58
Janusz Gluza, University of Silesia Evaluating Feynman integrals using Mellin-Barnes representations Mellin, Robert, Hjalmar, 1854-1933 Barnes, Ernest, William, 1874-1953 MB integrals – 4 December, Warsaw

Evaluating Feynman integrals using Mellin-Barnes ...prac.us.edu.pl/~gluza/WarsawSem06.pdfJanusz Gluza, University of Silesia Evaluating Feynman integrals using Mellin-Barnes representations

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • Janusz Gluza, University of Silesia

    Evaluating Feynman integrals usingMellin-Barnes representations

    Mellin, Robert, Hjalmar, 1854-1933

    Barnes, Ernest, William, 1874-1953

    MB integrals – 4 December, Warsaw

  • Outline

    Introduction: methods to evaluate FIMellin-Barnes representation, idea

    1-loop cases

    Multiple MB integrals

    Automatizations (very important)Getting MB representations themselves

    Analytical continuation in ǫ (and not only!)

    Two-, three- and four loop resultsBhabha process in massive QED

    Conjectures in SYM theories

    PerspectivesMB integrals – 4 December, Warsaw

  • Methods: analytical, numerical, semi-analytical

    For any graph Γ:

    (i) reduce all tensorial loop integrals to scalar integrals,

    (ii) reduce these to a smaller set of scalar master integrals (MIs),

    (iii) evaluate the MIs.

    Technically, one has to calculate all the Feynman integrals G(X) related to these

    diagrams by a reduction of integrals with irreducible numerators X and denominators

    with higher powers νi to a smaller set of scalar master integrals

    Graph G with L loops and N propagators can be writen in the following general way:

    G(X) =1

    (iπD/2)L

    ∫dDk1 . . . d

    DkLX

    (q21 − m21)ν1 . . . (q2N − m2N )νN

    X = 1, k1α, k1αk2β, . . . stands for tensors in the loop momenta.

    MB integrals – 4 December, Warsaw

  • General procedure (advanced)

    For dimensionally regularized FI we can use Integration By Parts identities (and

    always neglect surface terms (!)): ∂∂kµ

    i

    G(X) = 0, i = 1, ..., L

    IBP relations (and LI) defines smaller set of integrals which must be evaluated

    (so called Master Integrals)

    Procedure:

    construction of reduction procedure (Laporta, Remiddi)

    evaluating MI

    Methods to evaluate MI:

    α parametrisation, Feynman parametrisation

    Mellin-Barnes representation

    Differential equations, difference equations, expansions by regions,

    dispersion relations

    MB integrals – 4 December, Warsaw

  • α-representation, Feynman parametrisation

    1

    (k2 − m2 + iǫ)ν =i−ν

    Γ(ν)

    ∫ ∞

    0

    dααν−1 exp iα(k2 − m2 + iǫ)

    ∫ddk exp[i(Ak2 + 2(pk))] = i

    ( πiA

    )d/2exp

    [− ip

    2

    A

    ]

    1

    An11 An22 . . .

    =Γ(n1 + . . . + nm)

    Γ(n1) . . .Γ(nm)∫ 1

    0

    dx1 . . .

    ∫ 1

    0

    dxmxn1−11 . . . x

    nm−1m δ(1 − x1 . . . − xm)

    (x1A1 + . . . + xmAm)n1+...nm

    see papers by Tarasov (in general, integrals with shifted dimensions),

    books by Smirnov, e.g. Feynman Integrals Calculus, Springer 2006

    MB integrals – 4 December, Warsaw

  • F and U polynomials

    Czakon, J.G., Riemann (CGR), PRD71(2005)073009

    G(X) =1

    (iπD/2)L

    ∫dDk1 . . . d

    DkLX

    (q21 − m21)ν1 . . . (q2N − m2N )νN

    We can rewrite the above expression in the following form (for X=1):

    G(1) = (−1)Nν Γ(Nν −D2 )

    Γ(ν1) . . .Γ(νN )

    ∫ 1

    0

    N∏

    j=1

    dxjxνj−1j δ

    (1−

    N∑

    i=1

    xi

    )U(x)Nν−D2

    (L+1)

    F (x)Nν−D2

    L

    where Nν is sum of all propagators:

    Nν = ν1 + ν2 . . . νN

    for all 1 loop diagrams U(x) = 1

    MB integrals – 4 December, Warsaw

  • Example: 1-loop box, general case: graphical approach ’50s

    Trees contributing to the polynomial U for the square diagram

    2 − trees contributing to the polynomial F for the square diagram

    x1

    x2

    x3

    x4

    p1

    p2

    p3

    p4

    U = x1 + x2 + x3 + x4

    F = tx1x3 + sx2x4

    Cuts of internal lines

    such that :

    U : (i) every vertex is still connected to every other vertex by a sequence of uncut

    lines; (ii) no further cuts without violating (i)

    F : (iii) divide the graph into two disjoint parts such that within each part (i) and

    (ii) are obeyed and such that at least one external momentum line is connected

    to each part;

    MB integrals – 4 December, Warsaw

  • Singularities in the complex plane: Γ(z) =∫ ∞0

    tz−1e−tdt

    1

    (A + B)λ=

    1

    Γ(λ)

    1

    2πi

    ∫ +i∞

    −i∞

    dzΓ(λ + z)Γ(−z) Bz

    Aλ+z

    MB integrals – 4 December, Warsaw

  • The Mellin-Barnes relation, exact proof: Whittaker, Watson, Cambridge U.Press, 1965

    We can write:

    1

    (A + B)λ=

    1

    Aλ1

    (1 + B/A)λ≡ 1

    Aλ1

    (1 + B̃)λ

    Taylor series:

    LHS =1

    (1 + B̃)λ=

    ∞∑

    n=0

    (−1)n λ . . . (λ + n − 1)n!

    B̃n

    On the other hand:

    RHS =1

    (1 + B̃)λ=

    1

    Γ(ν)

    1

    2πi

    ∫ +i∞

    −i∞

    dzB̃zΓ(λ + z)Γ(−z)

    MB integrals – 4 December, Warsaw

  • The Mellin-Barnes relation, exact proof: Whittaker, Watson, Cambridge U.Press, 1965

    According to the Cauchy theorem:

    C

    f(z)dz = 2πi∑

    i

    reszif

    By closing the integration contour to the right and taking a series of residues (with

    minus sign) at points z = 0, 1, 2, . . . we obtain:

    RHS =1

    Γ(λ)

    1

    2πi

    ∫ +i∞

    −i∞

    dz2πi∞∑

    n=0

    1

    (−1)nn!Γ(λ + n)B̃n

    By putting Γ(λ + n) = λ . . . (λ + n − 1)Γ(λ), we can see that

    LHS = RHS

    MB integrals – 4 December, Warsaw –

  • straightforward generalization

    We can expand the M-B relation to the general case:

    1

    (A1 + . . . + An)λ=

    1

    Γ(λ)

    1

    (2πi)n−1

    ∫ +i∞

    −i∞

    . . .

    ∫ +i∞

    −i∞

    dz1 . . . dzn

    n∏

    i=2

    Azii

    A−λ−z2−...−zn1 Γ(λ + z2 + . . . + zn)n∏

    i=2

    Γ(−zi)

    MB integrals – 4 December, Warsaw –

  • Mellin-Barnes method

    Individual integrals: Ussyukina (1975), Davydychev (1989);

    Application to dimensionally regularized integrals (systematic solution of the

    singularities in ǫ: Smirnov (1999), Tausk (1999)

    Massive QED: Actis, Czakon, Kajda, Riemann, J.G.

    SYM theories: Czakon, Dixon, Kosower, Smirnov

    Conformal symmetries: Smirnov, ....

    MB integrals – 4 December, Warsaw –

  • 2-loop Mellin-Barnes representation: construction

    B5l2m2:

    K1 = k21

    K2 = (k2 − p1)2

    K3 = (k1 + k2)2 − m2

    K4 = (k2 − p3)2

    K5 = (k2 − p3 − p4)2 − m2

    KB5l2m2 =

    ∫dDk2

    1

    Kν11

    1

    Kν44

    1

    Kν55Kup

    Kup =

    ∫dDk1

    1

    Kν11

    1

    Kν33

    K1

    K3

    K4K2

    K5

    MB integrals – 4 December, Warsaw –

  • Two loop example: construction

    For Kup we write:

    Kup = (−1)ν13Γ(ν13 − D/2)Γ(ν1)Γ(ν3)

    ∫ 1

    0

    j=1,3

    dxjxνj−1j δ(1 − x1 − x3)

    Uν13−Dup

    Fν13−D/2up

    We find F(x) polynomial (whichever method): Fup = (−k22 + m2)x1x3 + m2x23Next:

    use M-B relation for F−(ν13−D/2)up

    integrate over x

    ∫ 1

    0

    N∏

    i

    dxjxνj−1j δ

    (1 −

    N∑

    i

    xi

    )=

    Γ(ν1) . . .Γ(νN )

    Γ(ν1 + . . . νN )

    MB integrals – 4 December, Warsaw –

  • Two loop example: construction

    Result for Kup part:

    Kup = (−1)ν131

    Γ(ν1)Γ(ν3)Γ(D − ν13)

    ∫ +i∞

    −i∞

    dσ13[−k22 + m2]σ13 ×

    Γ(−σ13)Γ(ν13 − D/2 + σ13)Γ(ν1 + σ13)Γ(D − 2ν1 − ν3 − σ13)

    So now our aim is the following integral:

    KB5l2m2 = (−1)ν131

    Γ(ν1)Γ(ν3)Γ(D − ν13)∫ +i∞

    −i∞

    dσ13Γ(−σ13)Γ(ν13 + σ13 − D/2)Γ(ν1 + σ13)

    Γ(D − 2ν1 − ν3 − σ13)Kdown

    Kdown =

    ∫dDk2

    1

    Kν22 Kν44 K

    ν55

    1

    [−k22 + m2]−σ13

    MB integrals – 4 December, Warsaw –

  • Two loop example: construction

    For Kdown we perform the same steps as for Kup.

    We find Fdown

    Fdown = (x13 + x5)2 + [−t]x2x4 + [−s]x13x5

    Kup

    K4K2

    K5

    Kdown =(−1)ν245−σ13Γ(νdown)

    Γ(ν2)Γ(ν4)Γ(ν5)Γ(−σ13)

    ∫ 1

    0

    ∏i=2,4,5,13 x

    νi−1i δ(1 −

    ∑xi)

    F νdowndown

    We use MB-relation, integrate over xi parameters and arrived at the final result

    MB integrals – 4 December, Warsaw –

  • B5l2m2: Final MB-representation, D = 4 − 2ǫ

    KB5l2m2 = (−1)ν123451

    ∏5i=1 Γ(νi)Γ(D − ν13)∫ i∞

    −i∞

    dσ13dρ1dρ3

    (t

    s

    )ρ3(−s)ν245−D/2−σ13−ρ1

    Γ(−σ13)Γ(ν13 − D/2 + σ13)Γ(ν1 + σ13)Γ(D − 2ν1 − ν3 − σ13)Γ(−ρ1)Γ(−ρ3)Γ(ν245 − D/2 − σ13 + ρ1 + ρ3)Γ(−ν24 + D/2 + σ13 − ρ1 − ρ3)Γ(−ν245 + D/2 − ρ1 − ρ3)Γ(−2ν24 − ν5 + D + σ13 − 2ρ3)

    Γ(ν2 + ρ3)Γ(ν4 + ρ3)1

    Γ(D − ν245 + σ13)1

    Γb(ν245 − D/2 − σ13)1

    Γa(D − 2ν2 − 2ν4 − ν5 + σ13 − 2ρ1 − 2ρ3)

    MB integrals – 4 December, Warsaw –

  • Loop-by-loop algorithm: planar cases

    (i) define kinematic which depends on external legs (invariants);

    (ii) make decision about the order in which n 1-loop subloops (n ≥ 1) will beworked out in a sequence;

    (iii) construct Feynman integral for the chosen subloop, make manipulations on the

    F polynomial to make it the most suitable for using MB representations;

    (iv) use the basic MB-relation;

    (v) make integration over Feynman parameters;

    (vi) go back to the point (iii) and repeat the steps till F in the last n subloop will be

    changed to the MB integral.

    package AR.m (Kajda, Riemann, J.G.), example: NL 3loop.nb.ps

    MB integrals – 4 December, Warsaw –

  • How to solve a given MB-representation?

    means expansion in ǫ

    MB integrals – 4 December, Warsaw –

  • B5l2m2d2 case: fixed indices a1 = a3 = a4 = a5 = 1, a2 = 2

    General Tasks

    Find a region where integral is regular in the n-fold MB-integral

    (FindInstance )

    ℜ(α) = 361/384,ℜ(β) = −117/128,ℜ(γ) = −19/32,ℜ(ǫ) = 1/32

    Go to the physical region where ǫ → 0 by distorting the integration path step bystep (adding each crossed residuum – per residue this means one integral less

    (automatized in MB.m, M.Czakon, hep-ph/0511200)

    If we want to get exact analytical result: Take integrals by sums over residua, i.e.

    introduce infinite sums

    Sum these infinite multiple series into some known functions of a given class,

    e.g. Nielsen polylogs, Harmonic polylogs or whatever is appropriate (read:

    managable)

    MB integrals – 4 December, Warsaw –

  • Typical situation

    B5l2m2 :

    Directly from 7-line B7l4m1: After expansion in ǫ we are left with 11

    integrals (one 4-dim.)

    From our MB-representation: 4 integrals (one 3-dim)

    B5l2m2d2 :

    From B7m4m1 with help of MB.m: 102 integrals, including 4-dim (!)

    From our MB-representation: only one, 3-dim integral,

    MB integrals – 4 December, Warsaw –

  • “Take residues and shift contours”

    1. Idea of Tausk automatized by M. Czakon (package in Mathematica), and also by

    Anastasiou

    2. This procedure defines MB-integrals for ǫn, but not solve resulting MB integrals

    after continuation in ǫ (ok, numerically).

    3. remark: Smirnov makes it a little bit different way (“glueing”)

    I will show how it works “manually”

    MB integrals – 4 December, Warsaw –

  • B5l2m2H* shifting contours *L

    In[203]:=

    sim = Gamma@-zDOut[203]=

    Gamma@-zDIn[227]:=

    Sum@-Residue@Gamma@-zD, 8z, n

  • B5l2m2In[1]:= backGamma =

    8G1@x__D -> Gamma@xD, G2@x__D -> Gamma@xD,G3@x__D -> Gamma@xD, G4@x__D -> Gamma@xD,G5@x__D -> Gamma@xD, G6@x__D -> Gamma@xD,G7@x__D -> Gamma@xD, G8@x__D -> Gamma@xD,G9@x__D -> Gamma@xD, G10@x__D -> Gamma@xD,G11@x__D ® Gamma@xD, G12@x__D ® Gamma@xD<

    Out[1]= 8G1@x__ D ® Gamma@xD, G2 @x__ D ® Gamma@xD,G3@x__ D ® Gamma@xD, G4 @x__ D ® Gamma@xD,G5@x__ D ® Gamma@xD, G6 @x__ D ® Gamma@xD,G7@x__ D ® Gamma@xD, G8 @x__ D ® Gamma@xD,G9@x__ D ® Gamma@xD, G10 @x__ D ® Gamma@xD,G11@x__ D ® Gamma@xD, G12 @x__ D ® Gamma@xD<

    In[2]:= fact = HtsL^ro3 H-sL^H-1 - ep + si - ro1L .HtsL^x_ ® H-tL^x H-sL^H-xL

    Out[2]= H-sL-1-ep-ro1 -ro3 +si H-t Lro3In[3]:= basic =

    1Gamma@2 - 2 epD*G2@a1 + a3 - d2 + siD*G3@a1 +siD*G4@d - 2 a1 - a3 - siD*G5@-ro1D*

    G6@-ro3D*G7@a2 + a4 + a5 - d2 - si + ro1 +ro3D*G8@-a2 - a4 + d2 + si - ro1 - ro3D*

    G9@-a2 - a4 - a5 + d2 - ro1 - ro3D*G10@-2 a2 - 2 a4 - a5 + d + si - 2 ro3D*G11@a2 + ro3D*G12@a4 + ro3DG@d - a2 - a4 - a5 + siDG@d - 2 a2 - 2 a4 - a5 + si - 2 ro1 - 2 ro3D .

    a1 ® 1 . a2 ® 1 . a3 ® 1 . a4 ® 1 .a5 ® 1 . d ® 4 - 2 ep Simplify

    Out[3]= HG10@-1 - 2 ep - 2 ro3 + si D G11@1 + ro3 D G12@1 + ro3 DG2@ep si D G3@1 si D G4@1 2 ep si D@ D @ D @ D

    1

    MB integrals – 4 December, Warsaw –

  • B5l2m2

    In[4]:= ? FindInstance

    FindInstance @expr, vars D finds an instanceof vars that makes the statement exprbe True. FindInstance @expr, vars, dom Dfinds an instance over the domain dom.Common choices of dom are Complexes,Reals, Integers and Booleans. FindInstance @expr, vars, dom, n D finds n instances. More¼

    In[5]:= FindInstance@Cases@Numerator@basicD . backGamma,Gamma@_D^n_.D . Gamma@x_D^n_. ® x > 0 .

    ep ® 0 . si ® -120, 8ro1, ro3 0 .ep ® 110, 8si, ro1, ro3 0 .

    ep ® 110 . si ® -120, 8ro1, ro3

  • B5l2m2

    In[10]:= basic . subst . ep ® 110 . si ® -120

    Out[10]=1

    G@ 34 D G@1D Gamma@ 95 DJG10A 3

    8E G11A 3

    16E G12A 3

    16E G2A 1

    20E G3A 19

    20E G4A 17

    20E

    G5A 516E G6A 13

    16E G7A 1

    40E G8A 39

    40E G9A 1

    40EN

    In[11]:= basic . subst0 . si ® -120

    Out[11]=1

    G@ 1920 D G@ 65 DJG10A 23

    40E G11A 3

    16E G12A 3

    16E G2A- 1

    20E G3A 19

    20E

    G4A 2120E G5A 5

    16E G6A 13

    16E G7A- 3

    40E G8A 43

    40E G9A 1

    8EN

    In[12]:= constBasic = Normal@Series@fact*basic*Exp@2 ep EulerGammaD .

    backGamma . G@x_D ® Gamma@xD, 8ep, 0, 0

  • B5l2m2

    In[19]:= basic

    Out[19]= HG10@-1 - 2 ep - 2 ro3 + si D G11@1 + ro3 D G12@1 + ro3 DG2@ep + si D G3@1 + si D G4@1 - 2 ep - si DG5@-ro1 D G6@-ro3 D G7@1 + ep + ro1 + ro3 - si DG8@-ep - ro1 - ro3 + si D G9@-1 - ep - ro1 - ro3 DL

    HG@1 - 2 ep + si D G@-1 - 2 ep - 2 ro1 - 2 ro3 + si DGamma@2 - 2 epDL

    In[70]:= K7 = Residue@fact*basic . backGamma .G@x_D ® Gamma@xD, 8si, 1+ ep + ro1 + ro3

  • B5l2m2In[72]:= Normal@

    Series@K7*Exp@2 ep EulerGammaD . backGamma .G@x_D ® Gamma@xD, 8ep, 0, 0

  • B5l2m2

    In[80]:= auxK78 = Normal@Series@K78*Exp@2 ep EulerGammaD . backGamma .G@x_D ® Gamma@xD, 8ep, 0, 0

  • B5l2m2

    In[86]:= eps1 . x ® x@-12D N

    Out[86]= -5.32296

    In[47]:= epm2A

    Out[47]= -1tHH-t L-ro1 Gamma@-ro1 D3Gamma@1 + ro1 D Gamma@1 + 2 ro1 DL

    In[111]:=

    Residue@epm2A . t ® -H1 - yL^2 y, 8ro1, 0

  • B5l2m2

    In[132]:=

    pol2 =-Normal@Series@Coefficient@eps1, PolyLog@2, xDD*

    PolyLog@2, xD, 8x, 0, 10

  • However,

    sometimes happens that this method doesn’t work in the way I’ve just described (an

    example B5l2m2d2 for the second planar topology B2 in massive Bhabha QED, after

    contraction of appropriate two lines)

    Heinrich, Smirnov, PLB598 (2004)

    Czakon, J.G., Riemann, PRD (2005)

    B7l4m3B7l4m2�2 �4 �3

    B7l4m1MB integrals – 4 December, Warsaw –

  • MB.m, no rules

    In[1]:=

  • no rules found ...

    and we need continuation in another parameter ...

    MB integrals – 4 December, Warsaw –

  • MB.m, another analytic continuation

    In[16]:= rules = MBoptimizedRules@orig, a1® 0,8a1 < 12 + 1100, ep > -12 - 1100

  • MB.m, another analytic continuation

    cont2 = exp1 . MBint@integrand_ , rules_D ¦MBcontinue@integrand, ep® 0, rulesD;

    Level 1

    Taking -residue in z3 = -3 - 2 ep - z2 - 2 z4

    Taking -residue in z3 = -2 - 2 ep - z2 - 2 z4

    Level 2

    Integral 81<Taking -residue in z4 = -1 -

    3 ep

    2... ..

    Integral 84, 1, 1, 4, 1 <Integral 84, 1, 2, 2, 1 <65 integral HsL foundexp2 = MBexpand@MBmerge@cont2D,

    Exp@2 ep EulerGammaD, 8ep, 0, 0

  • MB.m, another analytic continuation

    MBintegrate@exp2, 8s ® -2, t ® -3

  • MB-integrals and IR-singularities

    With MB-integrals it is easy to isolate and evaluate analytically the IR-singularities of

    simple Feynman integrals.

    Let us use as an example the massive QED one-loop box

    Box(t, s) =eǫγE

    Γ[−2ǫ](−t)(2+ǫ)1

    (2πi)2

    ∫ +i∞

    −i∞

    dz1

    ∫ +i∞

    −i∞

    dz2

    (−s)z1(m2)z2(−t)z1+z2 Γ[2 + ǫ + z1 + z2]Γ

    2[1 + z1]Γ[−z1]Γ[−z2]

    Γ2[−1 − ǫ − z1 − z2]Γ[−2 − 2ǫ − 2z1]

    Γ[−2 − 2ǫ − 2z1 − 2z2]

    After continuation in ǫ:

    Box(t, s) = −1ǫI1 + Log(−s)I1 + ǫ

    (1

    2

    [ζ(2) − Log2(−s)

    ]I1 − 2I2

    ).

    MB integrals – 4 December, Warsaw –

  • MB-integrals and IR-singularities

    I1 =eǫγE

    st

    1

    2πi

    ∫ − 12+i∞

    − 12−i∞

    dz1

    (m2

    −t

    )z1 Γ3[−z1]Γ[1 + z1]Γ[−2z1]

    ,

    and

    I2 =eǫγE

    t21

    (2πi)2

    ∫ − 34+i∞

    − 34−i∞

    dz1

    (−s−t

    )z1Γ[−z1]Γ[−2(1 + z1)]Γ2[1 + z1]

    ×∫ − 1

    2+i∞

    − 12−i∞

    dz2

    (m2

    −t

    )z2Γ[−z2]

    Γ2[−1 − z1 − z2]Γ[−2(1 + z1 + z2)]

    Γ[2 + z1 + z2].

    In terms of the conformally mapped variable

    y =

    √1 − 4m2/t − 1√1 − 4m2/t + 1

    ,

    MB integrals – 4 December, Warsaw –

  • MB-integrals and IR-singularities

    the first integral I1 can be performed analytically to yield the well known result

    I1 =1

    m2s

    2y

    1 − y2 Log(y).

    the residua due to poles of Γ(1 + z) in this region have to be taken at:

    1 + z = −n, n = 0, 1, · · ·, or equivalently at z = −n, n = 1, 2, · · ·. It is:

    Residue[F[z]Gamma[1 + z], {z,−n}] = (−1)n−1

    (n − 1)! F[−n]

    So the integral becomes:

    I =1

    ǫ

    ∞∑

    n=0

    (−1)n(−s)nΓ(1 + n)3)8n!Γ(−2(−1 − n)) =

    1

    ǫ

    ArcSin(√

    s/2)

    2√

    4 − s√s=

    1

    ǫ

    −x4(1 − x2) ln(x)

    MB integrals – 4 December, Warsaw –

  • MB-integrals and IR-singularities

    Mathematica can do this:

    Sum[sˆ(n) Gamma[n + 1]ˆ3/(n!Gamma[2 + 2n]), n, 0, Infinity] =

    (4*ArcSin[Sqrt[s]/2])/(Sqrt[4 - s]*Sqrt[s])

    Yet another way: binomial sums (Kalmykov, Davydychev)

    I1 ∝∞∑

    n=0

    sn 2n

    n

    (2n + 1)

    and solving this binomial we get the same result,

    it is more general approach,

    Mathematica will not always solve directly :-(((

    MB integrals – 4 December, Warsaw –

  • MI B1 B2 B3 B4 B5 B6 solved:

    B7l4m1 + – – – – – Smirnov:2001,CGR:2006

    B7l4m1N + – – – – – Smirnov,Heinrich:2004,CGR:2006

    B7l4m2 – + – – – – Smirnov,Heinrich:2004†,CGR:2006

    B7l4m2[d1--d3] – + – – – – CGR:2006

    B7l4m3 – – + – – – NP:Smirnov,Heinrich:2004†

    B7l4m3[d1--d2] – – + – – – NP

    B6l3m1 + – + – – – CGR:2006

    B6l3m1d + – + – – – CGR:2006

    B6l3m2 – + – + – – CGR:2006

    B6l3m2d – + – + – – CGR:2006

    B6l3m3 – – + – – – NP

    B6l3m3[d1--d5] – – + – – – NP

    B5l2m1 + – + – – – CGR:2004

    B5l2m2 – + – + – + CGR:2006

    B5l2m2[d1--d2] – + – + – + CGR:2006

    B5l2m3 + – + – – – CGR:2006

    B5l2m3[d1--d3] + – + – – – CGR:2006

    B5l3m – + + + – – CGR:2006

    B5l3m[d1--d3] – + + + – – CGR:2006

    B5l4m – + + + + – Bonciani, Mastrolia, Remiddi:2002

    B5l4md – + + + + – CGR:2004

    MB integrals – 4 December, Warsaw –

  • Second planar, Smirnov, Heinrich, PLB598(2004)

    BPL,2(1, . . . , 1, 0; s, t, m2; ǫ) =

    (iπd/2ǫ−γEǫ

    )2 [− xy

    s2(−t)1+2ǫ

    ×(

    c22(x, y)

    ǫ2+

    c21(x, y)

    ǫ+ c201(x, y) + c

    202(x, y)

    )+c203(s, t, m

    2) + O(ǫ)]

    ,

    c203(s, t, m2) = − 4

    s√−t

    ∫ 1

    0

    ∫ 1

    0

    dx1dx2

    √x1√

    1 − x1

    ×Arsh[(√−t√x1

    √1 − x2)/(2m

    √x1 + x2 − x1x2)

    ]

    (4m2 − sx1)x2√

    (4m2 − t)x1(1 − x2) + 4m2x2×(ln(−s/m2) + 2 lnx1 − ln

    [4(1 − x1)x2 − sx1(x1 + x2 − x1x2)/m

    +1

    s

    ∫ 1

    0

    ∫ 1

    0

    dx1dx2ln(x1 + x2 − x1x2)√

    1 − x1(4m2 − sx1)√

    1 − x2(4m2 − tx2)×

    (4 ln 2 + 2 ln(−4m2/s + x1) + 2 ln(1 − x1)

    −2 lnx1 + 2 ln(1 − x2) − ln(x1 + x2 − x1x2)) . MB integrals – 4 December, Warsaw –

  • Approximations

    e.g. (one initial 3-dim integral for B5l2m2d2)

    B5l2m2d2 = m−4−2ǫ(−m2/s

    )ǫ+α(−x)β

    × Γ[1 − ǫ − α − β]Γ[−β]Γ[1 + β]× Γ[1 + ǫ + β]Γ[ǫ + α + β]Γ[−2ǫ − γ]Γ[1 − α − γ].......

    ℜ(α) = 361/384,ℜ(β) = −117/128,ℜ(γ) = −19/32

    m2/s

  • Final structure for approximated MIs

    In all planar cases, after expansions, we arrived at 1-dimensional integrals of the kind

    (B5l2m2d2 example)(−m2/s

    )n=2(−x)βΓ[...β...]

    or(−m2/s

    )...β...(−x)...β...Γ[...β...], or ...Γ[...2β...]...,

    which can be solved analytically using XSummer (Uwer, Moch), or PSLQ (Ferguson,

    Bailey) algorithms

    Finding iteratively residues must be automatized (sometimes hundreds of terms must

    be considered).

    Finally, we get

    I ∼ snF(

    ln

    (−m

    2

    s

    ),t

    s

    )+ O

    (m2

    ), n =

    1

    2dim I + 2ǫ,

    This is requirement we impose for the structure of MIs

    MB integrals – 4 December, Warsaw –

  • Approximations: chosen MIs for B5l2m2 system

    B5l2m2 = − 1ǫ

    1

    6t

    [−3 L2 + 6 L ln(x) − 3 ln2(x) − 24 ζ2

    ]

    − 16t

    {const

    }

    B5l2m2d2 = +1

    6st

    {−12 L3 + 9 L2 ln(x) − 36 L ζ2

    − 12 ζ3 − 12 ζ2 ln(x) − ln3(x) + 18 ζ2 ln(1 + x)

    + 3 ln2(x) ln(1 + x) + 6 ln(x) Li2(−x) − 6 Li3(−x)}

    B5l2m2(k2 · p3) = +1

    ǫ

    s

    12t

    [3 L2 + L (12 + 6 x − 6 ln(x))

    + 24 ζ2 − 12 ln(x) − 6 x ln(x) + 3 ln2(x)]

    +s

    12t

    {const

    }

    MB integrals – 4 December, Warsaw –

  • Solutions: The planar box masters for m2/s

  • B5l2m3 (Musashi), x = t/s

    B5l2m3 = +1

    12u

    {−6 L2 (6 ζ2 + ln2(x))

    − 6 L (−4 ζ3 + 4 ζ2 ln(x) − 12 ζ2 ln(1 + x)− 2 ln2(x) ln(1 + x) − 4 ln(x) Li2(−x) + 4 Li3(−x)) + 312 ζ4+ 72 ζ3 ln(x) + 36 ζ2 ln

    2(x) + ln4(x) − 24 ζ3 ln(1 + x)+ 24 ζ2 ln(x) ln(1 + x) − 36 ζ2 ln2(1 + x)− 6 ln2(x) ln2(1 + x) − 24 ln(x) S1,2(−x) + 12 (8 ζ2 + ln2(x)− 2 ln(x) ln(1 + x)) Li2(−x) − 48 ln(x) Li3(−x)

    + 24 ln(1 + x) Li3(−x) + 72 Li4(−x) + 24 S2,2(−x)}

    MB integrals – 4 December, Warsaw –

  • B5l2m3, transcendentality: 4

    Higher orders in ǫ may be determined:

    B5l2m3d2 = · · ·

    + ǫ1

    3st

    {{−5 L4 + 111 L2 ζ2 + 10 L3 ln(x) + L (104 ζ3

    − 126 ζ2 ln(x) − 6 ln3(x) + 108 ζ2 ln(1 + x) + 18 ln2(x) ln(1 + x)+ 36 ln(x) Li2(−x) − 36 Li3(−x)) − 372 ζ4 − 78 ζ3 ln(x) + 30 ζ2 ln2(x) ++ ...

    − 6 (4 ζ2 + 3 ln2(x) − 2 ln(x) ln(1 + x)) Li2(−x) + 24 ln(x) Li3(−x)

    − 12 ln(1 + x) Li3(−x) − 12 Li4(−x) − 12 S2,2(−x)}}

    MB integrals – 4 December, Warsaw –

  • Analytical, numerical checks

    some results can be checked by comparing with different methods, e.g. DEqs,

    Czakon, J.G. , Kajda, Riemann, NPB (2005);

    MB-DEqs - complementary methods;

    Multidimensional MB-integrals checked with MB.m (by Czakon)

    Comparison with sector decomposition (Binoth, Heinrich)

    Expansions (analytical form)

    m2/s = 1/1000, t/s = 1/4

    B5l2m2d2 = 0.00252823

    B5l2m2d2expanded = 0.0025307

    MB integrals – 4 December, Warsaw –

  • The Nf > 1 contributions

    The 2-box-diagrams repre-

    sent a three-scale problem:

    s/m2, t/m2, M2/m2

    SE3l2M1mV4l2M1m

    V4l2M2m B5l2M2m

    2

    3

    4

    1

    3

    5

    1

    3

    4

    3

    21 2

    4

    2

    1

    MB integrals – 4 December, Warsaw –

  • Results for the Finite Parts

    [B5l2M2m]fin =1

    st

    {−2 ln2 (ms) ln (Ms) + ζ2 ln (ms)

    +[2 ln2 (ms) + 2 ln (ms) ln (Ms)

    ]ln

    (t

    s

    )

    − 2 ln (ms) ln2(

    t

    s

    )

    +[3ζ2 +

    1

    2ln2

    (t

    s

    )]ln

    (1 +

    t

    s

    )+ ln

    (t

    s

    )Li2

    (− t

    s

    )

    − Li3(− t

    s

    )}

    ms ≡ −m2

    sMs ≡ −

    M2

    s

    MB integrals – 4 December, Warsaw –

  • Numerics for Nf = 2

    soon, this year

    MB integrals – 4 December, Warsaw –

  • Magic relations, Drummond, Henn, Smirnov, Sokatchev’06

    For off-shell Feynman diagrams (p2i 6= 0) exactly at d=4 we have:

    Tennis court = s × Triple box

    MB integrals – 4 December, Warsaw –

  • MSYM, AdS/CFT, MHV, four-loops and MB

    Bern, Czakon, Dixon, Kosower, Smirnov

    “Heuristically, the Maldacena duality conjecture hints that even quantities

    unprotected by supersymmetry should have perturbative series that can be

    resummed in closed form.”

    Higher-loop on-shell scattering amplitudes of colour non-singlet gluons

    “There is now significant evidence of a very simple structure in the planar limit.

    In particular, the planar contributions to the two-loop and three-loop four-gluon

    amplitudes have been shown to obey iterative relations ...”

    M(2)4 (ρ; ǫ) =

    1

    2

    [M

    (1)4 (ρ; ǫ)

    ]2

    − (ζ2 + ζ3ǫ + ζ4ǫ2) M (1)4 (ρ; 2ǫ) −1

    2ζ22 + O(ǫ)

    MB integrals – 4 December, Warsaw –

  • MSYM, AdS/CFT, MHV, four-loops and MB

    M(3)4 (ρ; ǫ) = −

    1

    3

    [M

    (1)4 (ρ; ǫ)

    ]3+ M

    (1)4 (ρ; ǫ) M

    (2)4 (ρ; ǫ)

    + f (3)(ǫ) M(1)4 (ρ; 3 ǫ)

    +C(3) + O(ǫ)

    f (3)(ǫ) =11

    2ζ4 + ǫ(6ζ5 + 5ζ2ζ3) + ǫ

    2(c1ζ6 + c2ζ23 ),

    C(3) =

    (341

    216+

    2

    9c1

    )ζ6 +

    (−17

    9+

    2

    9c2

    )ζ23 .

    c1 and c2 are expected to be rational, they cancel out on the RHS.

    MB integrals – 4 December, Warsaw –

  • MSYM, AdS/CFT, MHV, four-loops and MB

    M(4)4 (ρ; ǫ) =

    1

    4

    [M

    (1)4 (ρ; ǫ)

    ]4−

    [M

    (1)4 (ρ; ǫ)

    ]2M

    (2)4 (ρ; ǫ) + M

    (1)4 (ρ; ǫ)M

    (3)4 (ρ;

    +1

    2

    [M

    (2)4 (ρ; ǫ)

    ]2+ f (4)(ǫ) M

    (1)4 (ρ; 4 ǫ) + C

    (4) + O(ǫ)

    11

    (d)

    9

    8

    10 21 3

    7

    65

    413

    12

    113)

    2l + l 1(

    14

    2s

    (e)

    9

    8

    10

    1

    12

    76

    5s)2

    1315

    23 4

    1311

    14

    3)2

    l + l 19

    3

    76 8

    11

    10

    5

    1 12

    13

    2 4s14

    8)2

    l + l (4)

    2l + l 2(

    15

    (f)

    s 32 3

    41

    12 7

    3

    6

    45

    10

    89

    13

    11129

    (a) (b)

    10)4

    l + l 8(t 123

    76

    54

    109

    8

    1213 14

    (c)

    2s 3)2

    l + l 1(11

    12

    14

    13

    8

    10

    9 21 3

    7

    65

    4

    12(l + lx x(

    6

    MB integrals – 4 December, Warsaw –

  • Perspectives

    A lot to do with summations (Xsummer by Moch, Uwer generalized to the

    massive cases);

    Nonplanar topologies;

    Limits: more legs?

    ...

    MB integrals – 4 December, Warsaw –

    {it scriptsize {white { Janusz Gluza, University of Silesia}}}{scriptsize it Outline}{scriptsize it Methods: analytical, numerical, semi-analytical}{scriptsize it General procedure (advanced)}{scriptsize it $alpha $-representation, Feynman parametrisation}{scriptsize it $F$ and $U$ polynomials}{scriptsize it Example: 1-loop box, general case: graphical approach '50s }{scriptsize it Singularities in the complex plane: $ Gamma (z)=int_{0}^{infty } t^{z-1} e^{-t}dt $ }{scriptsize it The Mellin-Barnes relation, exact proof: Whittaker, Watson, Cambridge U.Press, 1965}{scriptsize it The Mellin-Barnes relation, exact proof: Whittaker, Watson, Cambridge U.Press, 1965}{scriptsize it straightforward generalization}{scriptsize it Mellin-Barnes method}scriptsize it it 2-loop Mellin-Barnes representation: construction{scriptsize it Two loop example: construction}{scriptsize it Two loop example: construction}{scriptsize it Two loop example: construction}{scriptsize it B5l2m2: Final MB-representation, $D=4-2 epsilon $}{scriptsize it Loop-by-loop algorithm: planar cases}scriptsize it How to solve a given MB-representation?scriptsize it B5l2m2d2 case: fixed indices $a_1=a_3=a_4=a_5=1$, $a_2=2$scriptsize it Typical situation{scriptsize it ``Take residues and shift contours''}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}{scriptsize it B5l2m2}scriptsize it However,{scriptsize it MB.m, no rules}scriptsize it no rules found ...{scriptsize it MB.m, another analytic continuation}{scriptsize it MB.m, another analytic continuation}{scriptsize it MB.m, another analytic continuation}scriptsize it MB-integrals and IR-singularitiesscriptsize it MB-integrals and IR-singularitiesscriptsize it MB-integrals and IR-singularitiesscriptsize it MB-integrals and IR-singularities{scriptsize it }scriptsize it Second planar, Smirnov, Heinrich, PLB598(2004)scriptsize it Approximationsscriptsize it Final structure for approximated MIsscriptsize it Approximations: chosen MIs for B5l2m2 systemscriptsize it Solutions: The planar box masters for $m^2/s