityStandards.NISTRelease3.0."NISTSpecialPublication1108R3(2014).

[5] Korea'sJejuIslandSmartGridTest-bed.Available:http://www.smartgrid.or.kr/10eng31.php[6] Stimoniaris,Dimitrios,etal."Smartgridsimulationusingsmall-scalepilotinstallations.-

experimental investigation of a centrally-controlledmicrogrid." PowerTech, 2011 IEEETrondheim.IEEE,2011.

[7] Song,Wen-Zhan,etal."Awirelesssmartgridtestbedinlab."WirelessCommunications,IEEE19.3(2012):58-64.

[8] Hahn, Anna, et al. "Cyber-physical security testbeds: Architecture, application, andevaluationforsmartgrid."SmartGrid,IEEETransactionson4.2(2013):847-855.

[9] Guo, Ying, et al. "A simulator for self-adaptive energy demand management." Self-Adaptive and Self-Organizing Systems, 2008. SASO'08. Second IEEE InternationalConferenceon.IEEE,2008.

[10] Molderink, Albert, et al. "Simulating the effect on the energy efficiency of smart gridtechnologies."WinterSimulationConference.WinterSimulationConference,2009.

[11] Narayan,Amit."GridSpice-AVirtualTestBedforSmartGrid."(2012).[12] Godfrey,Tim,etal. "Modelingsmartgridapplicationswithco-simulation."SmartGrid

Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE,2010.

[13] Mallouhi, Malaz, et al. "A testbed for analyzing security of SCADA control systems(TASSCS)."InnovativeSmartGridTechnologies(ISGT),2011IEEEPES.IEEE,2011.

[14] Mets, Kevin, et al. "Integrated simulation of power and communication networks forsmartgridapplications."ComputerAidedModelingandDesignofCommunicationLinksandNetworks(CAMAD),2011IEEE16thInternationalWorkshopon.IEEE,2011.

[15] Kushner,David."Therealstoryofstuxnet."Spectrum,IEEE50.3(2013):48-53.[16] Ahrenholz, Jeff,etal."CORE:Areal-timenetworkemulator."MilitaryCommunications

Conference,2008.MILCOM2008.IEEE.IEEE,2008.[17] Framework,N.I.S.T."RoadmapforSmartGridInteroperabilityStandards,Release1.0,

OfficeoftheNationalCoordinatorforSmartGridInteroperability.http."(2010).[18] TheSmartGrid InteroperabilityPanel–CyberSecurityWorkingGroup,“Guidelinesfor

smartgridcybersecurity”,NISTIR7628(2010),pp1–597.[19] Wang,Xudong,andPingYi."Securityframeworkforwirelesscommunicationsinsmart

distributiongrid."SmartGrid,IEEETransactionson2.4(2011):809-818.[20] Tran,Thien-Toan,Oh-SoonShin,andJong-HoLee."Detectionofreplayattacksinsmart

grid systems."Computing,Management and Telecommunications (ComManTel), 2013InternationalConferenceon.IEEE,2013.

36

[21] Chen, Pin-Yu, Shin-Ming Cheng, and Kwang-Cheng Chen. "Smart attacks in smart gridcommunicationnetworks."CommunicationsMagazine,IEEE50.8(2012):24-29.

[22] Liu,Shichao,XiaopingP.Liu,andAbdulmotalebElSaddik."Denial-of-service(DoS)attacksonloadfrequencycontrolinsmartgrids."InnovativeSmartGridTechnologies(ISGT),2013IEEEPES.IEEE,2013.

[23] Tan, Song, et al. "Score: Smart-grid common open research emulator." Smart GridCommunications (SmartGridComm),2012 IEEEThird InternationalConferenceon. IEEE,2012.