example bearing calculation

Embed Size (px)

DESCRIPTION

mechanical engineering

Citation preview

  • 1

    PROGRAMME: BSc in MECHANICAL ENGINEERING

    COURSE: Machine Elements I - AMEM 316

    ACADEMIC YEAR: 20013-14

    INSTRUCTOR: Dr. Antonios Lontos

    DATE: 06/12/2013

    Assignment 1:

    SHAFT DESIGN

    Prepared by:

    Aaaa Aaaa

    Reg. Num.:

    NICOSIA - CYPRUS

  • 2

    TABLE OF CONTENTS

    Contents Assignment 1: .......................................................................................................................... 1

    INTRODUCTION ......................................................................................................................... 4

    The purpose of this assignment is to : .................................................................................. 4

    Data : ..................................................................................................................................... 4

    Schematical illustration of assembly ..................................................................................... 5

    1. General calculations for shaft 1 ......................................................................................... 6

    Calculate angular velocity for shaft 1 .................................................................................... 6

    Calculate the shaft 1 input torque ........................................................................................ 6

    Calculate the belt tension...................................................................................................... 6

    Calculate the tangential and radial forces of gear 1 ...................................................... 7

    2. Shaft 1 forces and reactions .............................................................................................. 8

    3. Bending moment and torque diagrams for shaft 1 ........................................................... 9

    4. Determine the smallest safe diameter ............................................................................ 12

    5. General calculations for shaft 2 ....................................................................................... 13

    6. Shaft 2 forces and reactions ............................................................................................ 14

    7. Bending moment and torque diagrams for shaft 2 ......................................................... 15

    8. Determine the smallest safe diameter ............................................................................ 18

    9. Calculations of the keys and keyways ............................................................................. 19

    10. Calculations of the critical speed of rotation for shaft 2 ............................................. 23

    11. Attachments ................................................................................................................ 25

    12. References ................................................................................................................... 26

    13. Drawings ...................................................................................................................... 26

  • 3

    Assignment No 1: Shaft Design

    Figure 1 shows a simple gear box with various machine elements and

    components. Shaft No. 2 is rotating through gears by shaft No. 1 which is

    rotating through two pulleys by an electric motor. The transmission shaft No. 1

    stands on two bearings and the rotational speed is transfer by the belt. The

    two shafts are made of hot-rolled alloy steel with yield strength y= 500 MPa

    and uts= 1200 MPa. The belt transmits (a) 14,7KW of power at (b) 1700

    rpm. The belt is prestressed with a ration of (c) 2,05 The two gears are spur

    gears with 20 pressure angle. The bearing distance for the shaft 1 is (d) L1=

    420 mm and for the shaft 2 is (e) L2= 260 mm. The output pulley has to be

    design for (f) Nb= 2 number of belts. For both shaft the safety factor is (g) SF=

    3,3

    - Data for each student: (a/a 64.)

    . CALCULATIONS

    1. Calculate the smallest safe shaft diameter for the shaft 1 and 2. Provide a free body diagram and all necessary bending moments and torque diagrams.

    2. Calculate the dimensions of the keys and the keyways at shaft 1 and 2 for the two gears and the pulleys.

    3. Determine the critical speed of rotating shaft 2. B. DRAWINGS AND ASSEMBLY

    1. Make the construction drawings of all different parts (2D) 2. Design the two shafts (shaft 1 and shaft 2 ) with all components and

    explain in details and explain in details how to make the assembly (assembly manual).

    3. Design two different cross sections of the device with all components (2D).

    4. Design the gear box with all components in 3D.

    VERY IMPORTANT NOTES

    * Estimate all dimensions that are not given.

    ** Useful documents: Cover for Assignment, Drawing template example

    *** You must submit one hard copy and one pdf file with all calculations and drawings

  • 4

    INTRODUCTION

    The purpose of this assignment is to :

    Determine the smallest safe diameter for the two shafts

    using the ASME design code for transmission shafts.

    Calculate the dimensions of the keys and the keyways at

    shaft 1 and 2 for the two gears and the pulleys.

    Calculate the critical speed of rotation for shaft 2.

    Prepare the construction drawings of the device.

    Design the full 3D part and two different cress sections.

    Data :

    Power transmitted by shafts = 14,7KW

    Rotational speed of driving pulley = 1700rpm

    Pre stress belt ratio = 2,05

    Gear pressure angle = 20 deg

    Safety Factor SF or ns = 2,7

    Yield strength of shaft material = y=500 MPa

    Ultimate tensile strength of shaft material = uts= 1200 MPa

    Material of keys AISI 1020 cold drawn = y = 350 MPa

    A/A student data = 64

  • 5

    Schematical illustration of assembly

  • 6

    1. General calculations for shaft 1

    Calculate angular velocity for shaft 1

    n*Rn=s*Rs =>

    1700*100=s*80 =>

    s=2125 rpm

    Calculate the shaft 1 input torque

    Torque = power/ angular velocity

    Tq1=14700w/222,53= 66,06 Nm

    Calculate the belt tension

    Belt ratio: 2,05

    Pulley 2 radius: 0,08m

    T1=2.05*T2

    Tq1=2,05*T2*R-T2*R

    66,06=2,05T2*0,08-0,08*T2

    T2=66,06/0,084

    T2=786,43 N

    And

    T1=1612,2 N

  • 7

    Calculate the tangential and radial forces of gear 1

    Radius of gear 1= Rgear1=0,120m

    The tangential force is given by:

    Ft=torque/ Rgear1=66,06N/0,120m =>

    Ft=550,5N

    The radial force is given by:

    Fr=Ft*tan20o= 550,5N*tan20o =>

    Fr=200,37N

  • 8

    2. Shaft 1 forces and reactions

    Free body diagram shaft1

    Calculating the reactions on z-x plane

    By taking moments at point A

    550,5N*130mm+R2z*420=2398,63*570

    R2z=3084,9N

    By summation of forces z-x plane

    fz=0

    R1z+2398,63=550,5+3084,9

    R1z=1236,7N

  • 9

    Calculating the reactions on y-x plane

    By taking moments at point A

    200,37*130=R2y*420

    R2y=62,02N

    By summation of forces y-x plane

    fy=0

    200,37-62,02-R1y=0

    R1y=138,35N

    3. Bending moment and torque diagrams for shaft 1

    Moment diagram in z-x plane

    The bending moment at B and C in Z-X plane are given by:

    Mb=-R1z*0,13=1236,7*0,13=-160,38Nm

    Mc=-R1z*0,42+Ft*0,29=-519,414+159,645=-359,77Nm

    A B C D

    130mm 290mm 150mm

    R1z=1236,7 N

    Ft=550,5 N R2z=3084,9 N

    T1+T2=2398,63 N

    Mb=-160,38 Nm

    Mc=-359,77 Nm

  • 10

    Moment diagram in y-X plane

    The bending moment at B and C in Y-X are given by:

    Mb=-R1y*0,13=-138,35*0,13=-18Nm

    Mc=R1y*(0,13+0,29)+Fr*0,29=-138,35*0,42+200,37*0,29

    Mc=58,1073-58,107=0,0003Nm

    A B C D

    130mm 290mm 150mm

    R1y=138,35 N

    Fr=200,37 N

    R2y=62,02 N

    Mb=-18 Nm

  • 11

    Torque diagram

    The resultant moment at b is

    Mb=Mbz2+Mby

    2=(-160,38)2+(-18)2=161,39Nm

    The moment at point C is:

    Mc=Mcz2+Mcy

    2=(-359,77)2+(0,0003)2=359,77Nm

    As seen from the bending moment diargams the maximum moment occurs at

    point C at the bearing and has a value of 359,77Nm

    The torque is constant (66,06Nm) between points B and D. The critical point

    of the shaft is at point C.

    Mx=359,77Nm Torque=66,06Nm

    A B C D

    130mm 290mm 150mm

    Tx(Nm)

    X(m)

    Tq=66,06

  • 12

    4. Determine the smallest safe diameter Calculation of the endurance limit e for shaft 1

    Data: ns=3,3 , y=500pa , Mc=359,77Nm , Tc=66,06Nm , uts=1200Mpa

    e=Ka*Kb*Kc*Kd*Ke*Kf*Kg* e

    e=0,504* uts=0,504*1200=604,8Mpa

    Ka=surface factor (hot rolled steel)

    Ka=a* utsb=57,7*1200-0,718=0,35

    Kb=size factor

    Kb=(d/7,62)-0,1133=(47/7,62)-0,1133=0,8134

    Kc=reliability, 90%

    Kc=0,897

    Kd=temperature factor

    Kd=1

    Ke=duty cycle

    Ke=1

    Kf=fatigue stress

    Kf=0,63

    Kg=various

    Kg=1

    e=0,35*0,856*0,897*1*1*0,63*1*0,604,8

    e=97,3Mpa

    The smallest safe diameter for shaft 1 is given by

    (

    )

    =0,050m

    The smallest safe diameter for shaft1 is d=50mm

  • 13

    5. General calculations for shaft 2

    Calculate angular velocity for shaft 2

    g1*Rg1=g2*Rg2 =>

    1700*0,12=s*0,08 =>

    g2=3187,5 rpm

    Calculate the shaft 2 input torque

    Torque = power/ angular velocity

    Tq1=14700w/333,79= 44,04 Nm

    Calculate the tangential and radial forces of gear 2

    The tangential and radial forces are equal and opposite to the ones on gear 2

    Ft=550,5N

    Fr=200,37N

  • 14

    6. Shaft 2 forces and reactions

    Free body diagram shaft 2

    Calculating the reactions on z-x plane

    By taking moments at point B

    -550,5N*130mm+R2z*260mm=0

    R2z=275,25N

    By summation of forces z-x plane

    fz=0

    R1z-Ft+R2z=0

    R1z=550,5-275,25

    R1z=275,25N

  • 15

    Calculating the reactions on y-x plane

    By taking moments at point B

    -200,37*130=R2y*260

    R2y=100,18N

    By summation of forces y-x plane

    fy=0

    -200,37+100,18+R1y=0

    R1y=100,19N

    7. Bending moment and torque diagrams for shaft 2

    The bending moment at B and C in Z-X plane are given by:

    Mb=-550,5*0,13+275,25*0,26=0Nm

    Mc=R1z*0,13=275,25*0,13=35,8Nm

    Moment diagram in Z-X plane

    A B C D

    130mm 130mm 130mm

    Mz(Nm)

    R1z=275,25 N

    Ft=550,5 N

    Mc=35,8 Nm X(m)

    R2z=275,25N

  • 16

    The bending moment at C in Y-X are given by:

    Mb=100,18*0,26-200,37*0,13=0Nm

    Mc=R1y*0,13=13,025Nm

    A B C D

    130mm 130mm 130mm

    Mz(Nm)

    R1y100,19 N

    Ft200,37 N

    Mc=13,025 Nm X(m)

    R2y=100,18 N

  • 17

    Torque diagram

    The resultant moment at b is

    Mb=Mbz2+Mby

    2=(0)2+(0)2=0Nm

    The moment at point C is:

    Mc=Mcz2+Mcy

    2=(35,8)2+(13,025)2=38,1Nm

    As seen from the bending moment diargams the maximum moment occurs at

    point C at the gear and has a value of 38,1Nm

    The torque is constant (44,04Nm) between points A and C. The critical point

    of the shaft is at point C.

    Mx=38,1Nm Torque=44,04Nm

    A B C D

    130mm 130mm 130mm

    Tx(Nm)

    R1z=275,25 N

    Tq44,04 Nm

    X(m)

    R2z=275,25N

  • 18

    8. Determine the smallest safe diameter Calculation of the endurance limit e for shaft 2

    Data: ns=3,3 , y=500pa , Mc=38,1Nm , Tc=44,04Nm , uts=1200Mpa

    e=Ka*Kb*Kc*Kd*Ke*Kf*Kg* e

    e=0,504* uts=0,504*1200=604,8Mpa

    Ka=surface factor (hot rolled steel)

    Ka=a* utsb=57,7*1200-0,718=0,35

    Kb=size factor

    Kb=(d/7,62)-0,1133=(25/7,62)-0,1133=0,87405

    Kc=reliability, 90%

    Kc=0,897

    Kd=temperature factor

    Kd=1

    Ke=duty cycle

    Ke=1

    Kf=fatigue stress

    Kf=0,63

    Kg=various

    Kg=1

    e=0,35*0,7405*0,897*1*1*0,63*1*0,604,8

    e=104,56Mpa

    The smallest safe diameter for shaft 1 is given by

    (

    )

    =0,023m

    The smallest safe diameter for shaft2 is d=23mm

  • 19

    9. Calculations of the keys and keyways Keys are used to secure the pulleys and gears on the shafts. They are used

    to transmit the torque from the shafts to the rotating elements. The size of the

    keys depends on the shaft diameter and is taken form the British Standard

    Metric Keyways for Square and Rectangular Parallel Keys table. They can fail

    from shear and from bearing.

    Shear stress calculation

    Tdesign=P/As

    P=T/0,5d=2T/d

    As=b*l , Tdesign=2T/dbl

    To avoid failure due to shear

    Tdesign 0,4Sy/ns

    Bearing stress calculation

    Failure due to compressive or bearing stress

    The compression or bearing area of the keys is

    Ac=l*h/2 , design=P/Ac=2T/0,5*dlh=4T/dlh

    To avoid failure due to compressive or bearing stress:

    design 0,9*Sy/ns

  • 20

    Calculation of the key and the keyway for pulley 2 on shaft 1

    Shaft dia= d=51mm

    Torque= T=66,06Nm

    Key yield strength y=350Mpa

    Key size (mm)= 30x16x10

    Keyway size (mm)=30x16x6(depth) (4,3 hub)

    A. Failure due to shear

    Tdesign=2*66.06/0,051*0,030*0,016=5,4Mpa

    ns=0,4*Sy/Tdesign=0,4*350/5,4=25,9

    B. Failure due to bearing

    design=P/Ac=4*66,06/0,051*0,03*0,01=17,3Mpa

    nS=0,9*Sy/design= 0,9*350/17,3=18,2

    Calculation of the key and the keyway for gear 1 on shaft 1

    Shaft dia= d=60mm

    Torque= T=66,06Nm

    Key yield strength y=350Mpa

    Key size (mm)= 38x18x11

    Keyway size (mm)=38x18x7(depth) (4,4 hub)

    A. Failure due to shear

    Tdesign=2*66.06/0,06*0,038*0,018=3,22Mpa

    ns=0,4*Sy/Tdesign=0,4*350/3,22=43,5

  • 21

    B. Failure due to bearing

    design=P/Ac=4*66,06/0,06*0,038*0,011=10,5Mpa

    nS=0,9*Sy/design= 0,9*350/10,5=30

    Calculation of the key and the keyway for pulley3 on shaft 2

    Shaft dia= d=24mm

    Torque= T=44.04Nm

    Key yield strength y=350Mpa

    Key size (mm)= 18x8x7

    Keyway size (mm)=18x8x4(depth) (3,3 hub)

    A. Failure due to shear

    Tdesign=2*44.04/0,024*0,018*0,006=34Mpa

    ns=0,4*Sy/Tdesign=0,4*350/34=4,12

    B. Failure due to bearing

    design=P/Ac=4*44,04/0,024*0,018*0,007=58,25Mpa

    nS=0,9*Sy/design= 0,9*350/10,5=5,41

  • 22

    Calculation of the key and the keyway for gear 2 on shaft 2

    Shaft dia= d=34mm

    Torque= T=44.04Nm

    Key yield strength y=350Mpa

    Key size (mm)= 26x10x8

    Keyway size (mm)=26x10x5(depth) (3,3 hub)

    A. Failure due to shear

    Tdesign=2*44,04/0,034*0,026*0,01=9,9Mpa

    ns=0,4*Sy/Tdesign=0,4*350/9,9=14,14

    B. Failure due to bearing

    design=P/Ac=4*44,04/0,034*0,026*0,008=25Mpa

    nS=0,9*Sy/design= 0,9*350/25=12,6

  • 23

    10. Calculations of the critical speed of rotation for shaft 2

    the calculations for the critical speed are based on the diameter of the shaft

    between points B and C. the maximum deflection is at point C.

    shaft diameter d = 35mm

    Yangs modulus of elasticity E =210000 N/mm2

    Find the resultant force at point C

    F= Ft2+Fr

    2

    F=550,52+200,372= 585,83 N

    The second moment of area of the shaft for 35mm diameter is:

    = *354/64 = 73662 mm4

    Calculation of the maximum deflection at point C

    The shaft at boints B and D behaves like a simply supported beam.

    The maximum deflection is given by:

    Calculation of the critical speed of rotation

    The critical speed is given by:

  • 24

    The critical speed in RPM is given by:

    The critical speed of rotation for shaft 2 is 7965 RPM

    So the critical rotational speed of shaft 2 is much larger than the actual.

  • 25

    11. Attachments

  • 26

    12. References

    1) Shingleys mechanical engineering design eighth edition 2008 by

    Richard G.

    2) Fundamentals of machine elements second edition 2006 by

    Hamrock, Shmid and Jacobson

    3) Mechanical design second edition 2004 by Peter Childs

    4) British standard metric keyways for square and rectangular

    parallel keys

    5) Solid works gears and pulleys libraries

    6) Roymech .co.uk tables for keys and keyways.

    13. Drawings

  • 27

  • 28

  • 29

  • 30

  • 31

  • 32

  • 33

  • 34

  • 35

  • 36

  • 37

  • 38

  • 39

  • 40

  • 41

  • 42

  • 43

  • 44

  • 45

  • 46

  • 47

  • 48

  • 49

  • 50

  • 51

  • 52

  • 53

  • 54

  • 55

  • 56

  • 57

  • 58

  • 59

  • 60

  • 61

  • 62

  • 63

  • 64

  • 65

  • 66

  • 67