1497
JRC89891 EUROPLEXUS A Computer Program for the Finite Element Simulation of Fluid-Structure Systems under Transient Dynamic Loading USER'S MANUAL European Commission Joint Research Centre Directorate for Space, Security and Migration Safety and Security of Buildings Commissariat à l’énergie atomique Direction de l’énergie nucléaire Département de Modélisation des Systèmes et Structures Service des Etudes Mécaniques et Thermiques Laboratoire d'Etudes de Dynamique JRC89891

EUROPLEXUS USER'S MANUAL · 2019-04-01 · JRC89891 EUROPLEXUS A Computer Program for the Finite Element Simulation of Fluid -Structure Systems under Transient Dynamic Loading USER'S

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • JRC89891

    EUROPLEXUS

    A Computer Program for the Finite Element Simulation of Fluid-Structure

    Systems under Transient Dynamic Loading

    USER'S MANUAL

    European Commission

    Joint Research Centre Directorate for Space, Security and Migration

    Safety and Security of Buildings

    Commissariat à l’énergie atomique Direction de l’énergie nucléaire

    Département de Modélisation des Systèmes et

    Structures

    Service des Etudes Mécaniques et Thermiques

    Laboratoire d'Etudes de Dynamique

    JRC89891

  • Contents

    1 GETTING STARTED 191.1 ABOUT EUROPLEXUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.2.1 License types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.2.2 Installation under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 201.2.3 Installation under Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.2.4 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.3 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.3.1 Files in EPX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.4 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.4.1 k-file (LS-DYNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.4.2 med (SALOME) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.4.3 CAST3M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    1.5 EUROPLEXUS Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.5.1 First input sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.5.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261.5.3 Sandwich Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.5.4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.5.5 Element erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.5.6 Fluid calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.5.7 INTRODUCTION TO FLUID-STRUCTURE INTERACTION . . . . . . 281.5.8 Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291.5.9 Index of important commands . . . . . . . . . . . . . . . . . . . . . . . . 30

    1.6 Outputs/Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2 PREPARATION OF THE INPUT DATA 332.1 WRITING CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.2 USE OF LITERAL VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.3 PROCEDURE /LECTURE/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.4 PROCEDURE /PROGRESSION/ . . . . . . . . . . . . . . . . . . . . . . . . . . 422.5 PROCEDURE /CTIME/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432.6 PROCEDURE /LCHP/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.7 PROCEDURE /LECDDL/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462.8 MPI PARALLEL CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 482.9 READING DATA FROM EXTERNAL FILES . . . . . . . . . . . . . . . . . . . 49

    3 SPATIAL DISCRETIZATION (ELEMENT TYPES) 503.1 ELEMENT TYPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    3.1.1 1-D ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.1.2 2-D ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.1.3 3-D ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    3.2 SANDWICH (MULTI-LAYER) ELEMENTS . . . . . . . . . . . . . . . . . . . . 793.2.1 LOCATION AND NUMBER OF THE INTEGRATION POINTS . . . . 79

    4 GROUP A—PROBLEM TYPE AND DIMENSIONING 814.1 TITLE AND PRELIMINARY INFORMATION . . . . . . . . . . . . . . . . . . . 82

    4.1.1 TITLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.1.2 INPUT DATA ECHO AND INPUT CHECK UP . . . . . . . . . . . . . . 82

    4.2 INTERACTIVE (FOREGROUND) EXECUTION . . . . . . . . . . . . . . . . . 83

    3

  • EUROPLEXUS Contents

    4.3 FILE MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.3.1 DEFAULT FILE NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.3.2 EXPLICIT FILE OPENING . . . . . . . . . . . . . . . . . . . . . . . . . 874.3.3 EXPLICIT OUTPUT DIRECTORY DEFINITION . . . . . . . . . . . . 89

    4.4 TYPE OF MESH, PROBLEM AND LISTING . . . . . . . . . . . . . . . . . . . 904.4.1 MODELING OF ADVECTION-DIFFUSION PHENOMENA . . . . . . . 1014.4.2 TYPE OF OUTPUT LISTING . . . . . . . . . . . . . . . . . . . . . . . . 102

    4.5 MPI GLOBAL OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044.6 DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    4.6.1 DIMENSIONS RELATIVE TO GROUP B (GEOMETRY) . . . . . . . . 107NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108NUMBER OF ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . 109ADAPTIVITY (Adaptive Mesh Refinement) . . . . . . . . . . . . . . . . 110DECOHESION (Automatic Separation of the Elements) . . . . . . . . . . 112GRID MOTION (A.L.E.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 113SPACE INTEGRATION FOR SHELL AND BEAM ELEMENTS . . . . 114MEMORY FOR ED1D CALCULATIONS . . . . . . . . . . . . . . . . . . 115

    4.6.2 DIMENSIONS RELATIVE TO GROUP C (MATERIALS) . . . . . . . . 1164.6.3 DIMENSIONS RELATIVE TO GROUP D (CONNECTIONS) . . . . . . 1174.6.4 DIMENSIONS RELATIVE TO GROUP G (PRINTOUTS) . . . . . . . . 1194.6.5 DIMENSIONS RELATIVE TO GROUP I (CALCULATION) . . . . . . . 1204.6.6 DIMENSIONS RELATIVE TO ADVECTION-DIFFUSION . . . . . . . . 1214.6.7 END OF DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    5 GROUP B—MESH AND GRID MOTION 1235.1 OPTIONAL MESH MANIPULATION COMMANDS . . . . . . . . . . . . . . . 1245.2 MESH IN COCO-LIKE OR IN FREE FORMAT . . . . . . . . . . . . . . . . . . 126

    5.2.1 GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265.2.2 ELEMENT ZONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285.2.3 EXAMPLE: MESH FROM FORMATTED EXTERNAL FILE . . . . . . 130

    5.3 MESH IN CASTEM FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.3.1 Superposed elements in a Cast3m mesh (color problem) . . . . . . . . . . 135

    5.4 MESH IN I-DEAS FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.5 MESH IN LS-DYNA FORMAT (K-FILE) . . . . . . . . . . . . . . . . . . . . . . 1375.6 GRID MOTION IN AN A.L.E. COMPUTATION . . . . . . . . . . . . . . . . . 138

    5.6.1 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415.6.2 “SUIVRE” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425.6.3 “LIGNE” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435.6.4 “PLAN” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1445.6.5 “TETR” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455.6.6 “HEXA” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465.6.7 “PRIS” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475.6.8 “PYRA” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1485.6.9 “CONTOUR” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495.6.10 “SLIP” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515.6.11 “AUTO” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1525.6.12 “MEAN” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545.6.13 “DIRE” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555.6.14 “QUAD” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565.6.15 “SPEC” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575.6.16 “MECA” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    March 14, 2019 4

  • EUROPLEXUS Contents

    5.6.17 “ELAS” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595.6.18 “GLOB” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605.6.19 USER’S ROUTINE “COOGRI” . . . . . . . . . . . . . . . . . . . . . . . 161

    5.7 MESH REFINEMENT FOR WAVEFRONT TRACKING . . . . . . . . . . . . . 1635.8 ADAPTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    6 GROUP C—GEOMETRIC COMPLEMENTS 1736.1 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746.2 ADDED MASSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1756.3 THICKNESS OR SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1766.4 GEOMETRICAL PARAMETERS FOR SHELL ELEMENTS . . . . . . . . . . . 1786.5 EXCENTRICITY FOR SHELL ELEMENTS . . . . . . . . . . . . . . . . . . . . 1806.6 SANDWICHES AND LAYERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1816.7 GEOMETRY OF BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1836.8 DIAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.9 NAMED ELEMENT GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896.10 NAMED NODE GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1946.11 ELEMENT COLORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006.12 RTM COMPOSITE MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.13 PFEM METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2026.14 FLYING DEBRIS MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036.15 DISPLACEMENT EROSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2116.16 STRUCTURED FLUID GRID MODEL . . . . . . . . . . . . . . . . . . . . . . . 2126.17 AUTOMATIC GENERATION OF SPECTRAL MICRO MESH . . . . . . . . . 2156.18 ELEMENT-SPECIFIC EROSION . . . . . . . . . . . . . . . . . . . . . . . . . . 2176.19 MESH ORIENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186.20 AUTOMATICALLY GENERATED SPH PARTICLES . . . . . . . . . . . . . . . 2206.21 WATER TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2236.22 HELIUM TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2266.23 PIPE JUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286.24 TUBM (3D-1D JUNCTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2306.25 TUYM (3D-1D JUNCTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2326.26 CORRESPONDENCE BETWEEN NODES . . . . . . . . . . . . . . . . . . . . . 2346.27 SPH SHELL ELEMENT (SPHC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2366.28 DISCRETE ELEMENT MODEL (ELDI) . . . . . . . . . . . . . . . . . . . . . . 2386.29 MULTILAYER ELEMENT CMC3 . . . . . . . . . . . . . . . . . . . . . . . . . . 2426.30 ORTHOTROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2436.31 ORTHOTROPY FOR 3D SHELLS . . . . . . . . . . . . . . . . . . . . . . . . . . 2456.32 PARTICLE ELEMENT (BILLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2476.33 RIGID BODIES (JRC Implementation) . . . . . . . . . . . . . . . . . . . . . . . 249

    7 GROUP C1—MATERIALS 2517.1 LIST OF MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2527.2 AVAILABLE MATERIALS FOR ELEMENT TYPES . . . . . . . . . . . . . . . 2547.3 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2647.4 LOCALISED DAMPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2657.5 NON-LINEAR SUPPORTS : ”APPU” . . . . . . . . . . . . . . . . . . . . . . . . 2667.6 NON-LINEAR SUPPORTS : ”SUPP” . . . . . . . . . . . . . . . . . . . . . . . . 2697.7 SOLID MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

    7.7.1 LINEAR ELASTICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2717.7.2 RESL: NONLINEAR SPRING IN THE LOCAL REFERENCE FRAME 273

    March 14, 2019 5

  • EUROPLEXUS Contents

    7.7.3 GENERIC LINEAR ELASTICITY . . . . . . . . . . . . . . . . . . . . . . 2757.7.4 GENERIC PLASTICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 2767.7.5 RESG: NONLINEAR SPRING IN THE GLOBAL REFERENCE FRAME2777.7.6 DRUCKER-PRAGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2797.7.7 VON MISES MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    PERFECTLY PLASTIC VON MISES . . . . . . . . . . . . . . . . . . . . 282ISOTROPIC VON MISES . . . . . . . . . . . . . . . . . . . . . . . . . . . 284DYNAMIC VON MISES . . . . . . . . . . . . . . . . . . . . . . . . . . . 286TEMPERATURE-DEPENDENT VON MISES . . . . . . . . . . . . . . . 291

    7.7.8 STEINBERG-GUINAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2937.7.9 VON MISES ORTHOTROPIC GRID MODEL . . . . . . . . . . . . . . . 2957.7.10 LEM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2977.7.11 ZALM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2997.7.12 LMC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3027.7.13 CONCRETE: Old version . . . . . . . . . . . . . . . . . . . . . . . . . . . 3077.7.14 CONCRETE: DYNAR LMT (BLMT) . . . . . . . . . . . . . . . . . . . . 3147.7.15 BPEL: MODEL FOR PRESTRESSING CABLE-CONCRETE FRICTION3177.7.16 CONCRETE: MAZARS-LINEAR ELASTIC LAW WITH DAMAGE . . 3187.7.17 DADC: Dynamic Anisotropic Damage Concrete . . . . . . . . . . . . . . . 3207.7.18 DPDC: Dynamic Plastic Damage Concrete . . . . . . . . . . . . . . . . . 3237.7.19 DAMAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3297.7.20 EOBT: ANISOTROPIC DAMAGE OF CONCRETE (EDF) . . . . . . . 3317.7.21 ENGR: ELASTIC GRADIENT DAMAGE MATERIAL . . . . . . . . . . 3337.7.22 LINEAR MULTI-LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . 3367.7.23 CHANG-CHANG MULTI-LAYER MODEL . . . . . . . . . . . . . . . . . 3407.7.24 LINEAR ORTHOTROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . 3437.7.25 ORTS : LINEAR ORTHOTROPY (Local basis) . . . . . . . . . . . . . . 3457.7.26 ORTE : ELASTIC DAMAGE ORTHOTROPY (only in 3D) . . . . . . . 3487.7.27 ODMS : ONERA DAMAGE MODEL (only in 3D) . . . . . . . . . . . . . 3537.7.28 WOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3667.7.29 ORSR : RATE DEPENDENT LINEAR ORTHOTROPY (Local basis) . 3727.7.30 MASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3797.7.31 PHANTOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3817.7.32 FREE (USER’S MATERIAL) . . . . . . . . . . . . . . . . . . . . . . . . . 3827.7.33 FREE MATERIAL OF TYPE STRUCTURE . . . . . . . . . . . . . . . . 3847.7.34 FREE MATERIAL OF TYPE FLUID . . . . . . . . . . . . . . . . . . . . 3877.7.35 FREE MATERIAL OF TYPE MATERIAL POINT . . . . . . . . . . . . 3917.7.36 FREE MATERIAL OF TYPE MECHANISM . . . . . . . . . . . . . . . . 3947.7.37 FREE MATERIAL OF TYPE BOUNDARY CONDITIONS . . . . . . . 3977.7.38 FREE PARTICLE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . 4017.7.39 VON MISES (ISPRA IMPLEMENTATION) . . . . . . . . . . . . . . . . 4057.7.40 VM1D MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4077.7.41 DONE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4087.7.42 VON MISES WITH VISCOPLASTIC REGULARIZATION . . . . . . . . 4117.7.43 DRUCKER PRAGER WITH VISCOPLASTIC REGULARIZATION . . 4137.7.44 COMPOSITE MATERIAL (LINEAR OTHOTROPIC) ISPRA IMPLE-

    MENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4167.7.45 MODIFIED CAM-CLAY MATERIAL . . . . . . . . . . . . . . . . . . . . 4187.7.46 MODIFIED CAM-CLAY MATERIAL WITH VISCOPLASTIC REGU-

    LARIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4227.7.47 FUNE (SPECIALIZED CABLE MATERIAL) . . . . . . . . . . . . . . . 426

    March 14, 2019 6

  • EUROPLEXUS Contents

    7.7.48 JOHNSON-COOK MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 4287.7.49 LUDWIG-PRANDTL MODEL . . . . . . . . . . . . . . . . . . . . . . . . 4327.7.50 LUDWIK MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4347.7.51 ZERILLI-ARMSTRONG MODEL . . . . . . . . . . . . . . . . . . . . . . 4367.7.52 DRUCKER-PRAGER WITH HYDROSTATIC POST-FAILURE (JRC) . 4387.7.53 ALUMINIUM FOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4407.7.54 GLRC: REINFORCED CONCRETE FOR SHELLS . . . . . . . . . . . . 4437.7.55 HYPERELASTIC MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . 4567.7.56 MINT: MATERIAL FOR INTERFACE ELEMENT . . . . . . . . . . . . 4627.7.57 THE SL-ZA MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4647.7.58 RTM composite material . . . . . . . . . . . . . . . . . . . . . . . . . . . 4667.7.59 TVMC (LOI ELASTOPLASTIQUE POUR COMPOSITES) . . . . . . . 4697.7.60 HILL MATERIAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 4727.7.61 GLASS MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747.7.62 BL3S: REINFORCED CONCRETE LAW FOR DEM . . . . . . . . . . . 4767.7.63 LAMINATED SECURITY GLASS MATERIAL . . . . . . . . . . . . . . 4817.7.64 SMAZ: MAZARS-LINEAR ELASTIC LAW WITH DAMAGE FOR SPHC

    ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4837.7.65 SLIN: LINEAR ELASTIC LAW WITH DAMAGE FOR SPHC ELEMENTS4857.7.66 JCLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4867.7.67 VPJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4887.7.68 RIGI (Rigid Material) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4967.7.69 DCMS (Damage in Coarsely Meshed Shells) . . . . . . . . . . . . . . . . . 4977.7.70 MOONEY-RIVLIN MATERIAL . . . . . . . . . . . . . . . . . . . . . . . 4997.7.71 OGDEN MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5027.7.72 BLATZ-KO MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

    7.8 FLUID MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5087.8.1 GENERIC IDEAL GAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5107.8.2 FLUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5117.8.3 TAIT EoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5157.8.4 PERFECT GAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5177.8.5 STIFFENED GAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5197.8.6 SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5217.8.7 SODIUM-WATER REACTION (“NAH2”) . . . . . . . . . . . . . . . . . 5227.8.8 SODIUM-WATER REACTION (“RSEA”) . . . . . . . . . . . . . . . . . 5257.8.9 WATER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5297.8.10 HELIUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5347.8.11 1D WALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5367.8.12 PIPE BREAK PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . 5387.8.13 MULTIPLE MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5407.8.14 LIQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5427.8.15 TUBE BUNDLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5447.8.16 HOMOGENEISATION OF TUBE BUNDLES . . . . . . . . . . . . . . . 5487.8.17 PUFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5507.8.18 MIEG (Mie-Grüneisen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5527.8.19 ADCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5547.8.20 EXVL—VAN LEER HYDROGEN DETONATION . . . . . . . . . . . . 5587.8.21 JWL—JONES-WILKINS-LEE LAW . . . . . . . . . . . . . . . . . . . . . 5627.8.22 CHOC—RANKINE-HUGONIOT SHOCK . . . . . . . . . . . . . . . . . 5667.8.23 GPDI—DIFFUSIVE VAN LEER PERFECT GAS . . . . . . . . . . . . . 5677.8.24 VAN LEER PERFECT GAS . . . . . . . . . . . . . . . . . . . . . . . . . 570

    March 14, 2019 7

  • EUROPLEXUS Contents

    7.8.25 ADCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5727.8.26 FLUID PARTICLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5767.8.27 PRGL—POROUS JELLY . . . . . . . . . . . . . . . . . . . . . . . . . . . 5787.8.28 VAN DER WAALS GAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5807.8.29 JWLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5827.8.30 USER-DEFINED FLUID (FLUT) . . . . . . . . . . . . . . . . . . . . . . 5877.8.31 MATERIAL FOR MINERAL OIL PYROLISIS . . . . . . . . . . . . . . . 5987.8.32 ADVECTION-DIFFUSION FLUID (ADFM) . . . . . . . . . . . . . . . . 6017.8.33 MULTICOMPONENT FLUID MATERIAL (MCGP) . . . . . . . . . . . 6027.8.34 MULTICOMPONENT FAR-FIELD FLUID MATERIAL (MCFF) . . . . 6057.8.35 MULTIPHASE MULTICOMPONENT FLUID MATERIAL (FLMP) . . 6077.8.36 SG2P—Multicomponent Stiffened Gases - Fully Conservative Formulatoin 6097.8.37 SGMP—Multicomponent Stiffened Gases models . . . . . . . . . . . . . . 6157.8.38 BUBBLE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217.8.39 CDEM—Discrete Equation Method for Combustion . . . . . . . . . . . . 6227.8.40 DEMS—Discrete Equation Method for Two Phase Stiffened Gases . . . . 6367.8.41 GAZD—Detonation in gas Mixture . . . . . . . . . . . . . . . . . . . . . . 641

    7.9 IMPEDANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6487.9.1 ABSORBING MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . 6537.9.2 TOTAL ABSORBING MATERIAL . . . . . . . . . . . . . . . . . . . . . 6557.9.3 HEAD LOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6577.9.4 GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6587.9.5 IMPOSED PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6607.9.6 DIAPHRAGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6627.9.7 MEMBRANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6647.9.8 CRITICAL MASS FLOW RATE . . . . . . . . . . . . . . . . . . . . . . . 6667.9.9 CLOSED BOTTOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6687.9.10 PUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6697.9.11 FOLLOWING FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6717.9.12 CRITICAL MASS FLOW RATE COUPLING (NAH2) . . . . . . . . . . 6727.9.13 CRITICAL MASS FLOW RATE COUPLING (RSEA) . . . . . . . . . . 6747.9.14 “VANNE” - SAFETY AND REGULATING VALVES . . . . . . . . . . . 6767.9.15 SWING CHECK VALVE WITH FLUID-STRUCTURE COUPLING . . . 6787.9.16 FLUIDE-STRUCTURE GRID . . . . . . . . . . . . . . . . . . . . . . . . 6807.9.17 PERFORATED PLATE (JRC) . . . . . . . . . . . . . . . . . . . . . . . . 6827.9.18 RUPTURE DISK (JRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6847.9.19 STACEY’S 1ST ORDER ABSORBING BOUNDARY (JRC) . . . . . . . 6867.9.20 RUPTURE DISK FOR MC FORMULATION (JRC) . . . . . . . . . . . 6887.9.21 ABSORBING MATERIAL VAN LEER . . . . . . . . . . . . . . . . . . . 6907.9.22 CONDITION AT INFINITY VAN LEER . . . . . . . . . . . . . . . . . . 6917.9.23 IMPOSED PRESSURE VAN LEER . . . . . . . . . . . . . . . . . . . . . 6927.9.24 IMPOSED PERFECT GAS MASS FLOW RATE VAN LEER . . . . . . 6937.9.25 RIGID OBSTACLE VAN LEER . . . . . . . . . . . . . . . . . . . . . . . 6947.9.26 SAFETY VALVE (JRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6957.9.27 RUPTURE DISK (JRC NEW) . . . . . . . . . . . . . . . . . . . . . . . . 7037.9.28 ABSORBING MATERIAL (JRC implementation) . . . . . . . . . . . . . 7057.9.29 ABSORBING MATERIAL (Zienkiewicz for geotechnical materials) . . . 7077.9.30 AIR BLAST WAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7107.9.31 FRAGILE PLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7147.9.32 DATA RECORDING FOR VISUALIZATION . . . . . . . . . . . . . . . 7167.9.33 CLVF ABSORBING MATERIAL (SUPERSONIC OUTLET) . . . . . . . 718

    March 14, 2019 8

  • EUROPLEXUS Contents

    7.9.34 CLVF CONDITIONS AT INFINITY (INFINITELY HUGE RESERVOIR) 7197.9.35 CLVF IMPOSED PRESSURE (SUBSONIC OUTLET) . . . . . . . . . . 7217.9.36 CLVF IMPOSED MASS FLOW RATE (SUPERSONIC INLET) . . . . . 7237.9.37 CLVF SUBSONIC INLET . . . . . . . . . . . . . . . . . . . . . . . . . . . 7257.9.38 CLVF LODI QUASI 1-D CONDITION . . . . . . . . . . . . . . . . . . . 7277.9.39 CLVF FOURIER MODES IN 2D . . . . . . . . . . . . . . . . . . . . . . . 7297.9.40 CLVF RIEMANN 3-D CONDITION . . . . . . . . . . . . . . . . . . . . . 7317.9.41 CLVF TIME-DEPENDENT PRESSURE . . . . . . . . . . . . . . . . . . 7337.9.42 SAFETY VALVE FOR VFCC (JRC) . . . . . . . . . . . . . . . . . . . . 734

    7.10 MECHANISMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7427.10.1 IMPOSED FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7447.10.2 MOTOR COUPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7457.10.3 IMPOSED FORCE AND COUPLE . . . . . . . . . . . . . . . . . . . . . 7467.10.4 DIRECT CURRENT MOTOR . . . . . . . . . . . . . . . . . . . . . . . . 7477.10.5 SPRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7487.10.6 LIGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7507.10.7 FUNCTIONS RELATED TO MECHANISMS . . . . . . . . . . . . . . . 7527.10.8 MECHANISM INERTIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 7537.10.9 SERVOMECHANISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7547.10.10 ELECTRIC PARAMETRES . . . . . . . . . . . . . . . . . . . . . . . . . 7557.10.11 REDUCER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7567.10.12 TACHYMETRIC GENERATOR . . . . . . . . . . . . . . . . . . . . . . . 757

    7.11 ASSIGNING MATERIALS TO MULTILAYER SHELL ELEMENTS . . . . . . 7587.12 JOINT PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760

    7.12.1 BUSHING ELEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760

    8 GROUP D—LINKS 7658.1 LIST OF LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7658.2 LINK CATEGORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7698.3 OPTIONS FOR COUPLED LINKS . . . . . . . . . . . . . . . . . . . . . . . . . 7708.4 OPTIONS FOR ”LIAISON” LINKS . . . . . . . . . . . . . . . . . . . . . . . . . 7738.5 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7778.6 BLOCKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7788.7 TIME-LIMITED BLOCKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . 7798.8 GUIDE (SLIDE CHANNEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7808.9 GEOMETRIC BILATERAL RESTRAINTS (CONTACTS) . . . . . . . . . . . . 781

    8.9.1 PLANE/LINEAR RESTRAINT (CONTACT PLAN) . . . . . . . . . . . 7828.9.2 SPHERICAL/CIRCULAR RESTRAINT . . . . . . . . . . . . . . . . . . 7848.9.3 CYLINDRICAL RESTRAINT . . . . . . . . . . . . . . . . . . . . . . . . 7858.9.4 CONICAL RESTRAINT . . . . . . . . . . . . . . . . . . . . . . . . . . . 7868.9.5 TOROIDAL RESTRAINT . . . . . . . . . . . . . . . . . . . . . . . . . . 7878.9.6 PLANE/LINE OF SYMMETRY RESTRAINT . . . . . . . . . . . . . . . 789

    8.10 IMPOSED CIRCULAR SHAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 7918.11 RELATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7928.12 ARMATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7958.13 CROSSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7978.14 ACBE: REBAR(FEM)-CONCRETE(DEM) LINK . . . . . . . . . . . . . . . . . 7988.15 LCAB: LINK BETWEEN PRESTRESSING CABLES AND CONCRETE . . . . 8008.16 ARLQ: SHELL-3D MESH COUPLING WITHIN ARLEQUIN FRAMEWORK . 8018.17 IMPOSED MOTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8028.18 CONNECTIONS BETWEEN SHELLS AND SOLID ELEMENTS . . . . . . . . 803

    March 14, 2019 9

  • EUROPLEXUS Contents

    8.19 INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8058.20 FLUID-STRUCTURE COUPLING (FLST) . . . . . . . . . . . . . . . . . . . . . 8078.21 FLUID-STRUCTURE COUPLING (FLSR) . . . . . . . . . . . . . . . . . . . . . 8088.22 FLUID/IMMERSED STRUCTURE INTERACTION (FLSX) . . . . . . . . . . . 8148.23 FLUID-STRUCTURE INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . 816

    8.23.1 FLUID-STRUCTURE CONNECTION (FS) . . . . . . . . . . . . . . . . 8178.24 UNILATERAL RESTRAINT [OBSOLETE] . . . . . . . . . . . . . . . . . . . . . 8188.25 IMPACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8198.26 GAPS (”JEUX”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8228.27 BUTEE: LIMITED DISPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . . 8248.28 SLIDING LINES AND SLIDING SURFACES . . . . . . . . . . . . . . . . . . . . 8258.29 METHOD OF PARTICLES AND FORCES . . . . . . . . . . . . . . . . . . . . . 8318.30 SMOOTHED PARTICLE HYDRODYNAMICS METHOD (SPH) . . . . . . . . 8338.31 CONNECTING FINITE AND DISCRETE ELEMENT MODELS . . . . . . . . 8358.32 BIFURCATION CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 8368.33 ADHESION CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8378.34 TUBM CONNECTION (3D-1D JUNCTION) . . . . . . . . . . . . . . . . . . . . 8388.35 TUYM CONNECTION (3D-1D JUNCTION) . . . . . . . . . . . . . . . . . . . . 8398.36 TUYA CONNECTION (3D-1D JUNCTION) . . . . . . . . . . . . . . . . . . . . 8408.37 RIGID BODY (SOLIDE INDEFORMABLE) CEA Implementation . . . . . . . . 841

    8.37.1 INERTIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8438.38 ARTICULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

    8.38.1 RIGID ARTICULATION (VERR) . . . . . . . . . . . . . . . . . . . . . . 8468.38.2 PIVOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8478.38.3 PIN JOINT (ROTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8498.38.4 SLIDER (GLISSIERE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8508.38.5 SLIDING PIVOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8528.38.6 IMPOSED RELATIVE DISPLACEMENT (DRIT) . . . . . . . . . . . . . 8548.38.7 CONNECTION BETWEEN SHELL AND BEAM (TGGR) . . . . . . . . 8568.38.8 CONNECTION BETWEEN SHELL AND BEAM (CRGR) . . . . . . . . 857

    8.39 ROTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8598.40 IMPOSED TIME-DEPENDENT ROTATIONAL MOTION . . . . . . . . . . . . 8608.41 TIME-LIMITED IMPOSED ROTATIONAL MOTION . . . . . . . . . . . . . . 8618.42 CONSTANT DISTANCE CONNECTION (”DIST”) . . . . . . . . . . . . . . . . 8628.43 BARYCENTRIC JUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8638.44 RIGID JUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8658.45 GLUE - Glueing together two meshes . . . . . . . . . . . . . . . . . . . . . . . . 8688.46 CONTACTS DEFINED BY SPLINE FUNCTIONS . . . . . . . . . . . . . . . . 8708.47 COLLISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8728.48 FLUID-STRUCTURE SLIDING OF ALE TYPE (FSA) . . . . . . . . . . . . . . 8758.49 RIGID-BOUNDARY/FLUID SLIDING OF ALE TYPE . . . . . . . . . . . . . . 8778.50 IMPACT/CONTACT BY PINBALL MODEL (PINB) . . . . . . . . . . . . . . . 8788.51 CONTACT/IMPACT BY GENERALIZED PINBALL MODEL (GPIN) . . . . . 8858.52 FLUID-STRUCTURE SLIDING BY ”FSS” . . . . . . . . . . . . . . . . . . . . . 8898.53 NODE TO SHELL CONNECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . 8968.54 WEAK FLUID-STRUCTURE COUPLING 2 (FLSW) . . . . . . . . . . . . . . . 8978.55 NODE ON FACET ELEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9038.56 FINITE-ELEMENT/SPECTRAL-ELEMENT INTERFACE . . . . . . . . . . . . 9058.57 NAVIER-STOKES (INCOMPRESSIBILITY) . . . . . . . . . . . . . . . . . . . . 9068.58 PIPELINE RUPTURE CONNECTION . . . . . . . . . . . . . . . . . . . . . . . 9078.59 SURFACE PRESSURE MEASURED IN AN ELEMENT (PELM) . . . . . . . . 908

    March 14, 2019 10

  • EUROPLEXUS Contents

    8.60 UNCOUPLED HANGING LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . 9108.61 PRESCRIBED DAMAGE FOR GRADIENT DAMAGE MATERIALS . . . . . . 911

    9 GROUP E—FUNCTIONS AND INITIAL CONDITIONS 9129.1 FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

    9.1.1 TABLE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9159.1.2 SUBROUTINE TABANA . . . . . . . . . . . . . . . . . . . . . . . . . . . 9169.1.3 HARMONIC FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 9199.1.4 ABAQUE : PARAMETRISED TABLE FUNCTION . . . . . . . . . . . . 921

    9.2 ENERGY INJECTION HISTORY (JRC) . . . . . . . . . . . . . . . . . . . . . . 9229.3 INITIAL CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924

    9.3.1 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9259.3.2 INITIAL DISPLACEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 9269.3.3 INITIAL VELOCITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9279.3.4 INITIAL VELOCITIES FOR RIGID BODIES . . . . . . . . . . . . . . . 9299.3.5 INITIAL VELOCITIES FOR CELL-CENTRED FINITE VOLUMES . . 9309.3.6 INITIAL CONDITIONS FOR CELL-CENTRED FINITE VOLUMES . . 9319.3.7 INITIAL STRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9329.3.8 INITIAL TEMPERATURES . . . . . . . . . . . . . . . . . . . . . . . . . 9339.3.9 NODAL TEMPERATURES FOR ADVECTION-DIFFUSION (JRC) . . 9349.3.10 INITIAL ENERGY SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . 9359.3.11 INITIAL BENDING STRESSES DUE TO TEMPERATURE GRADIENT9369.3.12 GRAVITY LOADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9379.3.13 PRESCRIBED CONSTANT FLOW RATE . . . . . . . . . . . . . . . . . 9409.3.14 INITIAL ROTO-TRANSLATIONAL VELOCITY . . . . . . . . . . . . . 9449.3.15 INITIALISATIONS FROM A PREVIOUS ALICE FILE . . . . . . . . . 9469.3.16 INITIAL STATUS OF MULTICOMPONENT FLOW (JRC) . . . . . . . 9489.3.17 INITIAL TENSOR OF STRESS . . . . . . . . . . . . . . . . . . . . . . . 9509.3.18 INITIAL TENSOR OF STRAIN . . . . . . . . . . . . . . . . . . . . . . . 9529.3.19 INITIALISATIONS FROM A MED FILE . . . . . . . . . . . . . . . . . . 9549.3.20 INITIALISATIONS FROM A STATIC ANALYSIS . . . . . . . . . . . . . 9559.3.21 PRESCRIBED MASS FLOW RATE . . . . . . . . . . . . . . . . . . . . . 9579.3.22 PRESCRIBED INITIAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . 9589.3.23 PRESCRIBED INITIAL CRACK IN SPHC MODEL . . . . . . . . . . . 9609.3.24 INITIAL CONDITIONS FOR ADAPTIVITY . . . . . . . . . . . . . . . . 9619.3.25 MATERIAL RE-INITIALIZATION WITHOUT ADAPTIVITY . . . . . 9669.3.26 SKIPPING ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9679.3.27 INITIAL CONDITIONS BY READING MAP FILE (BLAST LOADING) 9689.3.28 INITIAL DAMAGE FOR GRADIENT DAMAGE MATERIALS . . . . . 9699.3.29 INITIALIZATION FROM A MAP FILE . . . . . . . . . . . . . . . . . . 970

    10 GROUP F—LOADS 97110.1 AUXILIARY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97510.2 CONSTANT LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97610.3 FACTORIZED LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

    10.3.1 DISPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97910.3.2 FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98010.3.3 PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981

    SEGMENT PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982SHELL PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985FACE PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988

    March 14, 2019 11

  • EUROPLEXUS Contents

    NODE PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990PRESSURE ON DISCRETE ELEMENTS . . . . . . . . . . . . . . . . . 992

    10.3.4 ADDITIONAL ACCELERATION . . . . . . . . . . . . . . . . . . . . . . 99410.3.5 TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995

    10.4 PROGRAMMED LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99610.4.1 FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99810.4.2 CARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100110.4.3 PRESSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100210.4.4 ROUTINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005

    EXAMPLE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012EXAMPLE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014

    10.5 ADVECTION-DIFFUSION ”LOADS” (JRC) . . . . . . . . . . . . . . . . . . . . 101610.5.1 PRESCRIBED TEMPERATURE . . . . . . . . . . . . . . . . . . . . . . 101710.5.2 PRESCRIBED HEAT FLUX . . . . . . . . . . . . . . . . . . . . . . . . . 101810.5.3 PRESCRIBED HEAT GENERATION . . . . . . . . . . . . . . . . . . . . 101910.5.4 PRESCRIBED CONVECTIVE HEAT TRANSFER . . . . . . . . . . . . 102010.5.5 PRESCRIBED RADIATION HEAT TRANSFER . . . . . . . . . . . . . 102110.5.6 PRESCRIBED TIME-DEPENDENT PRESSURE . . . . . . . . . . . . . 102210.5.7 PRESCRIBED VELOCITIES . . . . . . . . . . . . . . . . . . . . . . . . . 102310.5.8 PRESCRIBED PARALLEL VELOCITIES . . . . . . . . . . . . . . . . . 1024

    10.6 SEISMIC-LIKE LOADS FOR USE WITH SPECTRAL ELEMENTS . . . . . . 102510.6.1 PUNCTUAL SEISMIC LOAD SOURCES . . . . . . . . . . . . . . . . . . 102610.6.2 PLANE WAVE SEISMIC LOAD SOURCES . . . . . . . . . . . . . . . . 102910.6.3 SEISMIC MOMENT LOADS . . . . . . . . . . . . . . . . . . . . . . . . . 1031

    10.7 NEW CONSTANT LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103310.8 IMPOSED TIME-DEPENDENT LOADS . . . . . . . . . . . . . . . . . . . . . . 103510.9 DYNALPY LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103710.10AIR BLAST (AIRB) LOADING . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

    11 GROUP G—PRINTOUT AND STORAGE OF RESULTS 104211.1 SELECTIVE PRINTOUTS (”ECRITURE”) . . . . . . . . . . . . . . . . . . . . 104311.2 PRINTABLE QUANTITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

    11.2.1 NODE-RELATED QUANTITIES . . . . . . . . . . . . . . . . . . . . . . 1046Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046Displacements, velocities, accelerations and forces . . . . . . . . . . . . . . 1046

    11.2.2 ELEMENT-RELATED QUANTITIES . . . . . . . . . . . . . . . . . . . . 1046Stresses and material parameters . . . . . . . . . . . . . . . . . . . . . . . 1046

    11.3 STRESSES AND DEFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 104711.3.1 TOTAL DEFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 1050

    11.4 MATERIAL PARAMETERS (”ECROU”) . . . . . . . . . . . . . . . . . . . . . . 105111.5 TIME CHOICE (PROCEDURE /CTIME/) FOR THE PRINTOUTS . . . . . . 105211.6 NODES OR ELEMENTS TO BE PRINTED . . . . . . . . . . . . . . . . . . . . 105311.7 RESULT FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105411.8 POST-PROCESSING BY I-DEAS MASTER SERIES . . . . . . . . . . . . . . . 106811.9 OUTPUT REGIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107111.10MEASUREMENTS AND MESH QUALITY . . . . . . . . . . . . . . . . . . . . 1075

    11.10.1 Mesh Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 107711.11SAVING FILE FOR SUCCESSIVE RESTART . . . . . . . . . . . . . . . . . . . 1080

    March 14, 2019 12

  • EUROPLEXUS Contents

    12 GROUP H—OPTIONS 108212.1 OPTIONS RELATED TO THE TIME-STEP . . . . . . . . . . . . . . . . . . . . 108412.2 OPTIONS RELATED TO THE DAMPINGS . . . . . . . . . . . . . . . . . . . . 108912.3 OPTIONS FOR FINITE ELEMENTS AND GEOMETRIC ISSUES . . . . . . . 109212.4 OPTIONS FOR FLYING DEBRIS . . . . . . . . . . . . . . . . . . . . . . . . . . 109612.5 OUTPUT OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109712.6 RETURNING TO DEFAULT OPTIONS . . . . . . . . . . . . . . . . . . . . . . 110412.7 OPTIONS FOR AN ADVECTION-DIFFUSION COMPUTATION . . . . . . . . 110512.8 OPTIONS FOR ALE CALCULATIONS IN STRUCTURES . . . . . . . . . . . . 110712.9 OPTIONS FOR DEBUGGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110812.10PHANTOM OPTION (Element erosion by time) . . . . . . . . . . . . . . . . . . 111112.11CLASS (For a post-treatment with the directive REGION) . . . . . . . . . . . . 111212.12SHOCK AND IMPACT OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 111312.13OPTIONS FOR FSA/FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111412.14OPTIONS FOR NODE-CENTERED FINITE VOLUMES . . . . . . . . . . . . . 111612.15OPTIONS FOR MULTIPHASE MULTICOMPONENT FLUIDS . . . . . . . . . 111712.16OPTIONS FOR AUTOMATIC REZONING IN ALE COMPUTATIONS . . . . 111912.17OPTIONS FOR CELL-CENTRED FINITE VOLUMES . . . . . . . . . . . . . . 112212.18OPTIONS FOR CONNECTIONS (”LIAISONS”/LINKS) . . . . . . . . . . . . . 112612.19OPTIONS FOR GRAPHICAL RENDERING . . . . . . . . . . . . . . . . . . . . 113812.20OPTIONS FOR MESH-ADAPTIVE COMPUTATIONS . . . . . . . . . . . . . . 114012.21STRAIN RATE FILTERING OPTION . . . . . . . . . . . . . . . . . . . . . . . 114312.22OPTIONS FOR PARALLEL COMPUTING . . . . . . . . . . . . . . . . . . . . 114412.23OPTIONS FOR GRADIENT DAMAGE MODELS . . . . . . . . . . . . . . . . . 1145

    13 GROUP I—TRANSIENT CALCULATION DEFINITION 114713.1 STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114813.2 INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115413.3 XFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115813.4 ”CALCUL” DIRECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116213.5 ED1D INPUT DECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116613.6 PLAY (interactive commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116713.7 QUALIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116913.8 ”SUITE” OR ”FIN” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173

    14 GROUP ED—POST-TREATMENT BY EUROPLEXUS 117414.1 TITLE AND CHOICE OF RESULTS FILE . . . . . . . . . . . . . . . . . . . . . 117614.2 DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117814.3 OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117914.4 CREATING A REDUCED RESULTS FILE . . . . . . . . . . . . . . . . . . . . . 118114.5 PRINTOUTS ON THE LISTING . . . . . . . . . . . . . . . . . . . . . . . . . . 118314.6 GRAPHIC OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186

    14.6.1 Post-processing in adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . 118914.6.2 Curve (Nodal Variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119014.6.3 Curve (Element Variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . 119514.6.4 Curve (Combinations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120014.6.5 Curve (Regional Balances) . . . . . . . . . . . . . . . . . . . . . . . . . . 120614.6.6 Curve (Global Quantities) . . . . . . . . . . . . . . . . . . . . . . . . . . . 121014.6.7 Curve (Quantities from LOG file) . . . . . . . . . . . . . . . . . . . . . . . 121414.6.8 Curve in space (Nodal Variables) . . . . . . . . . . . . . . . . . . . . . . . 121614.6.9 Curve in space (Element Variables) . . . . . . . . . . . . . . . . . . . . . . 1220

    March 14, 2019 13

  • EUROPLEXUS Contents

    14.6.10 Curve Read In from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . 122514.6.11 Curve Defined By The User . . . . . . . . . . . . . . . . . . . . . . . . . . 122814.6.12 Set of Pochhammer-Chree curves . . . . . . . . . . . . . . . . . . . . . . . 123114.6.13 Drawings (TRACE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123414.6.14 Output on file (XMGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123914.6.15 Output on file (K2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124114.6.16 Output on file (LIST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124314.6.17 Find value on a curve (FVAL) . . . . . . . . . . . . . . . . . . . . . . . . 1245

    14.7 VISUALIZATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246

    15 GROUP O—INTERACTIVE COMMANDS 124815.1 Primary interactive commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124915.2 Keystrokes and mouse events in the OpenGL graphical visualizer . . . . . . . . . 125615.3 CALCUL options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125815.4 TRACE options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125915.5 AVI file generation from a sequence of bitmaps (MAVI) . . . . . . . . . . . . . . 127415.6 GOTRAC: a simple looping mechanism . . . . . . . . . . . . . . . . . . . . . . . 127615.7 CAMERA parameters and options . . . . . . . . . . . . . . . . . . . . . . . . . . 127715.8 SLERP parameters and options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127915.9 SCENE options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

    15.9.1 Objects Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 128315.9.2 Geometry Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 128515.9.3 Vectors Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 129315.9.4 Choice of a vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129515.9.5 Iso Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129615.9.6 Choice of an iso field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129915.9.7 Text Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130315.9.8 Colors Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130415.9.9 Lights and Materials Menu Parameters . . . . . . . . . . . . . . . . . . . 130615.9.10 POV-Ray Menu Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 1308

    Defining POV-Ray lights . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310Defining POV-Ray textures . . . . . . . . . . . . . . . . . . . . . . . . . . 1311

    15.10TITLES options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

    16 GROUP V—The built-in OpenGL Graphical Visualizer 131516.1 Preparing to use the built-in graphical visualizer . . . . . . . . . . . . . . . . . . 131616.2 Interactive code execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131716.3 Keyboard commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131816.4 Mouse-driven motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131916.5 The Main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132016.6 The Objects menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322

    16.6.1 The Draw hidden as menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 132316.7 The Geometry menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325

    16.7.1 The Navigation menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132616.7.2 The Near plane tolerance menu . . . . . . . . . . . . . . . . . . . . . . . . 132816.7.3 The Projection menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132816.7.4 The References menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132816.7.5 The Faces menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132916.7.6 The Lines menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132916.7.7 The Points menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133016.7.8 The Shrinkage menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331

    March 14, 2019 14

  • EUROPLEXUS Contents

    16.7.9 The Pinballs menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133216.7.10 The Initial geometry menu . . . . . . . . . . . . . . . . . . . . . . . . . . 133316.7.11 The Flying debris menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133416.7.12 The FLSR domains menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 133416.7.13 The FLSW domains menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 133516.7.14 The Gpinballs menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133616.7.15 The Links (coupled) menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337

    16.8 The Vectors menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133916.8.1 The Scale menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134016.8.2 The Length menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134016.8.3 The Color scheme menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134116.8.4 The Options menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341

    16.9 The Isovalues menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134216.9.1 The Fill elements representations menu . . . . . . . . . . . . . . . . . . . 134316.9.2 The Scale menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134416.9.3 The Color scheme menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345

    16.10The Text menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134616.11The Colors menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347

    16.11.1 The 1) Select color menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 134716.11.2 The 2) Apply it to menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348

    16.12The Lights/Mats menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135016.12.1 The Light X menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135116.12.2 The Light Y menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135116.12.3 The Light Z menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135116.12.4 The Light ambient menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 135216.12.5 The Light diffuse menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135216.12.6 The Light specular menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 135216.12.7 The Light shininess menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 135216.12.8 The Light model ambient menu . . . . . . . . . . . . . . . . . . . . . . . . 135316.12.9 The 1) Select material menu . . . . . . . . . . . . . . . . . . . . . . . . . 135316.12.10The 2) Apply it to menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353

    16.13The Win/Copy menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135516.13.1 The Bitmap format menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356

    17 GROUP SR—SAVING AND RESTART 135717.1 SAVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357

    17.1.1 DEFINING SAVING IN THE INPUT CODE . . . . . . . . . . . . . . . . 135717.1.2 SAVING VIA COMMAND FILE . . . . . . . . . . . . . . . . . . . . . . . 1357

    17.2 RESTART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135817.3 DIRECTIVE ”SAUVE” (OBSOLETE FORM) . . . . . . . . . . . . . . . . . . . 136017.4 DIRECTIVE ”REPRISE” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136317.5 DATA NECESSARY FOR RESTARTS . . . . . . . . . . . . . . . . . . . . . . . 1365

    18 GROUP RM—CHANGE OF TOPOLOGY(”REMAILLAGE”) 136718.1 AUTOMATIC REMESHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136818.2 MANUAL REMESHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137018.3 CHECKING THE REMESHING . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372

    March 14, 2019 15

  • EUROPLEXUS Contents

    19 GROUP EX—EXAMPLES 137319.1 BENDING OF A BEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137419.2 IMPACT ON A CIRCULAR PLATE . . . . . . . . . . . . . . . . . . . . . . . . . 137719.3 EXPLOSION IN A TANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138019.4 MODELLING OF PERFORATED PLATES . . . . . . . . . . . . . . . . . . . . 1384

    20 DEVELOPMENT NOTES 138720.1 PROGRAMMING GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387

    20.1.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138720.1.2 F77 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138720.1.3 F90 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138720.1.4 Code Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387

    20.2 PRECOMPILER KEYWORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139020.3 MANUAL CREATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391

    20.3.1 PAGE NUMBERING CONVENTIONS . . . . . . . . . . . . . . . . . . . 139120.4 ACKNOWLEDGEMENTS, LICENSES . . . . . . . . . . . . . . . . . . . . . . . 1392

    20.4.1 lib vtk io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139220.4.2 Blas, Lapack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139220.4.3 OpenMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139320.4.4 Glut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139420.4.5 f90gl, f90glu, f90glut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394

    21 BIBLIOGRAPHY 1395Essential EURDYN Bibliography (before 1986) . . . . . . . . . . . . . . . . . . . . . . 1396Plexis-3C/EUROPLEXUS Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 1399

    1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13991987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13991988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14001989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14001990–1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14001992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14021995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14031996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14041997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14041998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14061999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14072000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14082001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14082002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14092003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14092004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14112005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14112006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14122007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14122008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14132009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14142010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14162011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14172012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419

    March 14, 2019 16

  • EUROPLEXUS Contents

    2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14202014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14202015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14212016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14222017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424

    Castem-Plexus/EUROPLEXUS Bibliography . . . . . . . . . . . . . . . . . . . . . . . 14251978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14251979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14251980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14251981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14251982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14261983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14271984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14281985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14291986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14311987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14321988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14331989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14341990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14351991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14361992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14371993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14381994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14391995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14401996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14411997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14421998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14441999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14452000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14462001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14492002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14512003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14522004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14522005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14532006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14532007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14532008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14542009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14552010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14552011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14562012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14572013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14582014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14592015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14602016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1460

    Samtech Plexus/EUROPLEXUS Bibliography . . . . . . . . . . . . . . . . . . . . . . . 14611999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14612000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14612001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14612003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14612009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1461

    March 14, 2019 17

  • EUROPLEXUS Contents

    EDF CASTEM-PLEXUS/EUROPLEXUS Bibliography . . . . . . . . . . . . . . . . . 14621982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14621983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14621984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14622004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14622005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14622006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14622007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14632008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14632009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14632010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14642011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14642012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14642013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14642015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14652016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465

    ONERA EUROPLEXUS Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 14671997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14672014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14672015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14672016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467

    22 Keywords Index 1468

    March 14, 2019 18

  • EUROPLEXUS INT.10 MAY 2000

    1 GETTING STARTED

    1.1 ABOUT EUROPLEXUS

    EUROPLEXUS is a computer code being jointly developed since 1999 by CEA (CEN Saclay,DMT) and EC (JRC Ispra, SS&M) under a collaboration contract. It stems from CEA’sCASTEM-PLEXUS (a program belonging to the CASTEM system) and the previous CEA-EC joint product PLEXIS-3C.

    The code analyses 1-D, 2-D or 3-D domains composed of solids (continua, shells or beams)and fluids. Fluid-structure interaction is also taken into account.

    The program uses an explicit algorithm (central-difference) for the discretization in timeand therefore it is best adapted to rapid dynamic phenomena (fast transient dynamics) such asexplosions, impacts, crashes etc. Geometric non linearity (large displacements, large rotations,large strains), and the non-linearity of materials (plasticity, viscoplasticity, etc) are fully takeninto account.

    The spatial discretization is mainly based on the Finite Element or Finite Volume method.Other formulations such as SPH (Smoothed Particle Hydrodynamics), Spectral ELements, Dif-fuse Elements etc. are also available or under development. Numerous element types and acomprehensive library of material types for solids, fluid and special media (e.g. impedances) areavailable.

    Three main descriptions are available in the code: the Lagrangian description which is wellsuited for the structural domain, the Eulerian description useful for purely fluid problems, andthe Arbitrary Lagrangian Eulerian (ALE) description which is typically used in fluid-structureinteraction problems.

    EUROPLEXUS is interfaced to various pre- and post-processing programs that enable themeshing of the studied domain (e.g. CEA’s Cast3m) and the visualization of the results (e.g.Cast3m, ParaView or EUROPLEXUS itself).

    Different types of licenses are available of EUROPLEXUS. A limited version of the codecan be downloaded. For research and education these licenses are mainly for free. Details canbe found on the web page of EUROPLEXUS (http://www-epx.cea.fr/). This User’s manual isupdated daily and can be downloaded from http://europlexus.jrc.ec.europa.eu/.

    A large bibliography concerning EUROPLEXUS as well as its ancestors is provided atthe end of the present manual (see Section BIB). Many of the cited documents are availableto EUROPLEXUS developers in electronic form on the EUROPLEXUS Consortium web site(https://europlexus.jrc.ec.europa.eu/).

    INT.10 March 14, 2019 19

  • EUROPLEXUS INT.12 AUGUST 2016

    1.2 Installation

    1.2.1 License types

    Different types of licenses are available of EUROPLEXUS. A limited version of the code can bedownloaded for free. For research and education a full version can be obtained for free. Detailscan be found on the web page of EUROPLEXUS (http://www-epx.cea.fr/). This User’s manualis updated daily (development version) and can be downloaded from http://europlexus.jrc.ec.europa.eu/.

    1.2.2 Installation under Windows

    to be written

    1.2.3 Installation under Linux

    to be written

    1.2.4 Manual

    The getting started manual is part of the EPX manual containing all information of the code. Itis divided in main sections (GROUPS). In general an EPX input file can be created by followingall groups and taking the needed commands.

    A large bibliography concerning EUROPLEXUS as well as its ancestors is provided at the endof the present manual (see GBIBB). Many of the cited documents are available to EPX develop-ers in electronic form on the EPX Consortium web site (https://europlexus.jrc.ec.europa.eu/).

    1.2.5 Benchmarks

    to be written

    INT.12 March 14, 2019 20

  • EUROPLEXUS INT.14 AUGUST 2016

    1.3 Data flow

    The first step in learning an FE tool is to understand its particular data flow. Figure 1 presentsa general description of the procedure how to perform an EPX calculation.

    Figure 1: General data flow in EPX

    The mesh creation concerns the creation of nodes and elements. The meshes were mainlystored in external files. The next step is to define materials, loadings and calculation parametersin an EPX input file. The calculation of the inputs is done normally via the command line tool.The result files can be then assessed by several post-processing tools. The detailed data flow isshown in 2.

    Figure 2: Detailed data flow in EPX

    1.3.1 Files in EPX

    extension description ref

    epx input file GBINT 0018k Mesh file: k file format from ls dyna GBINT 0016listing Listing outputlog Log file GBH 0020

    INT.14 March 14, 2019 21

  • EUROPLEXUS INT.14 AUGUST 2016

    med Mesh file: salome GBINT 0016msh Mesh file: Cast3m GBINT 0016pvd ParaView time step file GBG 0070std Standard outputs (error messages)vtu ParaView result file GBG 0070

    INT.14 March 14, 2019 22

  • EUROPLEXUS INT.16 AUGUST 2016

    1.4 Mesh generation

    One of the fundamental steps to perform a FE/FV calculation is to create the meshes. Thereare several possibilities in EUROPLEXUS to perform that task.

    • Free format: nodes and elements are written in the EPX input file in a specific format.This is very effective for very small models but not feasible for bigger models. The advan-tage is that the mesh is included in the input file and not separated. It is therefore usedfor many benchmarks. There is no known FE mesher that can produce this mesh format.Further information about the format are given in GBB 0020.

    • k-file (LS-DYNA): This is a text file input where nodes, elements and sets of them aredefined based on a given format. The advantage of that format is that it can be producedform different graphical mesh generators like LS-Prepost (freeware) or Hypermesh.

    • med (SALOME): Med files are files produced by the open source tool SALOME. WithSALOME also full EPX inputs can be created.

    • CAST3M: CAST3M is a FEM software from CEA that is freely available. It can producemsh files that can be used very efficiently in EUROPLEXUS. The meshes were created bydefining points, lines, surfaces etc. in a script language. That is very powerful but alsodifficult to learn.

    1.4.1 k-file (LS-DYNA)

    The format of the input is described in the LS-DYNA manuals. It is very simple and cantherefore also be written by scripts.

    The following not exhaustive list of tools can create k-files:

    • LS-prepost: Free graphical tool from LS-DYNA (http://www.lstc.com/lspp/). Somesupport to create FE meshes from CAD files.

    Figure 3: LS-Prepost mesh generation

    • HyperMesh: Very big graphical tool from Altair (http://www.altairhyperworks.it/product/HyperMesh).Can efficiently be used for the conversion of CAD geometries to FE meshes.

    • ANSYS

    INT.16 March 14, 2019 23

  • EUROPLEXUS INT.16 AUGUST 2016

    1.4.2 med (SALOME)

    SALOME is an open-source software that provides a generic platform for Pre- and Post-Processingfor numerical simulation. It is based on an open and flexible architecture made of reusable com-ponents. The software can be downloaded on the webpage: http://www.salome-platform.org/.

    1.4.3 CAST3M

    The CAST3M .msh-file format is the mesh file format with the widest support in EURO-PLEXUS. Nevertheless, the mesh creation can only be done with the FE software tool CAST3M.This tool is quite powerful since the mesh generation can easily be parametrised and automatized.But it needs additional effort to be learned. For an introduction in the CAST3m methodologyit is referred to the CST3M webpage (http://www-cast3m.cea.fr/)

    INT.16 March 14, 2019 24

  • EUROPLEXUS INT.18 AUGUST 2016

    1.5 EUROPLEXUS Inputs

    1.5.1 First input sample

    Let’s start with an very easy EUROPLEXUS example. It is recommend to start with such avery easy calculation in order to test the installation.

    1 impact0 !title of the problem

    2 ECHO !Output on the console

    3 KFIL !mesh file definition

    4 TRID LAGR !3d structural calculation

    5 GEOM Q4GS PART 1 TERM !element definition

    6 COMP EPAI 2 LECT PART 1 TERM !Thickness

    8 MATE LINE RO 7800 YOUN 2.E11 NU 0.3 !Material definition: linear

    9 LECT PART 1 TERM !for part 1

    10 LINK COUP !Links (coupled)

    11 BLOQ 123 LECT NSET 1 NSET 2 TERM !Boundaries

    12 INIT VITE 3 -110 LECT PART 1 TERM !Initial conditions

    13 ECRI FICH PVTK TFRE 1.0E-3 !Output as ParaView

    14 VARI DEPL !Output variable displacement

    15 OPTI NOTE LOG 1 !Log file written each step

    16 CSTA 0.5 !Stability step

    17 CALC TINI 0.0 TFIN 100.E-3 !Start and end time of calculation

    18 FIN

    1. The first line contains the title of the calculation. It is important to give that title.Otherwise, the first input line will be taken as the title.

    2. ECHO indicated that the output will be written on the command line and not only to thelisting.

    3. KFIL identifies that a k-file in LS-DYNA format will be read. The name of the file canbe added after the command included in ’ ’. If the name is not given, the default will bechosen as the name of the epx input file with the extension .k.

    4. TRID identifies a three-dimensional calculation and LAGR a purely structural one.

    5. The elements that were read via the mesh file must be attached to element types. Thatis done with the command GEOM. A list of all element types is given in GBINT 0080.Some general elements are listed in xxx. The structure of the element type allocation isthat first, the element type is given and second the elements are chosen. Here, the PART1 from the k-file is taken. The keywords depend on the mesh file type used. Here a shellelement of type Q4GS is chosen. The command must be closed with TERM as soon as allelements are defined.

    6. Depending on the element type several additional definitions can be given with COMP.All available commands in this section are described in GBC 0010. Here, the thicknessof 2 is set to all elements of PART 1 with the command EPAI. The classical structure ofreading elements or nodes is to use LECT xxx TERM. This procedure is described morein detail in GBINT 0050.

    7. This line contains the material definition. The complete list of all materials is collected onpage GBC 0100. A linear material is defined.

    8. Selection of the elements for the given material

    INT.18 March 14, 2019 25

  • EUROPLEXUS INT.18 AUGUST 2016

    9. The links (e.g. boundary conditions) are defined here with LINK (GBD 0010). A coupledapproach (Lagrange Multiplier) is chosen (COUP).

    10. Boundary conditions are given here with BLOQ (blockages). The number afterwardsidentifies that all three directions are blocked. The nodes concerned are again taken withLECT. Here two NSETs were chosen.

    11. Initial conditions were given in that line as an initial velocity for PART 1. Initial conditionswere described more in detail on page GBE 0040.

    12. The outputs were defined with ECRI (see GBG 0010). FICH indicates that the outputswere written in a separate file and not in the listing. PVTK means the ParaView outputfiles. As default these files were binary. ASCII files can be written by adding FORM.With TFRE, the frequency of the output steps is given (see GBINT 0057).

    13. With VARI (in case of PVTK) the output fields can be defined (here displacement -DEPL).

    14. Some options can be given with OPTI (GBH 0010). LOG 1 indicates that the log file iswritten per step. This should not be done in case of MPI calculations. NOTE DFEINSthe output of the energy check.

    15. CSTA the stability step. A value of 0.5 indicates that the calculated stability step will bemultiplied by 0.5 for safety.

    16. The calculation is started with CALC (GBI 0020). TINI (initial time) and TFIN (endtime) must be given.

    17. The input file must be closed with FIN.

    1.5.2 Elements

    Several elements are available for EUROPLEXUS. Its full list is given on GBINT 0080. It is veryimportant to know the history behind the elements. These were created in the past either byJRC or CEA and its formulation in the back can be totally different. This means also that not allelements are available for all materials. A table with all possible material-element combinationsis given in (GBC 0100) In this general introduction, the main elements for structural and fluidcalculations were presented. Details about further elements (like SPH or diffuse elements) canbe taken from the list.

    The following structural elements are recommended. They vary depending their mechanicalassumptions. Further details are given in the description of the elements.

    1. Solid elements: CUBE/CUB8, PRIS, TETR. CUBE is a cubic element with reducedintegration while

    2. Beams: POUT for beams. The cross section information can be given with EPAI.

    3. Triangular shells:T3GS, DST3, DKT3

    4. Quadrilateral shells: Q4G4, Q4GS, Q4GR

    5. Loading surface elements: CL3T, CL3D

    6. Material points: PMAT, DEBR

    INT.18 March 14, 2019 26

  • EUROPLEXUS INT.18 AUGUST 2016

    Fluid calculations can be done by using finite elements or finite volumes. The accuracy offinite elements is not very high. Therefore, only finite volumes are recommended to use for fluidor fluid structure interaction calculations. The following finite volumes can be taken: CUVF,PRVF, TEVF, PYVF. Further information about fluid calculations by using finite volumes aregiven here:

    1.5.3 Sandwich Elements

    The code also allows to use layered elements for beams and in particular for shell elements.This means that the materials of the integration points through the thickness could be different.More information are given in GBINT 0110. As an example, the benchmark bm str lsgl01 couldbe used.

    1.5.4 Materials

    Several material laws are implemented in EUROPLEXUS. The full list of materials can be foundon GBC 0100. Not all elements accept all material types. GBC 0100 shows also the possiblematerial-element combinations.

    The table below presents some materials that have a general use.

    number name ref law of behaviour

    74 ABSE21 CLVF 7.9.33 Boundary conditions for finite volumes109 DADC 7.7.17 Dynamic Anisotropic Damage Concrete111 DPDC 7.7.18 dynamic plastic damage concrete87 DPSF 7.7.43 Drucker Prager with softening and viscoplastic regulariza-

    tion83 DRPR 7.7.52 Drucker Prager Ispra model12 DRUC 7.7.6 Drucker-Prager19 DYNA 7.7.7 dynamic Von Mises isotropic rate-dependent17 FANT 7.7.31 phantom: ignore the associated elements9 GAZP 7.8.4 perfect gas118 GGAS 7.8.1 generic ideal gas material116 GLIN 7.7.3 generic linear material117 GPLA 7.7.4 generic plastic material48 GVDW 7.8.28 Van Der Waals gas40 GZPV 7.8.24 perfect gas for Van Leer95 HYPE 7.7.55 hyperelastic material (Model of Mooney-Rivlin, Hart-Smith

    and Ogden)4 ISOT 7.7.7 isotropic Von Mises108 JCLM 7.7.66 Johnson-Cook with Damage Lemaitre-Chaboche for SPHC50 JWL 7.8.21 explosion (Jones-Wilkins-Lee model)66 JWLS 7.8.29 Explosion (Jones-Wilkins-Lee for solids)72 LEM1 7.7.10 Von Mises isotropic coupled with damage (type Lemaitre)1 LINE 7.7.1 linear elasticity23 LIQU 7.8.14 incompressible (or quasi-) fluid70 LMC2 7.7.12 Von Mises isotropic coupled with damage (Lemaitre) with

    strain-rate sensitivity26 MASS 7.7.30 mass of a material point85 MAZA 7.7.16 Mazars-linear elastic law with damage2 PARF 7.7.7 perfectly plastic Von Mises125 RIGI 7.7.68 Rigid material (for rigid bodies)

    INT.18 March 14, 2019 27

  • EUROPLEXUS INT.18 AUGUST 2016

    99 SLZA 7.7.57 Steinberg-Lund-Zerilli-Armstrong35 VM23 7.7.39 Von Mises elasto-plastic radial return2/4/5/19 VMIS 7.7.7 Von Mises materials76 VMJC 7.7.48 Johnson-Cook78 VMLP 7.7.49 Ludwig-Prandtl79 VMLU 7.7.50 Ludwik84 VMSF 7.7.42 Von Mises with softening and viscoplastic regularization77 VMZA 7.7.51 Zerilli-Armstrong120 VPJC 7.7.67 visco-plastic Johnson-Cook67 ZALM 7.7.11 Zerilli-Armstrong with damage Lemaitre-Chaboche

    1.5.5 Element erosion

    Element erosion means that elements are deleted from the table of elements and were not treatedany more. This is a particular procedure in explicit codes since the general energy balance isviolated by eroding elements. There are several reasons why element erosion could be indicated:

    1. The material has reached a failure mode (damage or other criteria)

    2. The element became so distorted that it cannot be treated any more (CROI)

    3. The time step size of the element is too small (CALC TFAI)

    4. Parts of the model should be removed at a certain time (e.g. certain elements have tobecome “fantom”, i.e. have to be eroded, at a chosen time GBH 0100), or due to furthercriteria (e.g. displacement-driven erosion GBC 0067).

    5. The user decides to erode some elements interactively at the current time reached by thecalculation GBO 0010.

    The objective in most of the cases is that the calculation is not stopped due to critical behaviourof material or elements.

    In all cases, the keyword EROS (see GBA 0030) must be added in the beginning (beforeDIME and GEOM). This keyword is followed by CROI as soon as element erosion for distortedelements is needed. Erosion due to too small time steps sizes can be activated in the CALCPART by adding TFAI (see GBI 0020).

    In case of failure erosion, the ratio between failed and total gauss point in an element canbe given. This parameter must be written immediately after EROS. The global value for thematerial failure element erosion can be overwritten for parts of the elements by COMP EROS(see GBC 0069).

    1.5.6 Fluid calculations

    1.5.7 INTRODUCTION TO FLUID-STRUCTURE INTERACTION

    EUROPLEXUS offers a rich variety of models for Fluid-Structure Interactions (FSI). The fol-lowing is a short introduction to FSI and a tentative classification of the models available inthe code, in order to guide the user in the choice of the most appropriate FSI models for theapplications of interest. For a more detailed overview of the available FSI models see e.g. [303].

    Fluid-structure interaction (FSI) phenomena play an important role in many areas, rang-ing from aeronautical and space applications, to civil and marine/offshore engineering and tothe transport industry, to name just a few. The EUROPLEXUS development team has beeninvolved for many years in the development of numerical methods for FSI modeling applied

    INT.18 March 14, 2019 28

  • EUROPLEXUS INT.18 AUGUST 2016

    to safety studies—initially for the nuclear industry and more recently for conventional powerplants (electrical machinery)—to civil engineering (vulnerability of buildings and other criticalinfrastructures to terrorist attacks) and to land mass transports (blast effects in railway stations,metro lines, rolling stock).

    All these studies are characterized by the violent blast loading, resulting either from anaccident or from an intentional attack, and by the very short time scale (fast transient dynamics).Strong pressure waves propagate in the fluid and load the surrounding structures, which typicallyundergo large deformations and in some cases reach complete failure and fragmentation.

    For this class of problems, an explicit time marching algorithm is usually adopted, where thefluid is modelled as compressible and inviscid (Euler equations). An Arbitrary Lagrangian Eu-lerian (ALE) formulation is adopted for the fluid sub-domain, while the structure is Lagrangian.

    Three different discretization approaches are available in the code for the fluid sub-domain: fi-nite elements (FE), node-centred finite volumes (NCFV) and cell-centred finite volumes (CCFV):

    • In the FE case, kinematic variables (such as the velocity v) are discretized at the elementnodes, while state variables (such as the fluid pressure p) are discretized at Gauss points,typically located at the element centroid.

    • In the NCFV case, a virtual FV (dual) mesh centred on fluid nodes is automaticallybuilt up starting from the FE-like (primal) mesh provided in input, and all variables arediscretized at the nodes.

    • In the CCFV case, the FV mesh looks similar to the FE case, but all variables are dis-cretized at the volume centres. Note that in this case the ‘nodes’ carry no relevant infor-mation other than their position, used to compute the volume.

    The coupling between the fluid (ALE) and the structure (Lagrangian) is realized by suitableFSI algorithms. Two broad classes of algorithms are available in the code. The first class usesa strong approach, based on constraints imposed on the (velocity of) fluid and structure nodesat the F-S interface. The second class uses a weak approach, based on direct application offluid pressure forces to the structure. This terminology (strong/weak) is tentatively adoptedhere in an attempt to characterize the different nature of the two approaches, but it should notbe confused with other uses of the same terms in the literature, in particular with weak (i.e.integral) forms in continuum mechanics. Traditionally, strong FSI algorithms are mainly usedin FE, while weak FSI algorithms are mainly used in FV.

    Yet another classification of FSI algorithms concerns the degree of deformation/damage thatthe structure can undergo (and thus the type of application). One class of basic algorithmsis suitable for large motion and large deformation of structures, but only provided these donot fail. Another class of algorithms can go up to complete failure, and fragmentation, of theloaded structures. Finally, FSI algorithms can be classified in three types according to spatialdiscretization: (nodally) conforming, non-conforming, and embedded (or immersed). The firsttwo types are mostly used in applications without structural failure (but there are exceptions),while embedded algorithms are the only ones capable of dealing with extreme loading caseswhere the structure fails and breaks up in pieces.

    The following Table summarizes the architecture of a typical FSI model, consisting of adetection module and of an enforcement module. The various types of approaches (basic /embedded or strong / weak) are briefly summarized.

    The following Table completes the classification of the available FSI models, by showing thetype of spatial discretization (conforming, non-conforming or embedded), the name of the inputdirective (when applicable/needed), and the associated fluid discretization(s).

    1.5.8 Restart

    INT.18 March 14, 2019 29

  • EUROPLEXUS INT.18 AUGUST 2016

    Table 3: A classification of FSI algorithms

    Basic No structural failure,FSI moderate rotations.

    Detection Embedded Structure can fail,FSI arbitrary rotations.

    Algorithm Constraints on F and S velocitiesStrong are imposed, e.g. by Lagrange

    FSI multipliers (implicit).Enforcement Pressure forces are transmitted

    Weak from the fluid to the structure;structure motion provides weak feedbackon fluid (S = master / F = slave).

    Table 4: The available FSI algorithms

    Detection Spatial Enforcement Name / UseStrategy Discretization Strategy Command with

    Strong FSA FE,Conforming NCFV

    Basic F -S meshes Weak Merge CCFV(no F -S nodes

    FSI structural Strong FSA FE,Algorithm failure) Non- NCFV

    conforming DeclareF -S meshes Weak non-matching CCFV

    F -nodesEmbedded S-mesh is Strong FLSR FE,(structure immersed NCFVcan fail) in the F -mesh Weak FLSW CCFV

    1.5.9 Index of important commands

    This is is an non exhaustive list of important commands that may be useful to understand thebasic working of EUROPLEXUS. Additional lists are given for the materials GBC 0100 andelements GBINT 0080.

    command main group description ref

    BLOQ LINK Boundary conditions GBD 0030CALC Calculation definitions GBI 0020COMP Geometric complements GBC 0010COUP LINK Treatment of the links as coupled (Langrange multipl