49
KAERI/TR-751/96 KR9600282 PHEBUS FPT0^H9§ 0|§o|- MELCOR 3E Evaluation of MELCOR Code Using PHEBUS FPTO Test 1996ti 9H y ^ 1 XI- S) g f ^ Korea Atomic Energy Research Institute

Evaluation of MELCOR code using PHEBUS FPT0 test

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluation of MELCOR code using PHEBUS FPT0 test

KAERI/TR-751/96 KR9600282

PHEBUS FPT0^H9§ 0|§o|- MELCOR 3E Evaluation of MELCOR Code Using PHEBUS FPTO Test

1996ti 9H

y ^ 1 XI- S) g f ^Korea Atomic Energy Research Institute

Page 2: Evaluation of MELCOR code using PHEBUS FPT0 test

0| MHA-il 7|#M3A^ %)l##L|Ck

*R: Phebus FPTO o\g& MELCOR 3E ^71-Evaluation of MELCOR Code Using Phebus FPTO Test

1996ti 91

4 £ A|- ;£ 4 :

£4 ?IS4 3 :: *^<2^£ g: SSI

I NEXT PAGE(S) | left BLAP<K

Page 3: Evaluation of MELCOR code using PHEBUS FPT0 test

a. sf £

0| SHAib MELCOR 1.8.3 2E1 0|g5(-0j PHEBUS FPTO ^44 E449

994S4 0010914 #m\ a® saa^e *iiAia4. oi 944 §4g

MELCOR 2EL-H E9494 0§1§01 40O|| 9*1- aSS @7^4, El 44

9%i 90 990114aaoi 7Hdi 4 9b go» ^g sfe 51o|ck oi °i?oiia-i§ aa

9049 h2|a| gasfc^ 994b 404 as xj|7W4 9§oi| cfl'«H 99E §91

3E0j| Oja- Oil* 1417H9#94.

3941b 092O|| cHaaas 092 pellet 4 debris 99 44o|4 §941b 4#9o||

ma^EE 449 44 aa§oi 444 0011 929s 4 9b7i- 44011 aa

3o|94. asm q^ihj- A||«j«Ug E9 1444 444, #4^4 a||94 lo|

4E§e||a| 7^g£7|- 1440 @49b bHMS E44b *114*119 (control

volume)4 4oil 4a 3o|c4

7JI4 14 E94 447h §§4*l 90 90 MELCOR 2Eb E94 140S4

140 52§s a 0||&#%CK 344 E9o| e^4 0|$ q e940o|| 444 00

pool g E4 *W 0^94. eo|^e 949001 S§s| 4444 1^°2 nmm

000924 9oI oH0 99°4, 9E9 10E2 xHdHx|§ 4900 9*1 9l9£AKB

920|7| enroll §41o| 9b 3ES E4#97| aUgo|cK

0sH4 09290 xHuH-tl a|4a| =H9 node o|| £xH4b 00 Zr 94 10400)1

4S6HA1 s*H9S 3194b 944 EW1 AH#7| 4|§o|| dH0 44 0110494.

cchBW 03H9S mechanistic 44 494b Eutectic El 97p|- I £44.

#44^090 E9U| stiffnerl E4 4*1 992, shroud 904 liner 7|- MELCOR

2E0U1§ 9490AI E41 4 97| c«§o|| c[± 4^ ®7|. 494.

3

Page 4: Evaluation of MELCOR code using PHEBUS FPT0 test

Activation product # H2|*feG|| 8H|9@ £7| rn

°J^§ 5S &Ha#%Ck MELCOR 2E0||g Xi|Di@Eg Ag. In, Cd ^8

19 2| HSjSfe Slo| O^goj yx| S9@ »J]<9£go|| 8TO8 Ag,

In, Cd £|^ss S2|€rfe £lE>o| °1CK E^W xllom EQ2J El ^7^1-

E9°E fEj y-SEjg HISSES Xi<y± qysoll CORSOR-Booth fill

A|.§5^ E2jS|-5acK g^L-l- 0| CORSOR El8 7|ggg S|-0j

7H^EJ%7| [tHgoil SCHOto XJ. Oj|*e|.A| ^%OL|. ^E8 0H°

0)|*E|SiCK

MELCOR 3Eg A|-gAh°j2jS ^0|L|- #9 E@# *199 &gr^ o| 98

#98 A^o| #2|^S 0|6H 9E01I dW °J°|£ El# as, £2|fi 8 %E#

8^91 ¥0jycK H5i4 o|98 dPHS^om ^gggj 9#8 «nao||^ #8&

o|8H* #$MaSE|oio^ck

4

Page 5: Evaluation of MELCOR code using PHEBUS FPT0 test

SUMMARY

This report presents the analysis results of the PHEBUS FPTO experiment using

MELCOR1.8.3. for the core degradation process, the fission product release in

the circuits.

The objectives of this study are to assess the models associated with the core

damage and fission product behavior and to identify the phenomena, which

have not been modeled, or area where the model could be improved.

The calculation results were much improved by performing the sensitivity studies

for the three phenomena, which were considered important to simulate the test

scenario. The first case is to consider whether the debris formation is to be

allowed or not. The second case is to consider whether the oxide layer can hold

up the molten mixture or not and the third case is to consider the number of

nodalization for the U cube in the SG and the vertical pipe at core exit, where the

gas temperature was changed rapidly during the transient. The MELCOR code

well predicted the thermal/hydraulic conditions in the core and in the circuit for

the case of the intact core geometry, but molten pool in the lower parts (20-

35cm) could not be formed in this study because the mass of the relocated

molten fuel was negligible due to highly oxidized cladding and also the relocated

rubble debris was modeled assuming no decay heat considering only ‘9’ days of

irradiation.

5

Page 6: Evaluation of MELCOR code using PHEBUS FPT0 test

The dissolved mass of U02 was calculated to be negligible because it was

calculated using a simple model based on the existing molten Zr at the instant of

candling start. Therefore, an evaluation of eutectic model is needed to calculate

mechanistically for this case. The total mass of H2 generation was

underpredicted because the stiffner was not modeled and the liner inside the

shroud could not be considered during the oxidation in MELCOR.

The some difficulties in modeling the activation product were resolved by

manipulating the RN input associated with the initial fission product inventory.

In MELCOR, there is no model that can simulate the release of Ag, In, Cd from

the control rod but from the fuel during the fission reaction. Therefore, it is

considered that the release model from the control rod should be implemented

into the MELCOR.

The fission product release from the core was calculated using the CORSOR-

Booth model for the low bumup fuel. But it was not well predicted because the

CORSOR model was developed based on the high burn-up fuel. However, the

calculated release fractions were very similar to the measured values.

The MELCOR code has many options for user controlled parameters, which can

give a flexible modeling capability for the various types of phenomena to the

user. But the selection of the parameters and options should be made based on

the sound understanding of the phenomenal knowledge.

6

Page 7: Evaluation of MELCOR code using PHEBUS FPT0 test

*1-3

*Ht£------------------------------------------------------------------------------------------------------------- 2

OOka a

^ x|- ---------------------------------------------------------------------------------------------------------------- 7

*111 S 5! ------------------------------------------------------------

*11 2 S' ^ ^ -------------------------------------------------------------------------------------

*11 1 S ^Elli -------------------------------------------------------------------

1. incJ^ci’ 3I el----------------------------------

2. Tie si---------------------------------------

*ii 2 s ge 5 e^i --------------------------------

1 -------------------------------------------------------------------

1.1 Debris T|g (CASE1, CASE2)-------------------------

1.2 Control Volume 7^5^ *Ht (CASE2, CASE3) --------

1.3 x^eo|| 2.|oj. ggg HS| el (CASES, CASE4) --

2. E2| 33I- (CASE4) -------------------------------------------------

2.1 ^ i l~l i' "q^" shroud T~l ^ ---------------------------------------

2.2 4^31 Tie-------------------------------

2.3 #T|^T| A1|5 51 4^S(G S)LH 13 Til---------

2.4 3ygTM 13 Tjs qj sump ^¥19^ -----------------

2.5 oh# Tie ---------------------------------------

*11 3 3 51 EBI-----------------------------------------------------------------------

---------10

-------- 11

--------- 13

---------13

---------13

---------19

-------- 20

-------- 20

--------------— 21

-------------- 21

———————— 22

---------23

---------23

■•“••••• 25

---------25

———————— 26

-------- 26

-------- 29

-------- 31

7

Page 8: Evaluation of MELCOR code using PHEBUS FPT0 test

n ^ ^ x[

1 PHEBUS FPTO ^4 A|£ -------------------------------------------------------- 33

/2 Shroud j^ *c^ ^ S^cl --------------------------------------------------------------- 33

nH 3 s <T± 1^3 (CASE1 / CASE2) ------------------------------------------------------ 34

3#j 4 #^0| 60cm OllAi U|.#q shroud gE T|g (CASE1 / CASE2) ---------------- 34

ZlU 5 ^§7| gE 7i§ (CASE2 / CASES) -------------------------------------- 35

6 #?4 #7|^gT| Ai|30l t§7| gE Tig (CASE2 / CASES) ---------------- 35

2H7 f (CASES / CASE4) ------------------------------------------------------- 36

HU 8 #^0| 60 cm OllAi gy«H ring 2143- gE Til (CASES / CASE4) ---------- 36

an 9 ##0| 70cm OllAi §3 ring Ai|cHM gE 34 (CASE4) -------------------------- 37

an 10 Eti 3?4 4^#7| gE T|g (CASE4) --------------------------------------------- 37

Hi! 11 #gO| 60 cm OllAi g«j«n ring 4334 gE Tig (CASE4) ---------------- 38

3U 12 4^0| 60 cm Ol|Ai Ally4| ring 4354 gE Tig (CASE4) ---------------- 38

ZlH 13 #£0| 80 cm Ol|Ai gy«H ring 4334 gE Tig (CASE4) ---------------- 39

an 14 ##0| 20 cm OllAi 34 shroud gE Tig (CASE4) ---------------------------- 39

an 15 4feO| 40 cm OllAi 34 shroud gE T|g (CASE4) ---------------------------- 40

an 16 ##0| 50 cm Ol|Ai 34 shroud gE Tig (CASE4) ---------------------------- 40

an 17 #^o| 60 cm ol|Ai 34 shroud gE Tig (CASE4) ---------------------------- 41

an 18 4kO| 70 cm OllAi 34 shroud gE Tig (CASE4) ---------------------------- 41

an 19 4k0| 80 cm OllAi 34 shroud gE T|g (CASE4) ---------------------------- 42

an 20 ilo Eel 3o' 4EH (22000 2i.) ------—------ --------------------——---------— 42

an 21 ^43Ui ^#T| gE Tig (CASE4) --------------------------------------------------- 43

an 22 4^43 (Y g) Ml 4#7| gE Tig (CASE4) --------------------------------------- 43

an 23 #7|9)-g7| #34 gE Tig (CASE4) ------------------------------------ 44

an 24 t@3 (G S) L-H 4^#T| gE Tig (CASE4) ----------------------------------------- 44

an 25 2|3g7|LH 3n Tig (CASE4) -------------------------------------------------------- 45

an 26 33471 sump LH ^3 s$|- (CASE4) ----------------------------------------- 45

8

Page 9: Evaluation of MELCOR code using PHEBUS FPT0 test

all 29 Te MS ----------------------------------------------------------------------------------- 47

an 30 Ru n-t MS ----------------------------------------------------------------------------------- 47

an 31 Xe n1"# MS ----------------------------------------------------------------------------------- 48

an 32 Sn (In, Ag )&# MS ----------------------------------------------------------------------- 48

an 27 Gap HJSi a BIS- 2Bjx| ^8 gf ^#MS (Iodine) ------------ 46

NEXT PAGE(S) left BLANK

9

Page 10: Evaluation of MELCOR code using PHEBUS FPT0 test

xll 1 S’ Ai

xina

§cHAm sM# MELCOR1.8.3 # 0|g£h PHEBUS-FPTO «H^g

PHEBUS HSZligi!!- MCAP (MELCOR Cooperative Assessment

Program) =sn?||2l SMaa

^m\ 4^E|2 21= PHEBUS

TiES ^S5£3BJ°S 1993td —o'— Cadarache y?^Oj|Ai

*jy«H Ajfj°J PHEBUS-FPTO ^M^^^S^I 0\££^7[

#7|^7| AMS #?§4 «J*WIS WM^I CH@ DMEOS^EI

^yass MEife A^ g?it s^oim

0| AHIEMI3. 2¥-l°5 ^«Siac:K 2«H a£J£&2|-

s« EMi, ^y«H y 7^011 ^Aig “jMi ^ ays ^2|Ai?ia

WySLHoM *9=9^S 0||(Hsg2| ^#o| *!?3Efe EMlo|c*| awef

AMRH& ^yaiLH SS AM#oj sump a ao|- 44 o| 91=

at|^^AH^-o| 9eh, #3| iodine 2| m3 f^^EH# E.MIS

fgsjoj <y^O£ ^%5|%CK

0| MEAiOll^ ^jy«H £h7j| a2] glM 7|££|Oj 21 a0=1, MELCOR S #S*j-

EMI =H3S SXH2I 2J3o|| xiBe iMl 97m as|#@ 7few. a5# yx»

S7H9 iyy§LH ^g^S7h tW amsjot 2KH S4°| see- u|h, a#o| 0*24$)

ilSA^7|- y^Elb '9?y 4S*S Oligaa SICK o|.7:|°i A||y«H0|| CH® E38

yAH°| MELCOR StfaESfe a°|7h *7feW.

11

Page 11: Evaluation of MELCOR code using PHEBUS FPT0 test

0| =4E PHEBUS-FPTO BB0||A1 BB4 BB@ MELCOR 2ELH

Ell SEBol ±7\{, BlBE IB ?m*ll Him, gq-s[o| melcor

2ELH E1B| q#Bl B#B2. E02I B« W@BE 3!o|ch

CC1-BI-A1 0l7|Aib FPTO #BES|A| gfiWH BB4E E@0|| C||B SBSf ElS

q£B2BE S#SBo| le Bs|°| Ah§A|. XI9B01I cm BBE E^S

°JO£ 7114 EB1 PHEBUS-FPT1 E4 FPT4 ^X|°| 1B14S ES|^BA|

BTil^EE MELCOR SEMI £if| 1## 0||go|Lf. MELCOR U| EE E@Oj| CUB

£7HM- g# SBollE BE a|Bo| IE# 3EE BBE4.

B%H4A| MELCOR 1 0|##Oj PHEBUS FPTOSf IE #*|| A[-EA|2f

EAh# Sao^BH 7^|gLH0i|Ai ##^EE SBB 141

ESJB 5!E DHE ElDj, ESI SBE q<y5go||Ai B#s|E BBS EE ES|^5S4.

ccl-al-Ai 0|4^E ##SB 14&MS IBd EBB o|sHl So|e S*ll SB 9Bo||

CUB ESI, 6H4S ¥1B IBS #1#EEA1 gq^EE S*l| £|*j£| 7h#AhEo|| CUB

4#B BAKdEBBBBlB EE1 #E# 4 BBz BBEB.

12

Page 12: Evaluation of MELCOR code using PHEBUS FPT0 test

*ii 2 s- eSin [1,2]

PHEBUS FPTO "W@A|^g #2|Wj 207t|2| §gfO|| 1?M

73KHSS BS&fe «W£§7|, ZIBI2 9X[SS7|0]|A1

elbow, (C 9), AM, 3^215 93E|^fe

S), ZIBIH a#^og. ^yym Ohq ygoii ^#sj f#

(deposition) E|EM tf*|E|o] 21 £ 0$?l 3! u^go|| #2). «W|

^E|CH sump §25 S^EJO] 21^ pH 1],

1. % °E±mm 14^ SI [3]

• View Factor

View factor^ cell W] «i|<y£Zt, q<ys2|. £19 SSg 3Bp «!j<3S2| 4#2|^0||

MAhasgAi 45@S] HWI K[e ^xugg 5H» “igsfe Sto|cK o|

MELCOR LH0IIA1 A|-gX[7[ ®]2]S X|SS[Ol £2j5p %[^ E||, »t*H A|-gSp 1 2 3 4 5

1) canister wall 2[ nl^S^2| BSH,

2) A||o|g blade o)|A] °]32h canister ^9£|£| B@S,

3) ceii z> nnnn°s2] ssb,

4) cell y S9B,

5) tM4oj|Ai2| i-ni-H ¥Si|2j 15B

13

Page 13: Evaluation of MELCOR code using PHEBUS FPT0 test

S fi2|Sfe 57H gO||Ai 1)-2) PWR S2|A| ^A|E|0| U^A| 3)

£!«I1S| ^J^O| FPTO AigZ|. yo| ^44^71- gtg ^9H2|A| 7^ §£& <y^°5

XIS9 Sfg 37H21 ring oj| cH^oj g°dm\ o| &°| A|-g g## ^7| ^|*h

[4]c|-e^ gch

tgo| 37H°J ring 05 ^ ring Wj «!j^Sg°| 7^g cFg4 ^o|

TjltHBCh

N, = 7c (r,3 -rM") / P2

5E£h 4 ring Zi (1% ring Zh 2^3 ring Zi )2| <MR& c|-£2f

S2S, = SS(4tc r12)/(r=23- re,2) S2S, = SS (4tt ^/(r^-r^2)

4 ring 2[2| view factor &g

P,2 — (S2S,)/(N2tiD) , F23 — (S2S3)/(N2nD)

- 1 - f2,- f23

n : ring|2| gg n, : I ring Ml 7H^

P : Pitch rcM = rci + (rc,*i - rci)/2: ring I §& °\*\SS = 0.4871

^O) Xjoll #4^# djoj^KN 37H ring 2*£| view factor

CH# 0.3 9E £l%ch ChBl-Ai 0| 7j|>40||Alg default &2J 0.25 3), 4) 0j|

Til^a^Oll B|^g 4) 2J &0|| CL^ $Hfg HX| &&oL|. 3)B|

&£ 7i\±mm\ OHf E 9^1

14

Page 14: Evaluation of MELCOR code using PHEBUS FPT0 test

• §2|E

t#0t|A4 SB|8 DCH(Decay Heat) <£J^§ #e!|0| 74-## 47(44

AjElj D||7Hy^l 0|g5>oi yy°s H°jg. ^ O^CK -origen' S

AhS^fe #8a 34# 88$ |*#£|8 gnias ORIGEN as* 0|§5M D|B|

74|## A|#g ^S311 #£* B£s| 0|S5fe yyo|cK CRM 0|#E8 AFgXRI-

?)2f^0| H9K £7jBj SAH,^0J|A1 y#EJ8 SB|* ^ °RK fy^HE

•ANS' * Al-gSfe #ES AhgXRI- E8s§14, 88T|# SS* S8 Sg^CH 3M8

3SA^* E°|* $ %lb yyo| ojOLl- MELCOROllAi^ <£j§4# &0|| 5l74|%0|

'ORIGEN' @ 0| yiijol yx|) ^2#%| &ch A4|yaH8 Control

Function * #SK4 A|^o|| n^E a a <£4^8 yyo|c|-. oR|^ L-4|y*l48

EEyoll 5l74|Slo| t4|# Aia^a ns^w A|£_k>|| C1E Table Function *

0|§5K>j <£J3M8 ^S0|CK FPTO a@2j #E 74 B| £AhE|X| %E Fresh

239.43 KW5 9 W# 2A^)# A^07| C|jgOj| gB|lE 74 °| ##5E|X| %8

9S£ H 2(^593 saollAi m#E(8 @8 driving core 0)| °|6HA1 S#E|8 ##44

371041 £]®HA4 *4|04£i8 50|7| c||#04| COR y^0||A4 A|go|| 4E driving core £|

Table Function <£444594.

• Shroud

31 aH Shroud 8 1127142] §S#°S 8# ($7H2| 8#7| gap 5&) Ejo4 m. 344

47|o||a4^ u4|7|45 8844 S2|^5Sc|- [3#j 2], S#2f 7ME ^84 4-Zr, 10-Zr, 11-

Zr 3B|3 dR|b|oS mconel S°E 8E4. 4-Zr #8 §H8 ##2|

aas Zr #51S0| #04248 zl-S^cK io-Zri-Ho4| 2I8 8#7|E *1218 gap

#8 Til# Ala ¥E4 £>#218 5d°s Thatch 2H4#9 38 #e4|o1|a48 gap o|

#a#4 48Eo| gs|7| cHEoRK d|.*qo|| 218 $yai 8#7| gap E

o^oil 4# 741*5101 214 448041 gap o| °*8 719#%3 74|7|§nf z| *a*°|

15

Page 15: Evaluation of MELCOR code using PHEBUS FPT0 test

195211 59904, 21 7^99 S995S2. o|^° shroud 2

19*18 28 elH AjS5H^0||A-1 88 92 sfo| EgolW 3 2oI 999711 224^4

%x| 2o|- 28 M929S 35 201 251955 519*12 qj&H 225 191

B5522.

• Eutectic 52

MELCOR 550||A18 H7l| Eutectic 521 AfgSffe 982 AH9x| 28 985

585101 22. o| 2501198 Eutectic 521 Mm*\ 292. 29*4 58 592

118 222 112 1185011CERW 7H@255 %H2*I28 Non-congruent 521

7HS92.

• 299151

MELCOR 258 Zr 28 582 8#7|2 828 #7|0|| 22 995>SS 22955

58 SAidl 5222 521 8 S12. o|ct|| Mi 92 7HI 2±8 8

5flt22 a;|o|| ix(-a(- 7^§*ll 52 S9992, 58 default 28 58 822

S7|lH 2±7|- ±225 817171- ±w|25# 1 2 S12. 1x11 29 a|-ha| 289

92£ 17N2 8*H28 8#7|2 122 §7|?h §a|o)| 8%H92 295>lo| ysjjij

8 212. Zr 2 2±22 5>lo|| 22 511201 Zr 2 8#7|22 511*1 #928

511252 2 2*1195 H2 ±29al|±±12 188 582 8#7|22 125119

5222. o| 38 ±El|ojsj|±±l 811# Fe 2 Cr 9o| ^#7|2 229128

955 7|-g^5 212. 52 71-12 2±7|- ^#2 98 92o|| 22 225115 522

8 912. o| 2501IA18 2#92 Zr 2 2212 ±222±±1 2192 582

8#7|22 22511201 5222 Zr 919 98 Urbanic 2991 52992.

MELCOR 0IIA18 919W1 #8 9X| Zr02 2 88 Zr #9°I 8928 355 5295

Sick

16

Page 16: Evaluation of MELCOR code using PHEBUS FPT0 test

Hi

995S9 n|S*&2j.£E7|- Zr eSSEOll EB^B o|a(| £xUSfe Zr02 92ft9

99#§(A|-#xhx|g: y„S 5¥)^S§9 Zr999 B9##(A^x|g: E# 0.2) S!

uo2 71- 5^ SSSBI- »MI W=oS X||dH*im. MELCOR OllAlfe 59## #99

g99 xHtiHAW ^b|^°| xHtiHxl x4|o{B4# E&tW xHuHx| 991

x-Hom^SlEit §m5icK

39 x|-B|^°l Ajx(-2!^^ 92^9(5^ xj|0j§)0| particular debris 5 B95 ?

o|5do| 59 x|x|Bo|^ grid spacer 2\ Bg 9E#o|| 2J8HA1 o^H xf|tiHx|

5|x|%3 §HS- ?Z#°| £9£50|| EBS IXH 77^1 X|X|E|E® E^MH- Efe OjB

59?5#Oi| 0|5HA1E X|X|£|X| %E# 9° 5 xH|o|^^ 1 5j= 0# >MM

Xj|Dj#E# E|Oj Bch ^y«H X|-B|^°J yxlB|^£ 299 99^1(5^ XH|O|g)0|

#9 gfl*| jj oi|Ai ^24, particular debris # 99 Stall gxH?|-7i| M(1# 9%

99 0s Ajeljy- gofe jj fl*|0|| 229 8JjysS(E^ XH|OiM)0| X|X|E|7|

o(-s(j°j jj-1 ¥l*|of| 2s31 59 ¥=o| £xplW SN 29 S!^ 9^ jj

^|x|01| °lb 5!j2SS(E^ xj|0jg)0| particular debris 5 #A| ti^cK

o| y^ollA-jfe ^7|j2j grid spacer ?jx|oj|^ {1 1} ^ particular debris 71-grid spacer Be

x|x|^o|| ojsHAi x|x|E]Dj 222 »i|2SS #95 5HS- ¥=o| ^22 debris 5 w|-B

3tc x|x|2°| e9^50j| eBIN 77hx| x|x|E|b E2|?^CK ZISHM- L^X|

9jx|oj| cjj*HA-jfe {1 0}. # particular debris 7(- x|x|=toj| 2|8HAj x|x|Eji4 d(-s o^H^o||

222 «Jj2Sg(5fe xj|0j§)0| Sfe til-5 particular debris 5 ufflb

EB|3I$2CK x|x|2°| o| 279 EeH#2 particular debris 1 x|x|S^ g§

pool# 999 t 951 995 #7|| (2.500K, 3,000 K)99?M #2tah

xHbHA|E|fe 589 59###5 ^E-j qogsg z| 12155 2B£|fe 928

i92oj| IIFBW SEElfe- S##2| ?/m- 1951 SEOII 5 99# S2. o| B9B

17

Page 17: Evaluation of MELCOR code using PHEBUS FPT0 test

nr tJOKU tj:OK) <U ftdo o|od'K 5T l1njO 30|0 ID5ni SoiH OHRD RlDRD nrLHoUl

ojolT1 1

oku IP0|0 RD010 rui

JIJ ftnr 'toft oTn 33 UlOnr wLH i<0Kf EJJIJ wnr nr•K nr3 EJw *JIJ flPKH Hr3 ft

uRlDnT010ftsr3jijOFID&1°rsoFRS

EJ•ioof3nrRID

JIJJIJ3uHr\•KHftOKUOK)010orLH<f7\RDJIJnr%Rlimoi

00

a

OJ

# 2o

ZS.

>-+

CJQ.

U|U01= « II II

n

IU|= lT s 1Jj ft >r ft

OH OH3 KH RD RD3 oJ oJmo ftot= R0mt=*10 ft

Rui>■ s»

1LHKir?\ E1RD zJIJnrtinRJ tr­

-rim "T03 Ills!®01mo Tri —..OE LH ^nio HJffJC euf ^0 LH 010 Q o « 3jJ R0 oUl 5U N is| 3 KH2< 5T of oT nT pT^ ^ 7T nm oKu oku oku ninioKUilra

>-H =$. acj u **- > -c

3nit:*10EJJHftijoRD'KH

KHKtiraRJ5IU3ijo513

0|mu|niRSKHRoftI3u|ni<rOHRui

KH OH ranp <0 Rui ft 3LH o ft i|o 3RD id" JIJ nilr RSE

COo111

1 33oc

LHftKH

ft*H'G-

c\ijij

RJ<HJIJ

oyUJ5

«niRDK

jo|ft

UH OH im ijo

nrOKUOK)

RD

£jo

KEJ

u

nr50

$r\mini

0|0ft

o-55

I| K010 id 3

ftfto

1 tiJn

ftOKu I r\

n r\ u RS g nmo LH 5R nr o #ra-55 Ki <H KH RT1

Sr3

nrOKUOK)010

Pr\2.

Hr-uniRJBUI

132<D

iHni|iunrw

JH JIJ< JH *0 JIJ

LH nr id KH JU H<rJIJnr

ft33

1 3RDRUI

33rH

□33

•p -*-i EJ OKU EJ 50RJ *>J

LH KH o0 3 RonH JIJ Eu ft <Um|= u" 0H RJ nr RDjJ ft RD Bill n -H

Page 18: Evaluation of MELCOR code using PHEBUS FPT0 test

MELCOR o||A|b ¥?M S3 oil S|&HAiS particulate debris 71- £9S ¥ %Rk 3nHb

395go||Al M9t^| o|9°| p.Zr ^ 8Jj<gs pellets x|%|# ¥ SiE^ Zr02 #8

n|-bE|7| 44$|Ai n | x|x| £qo| s{c(-n Mb Elolch o|

=1393 ^5jx| BE Zr ip*K ( p-zr )7F A^XR^ XI9S- St Oimi EBEI9 #A|

debris? I-£993.

¥9*n sbe 39ss # b¥?f £S3°m m?^mi ssoii ss 3 9# ^

StE# Sb HtiolcK o| S*H 3 3311 Sib 395g(Eb *l|o|£) B¥?l- bkm

boii 99 5>igsS(Eb mg) Mm\ eg 3 ^3 xhuh^i^ioh 3 019

£XH33 8fog yxll 993 (Eb *l|0|g)S*|H|-E #A| particulate debris S.

himi

o| ao| BSS particulate debris b ASS m*\ Hloll cRM xHtiH393. o|crf|

*110199 particulate debris 2| £gn|(39b fiS)0|| c««h Zr 2J- Zr02 #B@ 93

¥n|Bis yg°i #agg § ^gy|so| ssssoii ?h§3 93 3I9M h39ck rn

package * A|-g3b 395 SB 9 x||H|jx|ol| £|3 &HB o|#@ ¥

Stick 333 o| 9¥ol|Aib o|^g 933 S3B 019 a|3o)| kRM driving

E90II B|6H A||0|E|b 3S10II SIS- S3°5 E3 5Jl7|CtHbO|| RN Oil BIS SBI1BI

OISS S°| 3 ¥ Slack

cRM o| S?o||A4b xH01*l *joi| ?M2 99 S3SS 339 3E 395S9

ASSoil CEhBl-Ai bAHeib node 1 9 Soil ti|s||3HA1 b013b 2°5 S335S3.

CRM £99 nRH*o||AiB| m#SSo| #gx| S33 pool o| £939 S383.

2. 3bB^9S S# El

MELCOR 3Eb fission product 3 activation product # ¥¥39 Mb#

radioactive product E ?|-93E H°J33. eRM o| 9¥o||A-|2F 9o| xi|o|g# 3M

19

Page 19: Evaluation of MELCOR code using PHEBUS FPT0 test

E#9 38 *|0}g IS (activation product)^# til S*t|7F ##2#

9*9511011 tilt!" radioactive product iMlAj activation product 99# mill 8# 9

H2|»racK ns}# MELCOR 2Eb AIMS ElO| g^O}Ai A||0}## 9<95g ECJ1

#§## E##7| uncoil X}|0}g0}| CHSHAiE S^SS# S7| uo2 gfoiiAi

9^199=2 *8S y-o^fe uo2 yoi siomn#^

#8011 ^laigoll til# S^XhSOll ## 995 SWO| AigEjm

981998# y#g CORSOR-Booth %}98 518 A|-8#0} 5# #1#.

981998# S7| y#yg njMg. n^A| 981998 S7I A(-gxp)- #-

9S1( class 1)2 A|g«h 19# ## 9#o| gap til gxH6^3j22 7^6M ###

#1 99A| gap UH #X||6fe gxliyol #A| #7^2 g7|til ti|7|2 &t#8 9°2 7^.

S##I> 5ICK 0| 9^0l|Ai^ H|M8# #18 98 §1 A^gXpF *19# gE& (1173

K)CH| EBEI9 19#8 3°2 E##lEk E#i-t-990||A| 91 9E 2A^ 995#

A|-§SH7| #£o|| 0| 98o||A|8 fresh 9952 71-961-0} gap y##8 0.0 22 *19

E##9C|,

#29 98 9# i s# 14 s#

1. 98E98

CASE1 98 37H2I 82 ti|7H988^8 #8# 9o| 99#o|2lEh Debris

99o| 6|g#2,1«H #9# Ell# Ah#eo| Zr###uH 999 8§88 Zr §§8E

9 2,098 K 0I90IIA1 you 8 2*2#, #x|# A||y«H8 E9#89 899#

#7|yy7| A||## ## 17H# control volume 22 H##!#. 2## CASE1 #

All9-g#8 999# U|H6M #y6p| y^CK cpw phebus-fpto 99

0||91#1 7U98PI #61-0} CASE2 fE-j CASE4 #A|2J 371} # 9#E 898 89##,

20

Page 20: Evaluation of MELCOR code using PHEBUS FPT0 test

19141 7# g 441 4 98 CASE4 911 0^99929 0| £89 44 141

1S125 41x|4 ti|H819589. a 18 oiig yiE 81 HI M048CK

1.1 Debris @4 7|g (CASE1, CASE2)

39*H "BJgE 988 declad 8 995 pellet o| |2S 8494 g2 *ll99oj|

Ai5iEl 971 999 4%9%ck Debris 948 44#4 84 Zr 4 ^|7|- Ah§47h

419 &(0.1 mm) o|9o|| Eg 981H 9499 98^25 xHtiH*|9E9 MELCOR

o||Ai e992 99. ixlls 44 nll^uH 84 Zr 4 8%H8 declad 8 945. pellet o|

249 9 *194 98d| 98 #29 9#1 99. 98 99 14 [6]0|| 494 p-Zr u»

4£8E7[ 0.9 w/0 0|9, p-Zr 89 7(■ 0.1mm 0|g 9 18 declad 9 pellet 8

144AI9E xi\x\E\o\\ 8 99.

CASE1 4414 4889 1958o| 519 4449 #4 e9o| 9494 debris 5

92 98425 84 xHtiHxl 99. 9sW Eg 9 8E8 Zr 118E9 9 2,098 K

o|4oj| Egg 4 2*924 44g89o| h4 44 87h999pg 3], 249 gxi|

IS 18 E49 915 % 1 U02§§8E o|4oS 57 w 529. casei 149 declad

9 495 pellet o| 8499 g2 uo2 1S8E0|| Eg949 A|A|8E#o| 9414

94 2 9B|0J| Ai 9E# E49 CASE2 4 ti|2 8195K9.

CASE1 4 CASE2 1 W|29 14 CASE 2 184 44 147b Eg 4 shroud 4 8E

Till #9g 9495S9 [21 4],

1.2 Control Volume 894 44 (CASE2, CASES)

0| 91E 848 8E 947h 519 4144 #7|gg7| 494 84 (4#7|)8E

441 44971 999 4^9539.ggoi|Al8 4199 LH198 973 K, #7|gg7|

21

Page 21: Evaluation of MELCOR code using PHEBUS FPT0 test

Mm HMHE 423 K S 4%|E|%ck CASE2 94 0|^g volume

Ml 7I-6EEE H7j| Hfcn^7h E|nm. 0|E MELCOR 0||Ai volume Ml EE @^71-^9

5S ^HBj volume °S SS|S|-oj n volume Ml 95EEH ^|5|-7| n|jgO|c|. (lumped

ESI). ZI-2W CASES OWE Oil O|2|7|joj volume °£ S°J^58nk ESJ

49SKM S^IW^7| AH^LH gE7|. CASES #D| 9 0||#E|%^ pH 5,6].

1.3 9^#M| °|£h §§1 SSjEl (CASES, CASE4)

0| H9E E9E E|MSo, xHtiHxi a|9§ x]|0|5K>j 66^99^ e|^lh §§#°|

99(0sH9)S! xHtiHxi Alas # ol|#^7| 4%a^ck ^xh melcor oiiaie

default £ #9 cell Mj nl^S-oll Ex||5|-E HE Zr 2f 9£l§(Zr02) nap §sHE

^9£E 64 Zr E?j|7|. A|-gx|-7f a|99 ^ o 151-011 EHH&HM- EE Zr

§§EE(2,098K) Oj| EBIclH #4#H£ XHtiHx|E|E^ E2|5p Z1B]l|.

9*il£ £|^0)| H9E 9^#2| §§EE7(- DHE 3*7| ClHEOjl (2f 2.963K) L|]^0||

99S s§ii e^soi e^nwi m\ 9n %i# 4 suck oi^oi ^#01

*W C-i £=H1°I- #### %#0|| EfSW H|^°| 9^, §5f|7f C-j^

99H 4 Si^h floilAi <999 o|^g 99E melcor o||ai semi ?Fe» o|#5KM

H2|^ 4 Sick 0|an A|-§9 99# 69 Eg*E EE7f 2,500 K 0|^0|7iL|. EE

99#£| E^f|7|- n|H§ ^ZH|2| 50% o|5f7f E|as an n^BWI SSS21 xHuHxph

W99E SlE£ HE|5^ (ISP-28 0||A1 Afg9 EQ). o|^g 69 a|9E

46^99, H|^ gou xpHxlAiH asp uo2 gsH9#0j| oH4 E 99S

0|£ick #9g 46#99E ^ 90g o|#oS ^ggc|- (90 g o||Ai 66 ^99 #99^1

52*). ZZ5]L|. CASES 94 E|^yo| Of 2,098K 0\\ Eg#[[|| #A| #6£ X|]tiHx|EjOjAl

92L9So| #es|%7| ctHEoll 7j|9E S 46 ^99( 7tg >o| #9^9 dpsHA] 391

^6@7|. E|21c|-psj 7], 9^S 69A| XHtiHx|E|7| A|%E AI90II

E5f0jAiE CASES 94 OLAM 0|| B|9 &gx| (15,178 S)2|- Up^O] L-p ^5|

22

Page 22: Evaluation of MELCOR code using PHEBUS FPT0 test

9040 0||#E|Xi4 PU 8], 244 CASE4 30 339001 #4 2BI109

x|A# 0 Sl7|[[Hgoj| #gx|oi| M4 7MS 3|3 14# M%ck 244 uo2 0&H9ol|

334A10 CASES 307|- CASE4 54 # 0H#E|&4. H 0|£E @X|| 3#3 00 Zr

Oil 43 uo2 06H Slot g=H3S l@o|4 OIEOII 571a- 03O|| o|6HA1 711^3^1 &2

Ahgxph 145 x|33 0|g 90341 413 32971 4|Eo|9. # «4XH

90oi|a1 yqsi- gsHsaollAife 403 g§l0| xHtiiixlUcH E%H30 00 Zr 104

133# 90 (20%) 4 U027|- S8HEIM- 521 7|.g, 543^)-. HbB^Ai CASES 30

3390O| g«S| X|%E|A| 58H ggg Zr 001 994. 244 CASE4 30 #03

3390o| 30997| ttHEoll ggg 00 Zr9o| oH0 34 14355 gsH3 uo2

ot° ^7]| 0j|^5^cK 344 0|^g 45:371-0 0? Eutectic 514 Al-gog 7H31

0 9S2o|4.

2. 5 4 34 g3 (CASE4)

2.1 0303" 1 shroud 40 [7,8]

a^ollAi 4404 03 A|gg Indium 4 3## 9x|34 5434. o|o|| 439

Indium 4 9#0 10,S6020]| Xig 9x|E|2 o|0 11,9205011 ifx|gfo| 37j| #7|-

994. 33 9 0||Ai M0 Id[4 301 4301I 443 #1°| 70cm 4 440 30 4

11,9202:0)1 03 Ej05j°s o||#493, o|uH 440 S04, A43B1PA3 403,

05404 0534# 3 oil#42 401 5404. 30O)|A1 #34 095 4034

33^011 43- 430 4 6.930£oi| 40305 973 K 0||A1 13994. 244 melcor

0110 4034 03011 43 41 510 9°4 9x| A[gxp[ x|33 40305o)|a1

4lo| 1340 5°S 5434. o|m| 4034 41oil 43 4950 34 @30

7II301IA1 244a| 159 (0||; 41 39 339051 90) 24 gap 4 E*H30

23

Page 23: Evaluation of MELCOR code using PHEBUS FPT0 test

oi AhsucK edy^n ^yss ni^y ^28

2y# ring 0IIA1 °f 6.909S 0)| 2@E|8 3° 5 Oj|*fEj%}c|..

^ 12,000 2 fE) gy«|) ring, A#o| 50, 60 cm o)|a) A|^sj%g^

go|- urbanic &5HNS A^e^ck 52 #?^s| @20)

2@2) HS- (oscillation)^ 82s0)| 9\t\\M 52°5 ^e-) n|M#S) 8#°5 2i&

XHUHXI7I- 22255 ^ %ck 7«yo)| aie nms- AHUH^I a|22

gAjoj^^El £eh|J28 nUioo)| mo^e 5icK 7)|2o)| B|oi 8ij<ys nj^sj

xHdH^lb 2y«H ring 3° 20, 60, 70 cm o)|Ai 14,8502, 50cm o)|A) 15,3202, 3y«H ring

28 &0| 50cm 0)|Ai 15,70020)1 ^E|%cK ^y«D ring 2j «!|ysg 858 5!y«H

38857|-cK: 1^5 g@ *)|2|»H18 #985# # o^Spoich gy*|) ring

2 AliywH 60, 70 crn feO|S| 225# SEpg 11, 12] Tfltf 247F y@A|

#9A|MC|. C.[± ^@7)- EI^ol). ^0) 80cm 0)|A)g 7||^*|7|- 39^ 2^200)

S9S (12,000 - 12,3002) E|8 @2 40)g7|- Sh5S^pi| 13]. 0|g #X-||E 0|^g

332 2220 7|y ol! #250 0S3 SJ82 xHH|)x|E|5t7| mi@°£ y^gc),

sy^l ring 8 &0| 20, 60, 70 cm feO|a X|)2)#E8 *M*\?\- ^E|A|^°^ >-K>|X|

§2 003 2)#yo| «* 100% ySFElftCh 3y«H ring 2J Xf)dH*l8 2f 15,10020))

20E|S}3-. Ttiy-O)) o]5H 0||&5{ e^lH i|d) gE8 2y«H ring 50cm #0|0)|A) 2,950 K

^ ceramic @#85(3,123 K)0)| Eg#%| 8223. 8y*H ring 0)|Ai @6H8 U02

28 0.57%, A]|y«H ringO)|Al8 0.33% 5 38 9?)| 0||&E|23(3.1.3 &S).

##0| 20cm 2# shroud 7i|2gE# #933 Hpy S3 2 15,1002 0|^0)| #9@

shroud 8E7I- 7l|yx|2|g Cp7)| 335) #7|-323. CpW 2X1) 0| ^0|0)|A1 yg

23 59@@#o| AHtiHx), 8°J Ejy@S 2 4 23. e33 7)12138

0)28 xHtillx) 221 0||##A| 8#83. 30cm #£o|o||Aig #9*P ycK 40cm

&0|o) shroud 858 0| £o|B| #2£go| 7F93o)|a] 2 0j|*E|ycK

24

Page 24: Evaluation of MELCOR code using PHEBUS FPT0 test

neM o| feo| o|^ 50, 60, 70 cm ko|o||A|2| shroud gEg 15,1002 o|?o||

H7|| 2KWI- 5|%CK 0|gg 3||S S4g 15,100201^011 0| ^0|#2j #@0|

40cm 0|*hs xHtiHx|E|%ei 2|n|5t4iill 14, 15, 16, 17, 18, 19].

71122 ^ 80 g °S l!t± %7|-5j%g Ell H 0|gg CHSf 3? WS

m ¥ SACK E^UH gxHSfe zr S gg@ stiffner * E2|spl fc^ooi,

gS«Hg Zr S ggg shroud £i^2| liner# MELCOR 0||A| 2^12# E£|A| EB|S|-X|

SlOtt) D^ISI A||y«Hb 32m gE7h #7kg *jggE# @7^%7|

cLHgojcK an 20g 2# En g# 9eHS sol gcK

2.2 ¥*1^*! TIE

an 21 g 42|^LH gx||gE7h 12,1002 0|*W|g 2\±%7[ 0| 0|<£g H7||

4CHB7I- E|%E# soim o|^g o|gg nysi gE# ygs|7|| gx|*i ^EUOIIAI

#3£|g 7(-^o| gE7(• ySHEja ES 0|^g fg0|| [#^0] lumped El#

AI-E^PI ttH^0|CK 7l|AhS gx||gEg gyg gx||°| gE7(- ns*wi gA|E|E Slg

ny gEsci- ^oL(: ^ol^oii ct^w ci^ Ties M%ck gna-oii sejEig g*im

gETh ns gESCl- Wg gg, gA||°| gE# 45®7|- ^<gC|-. HB|L|. gojE|g

gniBi gETi- nsBi gEs^ eg gg g°j£ig gxiin gE#

oigg s&g nsgE# g%i#7i ^i#oi Th^is °ig un^2ins e«h ^noM

g|=H£l 52 #o|| on®- x^S7|- enroll ygs|x| gS 4^°s o|o|| cHS 4S7h c|

Ssmcl-E SSgcK

g2|S elbow ¥E| Y x|@ 77hX|2| gggLH ¥#7| gEg Etin gE7^

agon E&E|«SttH am 2|cng7|- E|g 2# x||£|§mg #@x|# ^ ot|^%}c|. pn

22]. 0| ^SS| gE #@x|g 7|gx|HA|0||Al XISS gEMDF Ch4i W7H1

gAlElSJcK

25

Page 25: Evaluation of MELCOR code using PHEBUS FPT0 test

2.3 Aliy % g@ym 19 >1g (G T|9)

#7|197| A1ISLH TiltHE ¥#7| gEg ^0j| ii|-a|-Ai 44 4E 4## £0ck gp|

997| 99 ¥¥ Ai|ym4 ggT| gEg 9g 199 ttHM4 ^g gyy an #

0||*4<SCK E£i Am 4y ¥¥4 14 EE7I- 4944 9°| 423 K £ 9944

¥94%l ¥4 °llg 199 ¥#7|4 Am ¥E#A|-0|0| ggg y# # 01144X1

¥407| cHggg yygcK g ais 7^g AmLH ¥#7| gEg yg 1^9 911

*i|441! 423 K £ y94711 14404 [3#| 23]. 499l£ ¥947| 0|*j°| ¥94

(G 9) lh 4#7|gsg 9 99 7|y§y g 011444 499l£ 19 9g

¥S7|gEg 494 3,g 4944 9o| 9 997|ygy 423 K £ 9947i| 1%I94

4U9#£ ¥9904piJ 24].

2.4 499im 14 7]g 9 sump ¥4 94

4991m ¥#7| gEg 37i| 4^971- (4 20 K) 40°4 144 Tigg 49^14

# 94404 pH 25]. o|9g lumped E91 A|-g47| 4jgo|| 49914 7^ E91

(f#7|, ¥£, 419991) 4 ¥91 tH19°£ £444 H44*l ¥44 E99*il

91 4991 tiPM o£g 4991LH 44oil nRW 9444 o| 7i|yo||Aig

49914 hES 9944 100% £ 7^9404. 4aW 9 494 °|4 4991m

¥#7| gE4 99g &4 944 o||#gc^ A|yoi| am 94494 944 o#o| 4

4D|7|- oicp Al-sgcK au 26g Aiyoll iiFE sump m ¥44 941 #944 941

£4S4.

2.5 #19991 9# Tig

MELCOR 2E0||Aig H 2 49°| ^94 191 #199914 activation product 1

¥14*1 l£ g#l# Eg #1999l£ 71-944 E444. E4 o|m #gg

14@44 ¥10o| #gg£ 14A1 16 tH class £ ¥1 E4404. #199914

26

Page 26: Evaluation of MELCOR code using PHEBUS FPT0 test

XNvia mi (s)aovd lxaw

LI

kiBB-B irk-B

iofo|3 TrIK |og3 Shr Is 55 UK) Ik BlYklo kkkB 5o65B 5 jo Sir

Is 55 Slolk kkk kESIs kB71ir IKE |oj£S5 c itoSto kkloE 5g3

S-m |oMloS|3i-olie 5 jo Sir Io5S SIK)lk lo -5 klkte kkk kiBfvjlo 5oi£ll

jw5 10joSjfl SEIS^y-Ia |-Y||OjvaS§ BE kS 53K)||0 kklife oShr lo5 =

us ui -6v toMk>gk)lk ^Ik5 klan jots Ikj^Bk S^S^ kk06 SEE

BEBte HoSHt kTS 5k logs Sfolk HiEE wocnaw ‘SB BtefkB B-llo0k)lk

teo CR tek lo#b uS ‘ui -6V BllohS^Bh HoSHu k&k§k S3B msqjj

Io5B£ loS5 IkBkkE kBBfiY Sis EkHslo HogBhe k@5Blie o5S o5

US U| ‘By tee Uti k%kjzB7k IkE |OjSE|R fckSS kkBk U| ‘By ‘us

■Its uni kBBB EkKIS B STS klkB llogfe jBS5 lo @X SKIo jogkjzg:

kk IKE ##B 55 9x kTSliskB kk |o5BS5 HcSHu k%k5 kkBIk

Bkkto S6B B5lo 4lo zooo'si B6Iy kkkklk EofeB |o§3Bhe IsBB

5e MIoBB 5Ik5 BE zc%k kB 7k 7k kE3 te§5£te kk zooo'si.

kB woootei. jo BteklY kkkS IsfeE kES loBSBke EofeBB kTSTo

B BBB SjBB ESfvE ioteBB |Y3o-f5Hr|R kkBk HjoS-m lo#hs o-5lo

toe ‘63 '83 5cHaR5|Stel|0 5 lo#B SB lo nti 91 ‘I eg ‘so jnE «E|R ##B STS

55b« tekSte kloBS BlYA #SB de6 lYgk Bkk BkE Blk BMk kkk

kz Be) kTStebllo # #k5 S5kE£B Blair\c-k&Sfd IxBIsir 555 dBQ

lo kSBB 5oi£ SKte 536 BlYk loB toSB6BBIie k de6 KH*5k

113BBka ijsaj^ BBkHs jo%j&64z 3 o 0 0 ojo Io56Sy^,r lie BBIkS

H-I dee lYgjn BWk 3£k k&BloE 06 553 76>k moog-yostioo BSB

Page 27: Evaluation of MELCOR code using PHEBUS FPT0 test

CASE1 SE7|- 2,098 K 0|# Egg 4 Si^K 22BM 0|gg #*l|g

^<95. pellet 0| rubble debris S 9^E|%| (CASE2 g#) sHaWsM-

2|4#g Zr S#gE (2.098K) 0||Ai S^^og *HnH*|£|0f f± g^ggO| H7j|

2f±g7(- ElSach g^g Zr S Egg ?5§2l th$WI B|8HAi g^E|°E

Hl^oj xHti|lA|2|. ygg EgB| 2@0| ifiSfacf.

DWS e#oll 2JS- xHBHxlb nJM5.h-H #§## gESih ^#2| gEg gtfllt

A|-#W Eg#E %CK CASE1 ¥Ei CASES *Wg E|#^2j XHtiHA|7f- Ej^SS

fgM&g Zr 2j ##gE (2,098 K)0j| EgEjg g^gg 2°E 7f3 HEMM-

2,098 K g El^Ol #^e| ^E|7|0||fe. f^ChE @-gg%Ck HRW CASE4

Oi|Alg #9A|g5 e$H MW ^Sftg fggE# 2.500K, gSfgg g77||g

£®£|7| S E|#g ^|2| 50% S XHtiijxl 7|E°S g»ra^K 0|gg Egg AhSOll

ojsHAi nma- AHtiHAl A|g# <9gW f^g^lgg A|@# g Egg 4

2I»g. ZLgg 0|gg 7HdO||E fdlg^gg 4±87|- gag dl a 0|^

g-gg- gg Sg nng°] 5°^ eggck *Wlg EguH stiffner 1 Eg#%| &&E,

#«Hg shroud °Mg liner g ^g## MELCOR 7|- Egg f 2t7| c||go|ag. Eg

¥*H9EE CASE4 7||Ah0j|Al 3gg ^g#0| Siggg gggE# g£

g£g7|- 5571 CHSE5 eggck gg Stiffner 7h Eggg £f*jSh7l| ^EimE

7|-9^g g I2g g f^i# g^A|ij f Sig. HRW o|gg a# Eggall gyg°l

ffb g^g# gSS| o||^agi) Ehg£lcK

MELCOR 3E0IIA1 ## Zr 0|| gg uo2 #8|jg T^g Eutectic Eg A|-§ gfO||

CCRl-Al 27^1 ^2£ Eutectic Eg# A|-#mg ggOllg U02 #»ljg#

agA^OII 2gg fa# 0|##C4 Tfl^&CK U2iL(. Oj7|Alg go| Eutectic Eg#

29

Page 28: Evaluation of MELCOR code using PHEBUS FPT0 test

Ahg*W fife 3go||S uo2 gating Ei£S| W2IS £#a| n|ggLi|o|| %|g ggg

gg zr a&si wsg# ema] uo2 #woi 325 ?t%m. apw w##oi

2,500 K CHI 01□ | 9#ygo| #g5| 9gE|0| ggg gg zr &o| n||g 9o|

S7| iiHgoll uo2 gsH^ol *j7j| 0||=E|<ycK Eutectic EfijSJ @71-21- HEWS

gggck

g^Elg g#7|2| gE W^PI-## Eel #g# g9S, #7|#g7| AMUl

g#7| gE7|- MELCOR EE0||A1 5|gS|-E 21 g lumped E@MgO|| 9^3 EE

#9A|2| %g x[o\?[ °!%cK zt&m o|#g gx-IH t$ny control volume g

gg*K>l £2J#eea1 #gx|* 7HAH^SCK 4 mm gy£|g g#7|S| gWO| yg

ggg 4chs7|-ei21ol.i- g#oi ^g ggoiig a on##%ck oi#g o|gg g#oi

9g gg tiHS ^94^1 19Bo| #^x| g#%7| EljgEE gygch

(X7|AM #o| xHCHgWS El^og gg?N E°|# ag activation product 7|-

Aliengo||y gAH#7| ciHgoll #g£|g gxlll °jqg E96KH EE4H-

MELCOR 2ELH X||0|g ElO| C^£ Sf7| EtHgO|| X||0|g #40)| CC|Ef

9^01 SOI E|g gx||7|- #g5|%CK 0|#8 gA||g EELHOII &7|0|| gXH^g U02

9WEE gEi ggg qgggwg 9W1 mmg9 yg uo2 #W0|Efe Egs&l

ttHgoii #g^5SEK nE|Lh #x4| #9g# HSJ# @go||g xj|o|g:i|- ^Ego] aie

S#g 7HW°| CHS ^°JS§2E E°^p| ttHgo|| El A(-x||o||g gxp|- SicK ee# o|

gAllg All algo I o|g 5jy«H ringSf 2y«H ^2g ring S VH°| ring EE ES|#0|

sHSW gE £N.

Ollg ECU ##S| gg E#0||Ai #g£|g !g gullol ON2 2|g driving core

0||A| Xl|0|E|g 5i|gl SW0|EK E# 0| ##S| gg2| #0| S^EgO] &X\ 9#W

ZAN%7| EHgOll #g£|g g2|«g gA|#%CK s# Af-gg q^Ego] 7|°| fresh

ggSPI EHgOll gap w##g 0.0 EE ^g#ggg Wf

30

Page 29: Evaluation of MELCOR code using PHEBUS FPT0 test

81444 oil# 34s 7H94S4. #994 gxm #83 9914

*01*21 #499 ttHSoii 9#9£ gqi^c). S7|XHH1*0|| 44 81E *UI4$5i4.

7119 S4S #944 ti|H, 844 34 94^124^ 9# 391 1a|-4?I|

0||=484. 0|8 CORSOR 2lO| JL<&± #°450|| 44 x^i 7155. 7H^£|%7|

48014.

Hlag ##8 #9454 XIIojsH Class2 (Cs), Calss3 (Ba), Class4 (I), ClassS

(Te), ClassS (Ru), Class? (Mo, Co), ClassS (Ce, Zr), Class'! 2 (In, Ag, Sn) 'EM

ti|H484. ## 7114 u|H, 843 o||go|4. *9454 44 S?Hb Cadarache

<gB±#44 8*115 44 442# 49*14 3991 b|h, *i|A|4%4. ru 3° 4

15,000 0|^ 4497KE! E98E5 944 #94 54 9#8#o| 44@7|. E|%ck

MELCOR 5E8 §0|A*2A| 391 4 48 4342 #94 9911 A|-SA#

AWI^WI b43 ^ $iE# #84 Bis 5842 $14. 344 0138 E14

94014 0H7H9434 498 494914 44 #84 o|sH4 45t ##$#

9442 3# 39#o# 34. ^4 E44 452# 494 31 a|§^ 3°o||8

y-EA| °i35 841144 44344 #434 9El 97^127*34.

31

Page 30: Evaluation of MELCOR code using PHEBUS FPT0 test

1. I.Shepherd, L.Herranz etc, “Pre-Test calculation for the Thermal-hydraulic Tests

carried out in the PHEBUS-FP Containment Vessel" JRC, 1994.

2. A. Amaud, L. Cordron etc, “PHEBUS FP Test Specification FPTO + FPT1",

Cadarache, Sept 1991.

3. MELCOR 1.8.3 Reference Manual and User’s Guide, Vol 1-4, SNL, July 1994.

4. R. Gonzalez, P. Chatelard, F.Jacq, “ ICARE2 Version2 ModO Description of Physical

Models”, IPSN Note Technique DRS/SEMAR 92/24,1992.

5. L.J. Siefken, “Liquefaction Flow Solidification Model For SC DAP", EGG-CDD-5708,

Dec 1981.

6. H.M Chung, “Material Interactions Accompanying Degraded Core Accident", ANL,

March 1981

7. Measured data Tape from Cadarache

8. “PHEBUS PF FPTO Test Preliminary Report and Compilation of figures”, JRC, May

1994.

32

Page 31: Evaluation of MELCOR code using PHEBUS FPT0 test

Steam Generator U tube into‘3’ CV

Horizontal O pipe

Vertical pipe into ‘4" CV0 point

Shroud

1 PHEBUSFPTO ^ '••I'M 21-

Low Plenum

Source

Horizontal Y pipe Horizontal C pipeWet Condenser

FPTO shroud configuration in the experiment

10-ZrFPTO shroud configuration A in the calculation

2 Shroud f

33

Page 32: Evaluation of MELCOR code using PHEBUS FPT0 test

J.m 4 60cm »Ii>l

uK1-5f shroud (C

ASE1 / CASE2)

Outside Shroud Temperatures at 60cm (103K)7S >2

O O O O O —» ^ —* -* —& f\j

OM^OIOOONIA. 0)030

3.% 3 M

M^ (C

ASE t / CASE2)

Cumulative H2 Production (10'kg)> m 22ooooooooooO—*Mo^-xcno>>uootoo

Page 33: Evaluation of MELCOR code using PHEBUS FPT0 test

*?] 6 /| w

- (CASE2 / C

AS

OOOOO — —

Vapor Temperature in SG U tube down side (103K)

ON)^Cn00C3M-NC7>00O

(eh

svd

/zhsv

d)^

3^

s fez

:

OOOO o ^ ^ ^ » hJ

Vapor Temperature in Vertical pipe(t03K)

OM^aiOOOM-^OOOOT-#—r&

Page 34: Evaluation of MELCOR code using PHEBUS FPT0 test

TIME (I0

3s)

I 8 4^4 60 cm 4 'I ring ^14%

>].£ (C

ASE3 / C

ASE

UiC

> The second ring cladding temperature at 60.0cm ( X 1 cT3 2

OOOO—» —• — KJhONJCMO<zl0)<ON3Cn00 —

7 (C

ASE3 / CASE4)

Cumulative H2 Production (lO-lKg)7S>

Page 35: Evaluation of MELCOR code using PHEBUS FPT0 test

Inle

t tempe

ratu

re (10

3K)

5 Central CR ab

sorb

er Te

mpe

ratu

res a

t 70cm

(103K

) TCL

TSSTC14: unreliable

9 °1 70cm ^IH iH!‘ring >1^- (CASE4)

Low Plenum

inlet T

KAERI

10 -V-tl y-?-5r f (CASE4)

37

Page 36: Evaluation of MELCOR code using PHEBUS FPT0 test

y 12

60 cm °1M

ring «)?!&-«- £E >|-£ (C

ASE4)

W

> 3R Fuel Rod Temperatures at 60cm (103K)2oooo—»hoK)ro(^4ocHC7>tOhoaiOD —

TIME (103s)

11 4 = °1 60 cm °1M -T-y^ ring tai

<95.-g £E 7^-i- (CA

SE4)

OOOO—• — — |sjroK>W

> 2R Fuel Rod Temperatures at 60cm (103K)

OUOIIOMUIOO — ^MO

Page 37: Evaluation of MELCOR code using PHEBUS FPT0 test

-It! 14

°1 20 cm 4M ^ shroud £5L >1^ (C

ASE4)

5 Inside Shroud Temperatures at 20cm (103K)2

OOOOO — — —

OhJ4^CDDOOhJ^k O) 00 O

HS-TEM

P.1100505

TIME

(103s)

ZLj

13 ^ it °1 80 cm

n ring ^*95.-8- -&

S- (C

ASE4

2R Fuel Rod Temperatures at 80cm (103K)>

o o o o M hJ M CrloojcntoMcnoo —

Page 38: Evaluation of MELCOR code using PHEBUS FPT0 test

o o o O O —> —•

Inside Shroud Temperatures at 50cm (103K)

jj om*-oiooom*.oio»o

HS-TEM

P.1100805

Z2^ 15

40 cm

shroud -SrS. >It§- (C

ASE4)

Q O O O O ^ —• —* «• ^ fsj

Inside Shroud Temperatures at 40cm (103K)

Oro^OiCBON^OiOlO

HS-TEM

P.I100705

Page 39: Evaluation of MELCOR code using PHEBUS FPT0 test

O O O O O —» —» —* —» —^ fsj

Inside Shroud Temperatures at 70cm (10JK)

ON)^0)OON)A(7)00O

HS

-TEM

P.1101005

TIME

(103s)

17 ^-3

°i 60 cm v*

shroud ££. (C

ASE4)

Inside Shroud Temperatures at 60cm (103K)7S > m 2

O O O O O —* —* —* —*

0ls»^0>000ls)^ 0)000

HS-TEM

P.1100905

Page 40: Evaluation of MELCOR code using PHEBUS FPT0 test

Insi

de Sh

roud

Tem

pera

ture

s at 80

cm (10

3K)

HS-TEMP.1101105

KAERI

19 80 cm # shroud -SrS. (CASE4)

center ring at.at

absorber cladding Guide Tube

second ring third ring

Fuel Cladding Fuel

1

Cladding

Agbln+Cd

Stainless steel

nv™ Stainless steel oxide

i------ 1 Zicaloy

ZrO,

UO !

J.% 20 % 2c ^91 (22000 £)

42

Page 41: Evaluation of MELCOR code using PHEBUS FPT0 test

J-^22 ^%

# (Y S)) M

l ^-6- A ££. A 5 (C

ASE4)

> Vapor Temperature in Hz pipe with Y point (103K) 2

OOOOO —OM*.mcnoNj-&-cncno

CVH

-TVAP.910

(tHSV

D) TH"? [^v

'v Ih

-ft $ & L- IZ

L- (s

f0l) 3M

I1

CASE4 Vapor Temperature in Vertical pipe(l03K)7;> mO O O O O —* «« —» —* —* fsj

Oho^cjYoooro4^a>ODO

Page 42: Evaluation of MELCOR code using PHEBUS FPT0 test

?) 24 4^# (G "9) M

l >|-£ (C

ASE

4)

>mTV

Vapor Temperature in Hz pipe with G point (103K)

o o o o o hJOM4^O)00ON)4^CnCDO

O "O

CASE4 Vapor Temperature in SG U tube down(l03K)>m7;

o o o o o ro

U naK)u>o|%

1#-M4#-!>o|v

r|oM4Lotn

>

O SJ 4^ 0> 00 O N) cn 00 o

ouV)

Page 43: Evaluation of MELCOR code using PHEBUS FPT0 test

CVH-P.600

KAERI

25 (CASE4)

CVH-LIQLEV.700-4.20

-4.22

-4 . 24

-4.26

®-4 . 28

-4 . 30

-4 . 32

^-4.34

-4 . 36

Swollen liq level

SUMP WT LEV— 4.38

-4.40 V

KAERI

26 2| ^--8-^1 4" sump '-)) f (CASE4)

45

Page 44: Evaluation of MELCOR code using PHEBUS FPT0 test

REL

EASE

FRAC

TIO

N

$ R

ELE

ASE R

ATE

(10" F

RAC

TIO

N)

RELEASE RATE :

CLASS4-I Gap Release

CLASS4-I No Gap Release

DATA

TIME (101 * 3s)

0.^21 Gap ZN# (Iodine )

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

KAERI

RELEASE Rate FRACTION :

Llti 28 Cs -c-i"

46

Page 45: Evaluation of MELCOR code using PHEBUS FPT0 test

1 0

1 0

1 0oy—O<cc

1 0

£ 10 -< ac

< 10

£1 0

1 0

1 0

KAERI

Te129mRELEASE RATE :

CLASS 5-Te

DATA

29 Te

o 10h-oS 1 ou_

£ i occ% 10 <UJ

£ 10

1 0

1 0

1 0

KAERI

Tl'r) 30 Ru ^

47

Page 46: Evaluation of MELCOR code using PHEBUS FPT0 test

1 o'3

O

10'5

V) 1 o'6

o> fs.1O

LtJk—<ct: 1 o'8

LUin< 1 o'9_jor O

1 o-"

1 o'12

Oi

KAERI

RELEASE RATE : Xei------- 1-------- 1--------1— —i-------- 1--------- 1-------- 1-------- 1-------- r ' !

............. CLASS1-Xer * DATA ]

r: .. •

i

r 1

r : . 1

r i-•

r 1

r i

r * •

******r

* f i

■ i____ i— 1 1____ 1—*—1--------- 1---------ii____i____ :

0 4 8 12 16 20

TIME (103s)

n.% 31 Xe'#'#

RELEASE RATE : Sn

zo

1 0

1 0

1 0

1 0

u 10c:Li_^ 10

2 10m < 1 0

“ 10

1 0

1 0

1 0

KAERI

-L'H 32 Sn (In, Ag)lM £"8-

48

Page 47: Evaluation of MELCOR code using PHEBUS FPT0 test

ill Vl ?h2 24 212

Debris4444

t-4 4 U filial4#2l volume 4

44f4 44 -8-8-4- 2 4 21

CASE 1 °J3)

YES 1, 1 Off

CASE 2 NO 1.1 Off

CASE 3 NO 1 A ^ « Off

CASE 4(2|# 78^5 °J^)

NO 3,4 ON

3.2 MELCOR Class 1 2.^

Xe CS Ba I

He, Ne, Ar, Kr, Xe, RN, H,N

Li, Na, K, Rb, Cs, Fr,Cu

Be, Mg, Ca, Sr, Ba, Ra, Es, Fm

F, Cl, Br, I, At

Te

O, S. Se, Te. Po

Ru

Ru, Rh, Pd, Re, Os, Ir, Pt, Au. Ni

Mo

V, Cr, Fe, Co, Mn, Nb, Mo, Tc, Ta, W________

CeTi,

Zr, Hf, Ce, Th,Pa, Np, Pu, C

La U Cd Sn

Al, Sc, Y, La, Ac, Pr, Nd,Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lb, Lu, Am, Cm, Bk, Cf

u Cd, Hg, Zn, As, Sb, Pb, Tl, Bi

Ga, Ge, In. Sn, Ag

B ILO Concrete

B. Si, P H;0* Bold : 419-44 2-4$ 4 $* Bold + Non-bold : MELCOR 44 2.444-1 4~f

49

Page 48: Evaluation of MELCOR code using PHEBUS FPT0 test

(7) R.R : Research Report

T.R: Technical Report

A.R : State-of-the-Art Report

7) 4 4 2 4 4

749 7| #52*1 45 4444227)45 5#527)o)5 INIS 7422

KA ERI/TR-7 51/96

7)14/77)1 PHEBUS FPTO #4# 4## MELCOR 22^7}

4773)44 4 #7)4 (TR,AR4 77) 4) 4#4(#44244#4)

4 7 4 4 # 7) 4 27j4(#cfl7l-J16ll7) 5.0^ 4 Sl #(#471-315)14 W-O):)

% 4 4 IN?!# #7444472 4 vi 1996. 7

5)1 °] 4 p. 49 £ & Si #( v), Si-§-( ) H 7] 26 Cm.

#27}^ '95 #444-7)1

444- #4(V), 444( ), _#44 227) O Tf 47527)

4-444714

2# (15-20#5)19])

7)1# 4 S.

°1 227)# MELCOR1.8.3 2£f °l-g-5M PHEBUS FPTO 4#4 t-ijiAj.

444 4#444#4 44 £4 44# 7)14 44. 44444

melcor4 2c4444 ^#47M# 444 44 a## 244

44*4 4444 ?II4€ 7 44 #4# 4444 5414. 4 47444 44 2.44 #^.44ti 4444 4-5-444 '3'444 4&H 442^-4#74, 4444# 7)14444. 444 44ao)| 44 5125. 442 pellet 4

debris * ^###7} 474, 744 4444 44 5125 444 44

44-44 444 44## 42 4# 7 447} 4 #4 44 51444.

444 7)14*114 2##7# 744, SG 7)14 44 42444 7}^#57l-

#447)1 444 44# 2444 4444 74 44 5144. #4

MELCOR 44 7)1445544 Ag, In, Cd 44 #44 4## 2444

244 Si4. 4471 7)l4-g-!-4 4# 544 47}7} 45442 4444.

#4^7)42(104444)

PHEBUS FPTO, MELCOR1.8.3

Page 49: Evaluation of MELCOR code using PHEBUS FPT0 test

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Report No.

Sponsoring Org.Report No.

Standard Report No. INIS Subject Code

KAERI/TR-751/96

0T‘tle{ Evaluation of MELCOR Code Using PHEBUS FPTO TestSubtitle

Project Manager and Department Jong-Hwa Park(Severe Accident Analysis)

Researcher and Department

Song-Won Cho, Hee-Dong Kim(Severe Accident Analysis)

PublicationPlace Taejeon Publisher KAERI Publication

Date 1996. 7

Page p. 49 Fig. & Tab Yes( 0 ), No( ) Size 26 Cm.

Note '95 Mid-Long Term Project

Classified Open( 0 ), Restricted( ),__ Class Document Report Type Technical Report

Sponsoring Org. Contract No.

Abstract 15-20 Lines) This report presents the analysis results of the PHEBUS FPTO experiments using

MELCORI.8.3 for the core degradation process, the fission product release in the

circuits. The objectives of this study are to assess the models associated with the

core damage and fission product behavior and to identify the phenomena, which

have not been modeled, or area where the model could be improved. The

calculation results were much improved by performing the sensitivity studies for

the three phenomena, which were considered important to simulate the test senario.

The first case is to consider whether the debris formation is to be allowed or not.

er whether the oxide layer can hold up the molten mixture or not and the third case

nodalization for the U tube in the SG and the vertical pipe at core exit, where the

ed rapidly during the transient. In MELCOR, there is no model that can simulate

from the control rod but from the fuel during the fission reaction. Therefore, it is

lodel from control rod should be implemented into the MELCOR Code.

The second case is to consk

is to consider the number of

gas temperature was chang

the release of Ag, In, Cd

considered that the release ir

Subject Keywords (About 10 words) PHEBUS FPTO, MELCORI.8.3