23
European Initiative Linking Interlocking Subsystems EULYNX The next generation signalling strategy for Europe Signalling Seminar IRSE ITC – JR East Frans Heijnen 7 April 2016 With thanks to Maarten van der Werff

EULYNX The next generation signalling strategy for Europe

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

EULYNX The next generation signalling strategy

for Europe

Signalling Seminar IRSE ITC – JR East Frans Heijnen 7 April 2016

With thanks to Maarten van der Werff

Page 2: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

What would you do?

Situation:

• You are an infra manager

(…. passenger, tax payer)

• Expectations concerning signalling

• Huge installed base

• Many generations of equipment

• Obsolete within 10..20 years

• Not enough budget to replace

2 EULYNX

And you know: “At all European railways these problems are similar …”

Page 3: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

What is the problem?

•  Each railway project adds new assets to become obsolete again

•  They get overage sooner than expected

•  Costs depend on whoever was chosen in the past as the supplier of the system

•  There are potential savings but the railway is stuck with current solutions

•  But you don’t have a strategy for a new solution

3 EULYNX

Page 4: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

EULYNX. What is EULYNX?

EULYNX is the strategic approach for standardisation of signalling systems Because standardisation is a key factor to reduce:

• A ‘technology zoo’ with many different systems,

• The number of multiple incompatible interfaces

• The cost involved in replacing and renewal

4 EULYNX

Page 5: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

The vision that becomes reality

By systems engineering and the development process

•  Use a common architecture

•  With a common apportionment of functionalities

•  Define standardised interfaces to connect systems and field elements

•  Closed, safe network based on open standard IT/telecom networks

•  Connect both interlockings and outside elements to those networks

•  Apply intelligent field elements for enhanced monitoring and diagnoses

•  For replacement of conventional interlockings, for renewals projects and

•  For smooth migration to ERTMS-compliant interlockings

5 EULYNX

Page 6: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

> 10 IM’s

Corporation in the signalling domain means sharing:

•  Know-how,

•  Innovations,

•  Requirements,

•  Methods, processes,

•  Etc.

to make standards freely available to third parties

6 EULYNX

Eulynx partner / related

Page 7: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

What does EULYNX mean for the market?

•  Common developed standards and/or standards applied in tenders

•  Reusable by more railways

•  Not tailored to a specific railway design (COTS, IP, …)

•  Cooperation in innovation

•  Faster roll out instead of more development

•  More competition

7 EULYNX

Source: http://www.slideshare.net/ihudhaif/philip-citreon-unife-presentation-mena-conference, October 2014

Page 8: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Cooperation Model

8

Interface to cluster projects

Interface to Cluster projects

Know-how

Standard

Every partner may join as many cluster projects it deems appropriate

INPUT: • requirements, • specifications, • innovations, • real developments, • implementations

Page 9: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Example: Reference Architecture (1/3)

9 EULYNX

•  The reference architecture is conditional to all the other Cluster Projects.

•  Is applicable for each of the partner IM’s

•  Support a system design that is based on technical main stream solutions used for

instance in automation and telecommunication industry

•  Enables safe and secured closed and open networks

•  Supports a modular system concept with standardised interfaces

•  The separation of information and energy supply is basic

•  Contains an IP-network and a distributed power supply

Page 10: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Example: Reference Architecture (2/3)

10 EULYNX

Version 2.9 – 21.10.2015

SCI-RBC

SCI-CC SCI-ILS

SCI-CC SCI-ILS

SCI-TSS

SCI-TSS

10

Direct command over SCI-CC

Legend: SCI: Standard Communication Interface; ILS: Interlocking System; RBC: Radio Block Centre; LX: Level Crossing; LS: Light Signal; TDS: Train Detection System PM: Point Machine; CC: Command and Control; IO: Generic I/O Module; LEU: Lineside Electronic Unit; I/O: Input/ Output TSS: Trackworker Safety System

PM LS

Train command & control System

SCI-CC

Adjacent Electr. Interlocking

RBC Core system

Equipment diagnostics & Event logger

LEU

Diagnostic System

Electronic Interlocking

Juridical Recorder

Closed Network EN 50159 (redundant)

Communication & Security

Time stamp

I/O controller

Balise

Adjacent Relay Interlocking

Control adapter

Pro

prie

tary

in

terfa

ce

SCI-CC SCI-ILS

Interlocking Logic and Safety Module

Com

mun

icat

ion

& S

ecur

ity

Diagnosis Network

Controller (standardised in EULYNX)

Field elements

(not standardised in EULYNX)

Com

mun

icat

ion

& S

ecur

ity

Communication & Security

Communication & Security

Communication & Security

OPC

-UA

OPC

-UA

SCI-(X)

Interlocking Diagnostics & Technician’s Controls

Communication & Security

OPC-UA OPC-UA

Remote Maintenance control

Trackworker Safety System

Communication & Security

Power Supply

SCI-LX SCI-PM SCI-LS SCI-TDS SCI-LEU SCI-IO

OPC-UA Open Network EN 50159 (redundant)

SCI-CC

Power supply

KISA Encryption Box

Train Detection System

Communication & Security

Level Crossing System

Communication & Security

Trackworker Safety System

Communication & Security

Page 11: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

11 EULYNX

Doku

Teilsystem Az-System

Teilsystem Ladeverfahren

Teilsystem LS Teilsystem Weiche Teilsystem EA

UABWAB

Teilsystem ESTW-ZE

System ESTW-NeuPro (Stellbereich ESTW-ZE)

ProzessdatenschnittstelleSteuerungsschnittstelle(herstellerabhängig)Schnittstelle Instandhaltung/Bedienung/AnzeigeDiagnoseschnittstelle

SWAB1*1)

OWAB1

Systemdatenschnittstelle

SCI-IO

AUAB1

OUAB1

DUAB1

SCI-PM-C

DWAB1

*1) Schnittstelle ist standardisiert spezifiziert*2) nur bis zur Implementierung von SCI-CC

AzA

OAZ1

SCI-TDS

SAZ1

LSABDLS1

SCI-LS

ALS1

SLS1OLS1

SCI-RBC

ETCS – Z

SCI-CC

iBS

SCI-ILS

Nachbar Stw

SCI-LX

BÜSA FSÜ Stromversorgung

E1

E2

E3

E4

SVE2

E5

E3 E4E5

SV

SVSV

SV

DESTW1

Monteur (Hersteller)/Fachkraft-

LST

Triebfahrzeugführer

D

DD

DAZ1

D

D

LVLV

LVAWAB1 AUAB1

Fk Fk

Fk

OESTW1 Fk

OLV1Fk

E6SV

E6

ALV1

Fk

OWAB1

OAZ1

OLS1

OESTW1

OLV1

Legende und Bemerkungen

Tf

ZP

D DWAB1

DLS1

DAZ1

DUAB1

SCI-ACEU

Weichen-antrieb

PZB/ GPE

DESTW1

Stellbare Signaloptik

Diagnosesystem

SCI-LEU

SCI-ACEU

AzA im Nachbar

Stellbereich

SESTW3

SLS4

Informationsobjekte werden über Teilsystem Übertragungssystem übertragen

DLV1D

Rad R

R

SAZ2

SAZ2

Stromversorgung

Geplante Entwicklung

Abnahmeprüfer

POLV2

AESTW1

ZMA ZLZL

SESTW2SESTW1

LEUSCWS

SCI-SCWS

P OLV2

DLV1

ZDP

SAZ4

SAZ3

SAZ4

<<Legacy>>LZB

SCI-RBC

DVerbinder zumDiagnosesystem R Verbinder zur Rad

SVVerbinder zurStromversorgung

LV Verbinder zumTeilsystem Ladeverfahren

FkVerbinder zu Fachkraft LST/ Monteur(Hersteller)

Tf

P

Verbinder zuTriebfahrzeugführer

Verbinder zuAbnahmeprüfer

Signalbegriffabhängig

LEU-P

Signalbegriffabhängig

SLS2

SCI-CC SCI-CC SCI-CC

AAZ1

*2) *2) *2)

Tf

OLS2

OLS2

SUAB1 SUAB2

EA-Umsystem

BD

DatenträgerNeuPro-

BasisdatenALS2

BD

AUAB2

AWAB2

BD

ALS2

AWAB2

AUAB2

BD

Verbinder zum DatenträgerNeuPro-Basisdaten

Signalbegriffabhängig

Fahrtanzeiger

Diagnose lokal

DAZ2

Systemarchitekturvorgabe ESTW-NeuProSystemarchitektur ESTW-NeuPro

Doku-Nr.: 2015-ESTW-NeuPro.52Aktuelle Version: 0.5 Stand: 17.12.2015Bearbeitungsstand: Reivew durchgeführt (I.NPS 411 Schneider)Autor: Hon/ Wallasch

Herausgeber: DB Netz AGProgramme und Digitale LSTAnforderungsmanagement und Testcenter LST/ETCS (I.NPS 411)

AWAB1

DatenträgerProjektierung

DatenträgerProjektierung

SLS3

OUAB1

Page 12: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Example: Interface specification electronic interlocking – train detection

12 EULYNX

•  Protocol development started as combined

ÖBB, SBB and DB-requirements (DACH); •  Applicable for both track circuits and axle

counters •  Now, with contributions of many other

infrastructure managers

•  Follow up iteration steps are planned

•  Diagrams modelled with SysML

•  To be used in next tenders (projects,

developments)

Document structure: 1 General Information 2 Interface Environment 3 Functional Requirements 4 Non-functional Requirements 5 Technical Requirements 6 Migration Scenarios 7 Appendix A: Functional Scenarios 8 Appendix B: Subsystem Requirements 9 Change Log

First implementation in Germany: Annaberg/Buchholz this year

Page 13: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Example: Interface specification SCI – ILS electronic interlocking – electronic interlocking

13 EULYNX

•  Started with results INESS

•  DB interface specification provides the basis

for the EULYNX interface specification

•  This interface is already approved only by DB

and will be in operation by the end of this year

in Kreiensen.

•  The next release of this specification will

include the requirements from others.

•  Currently System Use Cases are being defined

Document structure: 1 General Information 2 Interface Environment 3 System Use-Cases 4 Functional specification model 5 Non-functional Requirements 6 Technical Requirements 7 Migration Scenarios 8 Change Log

First implementation Siemens / Bombardier in Kreiensen, Germany, December 2015

Page 14: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

How have requirements been captured over the years

Written documents with text phrases like this: “for any route to be set there should be no conflicting routes; all points should be locked; all track circuits should be free, ….; in case any track circuit is not free ... Then ....” These documents are complex, often contradicting themselves due to errors or omissions. Some are over a hundred years old. A first improvement was the use of a formal tool (DOORS) to make them clear, together with a requirement that any statement should be:

14 EULYNX

Page 15: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Requirement capture - 2

15 EULYNX

Page 16: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Requirement capture - 3

But this is not enough. Next step: The use of UML, SYSML, etc. in order to model the requirements and to apply formal processes to formulate, verify, test and validate them. EULYNX uses a subset of SYSML due to the fact that part of the SYSML grammar allows for ambiguous statements. How is the process:

16 EULYNX

Page 17: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Functionality Capture

How do we do this: 1.  We gather a list of functional requirements:

17 EULYNX

Page 18: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Use Cases

18 EULYNX

Page 19: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Use Case

19 EULYNX

Page 20: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Model Overview

20 EULYNX

Page 21: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Executable model

21 EULYNX

Page 22: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

State Machines

•  The model is being implemented in executable state machines. With these state machines one can check for:

1.  Completeness 2.  Dead ends 3.  States never used 4.  Simulation 5.  Testing by a principals tester 6.  Etc.

•  This whole process leads for the first time to a formalised approach for the whole Cenelec V-cycle. The state diagrams are direct impact for the software development process. The test scenarios for the model testing form the core of the test scenarios for product testing and product reference testing to show that the product is conform with the standard.

22 EULYNX

Page 23: EULYNX The next generation signalling strategy for Europe

European Initiative Linking Interlocking Subsystems

Status & Outlook

National interface requirements combined in a common architecture Step by step approach, now early adapters, later de facto standard Development contracts or realisation contracts: same results Challenges: -  Management of Signalling Projects need to meet lower overall costs, leading to:

-  A wider use of standards in Europe, for conventional and ERTMS interlockings.

23 EULYNX

WWW.EULYNX.EU

•  21 September:

Innotrans