Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Geotextiles and Geomembranes

Embed Size (px)

Citation preview

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    1/8

    Evaluation of permanent deformation of geogrid reinforced asphalt

    concrete using dynamic creep test

    Sina Mirzapour Mounes  a ,  *, Mohamed Rehan Karim  a , Ali Khodaii   b,Mohamad Hadi Almasi  a

    a Centre for Transportation Research, Faculty of Engineering, Civil Engineering Department, University of Malaya, 50603 Kuala Lumpur, Malaysiab Department of Civil and Environmental Engineering, Amirkabir University of Technology, 15914 Tehran, Iran

    a r t i c l e i n f o

     Article history:

    Received 17 November 2014

    Received in revised form

    6 April 2015

    Accepted 4 June 2015

    Available online xxx

    Keywords:

    Geosynthetics

    Permanent deformation

    Asphalt

    Dynamic creep test

    Creep curve model

    a b s t r a c t

    Permanent deformation (rutting) is one of the distresses that can adversely affect the bituminous surface

    of pavement structures, particularly in hot climates. The geosynthetics reinforcement of hot mix asphalt

    is one of the means to combat rutting. In this study, a dynamic creep test was performed on asphalt

    concrete samples reinforced with four different types of   berglass grid as well as on unreinforced

    samples. The  berglass grids used in this study contained two different sizes of grid openings and two

    tensile strengths, allowing us to test for the mesh size and tensile strength effects of the grids on the

    permanent deformation behavior of double layered asphalt concrete. In addition, we tested a recently

    developed creep curve model has been veried and used this to study the creep behavior of the samples

    in the primary and secondary regions of the creep curve, as well as determining the boundary point of 

    the regions. The results suggest that not only grid tensile strength, but also grid mesh size is of great

    importance in combatting permanent deformation of  berglass grid reinforced asphalt concrete within

    the conditions and grids used in this study. In a nutshell, higher tensile strength and/or smaller mesh size

    grids lead to overall better performance of grid reinforced samples. Moreover, great care must be taken

    when the creep curves are not reached in the tertiary region, and the creep rate must be taken into

    account to avoid any misinterpretation of the results.

    ©  2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    1.1. Overview

    A bituminous mixture applied to the surface or the base layer of 

    a pavement structure serves to distribute the traf c load and pre-

    vent water from penetrating into underlying unbound layers (Epps

    et al., 2000). Due to applied traf 

    c loading, there are many differenttypes of distresses that can affect bituminous surface layers,

    including permanent deformation (rutting), and fatigue cracking.

    In recent years, because of increases in the volume of traf c and

    of heavy vehicles, rutting is one of the most frequent defects found

    in  exible pavements, particularly in hot climates. Rutting shows

    up as depressions formed in the wheel path in a pavement. It

    normally occurs when a permanent deformation of each layer in

    the pavement structure accumulates under a repetitive traf c load

    (Tayfur et al., 2007). There are generally two modes of ruts that

    occur on pavements, compactive and plastic (Gabra and Horvli,

    2006; Lee et al., 2010).

    Accumulation of residual strains in wearing course may cause

    serious problems, particularly through aquaplaning on wet pave-

    ments (Fwa et al., 2004; Sivilevicius and Petkevicius, 2002;

    Verhaeghe et al., 2007). Thus, not only does pavement ruttinglead to higher road maintenance costs, but it also increases the risk

    to human life through accidents caused by water accumulating in

    depressions (ruts) in pavements.

    Various laboratory testing methods have been developed to

    investigate the resistance to rutting of asphalt concrete. These

    include the static/dynamic creep test, wheel track test, and indirect

    tensile test. Monismith et al. (1975), quoted by Kalyoncuoglu and

    Tigdemir (2011), developed the dynamic creep test which is

    thought to be one the best methods to evaluate the resistance of 

    asphalt concrete to permanent deformation. Furthermore, a report

    by the NCHRP (Cominsky et al., 1998), quoted by   Kaloush and*  Corresponding author. Tel.:  þ60 3 7967 5339; fax:  þ60 3 7955 2182.E-mail address:  [email protected] (S. Mirzapour Mounes).

    Contents lists available at ScienceDirect

    Geotextiles and Geomembranes

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c om / l o c a t e / g e o t e x m e m

    http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

    0266-1144/©

     2015 Elsevier Ltd. All rights reserved.

    Geotextiles and Geomembranes xxx (2015) 1e8

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

    mailto:[email protected]://www.sciencedirect.com/science/journal/02661144http://www.elsevier.com/locate/geotexmemhttp://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://dx.doi.org/10.1016/j.geotexmem.2015.06.003http://www.elsevier.com/locate/geotexmemhttp://www.sciencedirect.com/science/journal/02661144mailto:[email protected]

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    2/8

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    3/8

    If at least one of the De(s)  >  1% / go to the next loading cycle

    and repeat steps 2e6 until the former criterion is met.

    7 Fitting the logarithmic function resulting from approach 1 to the

    primary region.

    8 Solving the set of simultaneous equations, called logarithmic

    and linear respectively, for the results of the primary and sec-

    ondary regions, in order to identify the accumulated permanent

    strain and its corresponding loading cycle, where the primary

    region is connected to the secondary region.

    In the present study, comparisons were carried out on the dy-

    namic creep curves of asphalt concrete samples reinforced by four

    types of   berglass grids with two different tensile strengths and

    two different grid opening sizes, as well as on unreinforced sam-

    ples, in order to assess their respective resistance to pavement

    deformation. As the maximum number of cycles applied in this

    experiment was 10,000 due to time limitations, none of the sam-

    ples reached the tertiary region. We rst tested out a mathematical

    model by Ahari et al. (2013), recently developed to model the pri-

    mary and secondary regions of SBS modied asphalt concrete creep

    curves, to see if could model the creep curves of the materials in the

    current study. Using this, we then investigated the effects of com-bined and separate variations in both grid tensile strength and

    opening size, applied at the mid-depth of asphalt concrete, on the

    samples' resistance to permanent deformation. Finally, the

    behavior of the primary and secondary regions and their boundary

    points in the creep curvesobtained for, the various types of samples

    were analyzed and compared.

    2. Experimental program

     2.1. Materials and sample preparation

    Crushed granite supplied from the Kajang region of Selangor

    state in Malaysia was used as aggregates in this study. Fig. 1 shows

    the aggregate gradation for the dense graded mixture utilized inthis research, with a nominal maximum aggregate size of 9.5 mm in

    accordance with ASTM D3515 (2000). Bearing in mind the opening

    size of the  berglass grids used in this study, selecting this aggre-

    gate gradation should allow the grids to provide better interlocking

    with the asphalt concrete. The applied bitumen was 80/100 pene-

    tration grade, and the optimum asphaltcontent of the dense graded

    asphalt mixture was determined to be 5% by mass of the total

    mixture, using the Marshall Test. The asphalt concrete slabs were

    compacted using a roller compactor in accordance with EN 12697-

    33 (2003)   in two lifts to the target air void of 8%, in order to

    simulate compaction at the time of eld construction (Kandhal and

    Chakraborty, 1996). The layer thickness of each lift of the slabs was

    40-mm, resulting in 80 mm thick compacted slabs. Four types of 

    berglass grid manufactured by a European corporation, with two

    different tensile strengths and two different opening sizes, were

    employed as the reinforcing material applied at mid-depth in the

    reinforced specimens. This study compares two levels (high and

    low) of grid tensile strength and two levels (large and small) of grid

    opening size. It should be noted that the dimensions of the girds

    with large opening sizes differed slightly from those with small

    opening sizes; however, since the difference was very small, this

    study assumes that they were of identical size. The basic properties

    of all these reinforcements are presented in Table 1.

    The specimens to be cored and trimmed into cylindrical shapes

    had dimensions of 150-mm diameter and 60-mm height as rec-

    ommended by  EN 12697-25 (2005) so that the applied  berglass

    grid was placed at mid depth of the sample. The average volumetric

    properties of the testing samples are illustrated in Table 2. The code

    for each sample in Table 2 includes whether the sample was rein-

    forced or unreinforced, as well as the type of glass grid used for

    reinforcement in that particular sample.

     2.2. Dynamic creep test 

    The creep test was conducted using a uniaxial cyclic compres-

    sion test with the connement method, as recommended by  EN

    12697-25 (2005). However, since only three cores were attainable

    from each slab, three test repetitions were carried out so as to

    minimize any variability among replicates of one type of specimen.

    For that purpose, UTM-5P from IPC was used to apply a constant

    dynamic load at a certain periodic rate onto the cylindrical asphalt

    samples, and vertical deformation was measured using a Linear

    Variable Displacement Transducer (LVDTs). The servo pneumatic

    UTM-5P machine has integrated software that allows the operator

    to select several input parameters such as loading function, stress,

    frequency and seating stress Static pre-loading fora certain period

    of time can also be applied to the samples before cyclic loading isstarted. The loading jig is moreover located in an environmental

    chamber so as to control the testing temperature.

    In the present study, in accordance with  EN 12697-25 (2005),

    the test was performed for both reinforced and control samples at

    40  C, at a cyclic stress level of 100 kPa and a frequency of 0.5 Hz,

    with 1000 ms allocated for each cycle width and the corresponding

    rest period. For all the samples, a constant stress of 100 kPa was

    applied for up to 10,000 cycles due to time limitations. Moreover, a

    static preloading stressof 10kPa was applied to all the samples fora

    period of 10 min prior to initiating the dynamic load, in order to

    Fig. 1.  Grading curve for crushed aggregate.

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e8   3

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    4/8

    ensure proper contact between the core surface and loading platen.

    Moreover, all the samples were conditioned at 40 C for about4 h ina temperature chamber to make sure that they had reached the

    testing temperature.

    3. Test results and discussion

     3.1. Permanent strain comparison

    The permanent deformation potentials of asphalt concrete

    reinforced with four different types of geosynthetics were

    compared with each other, as well as with unreinforced (control)

    samples in order to identify which type had the highest resistance

    to permanent deformation. Considering that there are three repli-cates for each type of sample, the diagrams are derived from the

    average amount of parameters. Fig. 2 illustrates the creep curves of 

    the samples tested in this study.

    Thereafter, Ahari's stepwise model was veried for the materials

    used in this study and then used to   t the creep curves and

    determine the connecting points between the primary and sec-

    ondary phases. This method consisted of eight steps as shown in

    Section 1 (Ahari et al., 2013).

    The application of   berglass grids at the mid-depth of the

    samples of asphalt concrete, notably increased their resistance topermanent deformation over that of the unreinforced samples.

    Moreover, as can be seen from  Fig. 2, the samples reinforced by

    berglass grids with greater tensile strength and greater mesh size

    (R4) showed the lowest permanent deformation throughout all the

    cycles conducted in this study.

    Fig. 2 also clearly shows that the control (unreinforced) samples

    had substantially higher permanent deformation and accumulation

    rates of permanent deformation than the reinforced ones   e   due

    presumably to the tensile forces and lateral connement provided

    by the grids.

    A further importantnding is that the samples of identical mesh

    size reinforced by grids of lower tensile strength experienced more

    permanent deformation than those reinforced by grids with a

    higher tensile strength. Furthermore, the difference between thepermanent deformations in samples reinforced with large mesh

    size was higher than for samples reinforced with smaller mesh size

    grids. In other words, increasing the tensile strength of grids with a

    large mesh size had a greater impact on their ability to resist per-

    manent deformation than such increase in small mesh size grids

    within the test conditions performed in this study. In addition, by

    applying 10,000 loading cycles in this experiment, we found that

    larger permanent deformation occurred in samples with small

    rather than large mesh sizes, regardless of whether they had high

    or low tensile strength grids.

    Table 3  illustrates the results of a quantitative comparison be-

    tween the measured permanent strain and grid tensile strength

    and grid opening size respectively, during the last loading cycle of 

    the tests carried out in this study. In this table, reinforced sampleswith the same size of opening (mesh) are compared in terms of 

    their grid tensile strength, and those with the same tensile strength

    in terms of their grid opening size. The improvements in resistance

    to permanent deformation shown in Table 3 were all determined

    based on the permanent deformation of the control samples. The

    clear conclusion from  Table 3   is that, based on testing through

    10,000 cycles, samples reinforced by grids with greater tensile

    strength and with larger mesh size achieve the best performance.

    In can also be seen from   Table 3   that increasing the tensile

    strength in samples with small grid openings from R1 toR3 leads to

    a 4% improvement in permanent strain resistance by the last

    loading cycle. However, doing the same thing with grids with a

    large grid opening size from R2 to R4 leads to a 12% improvement,

    ie three times as much.

     Table 1

    Basic properties of  ber glass grid applied.

    Identication Glass grid A Glass grid B Glass grid AA Glass grid BB

    Tensile strength (kN/m) (MD XD) 115 115

    þ/15

    115 115

    þ/15

    115 215

    þ/15

    115 215

    þ/15

    Grid size (mm)

    Center to center of strand

    12.5 12.5 25  25 12.5 12.5 25 19

    Tensile elongation (%) 2.5 2.5 2.5 2.5

    Secant stiffness (N/mm) 4600 4600 4600 4600 4600 8600 4600 8600

     Table 2

    Physical properties of tested samples.

    Sample code Applied glass grid Bulk specic gravity Maximum specic gravity Air void (%)

    C   e   2.226 2.425 8.23

    R1 Glass grid A 2.225 2.425 8.27

    R2 Glass grid B 2.225 2.425 8.25

    R3 Glass grid AA 2.225 2.425 8.23

    R4 Glass grid BB 2.222 2.425 8.36

    Fig. 2.  Creep curves of tested mixtures, including reinforced and control samples.

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e84

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    5/8

    Conversely, comparing the samples with grids of the same

    tensile strength, but different size of opening (mesh), it emerges

    that in samples with low tensile strength grids, an increase in grid

    opening size from small to large (R1 to R2) leads to a 3%

    improvement in permanent strain resistance: while doing the same

    (R3 to R4) with samples with grids of high tensile strength grids

    leads to a much larger, 11% increase in such resistance.

    In research studying the shear behavior of bi-layer asphaltconcrete specimens, geogrid reinforced samples showed less

    interlayer shear resistance than unreinforced ones, even though

    some of the geogrid surface coatings were found to be able to

    maximize bonding between the interlayer and asphalt concrete

    (Ferrotti et al., 2012). It may be, therefore, that the effects of the

    smaller mesh size observed in the current testing condition of this

    study were due to reduced bonding between the lower and upper

    lift of the asphalt concrete, leading to the development of higher

    shear deformation. Comparing the samples reinforced by small

    mesh grids and the control ones, it should be noted that, although

    the bonding of two lifts was important in the reinforced samples,

    the reinforcing effect of the grid was much more signicant than its

    effect on the bonding condition of the lifts; the upper and lower

    lifts in fact remained in full contact in the control samples. It canlikewise be seen that the more the tensile strength increases, the

    greater the effect of mesh size on strength and resistance.

    In sum, if we look merely at the accumulated permanent strain

    up to the last cycle of the creep test conducted in this work, this

    leads to the conclusion can be drawn that not only increasing the

    tensile strength, but also enlarging the mesh size of glass grid

    reinforced asphalt concrete can increase its resistance to perma-

    nent deformation. However, it should be noted that the  ow point

    was not reached in the performed test conditions, and that closer

    investigation of the creep curves after model   tting resulted in

    rather inferences from the ones drawn in this section.

     3.2. Fitted models comparison

    Unfortunately, none of tested samples reached the third phase

    of the creep curve in the course of the 10,000 loading cycles con-

    ducted in this experiment. As a results, only the primary and sec-

    ondary phases could be modeled; the two regions for which Ahari's

    model was developed. Table 4 presents the results of mathematical

    functions and estimated permanent strains at the boundary pointsat the last cycle for each phase of testing samples. Based on

    Figs. 3e5, and the coef cients of determination in Table 4 it can be

    seen that the   tted models, both for the logarithmic and linear

    regions, t acceptably with the measured creep curves. Thus, it can

    be concluded that Ahari's model is suitable for modeling the pri-

    mary and secondary regions of the creep curve for both the  ber

    glass grid reinforced samples and unreinforced hot mix asphalt

    samples. The slopes of both the primary and secondary regions are

    important, particularly the secondary region generally known as

    the creep rate. In Ahari's proposed model, a   “linear logarithmic

    model” is utilized to model the primary region of the creep curve as

    shown bellow:

     y ¼ a þ bðlnð xÞÞb is the ratioof absolute changein y to the relative changein  x. In

    other words, if  x  changes by 1%, then the absolute change in y is

    0.01b unit (Thomas et al., 2001). However, the slope of the primary

    region is not as important as that of the secondary region. In our

    study, the slope of the   tted curve in the primary and secondary

    regions was determined for each individual sample type. The

    extend of improvement for each (in terms of smaller permanent

    strain accumulation rates) was then determined based on the

    control sample. These results are shown in   Table 5. It is worth

    noting that the control samples in this table have their maximum

    slopes in both primary and secondary regions of the creep curves.

     Table 3

    Comparison of permanent strains in the last cycle.

    Sample code Tensile strength

    (kN/m) (MD XD)

    Grid mesh size (mm)

    Center to center of strand

    Measured last cycle

    permanent strain (m   3)

    Improved permanent strain resistance

    compared to control sample (%)

    C   e e   11,438 0

    R1 115 115*L 

    þ/15

    12.5 12.5**S 8756 31

    R2 115 115*L 

    þ/15

    25 25**OL  8564 34

    R3 115 215*H

    þ/15

    12.5 12.5**S 8495 35

    R4 115 215*H

    þ/15

    25 19**OL  7819 46

    *L: Low level for grid tensile strength; *H: High level for grid tensile strength; **S: Small level for grid opening size; **OL: Large level for grid opening size.

     Table 4Creep curve models based on Ahari's model and estimated critical values.

    Code First stage model End of   rst stage Second stage model Last cycle

    Cycle (N )   3 p  (modeled) Improved   3pcompared to

    control sample (%)

    Cycle (N )   3 p(modeled) Improved   3pcompared to

    control sample (%)

    C   3 p ¼ 1523.945 Ln(N ) 2653.456

    R2 ¼ 0.9842

    7072 10,863 0   3 p ¼ 0.2155(N  7072) þ 9346.539

    R2 ¼ 0.9913

    10,000 11,502 0

    R1   3 p ¼ 1114.477 Ln(N ) 1226.826

    R2 ¼ 0.9927

    3945 8001 36   3 p ¼ 0.1336(N  3945) þ 7474.168

    R2 ¼ 0.9864

    10,000 8810 31

    R2   3 p ¼ 1075.835 Ln(N ) 1099.156

    R2 ¼ 0.9893

    3223 7592 43   3 p ¼ 0.1515(N  3223) þ 7103.268

    R2 ¼ 0.9957

    10,000 8618 33

    R3   3 p ¼ 1062.883 Ln(N ) 843.671

    R2 ¼ 0.9902

    3001 7666 42   3 p ¼ 0.1291(N  3001) þ 7278.914

    R2 ¼ 0.9824

    10,000 8570 34

    R4   3 p ¼ 954.627 Ln(N ) 980.730

    R2 ¼ 0.9918

    4847 7120 53   3 p ¼ 0.1436(N  4847) þ 6424.536

    R2 ¼ 0.9868

    10,000 7860 46

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e8   5

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    6/8

    Fig. 6  is a one-to-one graph of the measured versus estimated

    values of permanent strain in the last cycle, including the intercept,

    slope and correlation coef cients. Comparing the measured and

    estimated permanent strain in the last cycle for each type of sample

    (Fig. 6) and the improvements in the reinforced samples in Tables 3

    and 4 as well as in Figs. 3e

    5, it can be seen that the measured and

    estimated values were rather close to each other. We therefore,

    used the tted curves from the measured values to nd the turning

    point between the primary and secondary regions of the creep

    curves.

    When we only took into account the creep curves (as in Fig. 2),

    this pointed to the conclusion that enlarging the grid mesh size at

    the same level of tensile strength leads to better performance

    (resistance) within the used grids in this study. However, it can be

    seen from  Table 5  that enlarging the mesh size has the effect of 

    increasing the secondary region slope e something which does not

    emerge from just looking at the creep curves. In the secondary

    region, in which the mixture has reached to an optimum density

    level (Mehta et al., 2014), the presence of steeper slopes for grids

    with a larger mesh size but with the same tensile strength may be

    due to there being a lower number of grid junctions on the grid

    applied area. In other words, the number of stripes or threads of 

    grid per unit area of the sample increases as the size of the opening

    (mesh) is reduced, leading to greater structural and dimensional

    stability through the higher number of grid junctions. This could

    possibly explain the smaller slope in the secondary region of the

    creep curve.

    In sum, looking at the effects of the mesh size of grids on a

    combination of permanent deformation and creep rate, the resultssuggest that larger mesh size grids performed better only in the

    initial stages of loading, whereas over the longer term, smaller

    mesh size grids will outperform large ones with same the tensile

    strength. These results showing small gird mesh sizes to perform

    better than large ones with the same tensile strengths are similar to

    those reported by some previous studies ( Jenkins et al., 2004;

    Komatsu et al., 1998).

    4. Conclusions

    The reinforcement of asphalt concrete with   berglass grids is

    one of the means to combat permanent deformation. Fiberglass

    grids are manufactured with different tensile strengths and aper-

    ture (mesh) sizes. In this study, an attempt was made to study theeffects of ber glass grids with different tensile strengths and mesh

    sizes, applied at the mid-depth of bi-layer asphalt concrete sam-

    ples, on the resistance of these samples to permanent deformation.

    Our results suggest that   berglass grid reinforcement is

    remarkably effective in lowering the permanent deformation of 

    asphalt concrete, probably due to the tensile forces and lateral

    connement provided by such grids.

    Secondly, our study conrms that Ahari's creep curve model can

    be used with both  berglass grid reinforced, and unreinforced hot

    mix asphalt. In the secondary region of the creep curves, in which

    the optimum density of the mixture is achieved, higher tensile

    strengths and smaller mesh size result in gentler slope (meaning a

    lower permanent strain accumulation rate).

    Another conclusion from our results is that increasing the ten-sile strength of a  berglass grid can lead to a reduction in perma-

    nent strain, depending on the type of grid used. Moreover, not only

    is the tensile strength of a  berglass gird effective in increasing the

    resistance of asphalt concrete to permanent deformation, but the

    mesh size of the grid is also of considerable importance. Our results

    suggests that, of the grid mesh sizes used in this study, larger mesh

    size   berglass grids perform better than small ones only in the

    initial stages of loading. This is because enlarging the mesh size

    causes the creep rate to increase which eventually, in the longer

    terms, outweighs the smaller deformation achieved in the   rst

    stages of the creep curve.

    In conclusion, the range of experiments we carried out suggest

    that smaller mesh sizes should provide more resistance to per-

    manent deformation in the long run. This could be due to the

    Fig. 3.  Measured and estimated permanent deformation for R1 sample.

    Fig. 4.  Measured and estimated permanent deformation for R2 sample.

    Fig. 5.  Measured and estimated permanent deformation for C, R3,  &  R4 samples.

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e86

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    7/8

    greater number of   bers per unit width in such smaller meshesthan in the larger mesh geogrids. This  nding that the best resis-

    tance to permanent deformation can be achieved by asphalt con-

    crete reinforced grids with greater tensile strength but also with

    smaller mesh sizes is in line with what previous researchers have

    reported.

    Finally, our study shows that interpreting creep curves without

    creep rate consideration can be misleading when the tertiary re-

    gion of creep curves is not achieved in tests. Further research on

    other types of asphalt mixtures, reinforced with other types of 

    grids, at various depths and under other testing conditions, is

    recommended.

     Acknowledgment

    The authors would like to acknowledge the Ministry of Higher

    Education of Malaysia for their   nancial support under grant

    number FP021/2011A.

    References

    Ahari, A.S., Forough, S.A., Khodaii, A., Moghadas Nejad, F., 2013. Modeling the Pri-mary and the Secondary Regions of Creep Curves for SBS Modied AsphaltMixtures under Dry and Wet Conditions. J. Mater. Civil Eng. 26 (5), 904e911.

    Appea, A.K., 1997. In-Situ Behavior of Geosynthetically Stabilized Flexible Pavement.Polytechnic Institute and State University, Virginia.

    ASTM, D3515-00, 2000. Standard Specication for Hot-Mixed, Hot-Laid BituminousPaving Mixtures. ASTM International.

    Austin, R., Gilchrist, A., 1996. Enhanced performance of asphalt pavements using

    geocomposites. Geotext. Geomembr. 14 (3), 175e

    186.

    Barksdale, R.D., 1972. Laboratory Evaluation of Rutting in Base Course Materials. Paperpresented at the ThirdInternationalConferenceon the StructuralDesign of AsphaltPavements, Grosvenor House, Park Lane, London, England, Sept. 11e15, 1972.

    Bertuliene, L., Oginskas, R., Bulevicius, M., 2011. Research of Rut Depth in AsphaltPavements Reinforced with Geosynthetic Materials. Paper presented at the 8thInternational Conference Environmental Engineering, Lithuania.

    Collin, J., Kinney, T., Fu, X., 1996. Full scale highway load test of  exible pavementsystems with geogrid reinforced base courses. Geosynth. Int. 3 (4), 537e549.

    Cominsky, R., Killingsworth, B., Anderson, R., Anderson, D., Crockford, W., 1998.Quality Control and Acceptance of Superpave-Designed Hot Mix Asphalt.NCHRP Report 409.

    EN, C., 12697-33, 2003. Bituminous Mixtures. Test Methods for Hot Mix Asphalt.Part 33: Specimen Prepared by Roller Compactor.

    EN, C., 12697-25, 2005. Bituminous Mixtures  e  Test Methods for Hot Mix AsphaltPart 25: Cyclic Compression Test.

    Epps, A., Harvey, J.T., Kim, Y.R., Roque, R., 2000. Structural Requirements of Bitu-minous Paving Mixtures. Transportation in the New Millennium .

    Fei, Y., Yang, Y., 2009. Fem analysis on geogrid reinforced asphalt concrete pave-ment. Geosynth. Civ. Environ. Eng. 677e682.

    Ferrotti, G., Canestrari, F., Pasquini, E., Virgili, A., 2012. Experimental evaluation of the inuence of surface coating on  berglass geogrid performance in asphaltpavements. Geotext. Geomembr. 34 (0), 11e18.   http://dx.doi.org/10.1016/j.geotexmem.2012.02.011.

    Fwa, T., Tan, S., Zhu, L., 2004. Rutting prediction of asphalt pavement layer usingcef  model. J. Transp. Eng. 130 (5), 675e683.

    Gabra, R., Horvli, I., 2006. Simplied Testing Method for Evaluation of AsphaltMixtures for Their Susceptibility to Permanent Deformation.

     Jenkins, K.J., Dennison, P., Ebels, L.J., Mullins, L.S., 2004. 3-D Polymer Grid Rein-forcement of Asphalt for Rut Resistance. Paper presented at the Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA'04),Southern Africa.

    Kaloush, K., Witczak, M., 2002. Tertiary   ow characteristics of asphalt mixtures(with discussion and closure). J. Assoc. Asphalt Paving Technol. 71, 248e280.

    Kalyoncuoglu, S., Tigdemir, M., 2011. A model for dynamic creep evaluation of SBSmodied HMA mixtures. Constr. Build. Mater. 25 (2), 859e866.

    Kandhal, P.S., Chakraborty, S., 1996. Evaluation of Voids in the Mineral Aggregate forHMA Paving Mixtures. Paper presented at the Proceedings of the AnnualConference-Canadian Technical Asphalt Association.

    Komatsu, T., Kikuta, H., Tuji, Y., Muramatsu, E., 1998. Durability assessment of geogrid-reinforced asphalt concrete. Geotext. Geomembr. 16 (5), 257e271.

    Laurinavicius, A., Oginskas, R., 2006. Experimental research on the development of rutting in asphalt concrete pavements reinforced with geosynthetic materials.

     J. Civ. Eng. Manag. 12 (4), 311e317.Lee, K.W., Gundapuneni, S.K., Singh, A., 2010. Effects of Asphalt Binder Grade on the

    Performance of Rhode Island Hot-Mix Asphalt.Leshchinsky, B., Ling, H., 2012. Effects of geocell connement on strength and

    deformation behavior of gravel. J. Geotech. Geoenviron. Eng. 139 (2), 340 e352.Ling, H.I., Liu, Z., 2001. Performance of geosynthetic-reinforced asphalt pavements.

     J. Geotech. Geoenviron. Eng. 127 (2), 177e184.Mehta, Y., Guercio, M.C., McCarthy, L., 2014. Determine Viscoelastic Mechanical

    Properties of Warm Mix Asphalt (WMA)-Reclaimed Asphalt Pavement (RAP)Mixes under High Stresses in Aireld Flexible Pavements and Its Impacts onDesign Life.

    Monismith, C.L., Ogawa, N., Freeme, C.R., 1975. Permanent deformation character-ization of subgrade soils due to repeated loading. Transp. Res. Rec. 537, 1 e17.

    Perkins, S., 1999. Mechanical response of geosynthetic-reinforced   exible pave-ments. Geosynth. Int. 6 (5), 347e382.

    Perkins, S., Ismeik, M., 1997. A synthesis and evaluation of geosynthetic-reinforcedbase layers in  exible pavements  e  part I. Geosynth. Int. 4 (6), 549e604.

    Siriwardane, H., Gondle, R., Kutuk, B., 2010. Analysis of   exible pavements rein-forced with geogrids. Geotech. Geol. Eng. 28 (3), 287e297.

    Sivilevicius, H., Petkevicius, K., 2002. Regularities of defect development in the

    asphalt concrete road pavements. J. Civ. Eng. Manag. 8 (3), 206e

    213.

     Table 5

    Slope comparison of primary and secondary regions.

    Code T ensile st rength

    (kN/m) (MD XD)

    Grid mesh size (mm)

    Center to center of strand

    Primary region Secondary region

    Slope Improved slope compared

    to control sample (%)

    Slope Improved slope compared

    to control sample (%)

    C   e e   1523.9 0 0.2155 0

    R1 115 115*L 

    þ/15

    12.5 12.5**S 1114.5 37 0.1336 61

    R2 115 115*L 

    þ/15

    25 25**OL  1075.8 42 0.1515 42

    R3 115 215*H

    þ/15

    12.5 12.5**S 1062.9 43 0.1291 67

    R4 115 215*H

    þ/15

    25 19**OL  954.6 60 0.1436 50

    *L: Low level for grid tensile strength; *H: High level for grid tensile strength; **S: Small level for grid opening size; **OL: Large level for grid opening size.

    Fig. 6.  One-to one graph of measured vs. estimated permanent strain of last cycle.

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e8   7

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test, Geotextiles and Geomembranes (2015), http://dx.doi.org/10.1016/j.geotexmem.2015.06.003

    http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref8http://refhub.elsevier.com/S0266-1144(15)00061-8/sref8http://refhub.elsevier.com/S0266-1144(15)00061-8/sref8http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref10http://refhub.elsevier.com/S0266-1144(15)00061-8/sref10http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://dx.doi.org/10.1016/j.geotexmem.2012.02.011http://dx.doi.org/10.1016/j.geotexmem.2012.02.011http://dx.doi.org/10.1016/j.geotexmem.2012.02.011http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref21http://refhub.elsevier.com/S0266-1144(15)00061-8/sref21http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref30http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref29http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref27http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref26http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref25http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref24http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref23http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref22http://refhub.elsevier.com/S0266-1144(15)00061-8/sref21http://refhub.elsevier.com/S0266-1144(15)00061-8/sref21http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref20http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref19http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref18http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref17http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref16http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref15http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref14http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://refhub.elsevier.com/S0266-1144(15)00061-8/sref13http://dx.doi.org/10.1016/j.geotexmem.2012.02.011http://dx.doi.org/10.1016/j.geotexmem.2012.02.011http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref11http://refhub.elsevier.com/S0266-1144(15)00061-8/sref10http://refhub.elsevier.com/S0266-1144(15)00061-8/sref10http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref9http://refhub.elsevier.com/S0266-1144(15)00061-8/sref8http://refhub.elsevier.com/S0266-1144(15)00061-8/sref8http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref7http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref6http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref5http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref4http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref3http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref2http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref1http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40http://refhub.elsevier.com/S0266-1144(15)00061-8/sref40

  • 8/16/2019 Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test 2015 Ge…

    8/8

    Sobhan, K., Genduso, M., Tandon, V., 2005. Effects of Geosynthetic Reinforcement onthe Propagation of Reection Cracking and Accumulation of PermanentDeformation in Asphalt Overlays. Paper presented at the Third LACCEI Inter-national Latin American and Caribbean Conference for Engineering and Tech-nology (LACCET2005)   “Advances in Engineering and Technology: a GlobalPerspective”, Cartegena, Columbia.

    Tayfur, S., Ozen, H., Aksoy, A., 2007. Investigation of rutting performance of asphaltmixtures containing polymer modiers. Constr. Build. Mater. 21 (2), 328e337.

    Thakur, J.K., Han, J., Pokharel, S.K., Parsons, R.L., 2012. Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under

    cyclic plate loading. Geotext. Geomembr. 35, 14e

    24.Thomas, G.B., Finney, R.L., Weir, M.D., Giordano, F.R., 2001. Thomas' Calculus.

    Addison-Wesley.Tseng, K.-H., Lytton, R.L., 1989. Prediction of permanent deformation in   exible

    pavement materials. In: Implication of Aggregates in the Design, Construction,and Performance of Flexible Pavements, pp. 154e172. ASTM STP, 1016.

    Tutumluer, E., Huang, H., Bian, X., 2010. Geogrideaggregate interlock mechanisminvestigated through aggregate imaging-based discrete element modelingapproach. Int. J. Geomech. 12 (4), 391e398.

    Verhaeghe, B., Myburgh, P., Denneman, E., 2007. Asphalt Rutting and Its Prevention.Paper presented at the Proceedings of the 9th Conference on Asphalt Pave-ments for Southern Africa (CAPSA'07), Gaborone, Botswana.

    Virgili, A., Canestrari, F., Grilli, A., Santagata, F., 2009. Repeated load test on bitu-minous systems reinforced by geosynthetics. Geotext. Geomembr. 27 (3),187e195.

    Yang, X., Han, J., Pokharel, S.K., Manandhar, C., Parsons, R.L., Leshchinsky, D.,

    Halahmi, I., 2012. Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotext. Geomembr. 32, 95e103.

    Zhou, F., Scullion, T., Sun, L., 2004. Verication and modeling of three-stage per-manent deformation behavior of asphalt mixes. J. Transp. Eng. 130 (4),486e494.

    S. Mirzapour Mounes et al. / Geotextiles and Geomembranes xxx (2015) 1e88

    Please cite this article in press as: Mirzapour Mounes, S., et al., Evaluation of permanent deformation of geogrid reinforced asphalt concreteusing dynamic creep test Geotextiles and Geomembranes (2015) http://dx doi org/10 1016/j geotexmem 2015 06 003

    http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref34http://refhub.elsevier.com/S0266-1144(15)00061-8/sref34http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref41http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref39http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref38http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref37http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref36http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref35http://refhub.elsevier.com/S0266-1144(15)00061-8/sref34http://refhub.elsevier.com/S0266-1144(15)00061-8/sref34http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref33http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref32http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31http://refhub.elsevier.com/S0266-1144(15)00061-8/sref31