67

Evaluating processes controlling subtropical humidity

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluating processes controlling subtropical humidity

Evaluating processes controlling subtropical

humidity using water vapor isotope measurements

Camille Risi

CIRES, Boulder

Thanks to: David Noone, Sandrine Bony,

TES data: John Worden, Jeonghoon Lee, Derek Brown,

SCIAMACHY data: Christian Frankenberg,

ACE-FTS data: Kaley Walker, Peter Bernath,

ground-based FTIR: Debra Wunsh, Matthias Schneider

TES meeting, 17 June 2010

Page 2: Evaluating processes controlling subtropical humidity

Uncertainties in humidity changes

I subtropical relative humidity strongly impacts

I water vapor feedback (Soden et al 2008)

I clouds feedbacks (Sherwood et al 2010)

I but high dispersion in climate models (Sherwood et al 2010)

I for present day relative humidityI for projectionsI no link between mean state and projections (Santer et al 2009)

I How to evaluate the credibility of these projections?

2/13

Page 3: Evaluating processes controlling subtropical humidity

Uncertainties in humidity changes

I subtropical relative humidity strongly impacts

I water vapor feedback (Soden et al 2008)I clouds feedbacks (Sherwood et al 2010)

I but high dispersion in climate models (Sherwood et al 2010)

I for present day relative humidityI for projectionsI no link between mean state and projections (Santer et al 2009)

I How to evaluate the credibility of these projections?

2/13

Page 4: Evaluating processes controlling subtropical humidity

Uncertainties in humidity changes

I subtropical relative humidity strongly impacts

I water vapor feedback (Soden et al 2008)I clouds feedbacks (Sherwood et al 2010)

I but high dispersion in climate models (Sherwood et al 2010)

I for present day relative humidityI for projections

I no link between mean state and projections (Santer et al 2009)

I How to evaluate the credibility of these projections?

2/13

Page 5: Evaluating processes controlling subtropical humidity

Uncertainties in humidity changes

I subtropical relative humidity strongly impacts

I water vapor feedback (Soden et al 2008)I clouds feedbacks (Sherwood et al 2010)

I but high dispersion in climate models (Sherwood et al 2010)

I for present day relative humidityI for projectionsI no link between mean state and projections (Santer et al 2009)

I How to evaluate the credibility of these projections?

2/13

Page 6: Evaluating processes controlling subtropical humidity

Uncertainties in humidity changes

I subtropical relative humidity strongly impacts

I water vapor feedback (Soden et al 2008)I clouds feedbacks (Sherwood et al 2010)

I but high dispersion in climate models (Sherwood et al 2010)

I for present day relative humidityI for projectionsI no link between mean state and projections (Santer et al 2009)

I How to evaluate the credibility of these projections?

2/13

Page 7: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

⇒need complementary evaluation tools

3/13

Page 8: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden eSherwood et al 1996

⇒need complementary evaluation tools

3/13

Page 9: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden edry air intrusionsSherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005

⇒need complementary evaluation tools

3/13

Page 10: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden edry air intrusionslateral adve tionSherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998

⇒need complementary evaluation tools

3/13

Page 11: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden edry air intrusionslateral adve tionsurfa e evaporationboundary layerSherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998Couhert et al 2010

⇒need complementary evaluation tools

3/13

Page 12: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden edry air intrusionslateral adve tionsurfa e evaporationboundary layerrain evaporation

Sherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998Couhert et al 2010Folkins and Martin 2005

⇒need complementary evaluation tools

3/13

Page 13: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

large-s ale subsiden edry air intrusionslateral adve tionsurfa e evaporationboundary layerrain evaporation onve tive subsiden e

Sherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998Couhert et al 2010Bretherton et al 2005Folkins and Martin 2005

⇒need complementary evaluation tools

3/13

Page 14: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

condensate detrainementPierrehumbert and Emanuel 1994 large-s ale subsiden edry air intrusionslateral adve tionsurfa e evaporationboundary layerrain evaporation onve tive subsiden e

Wright et al 2009 Sherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998Couhert et al 2010Bretherton et al 2005Folkins and Martin 2005

⇒need complementary evaluation tools

3/13

Page 15: Evaluating processes controlling subtropical humidity

Processes controlling relative humidity

I dispersion re�ects complexity of humidity controls

800

600

200

100

P (hPa)

400

100030°N

condensate detrainementPierrehumbert and Emanuel 1994 large-s ale subsiden edry air intrusionslateral adve tionsurfa e evaporationboundary layerrain evaporation onve tive subsiden e

Wright et al 2009 Sherwood et al 1996Pierrehumbert and Ro a 98Galewsky et al 2005Pierrehumbert 1998Couhert et al 2010Bretherton et al 2005Folkins and Martin 2005

⇒need complementary evaluation tools3/13

Page 16: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation

⇒ record phase changes along

air mass history

HDO

H162 O

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 17: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 18: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 19: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

onve tive subsiden eRisi et al 2008

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 20: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

rain evaporation onve tive subsiden eWorden et al 2007Risi et al 2008

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 21: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

ondensate detrainementrain evaporation onve tive subsiden eWorden et al 2007Risi et al 2008

Webster and Heims�led 2003

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 22: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

ondensate detrainementlarge-s ale subsiden erain evaporation onve tive subsiden eWorden et al 2007Risi et al 2008Frankenberg et al 1999Webster and Heims�led 2003

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models

4/13

Page 23: Evaluating processes controlling subtropical humidity

Water stable isotopes

I water isotopes: H162 O, H18

2 O,HDO

I fractionation ⇒ record phase changes along

air mass historyHDO

H162 O

800

600

200

100

P (hPa)

400

100030°N

ondensate detrainementlarge-s ale subsiden erain evaporation onve tive subsiden eWorden et al 2007Risi et al 2008Frankenberg et al 1999Webster and Heims�led 2003

⇒ Goal: use water isotopes to evaluate processes controlling

humidity in climate models 4/13

Page 24: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

5/13

Page 25: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

P (

hPa)

nudged

free

−600 −400 −300 −200 −100−500

ECHAM

MIROC

CAM2

LMDZ AR4

LMDZ SWING

HadAM

GSM

1000

900

800

700

600

500

400

300

200

100Subtropi al mean 10◦N-30◦N

δD (h) annual5/13

Page 26: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

20 25 30 35 40 45 50

−40

−20

0

20

40

60

P (

hPa)

nudged

free

−600 −400 −300 −200 −100−500

ECHAM

MIROC

CAM2

LMDZ AR4

LMDZ SWING

HadAM

GSM

1000

900

800

700

600

500

400

300

200

100Subtropi al mean 10◦N-30◦N

JJA-DJFδD

at450hPa(h)

δD (h) annual

NCEPrelative humidity at 450hPa (%)

5/13

Page 27: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

20 25 30 35 40 45 50

−40

−20

0

20

40

60

P (

hPa)

LMDZ SWING

LMDZ AR4

nudged

free

−600 −400 −300 −200 −100−500

ECHAM

MIROC

CAM2

LMDZ AR4

LMDZ SWING

HadAM

GSM

1000

900

800

700

600

500

400

300

200

100Subtropi al mean 10◦N-30◦N

JJA-DJFδD

at450hPa(h)

δD (h) annual

NCEPrelative humidity at 450hPa (%)LMDZ-iso (Risi et al in press)

5/13

Page 28: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

20 25 30 35 40 45 50

−40

−20

0

20

40

60

P (

hPa)

LMDZ SWING

LMDZ AR4

nudged

free

−600 −400 −300 −200 −100−500

ECHAM

MIROC

CAM2

LMDZ AR4

LMDZ SWING

HadAM

GSM

1000

900

800

700

600

500

400

300

200

100Subtropi al mean 10◦N-30◦N

JJA-DJFδD

at450hPa(h)

δD (h) annualwithsaturation limiterNCEP

relative humidity at 450hPa (%)(Codron and Sadourny 2002)adve t min(q,qs)LMDZ-iso (Risi et al in press)5/13

Page 29: Evaluating processes controlling subtropical humidity

Isotope dispersion in climate modelsI isotope-enabled GCMs intercomparison (SWING2)

20 25 30 35 40 45 50

−40

−20

0

20

40

60

P (

hPa)

LMDZ SWING

LMDZ AR4

nudged

free

−600 −400 −300 −200 −100−500

ECHAM

MIROC

CAM2

LMDZ AR4

LMDZ SWING

HadAM

GSM

1000

900

800

700

600

500

400

300

200

100Subtropi al mean 10◦N-30◦N

JJA-DJFδD

at450hPa(h)

δD (h) annualwithsaturation limiterNCEP

relative humidity at 450hPa (%)withoutsaturationlimiteradve t q(Codron and Sadourny 2002)adve t min(q,qs)LMDZ-iso (Risi et al in press)5/13

Page 30: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 31: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

TES(Worden et al 2007)

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 32: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES(Worden et al 2007)

(Nassar et al 2007)

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 33: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES(Worden et al 2007)

(Nassar et al 2007)

SCIAMACHY(Frankenberg et al 2009)

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 34: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES(Worden et al 2007)

(Nassar et al 2007)

SCIAMACHY(Frankenberg et al 2009)

(Wisconsin, Oklahoma)+ground−based FTIR

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 35: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES(Worden et al 2007)

(Nassar et al 2007)

in situ(GNIP, Angert et al 2007, Uemura et al 2007)

SCIAMACHY(Frankenberg et al 2009)

(Wisconsin, Oklahoma)+ground−based FTIR

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 36: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES

ground−based FTIR profile

(Worden et al 2007)

(Nassar et al 2007)

in situ(GNIP, Angert et al 2007, Uemura et al 2007)

(Izana:Schneider et al 2009)

SCIAMACHY(Frankenberg et al 2009)

(Wisconsin, Oklahoma)+ground−based FTIR

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 37: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES

ground−based FTIR profile

(Worden et al 2007)

(Nassar et al 2007)

in situ(GNIP, Angert et al 2007, Uemura et al 2007)

(Izana:Schneider et al 2009)

SCIAMACHY(Frankenberg et al 2009)

(Wisconsin, Oklahoma)+ground−based FTIR

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screening

I GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels

6/13

Page 38: Evaluating processes controlling subtropical humidity

Data for 3D isotope evaluation

ACE−FTS

TES

ground−based FTIR profile

(Worden et al 2007)

(Nassar et al 2007)

in situ(GNIP, Angert et al 2007, Uemura et al 2007)

(Izana:Schneider et al 2009)

SCIAMACHY(Frankenberg et al 2009)

(Wisconsin, Oklahoma)+ground−based FTIR

800

600

200

100

P (hPa)

0° 30°N

400

1000

I quality screeningI GCM-data comparison: collocated with simulation nudged by

ECMWF; averaging kernels 6/13

Page 39: Evaluating processes controlling subtropical humidity

Multidataset evaluation: annual mean

Eq 30N60S 60N30S

Eq 30N60S 60N30S

Eq 30N60S 60N30S−100

−200

−300

−300

−200

−100

−200

−100

0

−400

−500

−600

−300

Eq 30N60S 60N30S

Eq 30N60S 60N30S−700

−400

−500

−600

LMDZ−AR4data

δD

(h)δD

(h)

δD

(h)Surfa e

Total olumn600 hPa

Zonal mean, annual average

δD

(h)

δD

(h)500-300hPa

300-200hPa7/13

Page 40: Evaluating processes controlling subtropical humidity

Multidataset evaluation: annual mean

Eq 30N60S 60N30S

Eq 30N60S 60N30S

Eq 30N60S 60N30S−100

−200

−300

−300

−200

−100

−400

−500

−600

−300

Eq 30N60S 60N30S

Eq 30N60S 60N30S−700

−400

−500

−600

LMDZ−"moist bias"LMDZ−AR4data

−200

−100

0

Surfa eTotal olumn600 hPa

Zonal mean, annual averageδD

(h)δD

(h)

δD

(h)δD

(h)

δD

(h)500-300hPa

300-200hPa7/13

Page 41: Evaluating processes controlling subtropical humidity

Multidataset evaluation: seasonal

Eq 30N60S 60N30S

Eq 30N60S 60N30S

−100

0

100

−100

0

100

−100

0

100

−100

0

100

−100

100

0

Eq 30N60S 60N30S Eq 30N60S 60N30S

Eq 30N60S 60N30S∆

δD

(h)∆

δD

(h)∆

δD

(h)

∆δD

(h)

∆δD

(h)

LMDZ-AR4data600 hPa

Total olumn and 800hPaSurfa e

300-200hPa500-300hPa

Zonal mean, JJA-DJF

8/13

Page 42: Evaluating processes controlling subtropical humidity

Multidataset evaluation: seasonal

Eq 30N60S 60N30S

Eq 30N60S 60N30S

−100

0

100

−100

0

100

−100

0

100

−100

0

100

−100

100

0

Eq 30N60S 60N30S Eq 30N60S 60N30S

Eq 30N60S 60N30S∆

δD

(h)∆

δD

(h)∆

δD

(h)

∆δD

(h)

∆δD

(h)

LMDZ-AR4dataLMDZ-"moist bias"600 hPa

Total olumn and 800hPaSurfa e

300-200hPa500-300hPa

Zonal mean, JJA-DJF

8/13

Page 43: Evaluating processes controlling subtropical humidity

Annual mean in TES

30S

Eq

60N

30N

60S

120W180W 060W 60E 120E 180E

120W180W 060W 60E 120E 180E

−230 −220 −210 −200 −190 −180 −170 −160 −150

30S

Eq

60N

30N

60S

TES data

LMDZ AR4 -31h

δD (h) 600hPa9/13

Page 44: Evaluating processes controlling subtropical humidity

Annual mean in TES

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

30S

Eq

60N

30N

60S

120W180W 060W 60E 120E 180E

120W180W 060W 60E 120E 180E

−230 −220 −210 −200 −190 −180 −170 −160 −150

30S

Eq

60N

30N

60S

same in CAM2(Lee et al 2009)

TES data

LMDZ AR4 -31h LMDZ "moist bias" -31h

δD (h) 600hPa9/13

Page 45: Evaluating processes controlling subtropical humidity

Annual mean in TES

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

30S

Eq

60N

30N

60S

120W180W 060W 60E 120E 180E

120W180W 060W 60E 120E 180E

−230 −220 −210 −200 −190 −180 −170 −160 −150

30S

Eq

60N

30N

60S

same in CAM2(Lee et al 2009)

TES data

LMDZ AR4 -31h LMDZ "moist bias" -31h

δD (h) 600hPa9/13

Page 46: Evaluating processes controlling subtropical humidity

Seasonal variations in TES

−80 −50 −30 −20 −10 10 20 30 50 80

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

∆δD (h) JJA-DJF

LMDZ AR4 LMDZ "moist bias"

TES data

10/13

Page 47: Evaluating processes controlling subtropical humidity

Cloud e�ect in TES

−50 −20 −10 −5 −2 5 10 20 502

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

120W180W 060W 60E 120E 180E

30S

Eq

60N

30N

60S

∆δD (h) total- lear sky

TES data

LMDZ AR4 LMDZ "moist bias"

11/13

Page 48: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

LMDZAR4

bias""moistLMDZ

− weak precip compositeStrong precip composite

∆δD (h)

∆δD (h)

12/13

Page 49: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

LMDZAR4

bias""moistLMDZ

− weak precip compositeStrong precip composite

∆δD (h)

∆δD (h)

12/13

Page 50: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

∆δD (h)

∆δD (h)

12/13

Page 51: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropics

∆δD (h)

∆δD (h)

12/13

Page 52: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropics

∆δD (h)

∆δD (h)

12/13

Page 53: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropicsmore enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 54: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropicsmore enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 55: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropics

moist, enriched subtropics

moist tropics

more enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 56: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropics

moist, enriched subtropics

moist tropics

more enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 57: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

dry tropics

dry,depleted subtropics

moist, enriched subtropics

moist tropics

more depleted in summer

more enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 58: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

Annual mean 15°N−30°N

moist bias 25%

at 500hPa:

dry tropics

dry,depleted subtropics

moist, enriched subtropics

moist tropics

moist bias 15%

more depleted in summer

more enriched in summer

∆δD (h)

∆δD (h)

12/13

Page 59: Evaluating processes controlling subtropical humidity

Isotopes reveal dehydration pathways

1000

900

700

800

600

500

400

200

100

300

1000

900

700

800

600

500

400

200

100

300

−10 0 10 20 30−20 40

−10 0 10 20 30 40−20

− weak precip compositeStrong precip composite

LMDZAR4

bias""moistLMDZ

saturationlimiter

Annual mean 15°N−30°N

moist bias 25%

at 500hPa:

dry tropics

dry,depleted subtropics

moist, enriched subtropics

moist tropics

moist bias 15%

more depleted in summer

more enriched in summer

∆δD (h)

∆δD (h)

+0.5% hange in 4xCO2

-4% hange in 4xCO2

12/13

Page 60: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 61: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 62: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 63: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 64: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs

⇒develop GCM simulators of satellite dataI Modelling: water isotopes in climate change inter-comparisons

like CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 65: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 66: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?

⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13

Page 67: Evaluating processes controlling subtropical humidity

Conclusion/perspectives

I Water isotopes can help detect and understand biases in water

budgets in climate models

⇒ help evaluate the credibility of projected future relative

humidity changes

I Perspectives:

I Observations: maximum variations and biases in themid/upper troposphere

I Model-data comparison methodology: de�ne consistentlycloudy situations in data and GCMs⇒develop GCM simulators of satellite data

I Modelling: water isotopes in climate change inter-comparisonslike CMIP?⇒ use intra-seasonal, seasonal, inter-annual isotope data as anobservational test for model behavior in climate change?

13/13