9
Evolutionary History of Microbial Ecosystem Hiroyuki YAMAMOTO Marine Ecosystem Research Department, JAMSTEC Natushima 2-15, Yokosuka, Kanagawa 237-0061, Japan TEL: 046-867-9580; FAX: 046-867-9525;E-mail: [email protected] (Received 7 April, Accepted 24 May, 2004) Abstract The rRNA-gene phylogeny of modern life revealed possible evolutionary history of microorganisms, and suggested their ancestral organism came from thermal environments. If the assumption which raised from the gene sequences indicates right direction of life evolution, it must correspond with geological clues, such as the evidences of fossil and biomaker, and the paleoecological studies. Multidisciplinary collaboration with geologists, meteologist and microbiologists recently disclose the Archean life history from the oldest sedimentary rocks and the molecular records within gene sequences. The knowledge may be still fragmentally, and some of them remains under discussion. The hypothetical history of microbial ecosystem written in this article opens after the first Earth’s biosphere established by ancestral microorganism. (Keywords) ecosystem, evolution, Earth, microbial loop

Evolutionary History of Microbial Ecosystem

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Evolutionary History of Microbial Ecosystem

Hiroyuki YAMAMOTO

Marine Ecosystem Research Department, JAMSTEC

Natushima 2-15, Yokosuka, Kanagawa 237-0061, Japan

TEL: 046-867-9580; FAX: 046-867-9525;E-mail: [email protected]

(Received 7 April, Accepted 24 May, 2004)

Abstract

The rRNA-gene phylogeny of modern life revealed possible evolutionary history of microorganisms, and

suggested their ancestral organism came from thermal environments. If the assumption which raised from the

gene sequences indicates right direction of life evolution, it must correspond with geological clues, such as the

evidences of fossil and biomaker, and the paleoecological studies. Multidisciplinary collaboration with

geologists, meteologist and microbiologists recently disclose the Archean life history from the oldest

sedimentary rocks and the molecular records within gene sequences. The knowledge may be still fragmentally,

and some of them remains under discussion. The hypothetical history of microbial ecosystem written in this

article opens after the first Earth’s biosphere established by ancestral microorganism.

(Keywords) ecosystem, evolution, Earth, microbial loop

エトウヒロコ
Viva Origino 32 (2004) 109 - 117
エトウヒロコ
©
エトウヒロコ
2004 by SSOEL Japan
エトウヒロコ
エトウヒロコ
- 109 -

微微微微生生生生物物物物生生生生態態態態系系系系のののの進進進進化化化化過過過過程程程程

山本 啓之

独立行政法人 海洋研究開発機構(JAMSTEC) 海洋生態環境研究部.

237-61 神奈川県横須賀市夏島町 2-15

TEL: 046-867-9580; FAX: 046-867-9525;E-mail: [email protected]

ははははじじじじめめめめにににに

現生の地球生物圏は、どのような歴史を経て

現在の姿を形成してきたのであろう。地球史の

痕跡は、少なくとも 30 億年は海洋が生物圏の中

心として存在していたことを示している。しか

し、その主役は単細胞微生物であり、化石の痕

跡は希薄である。

地球史をたどると、およそ 40 億年以前の地球

環境では物質レベルの反応系が生命起源に関わ

る模索を繰り返していたと考えられる。そこで

は様々な生命システムの実験が繰り返されたで

あろう。幾多の過程と試行錯誤によりエネルギ

−代謝系、高分子合成系、遺伝子情報系を統合

して自律増殖できる細胞が出現し、始原生物と

して現生につながる生物圏を形成したと考えら

れる。しかし、いつ始原生物となる微生物が出

現し、どのようにして生態系を駆動して現在の

生物圏へと機能を受け渡してきたかは、様々な

傍証から類推するしかない。進化系統解析、化

石や堆積岩の解析、古環境解析、さらに惑星形

成モデルによる予測などが、この仮説検証には

求められる。この小論では、地球生物圏の歴史

において微生物生態系がどのように進化してき

たのかを現在の知見に基づいて推定してみたい。

分分分分子子子子進進進進化化化化のののの系系系系統統統統樹樹樹樹かかかからららら読読読読みみみみ取取取取るるるる

微生物の進化系統は恣意的な分類体系により

推定されていた。この状況は、木村資生により

「分子進化中立説(Neutral Theory of Molecular

Evolution)」が確立されたことで大きく改善され

た[1]。すべての生物が保有するリボソ−ムの

遺伝子が進化系統を類推する基準になりうるこ

とが木村らにより提示され、それ以来、代表的

な生物種の分子進化系統樹が遺伝子の塩基配列

により算出され、これに対して様々な検証が実

施されてきた。特に、タンパク合成に関わる 16S

rRNA と 18S rRNA の遺伝子による分子進化の系

統樹(Fig 1)は、生物進化系統解析の基準とし

て広く利用されている[2],[3]。

遺伝子の分子進化による系統樹では、化石系

統樹で示される絶滅種との系統関係を無視せざ

るをえない。しかし、現生の生物から近縁性を

算出するため、系統の基本的な生理生態が明ら

かである。生物の基本生理であるエネルギ−獲

得系をタンパク合成系の rRNA 遺伝子進化系統

の序列に重ねると、最初に現れてくるのは化学

合成である(Fig 2)。その後に高分子有機物分解、

光合成の系統が続いている。

原核生物の系統樹では、細菌と古細菌の分岐

点の近傍、すなわち始原生物に近縁な系統群を

好熱性菌種が占めている(Fig 1)。この系統樹の

結果では、好熱性化学合成細菌の Aquifex-

Hydrogenobacter 群が現生の生物種における最古

の系統と考えられる[4]。彼らは水素、硫黄、

硫化水素をエネルギー源とし、有機物からエネ

ルギ−を獲得する系は持たない。

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 110 -

Fig. 1. Phylogenetic tree of small subunit rRNA gene sequences from modern organisms.The rRNA gene phylogeny shows that the modern organisms could be classified into two major cell types (Prokaryotesand Eukaryotes) and three kind of domain (Bacteria, Archaea, Eukaya). The traditional five kingdoms system(Monera, Protista, Fungi, Plants, and Animals) have been changed. The tree also showed that the oldest cells adjacentclade to the progenote were hyperthermophiles.

Fig. 2. Evolutionary history of energy yielding systems constructed from the tree of rRNA gene phylogeny.Energy yielding is a principle to maintain the life functions. The evolution of energy yielding system which appearedon the microbial phylogeny probably reveals a correspondent with environmental transformation occurred in the Earthhistory.

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 111 -

!"#

$%&'( Calvin-Benson)CB*

+,-./012

!"3,,456$7#

89!:;<=>?@;)Cyanobacteria*

A BC?D=>?@;)Proteobacteria*2E

,F89GHI3J"K

L2EM(NOP,FQRST

$)thermophilic chemolithotroph* TCA

UVW'XYZ["TCA

\]Y^_`abcd

-!NOP,FST$

TCA efgh=ijk-

l3JXYZmnop

,qrJGW'(s5t

s6t"gNOP9u, TCA v

w^_`abcd7 TCA JxyW'

(zL|W~

WG(3Jg&'(s7ts8t"TCA

,F$

cdW 012$,

('W'^_`ab

cdJW' G2E&

' J3J"

,,W'

Jg&J("F

¡¢40 £¤¥! Y¦§¨©

GYBª«¬?>¬­>k]Y®¯

g& J&'("3,,

°G±²W³´ 1000m µ,´

¶·¸±²W 3J¹g&'("

WWG®ºA»±²W'¼

½¾¿@;ÀÁÂ&]ÃGBª«

¬ÄmZmÅÃÆÇȲW'( "3&

,ÇÉÊÆBª«¬Ë~]YÌW°

G®W J&'(s9t"

$,ÍÎ 38 £¤¥,ÏÐÑ]Ys10t

A $JÒg&Ó 35 £¤¥,Ï

ÐÑÔ¡g&'(s11t"WWÕ

GÖ×ØW©8ÙÕ$,uxÚ

ÛÒ3JÜÝÛ!"$Þ$Õ

ÒÓg& ß,

àáÏÐÑ,âGH,ãäåæWG

&çGG("

½D«k¬è@;,é`=èêXg&

$,ÓJÒg&ÍÎë 32-35 £

¤¥,³´ 2000m ±²W ìO³íîï

ðg& ÏÐÑñA&'( s12t

s13t"3,Ó,¢òìO³íî

óôg&õ±W F$Õ2

¾M]Y±öW'(3J¹÷W'("

Ö,ÉøùW'ÏÐѶ

ú±û,üýv !

"ÞF01ÔÝÛJg&'(

þGv$!"3,]ÃGÍÎ

Ó»G©=iD««opÓJW

'Ô¡3J"Ö8Ù,

o)jk?C«`;`GH*

$2EÖ GopvøùW AAo

pÓJW'ú±3J$ÓJJ

ÔM$°© &=iD««

!"3,=iD««]opÓ,¡

¢T$ 27 £¤¥:;<=>?@

;Ô 27 £¤¥&&W JÒg&'

(s14t"

$,$u]op2E

2E, GW'©& "

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 112 -

WWop,±²,

G©[W !pÚ2E"JÖ

!3J¹W'("$,2Eo#

¤$%Ò F ¢ò

]&'Ô !"

S()W'$*+$W "3,

(©,,$*:k?-$mg& ,

ÔW&G(,àá.1W

'p/úW ,0& $JÒg

&"$1$A&$Õ2

g& $,$2øù3

,45 G-%6g&G&çGG("

$*Ë~øù ^_`a«57

8W'p/7Ú QR59:G©

óôg&G&çGG("H3$1

WH,]ÃGÛù,$$Õ2

W ;W !p2EJF

<ò,=>ÒW'm]Ã)Fig 3*"

,$$Õ2

°GÆÇ?@ÊÆȲW¦

¾ABCDJEFGpHYIJ

KK,$$2J&"

3,('$UV^_`a«

5JW'ÞF01]Yg&L

opO³íîóôg&M³

Ú³GH,NOPW'¾A#P

Q"

¾A#UV#²,¦R

STW $$U,V(W!

¾A#UV¦àá

$$2XW("ÔW#ÛcdW

$W JW'ÔYZ GBCDÚE

FGp[&3J¼Z\Ý

ÛPn(J&"ÞF01]Y

g&Lop$*+$,5

GY $Õ2~]oG3

,-øù^H,_Kü

óô J&G("

KL?@Ë~JÔGÃ`,O5]Y

~O³3`´a,§M

³ÚGH9:G©bcì,

O³íîïðóô"da^_`a

«]Y~O³3²('Ô

Ë6!YBª«¬eÁ(' 1 ¿Lf

«¬`! Yë 20kg Ôg$_øù

F$Õ2W'(s15ts16t"

A $$, !p2ENOP

ST$h(S$iÔG2E!

3J¹g&'("3&NOP2Eh,i

,Ö×M³Ú³GH,NOP

^_`a«5JW'UVW

j!"k,Ö×^_`a«c

dlm»G©,vÚF

p!g2,ñMn<opGHÔµH,2E

JGopPq&"

µ,¥ràáÒJÞFà

á)W'( ´ì,O³íîïði

sQW $1!Y3F

$hýtuGv,$Õ2W'(

J("Ó¢ò 35£¤¥! Y

op,$Õ2%6W'( J&

"

3,$Õ2$$UF$

VÃvw$Ug& nop

)8Ù*ÏÐJW'ÞF oåg

&-W±²WG(" !p2E

F,x,nopoå

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 113 -

Ω

Fig. 3. Evolution of Earth ecosystem structure.The modern Earth ecosystem involves broad biodiversity, flexible versatility, andbiogeochemical cycles. The complexity of Earth ecosystem is appeared to be a result ofhistorical integration life evolution and geological events. The pristine ecosystem had asimple microbiological community consisted of chemolithotroph, and propagated at deep-sea hydrothermal vent area. Their primary production (organic compound of the cells)directly precipitated on sea floor, and went into geochemical sedimentation process. Theaccumulation of organic compound created novel ecological niche for organotrophs.Phototrophic bacteria expanded their habitat to shallow coastal area to gain more sunlightenergy. Double primary production, chemolithotrophic and phototrophic, drasticallychanged the Earth biosphere system; extent, community structure, and biogeochemicalprocess. Oxygenic process conducted by cyanobacteria had renovated the biologicalenvironment, and advanced inhabitation of novel species. Eukaryotes also appeared in theoxygenesis era, and developed endocytosis to bring large particles into a cell. SuchEukaryotes exerted a role of predator for prokaryotes, regulated the population size, andestablished trophic level of the ecosystem. This hypothetical scenario of evolutionaryprocess to the modern Earth ecosystem could contirbuted the broad view of the Earthhistory decoding.

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 114 -

,Û!"nop,yÐJ(Ã

àá3&UVÛcdW $

JYsQ,NJG"3,­z|

W $h]Yg&J$Õ2

,3$oå,-~&$

$J& "A nop

UV$,$1O³

/P~W J("

#W $$Õ2

2E('#"

3&¾A#©cd¦R

dav,

JW JÔ&"

28-25 £¤¥'da,¬`

Ë6GY¶T,JBª«¬?>¬

­>k]@Ë~]Y®¯

g& J&'(s9t"3&]Y

da,¶T/,dTg&

g& ",]Y

,ïð=;ªJç&Á$

A&¾A,n^_`a«EFG

pg&¦Rg& "A

®¯,&.,RÐ,

7,G"G 3,#

$¦RW'sQàá

g& "#$,sQ,ÍÎ

Gk¬C¬èi¬ÓJW'ÏÐÑú

g&'("

#$]$1,¡$_,

7»G©$Õ23,-

ÔÔ W "&A$$U´

ì4jJW'( Ú¦§$

$U°Y², G¦§$

UìJÄH¢£,-3,

~& "3&]Y¤no

póôg&¦§,mG¼O

³32¥& ìJ$1¡W

J&"

#]op,:;<=>

?@;,]Y(& ",yÐ

('¦,ħ('

D¨§,,©Ô

W "

T$W $$Õ2

T$ª«,ST$8ÙÌW

¬Jg&'(s17ts18t"%­¬®

¯@;NP89°±:;<=>?

@;&&45!3J¢g&'(

"WWT$,²³ G8ÙvH,

]ÃG´µ-'g& ,('

¶,J3Ò·,Á'(G("o)k

?Cb`op*,=iD«opÓ,åæ

:;<=>?@;J^¸)ë 27 £

¤¥*T$,8ÙÔW 3J¹g

&'("op,yÐT$,

¹ Gº»¬ W J&'(s19t"

T$cdW 8ÙÛ,¼J,G

pÉ8Ùd½mZ[¾¿Û!"S

T$8Ù,À_`(Á±Õ,

LopÂÃS$$,;fb=

GH$GH,Gp¿W8Ùd

W ¿ÙdÄW'ÂÃ"3,

KÅ,´µ;>op]8Ùb~

Û !"A 8ÙdÄ´µÆ

8Ù~,ÄvJÛ xyW'("

3&$,´µicdW ²

³ÛÇmÈ~W ÉÊJ(,ÔW

&G("úËG,T$,8Ùd

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 115 -

v,('Ó,ÍÎÂ,G(

(,¿PT$W ,

G("

g'3,ÛcdW T$,

$Õ2,w§('¿ÌJÍJ(ÿÅ

ÎÔJÏ©$9,3$mW "

3&]Y,ÞFàá,mÐg

&'( $hý,78Úâ¿]Ñ

Ò( "A ¿Ó]pÔÕÖ,

×p$,ØÙÚW( J

&"

²,$$Õ2

²,$$Õ235 £¤¥,Ó

úg& O³íî,$JÛ,$Þ

¹NOP$h~Ü,$5²

$hAÆlGux±²W'("3

,$,ÆlP,Æl4×

W'(";,$$Õ2,=>ÂJ

$,´µW u,¶

W Gàá.1W u$

1¡Wg$Ë~,U$2

ÝÛG$mW' J3J

"

,$1ÂÝJÜ~J

&ÞD G¿ÅÎß!,]Ã

ÂÔW&G("WW$1,¶

!$Õ2~W'(,3,

à±öW' $h!"3,>

áW'g&' $`bBJç&

:k?-Æ8Ù~Ü,$2ÜÝâG

±²!"

$ãYä Âå$135 £

¤µ,=>,¶%6g&JJÔ

W' ",±²®³æçG

H,¦§`«nC,´aAèé"

3$2$,2EêmW

$$Õ2,=>$*,45J$*:

k?-)(S8Ù*,+$ë(As20t"

G6Â!&çg(S8ÙÏ(

=>ìg&¼!"

[1] íîï$. op,¶6ðpp. 396, ñ

òóôõö, ÷ø1986.

[2] Woese, C. R., Kandler, O. and Wheels, M. L.

Toward a natural system of organisms:

proposals for the domains Archaea, Bacteria,

and Eucarya, Proc. Natl. Acad. Sci. USA. 87,

4576-4579 (1990).

[3] Olsen, G. J., Woese, C. R. and Overbeek. R.

The winds of evolutionary change: breathing

new life into microbiology, J. Bacteriol. 176, 1-

6 (1994).

[4] Yamamoto, H., Hiraishi, A., Kato, K., Chiura,

H. X., Maki, Y. and Shimizu, A. Phylogenetic

evidence for the existence of novel

thermophilic bacteria in hot spring sulfur-turf

microbial mats in Japan, Appl. Environ.

Microbiol. 64, 1680-1687 (1998).

[5] Ehrlich, H. L. Geomicrobiology, 3rd edition, pp.

719, Marcel Dekker, New York, 1996.

[6] Lengeler, J. W., Drews G. and Schlegel, H. G.

Biology of the prokaryotes, pp. 955, Blackwell

Science, Oxford, 1999.

[7] Ishii, M., Miyake, T. Satoh, T. Sugiyama, H.

Oshima, Y. Kodama, T. and Igarashi, Y.

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 116 -

Autotophic carbon dioxide fixation in

Acidianus brierleyi, Archive of Microbiology

166, 368-371 (1997).

[8] Ishii, M., Igarashi, Y. and Kodama, T.

Purification and characterization of ATP:citrate

lyase from Hydrogenobacter thermophilus TK-

6, Journal of Bacteriology 171, 1788-1792

1989.

[9] ù@úû>üð¤ýåê)þ

òú$ *, pp. 18-54,

÷øF÷ø 2002.

[10] Mojzsis, S. J., Arrhenius, G. McKeegan, K. D.

Harrison, T. M. Nutman, A. P. and Friend, C. R.

L. Evidence for life on Earth before 3,800

million years ago, Nature 384, 55-59 (1996).

[11] Schopf, J. V. Microfossils of the early Archean

apex chart: new evidence of the antiquity of life,

Science 260, 640-646 (1993).

[12] Rasmussen, B. Filamentous microfossils in a

3,235-million-year-old volcanogenic massive

sulphide deposit. Nature 405, 76-679 (2000).

[13] Ueno, Y., Maruyama, S., Isozaki, Y. and

Yrimoto, H. Carbon isotopic signatures of

individual Archean microfossils from Western

Australia, Int. Geol. Rev. 43, 196-212 (2001).

[14] Knoll, A. H. A new molecular window on early

life, Science 285, 1025-1026 (1999).

[15] Van Doover, C. The ecology of deep sea

hydrothermal vents, pp. 424, Princeton

University Press, Princeton, 2000.

[16] Reysenbach, A. L. and Cady, S. L.

Microbiology of ancient and modern

hydrothermal systems, Trends in Microbiology

9, 79-86 (2001).

[17] Margulis, L. Symbiosis in cell evolution,

second edition, pp. 452, W.H. Freeman and

Company, New York (1993).

[18] Martin, W. and Muller, M. The hydrogen

hypothesis for the first eukaryote, Nature 392,

37-41 (1998).

[19] K $*J,,åê|

'¤ýåê)þò

ú$ *, pp 393-422, ÷øF

÷ø 2002

[20] @³ $*J, ¤ý

åê)þòú$ *

pp. 423-449, ÷øF÷ø 2002

エトウヒロコ
Viva Origino 32 (2004) 109- 117
エトウヒロコ
- 117 -