Et101 - Electrical Technology

Embed Size (px)

Citation preview

  • 8/17/2019 Et101 - Electrical Technology

    1/78

    I 1 I AIAED IH BAIC EECICA AIIE

    AIAA/JKE/IAE101/I 1  1

     

    I ,

    I , .

    1.1 B I

    E A A

    K K

    A

    I

    . A

    . A . A 1.2.

    1.2 I

    D

    100

    1

    (D) 101  10

    102  100

    K K 103  1 000

    106  1 000 000

    G G 109  1 000 000

    1012  1 000 000 000 000

    101  0.1

    102  0.01

    103  0.001

    106  0.000 001

    109  0.000 000 001

    1012  0.000 000 000 001

    :

    56

    4.5

    150

    3.3Ω Ω

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    2/78

    I 1 I AIAED IH BAIC EECICA AIIE

    AIAA/JKE/IAE101/I 1  2

    1 = 1000

      

       

    1 = 1000

     

       

    1 = 1000

     

       

    1Ω = 1000Ω

     Ω  

      Ω

     

    . ,

    D ,

    1 C, C

    . = I

    C,

    C

    2. ,

    .

    J, J

    3. ,

    .

      

      

    E

    .

     

    ,

    4. E

    F, ..

    .

    ,

    5. ,

    .

     

    , Ω

    6. C, I E

    .

    A, A

    7. C, G C .

     

    ,

    8. E, E E .

    E =

    J, J

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    3/78

    I 1 I AIAED IH BAIC EECICA AIIE

    AIAA/JKE/IAE101/I 1  3

    I 10A , .

    , =I . I =10A = 4 60 = 240.

    H

    = 10 240 = 2400C

    F :

    25Ω . 

    20 Ω . 

    10Ω

    a. 

     

     

     

       

     b. 

     

     

     

     

     

    c. 

     

     

     

       

     

    A ... 15 3A 6 . H

    ?

    E = = I = (3)(15) = 45 = 6 60 = 360

    H, E = = (45)(360)=16.2J

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    4/78

    I 1 I AIAED IH BAIC EECICA AIIE

    AIAA/JKE/IAE101/I 1  4

    1. 

    :

    1500 F = F

    0.06 μF = F

    10000 H = H

    68 Ω = Ω

    0.56 A =μA

    2. 

    F :

    100Ω

    50 Ω

    250Ω

    3. 

    A 25 μ. ?

    4. 

    A ... 220 5A. ?

    5. 

    F 120 20 .

    6. 

    I 15A 25 C?

    7. 

    A 10A 15 . ?

    8. 

    H 100A 80 C?

    9. 

    A 1.5KΩ , 25 . D ( ) .

    10. 

    A ... 10 5A 2 . H

    ?

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    5/78

    2 CE AD BAE

    A/F/E/AE101/ 2 1

    G,

    .

    . .

    . A . F

    , 9 6 .

    A () .

    F 1, . A

    . , . (.. .. ) . B

    ... ...

    .

    F 1

    1. 

    C 1. 

    C

    2. 

    2. 

    3. 

    C 3. 

    C .

    1

     

    C

    A

    E

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    6/78

    2 CE AD BAE

    A/F/E/AE101/ 2 2

     

    F 2

    F 3

     

      

     

    A ;

    =

    E = .. =

    =

    :

    , E = E ()

    ,  = (Ω)

    ,  = +

     

      

     

    A ;

    =

    E = ..

    =

    =

    :

    , E = E ()

    ,   

     

    ,   

     

    )

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    7/78

    2 CE AD BAE

    A/F/E/AE101/ 2 3

    F 4

    . E 5Ω. E.. 1.5

    0.2Ω. C .

    .. , E = E = 3 1.5 = 4.5

    = = 3 0.2 =

    0.6Ω

    ,  = +

    = 0.6 + 5

    = 5.6Ω

     

     

     

     

     

     

        

     

    A ;

    =

    =

    E = ..

    =

    =

    :

    ,E = E ()

    ,   

     

     ) 

    ,   

       

    )

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    8/78

    2 CE AD BAE

    A/F/E/AE101/ 2 4

    .. 1.5 0.2Ω 

    4Ω. .

    .. , E = 1.5

    = / = 0.2/2 =

    0.1Ω

    , = / +

    = 0.1 + 4

    = 4.1Ω

     

     

     

     

     

    E . F

    . E 1.5 0.6Ω. 5Ω 

    . C:

    C

     

       

     

     

    )   

     

       

    , = E  

    = 4(1.5) 1.16

    = 4.84

    @

     =  = 0.968 5 = 4.84

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    9/78

    2 CE AD BAE

    A/F/E/AE101/ 2 5

    1. 

    A 10Ω 10

    . E 1.5 0.2Ω. F .

    2. 

    15 1.5 0.3Ω .

    C , 5Ω .

    3. 

    A 12

    . . 1.5

    0.2Ω. 4Ω. C .

    4. 

    A . E 2.5 0.05Ω. A

    15Ω. D:

    .. . 

    5. 

    1.5 , 0.3Ω,

    25Ω. D :

    .

    6. 

    , . E 1.45

    0.04Ω. 5Ω ,

    :

    C

    7. 

    . E 1.5

    0.4Ω. F 5Ω .

    8. 

    A 5 1.5 0.25Ω

    . 1.5A,

    .

    9. 

    15 1.5 0.5Ω

    . D :

    C 15Ω

    10. 

    20 1.45 0.5Ω 4 5 . 15Ω . C

    .

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    10/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  1

    3

    3.1

    .

    C

     

      F

    I C C B F

    A FA

    3.2

    I

    . , ,

    .

    ( 1 = 6.24 1018

    ).

    G, I , I .

    Q ,

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    11/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  2

    0.45 5 ?

    :

    Q , Q = I, :

      

       

    I 20A , .

    :

    Q ,  

    3.3

    V

     A

    Current

    flow

     F 1

    F

    (..) , ,

    ;

    . .. ,

    F 1

    . C , ,

    ,

    .

    . , ,

    .

    .

     

    A

    . F 1

    . .

    A ..

    .. . I F 1,

    .. .

    .

    A . A ,

    , , .

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    12/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  3

    3.4

    4 , :

    R, R, , , , .. αααα .

    R, R, , , . ..

    αααα 1/

    R α  R α 1/ αααα /. B

    .

    ρ.,

    ρρρρ

       

    C 3

    10 2. 0.03 10

    6 Ω.

    :

    L,= 3 = 3000 ; , = 10 2 = 10 10

    2 , ,ρ= 0.03 10

    ρ

     

       

    C , 2, , 25

    0.30Ω . 0.03 106

     Ω.

    :

      ρ

        ρ

     

    ρ

     

       

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    13/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  4

    1

    1.  5 600Ω .D:

    )  8 ,

    )  420Ω 960Ω,3.5

    2.  C 2

    100 2. 0.0310

    6Ω.

    0.6Ω

    3.  1.5 0.17 2  150Ω. D

    . 0.017 10−6

     Ω 0.017 Ω

    4.  D 1200 12

    1.7 108

     Ω. 0.18Ω

    5.  2 2.5Ω. D () 7

    () 6.25Ω.

    () 8.75Ω () 5

    6.  12  20Ω. D:

    )  4

    2.

    32Ω.

    () 5Ω () 0.625 2

    7.  F 800 20 2.

    0.02 μΩ. 0.8Ω

    8.  C , 2, 100

    2Ω. 0.03 106

     Ω. 1.5 2

    9.  F 1 10

    0.017 106

     Ω. 0.216Ω

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    14/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  5

    3.5   

    ,

    .

     

     

    3.6 ,

    3.6.1

    F 2

    :

    )  ,        

    )  I ,       

    )  , 1, 2  3

    .

    )  1, 2  3  , .

         

    (). 

     

         

         

         

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    15/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  6

    F 3, .

    15kΩ

    35kΩ50V

    R1

    R2

    F 3:

       

     

       

     

     

     

        

     

     

     

        

    3.6.2

    F 4

    :

    a)  ,      ,   

     

        

     

     b)  ,     

    c)  I1, I2  I3  ,

       

    F O ,

       

       

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    16/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  7

    ()

    C

    ().

     

       

       

    F 5.

    F 5

    :

         

     

     

     

       

     

     

       

         

    3.6.3

    F 6

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    17/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  8

    :

    )  ,         ,     

     

    )  ,   

     

    )  C

         

         

       

               

    F 7, .

    F 7 

    :

            ,

       

     

     

        

     

        

     

       

     

      

     

       

       

       

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    18/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  9

    2

    1.  C

    A B .

    F 1

    F 2

    F 3

    2.  F 4,

    .

    F 4

    3.  F 5, 30Ω

    .

    F 5

    4.  F 6,

    R, I, I1  I2.

    F 6

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    19/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  10

    5.  F 7,

    .

    F 7

    6.  F 8, :

    )  C 6Ω

    4Ω.

    F 8

    7.  B 9, :

    )  , R

    )  , I

    )  C 16Ω

    )  A B

    )  P .

    F 9

    8.  B 10, :

    )  3Ω

    D R

    60.

    )  C I I

    C D R

    I 1.5A.

    F 10

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    20/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  11

    3.7

    D ∆

    F 8 

    F D

     

         

     

         

     

         

    F D

         

     

         

     

         

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    21/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  12

    C A B .

     A

    B

    4Ω 2Ω

    6Ω

    3Ω 3Ω

    F 9

    :

    F 10 F 11

    1:

    ∆→Υ  4Ω, 2Ω 6Ω .

     

       

      Ω   

       

      Ω 

     

       

      Ω 

    2:R ∆ Υ  (F11).

    3:

    F ,R.

      Ω

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    22/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  13

    B , D :

    )  C 12Ω 10Ω

    )  12Ω 10Ω

    Figure 12 

    :

    F 13 F 14

    )  C 10Ω 12Ω

    1:

     

      Ω

     

      Ω

     

      Ω 

            

          

     

       

       

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    23/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  14

       

       

    )  12Ω 10Ω

       

         

       

         

    3.8

    I. , . H,

      1

    F O ,

     

    (1) :

     

    A, O ,

     

    I (1) :

       

     

    I

    .

    3.9 .

    )  , , , ,

    , ,

    )  , , , ,

    ,  

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    24/78

    NI 3 AN INRODCION O ELECRIC CIRCI

    MARLIANA/JKE/POLIA/E101NI3  15

    3

    1.  C

    A B 11.

    F 11

    2.  ,

    :

    )  , R 

    )  C, I 

    )  C 15Ω

    F 12

    3.  B 13,

    15Ω

    F 13

    4.  B F 14, ,

    6Ω .

    F 14

    5.  B F 15,

    ,

    RL.

    F 15

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    25/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 1

    4

    1.0 

    () 

    , Σ    , 1:

    ()   , 2

    ( )

    .

    F 2

    1.1

    A

    .

    :

    1.  A .

    2.  A .

    3.  .

    ∑  = ∑ 

    1 + 2+ 3 = 4 + 5 

    1 + 2  + ( 3 ) + ( 4 ) + (5 ) = 0

    ∑  = 0

    E = 1 + 2 

    E = (1 + 2 )

    E + ( 1 ) + ( 2) = 0

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    26/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 2

    1

    F .

    F 3

    :

    1: A .

    F 4

    2: A .

    1:

           

           

          1

    2:

           

           

          2 3: .

    1 2

               :

      

     

         

          

          

             

              

    F C :

           

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    27/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 3

    2

    F .

    F 5

    :

    1: A .

    F 6

    2: A .

    1:

                  

          1

    2:

                  

          2

    3: .

    1 2

               :

        

     

              

           

            

      

       

       

             

    F C :

           

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    28/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 4

    1.2

    A C

    .

    :

    1.  D .

    2.  A .

    3.  A C

    4.  .

    5.  D

    .

    3

    F .

    F 7

    :

    1: D (F 8).

    1 () , C

    2: A (F 8).

    F 8

    3: A C

    C:      

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    29/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 5

    4: .

     

     

      

          

     

        

       

       

       ∴∴∴∴     

    5: D

          

      

       

          

    4

    F .

    F 9

    :

    1: D (F 10).

    1 () , C

    2: A (F 10).

    F 10

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    30/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 6

    3: A C

    C:       4: .

            

     

     

      

     

     

      

     

      

      

     

              

       ∴∴∴∴   

    5: D

          

          

          

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    31/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 7

    1

    F A

    A.

    )

    )

    R1

    R2

    R3

    V1

    V2

    4kΩ

    2kΩ

    3kΩ

    30V

    25V

     

    )

    )

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    32/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 8

    2.0

     :

     ".

    .

    F 11

    :

    1.    ().

    2.  F ()

      .

    3.  D 11   .

    F   .

    5

    F 30Ω F 12.

    F 12

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    33/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 9

    :

    1:   ().

    F 13

      Ω 

    D  

         

    2: F ()

    F 14

             Ω

    3: D    

    F 15

                   

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    34/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 10

    6

    F 4.

    60Ω

    30Ω 90Ω 25Ω300mA

    IsR1

    R2

    R3 R4

     F 16

    :

    1 :   ().

    F 17

      Ω     

    CD, 2 

                    

       

    2: F () ,  .

    F 18

                     Ω

    3: D    

    RTH

    RLVTH

    4.5V

    45Ω

    25Ω

    IL

     F 19

           

         

       

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    35/78

    2

    1.  1,

    12Ω

    .

    F 1

    2.  F 15Ω

    2

    .

    F 2

    3.  C  

    .

    F 3

    4. 

    5Ω 4.

    F 4

    5.  C 30Ω

    5

    .

    F 5

    6.  6,

    50Ω .

    F 6

    7.  ,

    =10Ω.

    F 7

    8.  ,

    =10Ω.

    F 8

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    36/78

    3.0

     :

     ".

    F 20

    :1.    . F   .

    2.  F   .

    3.  D 20   . F

      .

    7

    F 30Ω F 21.

    F 21

    1:    . F   .

    F 22

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    37/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 13

            

       

              

       

     

    2:  F   .

    F 23

       

        

       

    3: D   . F  

    .

    F 24

    CD,  

     

         

     

         

    6

    F 4.

    F 25

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    38/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 14

    :

    1:   . F   .

    60Ω

    30Ω 90Ω 25Ω

    300mA

    IsR1

    R2

    R3 R4IN

    F 26

    C 90Ω 0A,   .

         

    2:  F   .

    60Ω

    30Ω 90Ω

    R1

    R2

    R3RN

     F 27

                 

    3: D   . F  

    .

    F 28

    CD,  

             

         

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    39/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 15

    3

    1.  1,

    12Ω

    .

    F 1

    2.  F 15Ω

    2

    .

    F 2

    3.  C  

    .

    F 3

    4. 

    5Ω 4.

    F 4

    5.  C 30Ω

    5

    .

    F 5

    6.  6,

    50Ω .

    F 6

    7.  ,

    =10Ω.

    F 7

    8.  ,

    =10Ω.

    F 8

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    40/78

    4.0

    :

    F 29

    F , :

       F , :

          :

    1.   (=).

    2.  .

    3.  ( = ).

    4.  ,η% = 50%.

    :

    η      

         

    7

    30,

    .

    )  25Ω ) 50Ω ) 75Ω ) 100Ω ) 125Ω

    F 30

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    41/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 17

    :

           

       )     

              

    )                

    )                

    )                

    )                

          =  %ηηηη   

    75Ω 0 0.133A 10 0 0% 0

    75Ω 25Ω 0.1A 10 2.5 25% 0.25

    75Ω 50Ω 0.08A 10 4 40% 0.32

    75Ω 75Ω 0.067A 10 5.0 50% 0.336

    75Ω 100Ω 0.057A 10 5.7 57% 0.325

    75Ω 125Ω 0.05A 10 6.5 65% 0.312

    F 31

    0, 0

    25, 0.25

    50, 0.32  75, 0.336 100, 0.325 125, 0.312

    00.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0 20 40 60 80 100 120 140

                                    (       )

    (Ω)

    () ()

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    42/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 18

    8

    F 32,

    .

    F 32

    :

    ().

    F 33

      Ω  D  

         

    F ()

    F 34

             Ω

    D    

    F 35

    =.

    , 10Ω.

             ,

         

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    43/78

    5.0

    :

    ,

    ,

      

    C

    9

    D 2=5Ω 36

    .

    F 36

    :

    1: , . .

    F 37

                

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    44/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 20

    2: , . .

    F 38

    CD

               

    3: 2=5Ω.

    1A 6A

           

    10

    F 39.

    F 39

    :

    1: 1 , 2

    F 40

       

       

              

         

         

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    45/78

    2: 1 , 2

    F 41

             

      

       

         

         

    3:

    1 ⇒  1=0.429A 1=0.571A

           

    2 ⇒  2=0.286A 2=0.714A

           

    3 ⇒  3=0.143A 3=0.143A

           

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    46/78

    4 DC EAE CC AD E EE

    AAA/E/A/E1014 22

    4

    F .

    )

    )

    R1

    R2

    R3

    V1

    V2

    4kΩ

    2kΩ

    3kΩ

    30V

    25V

     

    )

    )

     

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    47/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 1

    UNIT 5 CAPACITORS AND CAPACITANCE

    5.1 Capacitor and Capacitance

    5.1.1 Associated Quantities

    -  A capacitor is an electrical device that is used to store electrical energy.

    -  The unit of capacitance is Farad. The symbol of capacitance is C. 

    -  Capacitance is defined to be the amount of charge Q stored in between the two

    plates for a potential difference or voltage V existing across the plates.

    In other words:

    -  A capacitor has capacitance of one Farad  when current charging of one Ampere 

    flows in one second . This process causing a transferring of one volt  in plates

     potential.

    -  The Farad unit is too large for practical as charge ratio to its potential difference.

    uses. Thus microfarad (μF) , nanofarad (nF) or Pico farad (pF) is used as a suitable

    unit for capacitor:-

      Microfarad (µF) 1µF = 1/1,000,000F = 10-6F

      Nanofarad (nF) 1nF = 1/1,000,000,000 = 10-9F

      Microfarad (pF) 1pF = 1/1,000,000,000,000 = 10-12F

    5.1.2 Types of capacitors

    Fixed

    Unpolarised

    Mica

    Ceramic

    Film

    Air-gap

    Paper

    PolarizedAluminum

    Tantalum

    Variable Trimmer

    http://modul2poli.blogspot.com/

    http://images.search.yahoo.com/images/view;_ylt=A2KJkIbi5mdP_TkA5RSJzbkF;_ylu=X3oDMTBlMTQ4cGxyBHNlYwNzcgRzbGsDaW1n?back=http%3A%2F%2Fimages.search.yahoo.com%2Fsearch%2Fimages%3Fp%3Daluminium%2Bcapacitor%26ei%3DUTF-8%26fr%3Dyfp-t-521%26tab%3Dorganic%26ri%3D28&w=360&h=360&imgurl=www.germes-online.com%2Fdirect%2Fdbimage%2F50157825%2FAluminum_Electrolytic_Capacitor.jpg&rurl=http%3A%2F%2Fwww.germes-online.com%2Fcatalog%2F87%2F439%2Fpage4%2F&size=31.9+KB&name=Aluminum+Electrolytic+Capacitor&p=aluminium+capacitor&oid=b3a31563a944cba4779dbe6fd19e0424&fr2=&fr=yfp-t-521&tt=Aluminum%2BElectrolytic%2BCapacitor&b=0&ni=48&no=28&tab=organic&ts=&sigr=11i68dh5d&sigb=13asncshf&sigi=12h5adrra&.crumb=o6F.j.RvaGDhttp://images.search.yahoo.com/images/view;_ylt=A2KJkeua52dPNxYAo_GJzbkF;_ylu=X3oDMTBlMTQ4cGxyBHNlYwNzcgRzbGsDaW1n?back=http%3A%2F%2Fimages.search.yahoo.com%2Fsearch%2Fimages%3Fp%3Dmica%2Bcapacitor%26n%3D30%26ei%3Dutf-8%26fr%3Dyfp-t-521%26tab%3Dorganic%26ri%3D2&w=300&h=300&imgurl=theonlinetutorials.com%2Ftheonlinetutorials_files%2F2011%2F04%2FMica-capacitor.jpg&rurl=http%3A%2F%2Ftheonlinetutorials.com%2Fcapacitors.html&size=34.4+KB&name=Mica+capacitor&p=mica+capacitor&oid=0af65e5b6487c0babacfdf9cd0bb4c98&fr2=&fr=yfp-t-521&tt=Mica%2Bcapacitor&b=0&ni=60&no=2&tab=organic&ts=&sigr=11d6umt06&sigb=139d69uqd&sigi=12ap7qdjv&.crumb=o6F.j.RvaGD

  • 8/17/2019 Et101 - Electrical Technology

    48/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 2

    5.1.3 Capacitor Construction

    Figure 1: Capacitor construction

    In its most elementary state a capacitor consists of two metal plates separated by a

    certain distance d, in between the plates lies a dielectric material with dielectric constant =εoε,

    where εo is the dielectric of air.

    The dielectric material allows for charge to accumulate between the capacitor plates.

    Air (actually vacuum) has the lowest dielectric value of εo = 8.854 x 10-12 Farads/meter. All other

    materials have higher dielectric values, since they are higher in density and can therefore

    accumulate more charge.

    The Physical meaning of capacitance can be seen by relating it to the physical

    characteristics of the two plates, so that, the capacitance is related to the dielectric of the

    material in between the plates, the square area of a plate and the distance between the plates

    by the formula:

    Clearly, the larger the area of the plate the more charge can be accumulated and hence

    the larger the capacitance. Also, note that as the distance d increases the Capacitance

    decreases since the charge cannot be contained as 'densely' as before.

    By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of

    the charge Q to the voltage V will give the capacitance value of the capacitor and is therefore

    given as: C = Q/V this equation can also be re-arranged to give the more familiar formula for the

    quantity of charge on the plates as: Q = C x V. 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    49/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 3

    5.2 Capacitor equivalents circuit

    5.2.1 Capacitor connected in series

    C3

    e2

    C2C1

    e1   e3

    E

     Figure 2: Capacitors in series

    Total voltage

    VT = e1 + e2 + e3 

    Since then

    Where CT is the total equivalent circuit

    capacitance

    It follows that for n series-connected capacitors:

    5.2.3 Capacitor connected in parallel

    C2C1

    E

    C3

     Figure 3: Capacitor in parallel

    Total charge,

    Q T = Q 1 + Q 2 + Q 3 

    CTE = C1V1 + C2 V2 + C3 V3 

    Total voltage

    ET = e1 = e2 = e3 

    Total equivalent circuit capacitance

    CT = C1 + C2 + C3 

    It follows that for n parallel connected

    capacitors:

    CT = C1 + C2 + C3 +……+ Cn 

    5.2.3 Capacitor connected in series-parallel

    C2

    C1E C3

      Figure 4: Capacitor in series-parallel

    Total equivalent circuit capacitance

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    50/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 4

    Example 1

    Calculate the equivalent capacitance of two capacitors of 3μF and 6μF connected:

    (a) in parallel (b) in series.

    Solution:

    (a) 

    In parallel, equivalent capacitances:

    (b)  In series, equivalent capacitance :

    Example 2

    Find the capacitance to be connected in series with a 10μF capacitor for the equivalent capacitance tobe 6μF.

    Solution:

    , ,

    For two capacitance in series:

    Example 3

    Find the total capacitance of the circuit:

    C3C1E

    C4

    C2

    3µF1µF   4µF

    2µF

     

    Solution:

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    51/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 5

    TUTORIAL 1

    1.  Capacitors of 15μF and 10μF are connected (a) in parallel and (b) in series. Determine the equivalent

    capacitance in each case.

    2.  Find the capacitance to be connected in series with a 25μF capacitor for the equivalent capacitance

    to be 10µF.

    3.  Find the capacitance to be connected in parallel with a 25μF capacitor for the equivalent

    capacitance to be 10µF.

    4.  Find the total capacitor the circuit.

    a)

    C2C4E

    C1

    100µF100µF   100µF

    C5   50µF   C3   200µF  [40µF]

    b)

    C1

    30µF

    C2

    60µF

    C3

    60µF

    C4

    30µF

    C5

    20µF

    C6

    40µF[11.14µF]

    c)

    C1

    30µF

    C2

    30µF

    C3

    30µFC4

    30µFC5

    30µF

    C6

    30µF

    [1.2µF]

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    52/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 6

    5.3 Circuit with capacitive load

    Figure 5

    Mathematically, the capacitance of the device relates the voltage difference between

    the plates and the charge accumulation associated with this voltage:

    q(t)=CV(t) equation (1)

    Capacitors which obey the relationship of equation (1) are linear capacitors, since the

    potential difference between the conductive surfaces is linearly related to the charge on the

    surfaces. Note that the charges on the right and left plate of the capacitor in Figure 5 are equal

    and opposite. Thus, if we increase the charge on one plate, the charge on the other plate must

    decrease by the same amount. This is consistent with our previous assumption electrical circuit

    elements cannot accumulate charge, and current entering one terminal of a capacitor must

    leave the other terminal of the capacitor.

    So, current is defined as the time rate of change of charge,

    5.3.2 Elements related to capacitance

    a. Electric field:

      Area that surrounds the electric charge or charges system where the

    increasing and decreasing of electric force exists.

    b. Line of electric force:  A line of electric force is known as line or curve that pointed out from

    positive charge (+) to negative charge (-) in a magnetic field.

    c. Electric flux:

      Known as amount of electric force line pointed out from positive charge (+)

    to negative charge (-) in a magnetic field. Flux symbol is Ψ(phi).

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    53/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 7

    d. Electric flux density (D):

      Electric flux density is a measurement of electric flux that pass through a

    unit of plate’s area with a coincide angle, that is an area of 1 meter².

      The ratio between the charge of the capacitor and capacitor plates.

      The symbol used is D. Based on Figure 1, if the area of capacitor is A, then

    the flux density is given as:-

    where Q= charge(Coulomb), A = surface area of capacitor

    Figure6: Area and distance of capacitor plates

    e.  Electric field strength:

      When two metal plates are charged and separated in a certain distance, a

    potential difference will exists between the plates.

      A force was also generated, known as electric force and the symbol is E. The

    magnetic strength depends on the potential difference and distance

    between plates.

    Where; V = potential difference d  = thickness of dielectric

    f. 

    Dielectric:

      Insulator that is used between the two plates of a capacitance is known as

    dielectric.

      Electric field exists in the dielectric and the flux density depends on the types

    of insulator used.

    g. 

    Absolute permittivity (ε):

      Permittivity is a capacitance or ability to store energy of a capacitor.

      A force was also generated, known as electric force and the symbol. It

    depends on the dielectric substance, and the symbol is ε.

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    54/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 8

    5.3.3 Factor that effecting capacitance

    Based on Figure 7, the factor that effecting capacitance is:

    Figure 7

    a.  Capacitance between two plates proportional to the surface area 

    b.  Capacitance between two plates inversely proportional to the thickness of

    dielectric

    c.  Increasing the dielectric constant of the material between the plates 

    5.4 Process charging and discharging in a capacitor

    5.4.1 Charging process in capacitor

    Figure 8: Capacitor circuit for charging process

    In initial state, a capacitor is uncharged (Vc = 0V). When a capacitor start

    charged, maximum current will be flowing (i = Imax). The current would be decreased by

    exponent, while voltage will be rising by exponent also. This state will continue until full

    state (steady) achieved. In this full state, current had decreased to zero value, while

    voltage increased until maximum value. The capacitor is said in fully charge.

    A

    VR  VC 

    + E  -

    R C

    ib

    a S

    + -

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    55/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 9

    Figure 9 show both curves current and voltage for capacitor during charging

    process, in x-axis (t, time). The current and voltage curve may be represented by

    exponent equations respectively.

    Figure 9: Current and voltage curve in capacitor during charging process

    Time constant, = CR

    -  The times taken for voltage achieve value of 0.632Vmax and current achieve value of

    0.371Imax 

    Initial current,

    5.4.2 Discharging process in capacitor

    Figure 10: Capacitor circuit for discharging process

    When capacitor fully charge and then switch being transformed to ‘b’, discharge

    process for capacitor will happen. The time taken to recharge and fully discharge is

    5 =CxR. Figure 11 show the curve for discharging process in capacitor.

    v c, i

    t

    IMax

    VMax A

    v c 

    = 0.632 VMax

    i  

    = 0.371 IMax 

    = CR

    Voltage through capacitor:

    v c = Vmax (1 – e –t/

    )

    vc = Vmaxi = 0

    Current flow:i = Imax (e

     –t/)

    A

    VR  VC 

    + E  -

    R C

    ib

    a S

    + -

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    56/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 10

    Figure 11: Current and voltage curve in capacitor during discharging process

    5.4.3 Energy stored in a capacitor

    During charging process through capacitor, it will get energy. Energy is kept in

    static form. The voltage in capacitor will increase from 0 volt to E volt.

    Example 1

    One capacitor 0.326µF connected in series with 680kΩ and dc voltage 120V. Determine: 

    i.  Time constant

    ii.  Initial current charge

    iii.  Current through capacitor, 100ms after charge to the source.

    iv.  Energy stored in capacitor.

    Solution:

    i. 

    ii. 

    iii. 

    iv. 

    t, time

    Voltage through capacitor:

    v c = Vmax ( e –t/

    )

    Vmax 

    v, i

    Discharging current flow:

    i  =-Imax (e –t/

    )Imax 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    57/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 11

    Example 2

    When switch are connected, calculate:

    i.  Time constant

    ii. 

    Initial current charge

    iii.  Time taken for voltage through capacitor

    increase to 160V.

    iv.  Current and potential difference through

    capacitor, 4 second after charge to the

    source.

    v.  Energy stored in capacitor.

    Solution:

    i.  ii. 

    iii. 

    vc = 160V

    47s

    iv. 

    Example 3

    When switch are connected, calculate:

    i.  Initial current charge

    ii.  Initial potential difference through

    capacitor.

    iii.  Time constant

    iv.  Time taken for capacitor fully charges.

    Solution:

    i. 

    ii. 

    iii. 

    iv. 

    200kΩ  20µF

    150V

    R C

    S

    + -

    100kΩ  150µF

    220V 

    R CS

    + -

    iv. 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    58/78

    UNIT 5 CAPACITOR AND CAPACITANCE

    MARLIANA/JKE/POLISAS/ET101-UNIT5 12

    TUTORIAL 2

    1.  A 20µF capacitor is connected in series with a 50 kΩ resistor and the circuit is connected to a 20

    V, d.c. supply. Determine:

    a)  The initial value of the current flowing,

    b) 

    The time constant of the circuit,

    c)  The value of the current one second after connection,

    d)  The value of the capacitor voltage two seconds after connection,

    e)  The time after connection when the resistor voltage is 15 v

    [0.4mA,1s,0.147mA,17.3V,0.288s]

    2.  A circuit consists of a resistor connected in series with a 0.5µF capacitor and has a time

    constant of 12 ms. Determine:

    (a) 

    The value of the resistor

    (b) 

    The capacitor voltage 7 ms after connecting the circuit to a 10 V supply

    *24kΩ,4.42V]

    3.  An 12µF capacitor is connected in series to a 0.5MΩ resistor across the dc voltage supply of

    240V. Determine:

    (a)  Time constant

    (b) 

    Initial charging current

    (c) 

    Time for capacitor voltage increase to 150V

    (d)  The current flowing through the capacitor after 4 seconds

    (e)  Energy stored in the capacitor when it is fully charged

    (f)  Sketch the current and voltage (IV) curve to show the process of charging the capacitor.

    [6s,0.48mA,5.88s,0.246mA,0.346J]

    4. 

    A capacitor is charged to 100 V and then discharged through a 50 kΩ resistor. If the timeconstant of the circuit is 0.8 s, determine:

    (a)  The value of the capacitor,

    (b)  The time for the capacitor voltage to fall to 20 v,

    (c)  The current flowing when the capacitor has been discharging for 0.5 s

    (d)  The voltage drop across the resistor when the capacitor has been discharging for one

    second.

    [16µF,1.29s,1.07mA,28.7V]

    5.  A 0.1µF capacitor is charged to 200 V before being connected across a 4 kΩ resistor. Determine:

    (a) 

    The initial discharge current

    (b)  The time constant of the circuit

    [50mA,0.4s]

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    59/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    1MARLIANA/JKE/POLISAS/ET101-UNIT6

    UNIT 6 INDUCTOR AND INDUCTANCE

    6.1 Inductor and inductance

    6.1.1  Associated quantities

    -  Inductor, also called a choke, is another passive type electrical component designed

    to take advantage of this relationship by producing a much stronger magnetic field

    than one that would be produced by a simple coil.

    -  Symbol of inductance is L.

    -  Unit of inductance is Henry. 

    -  Inductance  – the property of an electric circuit by which an electromotive force is

    induced in it as the result of changing magnetic flux.

    -  Electromagnet  – temporary magnet production due to flow of electric current.

    -  Electromagnetic induction - production process electric form magnet.

    6.1.2 Types of inductor

    Fixed

    Air core

    Iron core

    Ferrite core

    Variable Core loss

    6.1.3 Construction of inductor

    An inductor is usually constructed as a coil of conducting material, typicallycopper wire, wrapped around a core either of air or ferrous material.

    Core materials with higher permeability than air confine the magnetic field

    closely to the inductor, thereby increasing the inductance. Inductors come in many

    shapes. Most are constructed as enamel coated wire wrapped around a ferrite with wire

    exposed on the outside, while some enclose the wire completely in ferrite and are called

    ‘shielded’. 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    60/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    2MARLIANA/JKE/POLISAS/ET101-UNIT6

    Some inductors have an adjustable core, which enables changing of the

    inductance. Small inductors can be etched directly onto a printed board by laying out

    the trace in a spiral pattern.

    Figure 1

    6.2 Inductance equivalents circuit for series and parallel connection

    6.2.1 Inductors connected in series

    Figure 2: Inductor in series

    Total voltage,

    ET = e1 + e2 

    Total inductance,

    LT = L1 + L2 

    It follows that for n series connected

    inductors

    LT = L1 + L2 +…….+ Ln 

    Current, I = IL1 = IL2 

    6.2.2 Inductors connected in parallel

    Figure 3: Inductor in parallel

    Total voltage,

    ET = e1 = e2Total current,

    IT = I1 + I2 

    Total inductance 

    It follows that for n parallel connected

    inductors

    e2 

    IT 

    L1  L2 

    ET 

    e1 

    I1  I2 

    L1 

    L2 ET 

    e1 

    e2 

    I

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    61/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    3MARLIANA/JKE/POLISAS/ET101-UNIT6

    6.2.3 Inductors connected in series-parallel

    Figure 5: Inductor in series-

    parallel connection

    Total current,

    IT = I1 +I2 

    Total inductance,LT  = L1 + L2 // L3 

    Example 1

    Calculate the equivalent inductance of two inductors of 3H and 5H connected:

    (a) in series (b) in parallel.

    Solution:

    a)  Total inductance in series, b)  Total inductance in parallel, 

    Example 2

    Find the inductance to be connected in parallel with a 10H capacitor for the equivalent capacitance to

    be 6H.

    Solution:

    , ,For two capacitance in series:

    Example 3

    Find the total inductance for the circuit below Total inductance,LT  = L1 + L2 // L3 

    L2  L3 ET 

    IT 

    I1  I2 

    L1 

    5H

    2H 3HL2  L3 ET 

    IT 

    I1  I2 

    L1 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    62/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    4MARLIANA/JKE/POLISAS/ET101-UNIT6

    TUTORIAL 1

    Find the total inductance of the circuit.

    1.

    [Ans: 0.788H]

    2.

    [Ans: 8.33mH]

    3.

    [Ans: 3.54H]

    4.

    [Ans: 20mH]

    3mH

    4mH

    6mH

    2mH 5mHA B

    6H

    2H

    4H

    2HA B

    2H 5H

    3H

    5H 3H

    12mH

    40mH

    5.2mH

    12mH

    4mH

    12mH

    2mH

    4mH

    ET 

    2H

    3H 4H1H

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    63/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    5MARLIANA/JKE/POLISAS/ET101-UNIT6

    6.3 Circuit with inductive load

    6.3.1 Electromagnetic induction

    When a conductor is moved across a magnetic field so as to cut through the lines of

    force (or flux, an electromotive force (e.m.f) is produced in the conductor. If the conductor

    forms part of a closed circuit then the e.m.f produced causes an electric current to flow round

    the circuit. Hence an e.m.f is induced in the conductor as a result of its movement across the

    magnetic field. This effect is known a ‘electromagnetic induction’. 

    6.3.2 Faraday’s Law 

    Faraday’s laws of electromagnetic induction state:

    i)   An induced e.m.f is setup whenever the magnetic field linking that circuit

    changes 

    ii)  The magnitude of the induced e.m.f in any circuit is proportional to the rate of

    change of the magnetic flux linking the circuit. 

    6.3.3 Mathematical relationship between the induced e.m.f and the network

    Faraday noted that the e.m.f induced in a loop is proportional to the rate of change of

    magnetic flux through it:

    Where; e is the electromotive force induced (in volts)

    N is the number of turns of the coil

    d Φ is the change of flux in Weber, Wb

    dt is the time taken for the flux to change in seconds.

    *Notice the negative sign is the induced current will now produce an induced magnetic

    filed. The direction of that magnetic field will be opposite to the direction the flux is

    changing.

    6.3.4 Self-inductance and the induced e.m.f

    Inductance is the name given to the property of a circuit whereby there is an e.m.f

    induced into the circuit by change of flux linkages produced by a current change.

    When the e.m.f is induced in the same circuit as that in which the current is changing,

    the property is called self-inductance, L.

    Induced e.m.f is the product of self-inductance and the rate of change in current

    Where; e is induced e.m.f (in volts)

    L is self-inductance in Henry

    di  is the change of current in Amperes

    dt  is the time taken for the current to change in seconds.

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    64/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    6MARLIANA/JKE/POLISAS/ET101-UNIT6

    6.3.5 The mathematical of self-inductance

    Where; N is number of turns of coil

    L is length of coil

    A is surface area

    µ is permeability

    6.3.6 The factors that influence inductance

    A component called an inductor is used when the property of inductance is required in a

    circuit. The basic form of an inductor is simply a coil of wire.

    Factors which affect the inductance of an inductor include:

    i)  The number of turns of wire (N)  – more turns the higher the inductance

    ii)  The cross-sectional area of the coil of wire (A) – the greater the cross-sectional area

    the higher the inductanceiii)  The presence of magnetic core - when the coil is wound on an iron core, the same

    current sets up a more concentrated magnetic field and the inductance is increased

    iv)  The way turns are arranged  – a short tick coil of wire has a higher inductance than

    the along thin one.

    6.4 Rise and decay of current goes through an inductor in the dc circuit

    6.4.1 Rise and decay of current

    Figure 5: Inductor circuit

    Refer to Figure 5, when switch in ‘a’ position, inductor connected to DC supply.

    The current had not achieved maximum value immediately. The current are going to

    reach maximum value in a period of time that certain caused by production e.m.f

    induced by inductor which always against the supply voltage. In other words, the

    currant of the circuit is rise delayed.

    When switch is being transformed to position ‘b’, inductor circuit had short

    circuit (no supply voltage). The current is not decrease continue to zero but take a time

    that certain from maximum value until zero value. Refer to figure 6 which is shown the

    exponential graph changing of current in inductor circuit.

    V

    b

    a

    LR

    S

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    65/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    7MARLIANA/JKE/POLISAS/ET101-UNIT6

    Figure 6: Graph changing of current in inductor circuit

    6.4.2 Time constant

    Time constant, defines as time for current achieve maximum (IM) if this maintain the

    early promotion rate current.

    i)  Time constant at rise of current

    Practically, the current did not rise by regular. By graphically, it achieves 63.2% from

    maximum value (point ‘B’ in figure 7) in time constant. In other words, time constant,  

    also defines as time for current of inductor achieve 63.2% from the maximum value.

    Figure 7: Graph rise of current through an inductor

    From RL circuit, time constant, , given by equation:

    IM 

    )1(   L Rt 

     M   e I i

    i

    t

    Rise of current

    IM 

     L

     Rt 

     M e I i

    i

    t

    Decay of current

    )1(   L Rt 

     M   e I i

    IM 

    63.2%

    i

    t

    5

    A B

    C DFrom the graph:

    Current will be rising from

    minimum value (0) by

    exponent headed for

    maximum value, IM (steady

    state).

    Time for value of i achieve

    63.2% from maximum value

    is time constant, .

    Time for value of I achieve

    maximum value is 5

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    66/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    8MARLIANA/JKE/POLISAS/ET101-UNIT6

    ii)  Time constant at decay of current

    In decay of current through an inductor, a method to find values of time constant same

    as in rise of current through an inductor. The differences are value of current decay

    from maximum value (IM) to minimum (0), and value 63.2% replaced with 36.8% which is

    100% - 63.2%. Figure 8 shown clear pictures for decay of current in inductor.

    Figure 8: Graph decay of current through an inductor

    6.4.3 Energy stored in an inductor

    An inductor possesses an ability to store energy. The energy stored, W in the magnetic

    field of an inductor is given by:

    Example 1

    One inductor 0.5H connected in series with resistor 20Ω and dc voltage 120V. Determine: 

    i)  Time constant

    ii)  Current at time 0.025s

    iii)  Energy stored in inductor

    Solution

    i)  Time constant

    ii) 

    iii)  Energy store,

     L

     Rt 

     M e I i

    IM 

    36.8%

    0

    i

    t

    5

    From the graph:

    Current will reduce from

    maximum value (IM) by

    exponentially until minimum

    value (0).

    Time for i to reach 36.8% from

    maximum value (reducing of

    63.2% from origin value, IM) is

    time constant:

    Time for i to reach final value

    (zero) is 5  .

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    67/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    9MARLIANA/JKE/POLISAS/ET101-UNIT6

    Example 2

    When switch connected to ‘a’,

    calculate:

    i)  Time constant

    ii)  Time taken for current achieve

    maximum value

    iii)  Maximum current if the current is

    2.5A in 0.38s.

    Solution

    i)  Time constant,

    ii) 

    iii) 

    Example 3

    One circuit has resistor 40Ω connected in series with inductor 15H and dc voltage 220V.

    Calculate:

    i)  Time constant

    ii)  Current at time (i)

    iii)  Current at time 0.05s

    iv)  Energy stored in inductor

    Solution

    i)  Time constant

    ii) 

    iii)  t = 0.05s

    iv) 

    b

    a

    L=7.5HR=10Ω 

    S

    100V

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    68/78

    UNIT 6 INDUCTOR AND INDUCTANCE

    10MARLIANA/JKE/POLISAS/ET101-UNIT6

    TUTORIAL 2

    1.  A coil of inductance 0.04 H and resistance 10Ω is connected to a 120 V, d.c. supply. Determine

    (a)  the final value of current

    (b)  the time constant of the circuit

    (c) 

    the value of current after a time equal to the time constant from the instant the supply

    voltage is connected.

    [12A,4ms,7.58A]

    2.  The winding of an electromagnet has an inductance of 3H and a resistance of 15Ω. When it is

    connected to a 120 V d.c. supply, calculate:

    (a)  the steady state value of current flowing in the winding

    (b)  the time constant of the circuit

    (c) 

    the value of the induced e.m.f. after 0.1s

    (d) 

    the time for the current to rise to 85% of its final value

    (e) 

    the value of the current after 0.3 s

    [8A,0.2s,72.78V,0.379s,6.215A]

    3.  A coil has an inductance of 1.2H and a resistance of 40Ω and is connected to a 200 V, d.c. supply.

    Determine the approximate value of the current flowing 60 ms after connecting the coil to the

    supply. [4.3 A]

    4.  A 25 V d.c. supply is connected to a coil of inductance 1H and resistance 5Ω. Determine the

    approximate value of the current flowing 100 ms after being connected to the supply. [2 A]

    5.  The field winding of a 200 V d.c. machine has a resistance of 20Ω and an inductance of 500mH.

    Calculate:

    (a) 

    the time constant of the field winding(b)  the value of current flow one time constant after being connected to the supply

    (c)  the current flowing 50 ms after the supply has been switched on.

    [(a) 25 ms (b) 6.32 A (c) 8.65 A]

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    69/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 1

    7 A , A A

    A

    7.1

    7.1.1

      () . A

    .

    A ( , )

    . A

    .

    ,  , ,  .

    . ,

    .

    . I F 1(),

    , . L

    . ,

    . I F 1(), (.. ),

    , .. ,

    .

    F 1() :

    F 1() :

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    70/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 2

    7.1.2 M

    . A

    , , . M F

    ,

    ,

    .

    :

    C

    I

    7.1.3 C / :

    F

    D

    H .

     

    H

    F 2: M

    7.1.4 . M , F

    M ()

    .

    , F = NI A

    E ()

    D

    E ()

    C

    E ()

    E ()

    E ()

    C

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    71/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 3

    . ,

    .

     

       

         

       

          1/H A/

    . M , H

    M ( )

       A  l   .

    . M

    M (

    ) . Φ.

    , .

    M

    :

        B.

    ,.

    . P BH

      P

    .

      : μ (μ) / (/A)

               μμ= B / H

    μ =

    μ = , 4π 107 

    μ = , μ = B () / B ()

    H, μ = B / B 

    ••••  μ ( μ μ ) 

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    72/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 4

    F 3: BH

    7.2

    F , :

    = 1 + 2 +..+  

    ( )

    1

    A 6 12 

    2 0.5 2. A 200 6

    0.4 A . D 2 , 750.

    :

    F 6 :

    ,        

       

    F 2

            

       

            

    F , B 2

       

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    73/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 5

    ,        

     

     

       

    7.3

    .. , E () , F (A)

    C, I (A) F,Φ ()

    , (Ω) , (H1

    )

        

     

     ρ      

        

    7.4

    B

    H.

    H, B

    F 4, . F 4

    .

    F F 4, O , O

    , PP .

    H .

    .

    . ,

    , .

    F 4: H

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    74/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 6

    7.5

    7.5.1 M

    L

    , , F 5().

    I ,

    , . B

    F 5().

    F 5() F 5()

    I , .

    . .

    . I

    , ,

    .

    M ,

    (F 6()).

    . F 6() ,

    ( + ). M, F 6()

    , ( •,

    ).

    C

    M

    C

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    75/78

    NI 7 MAGNEI

    MALIANA/JKE/POLIA/E101NI 7

    F 6()

    F 6:

    D

    :

    C

    C

    C

     

    A

    7(),

    .

    F 7(): M

    C CICI, ELECOMAGNEIM AND ELECOMAG

    F 6() F 6()

    P

    .

    .

    . C

      , , F 7(

    . I , ,

    F 7(): M

    NEIC INDCION

    7

    ,

    )

    F

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    76/78

    NI 7 MAGNEI

    MALIANA/JKE/POLIA/E101NI 7

     

    7.6

    7.6.1 L

     

    .

    :

    C CICI, ELECOMAGNEIM AND ELECOMAG

      

    :

    F 8

     .

    F 9

     

    F 10

     .

    NEIC INDCION

    8

    .

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    77/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    MALIANA/JKE/POLIA/E101NI 7 9

    :

    ( )

    11 

    F 11

    I ,

    . B F ... ... . A

    . ... E F

    12 :

    =

    B, , ,  ,

    , ,  , ,

    .

    F 12

    I θ0  ( 90

    )

    θ θθ θ  

    1

    A 300 4 /

    1.25 . D

    () ,() 20 Ω .

    ... ...

    .

    I ... E = B =(1.25)(300/1000)(4) = 1.5

    http://modul2poli.blogspot.com/

  • 8/17/2019 Et101 - Electrical Technology

    78/78

    NI 7 MAGNEIC CICI, ELECOMAGNEIM AND ELECOMAGNEIC INDCION

    () 

    I 1.5

    .

    ()  F O , I = E/ =1.5/20 = 0.075 A 75 A

    2A 75 0.6 ... 9

    ? A ,

    .

    I ... E = B , = E/B  

    H = 9/(0.6)(75103

    )=(9 103)/(0.6 75)= 200 /

    3

    A 15 / () 90, () 60 () 30

    2 . I

    5 μ, ... .

    = 15 /; , = 2 = 0.02 ;

    A = 2 2 2 = 4 104 2, Φ = 5 106 

    () E90 = B 90 =(Φ/A) ( 5 106)(0.02)(15)(1)/(4104) = 3.75

    () E60 = B 60 = E90  60 = 3.75 60 = 3.25

    () E30 = B 30 = E90  30 = 3.75 30 = 1.875  

    http://modul2poli.blogspot.com/