386
OSWER 9285.7-77 May 2007 ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS USING IN VIVO AND IN VITRO METHODS Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460

ESTIMATION OF RELATIVE BIOAVAILABILITY OF ... - hero.epa.gov

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

OSWER 92857-77 May 2007

ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD

IN SOIL AND SOIL-LIKE MATERIALS USING IN VIVO AND IN VITRO METHODS

Office of Solid Waste and Emergency Response US Environmental Protection Agency

Washington DC 20460

ACKNOWLEDGMENTS

The work described in this report is the product of a team effort involving a large number of people In particular the following individuals contributed significantly to the findings reported here and the preparation of this report

PROGRAM SUPPORT

US Environmental Protection Agency (US EPA) support for the development of this report was provided by Michael Beringer US EPA Region 7 Kansas City KS Jim Luey US EPA Region 8 Denver CO and Richard Troast formerly with US EPA Office of Superfund Remediation and Technology Innovation Washington DC Contractor support to US EPA was provided by Syracuse Research Corporation

IN VIVO STUDIES

All of the in vivo studies described in this report were planned and sponsored by US EPA Region 8 The technical direction for all aspects of the in vivo portion of this project was provided by Christopher P Weis PhD DABT and Gerry M Henningsen DVM PhD DABTDABVT Mr Stan Christensen provided oversight and quality assurance support for analyses of blood during the later studies performed in this program

All of the in vivo studies described in this report were performed by Stan W Casteel DVM PhD DABVT at the Veterinary Medical Diagnostic Laboratory College of Veterinary Medicine University of Missouri Columbia Missouri Dr Casteel was supported by Larry D Brown DVM MPH Ross P Cowart DVM MS DACVIM James R Turk DVM PhD DACVP John T Payne DVM MS DACVS Steven L Stockham DVM MS DACVP and Roberto E Guzman DVM MS Analysis of biological samples (blood tissues) was performed by Dr Edward Hindenberger of LET Inc Columbia Missouri

IN VITRO STUDIES

Development of the method used to estimate in vitro bioaccessibility was performed primarily by John Drexler PhD at the University of Colorado Boulder with input and suggestions from a consortium of industry academic and governmental personnel organized by Mr Michael V Ruby at Exponent Dr Drexler also performed all of the electron microprobe and particle size analyses of the test materials evaluated in these studies

STATISTICAL ANALYSIS

Dr Timothy Barry US EPA National Center for Environmental Economics provided on going support in the selection and application of the statistical methods used in dose-response curve-fitting and data reduction In addition Glenn Shaul and Lauren Drees at US EPArsquos National Risk Management Research Laboratory provided several rounds of valuable review comments and constructive discussions regarding statistical methodology

OSWER 92857-77

REVIEWERS

A draft of this report was provided to three independent experts for external peer review and comment This satisfies the Agencyrsquos requirements for peer review These reviewers were

Paul Mushak PB Associates Durham NC Michael Rabinowitz Marine Biological Laboratory Woods Hole MA Rosalind Schoof Integral Consulting Inc Mercer Island WA

The Agency has responded to the peer review comments as appropriate The comments and Agency responses are contained in a responsiveness summary that has been placed in the Administrative Record

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

EXECUTIVE SUMMARY

10 INTRODUCTION

Reliable analysis of the potential hazard to children from ingestion of lead in environmental media depends on accurate information on a number of key parameters including the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability ABA) or in relative terms (relative bioavailability RBA) For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg were absorbed into the body the ABA would be 050 (50) Likewise if 100 μg of lead contained in soil were ingested and 30 μg were absorbed into the body the ABA for soil would be 030 (30) If the lead dissolved in water was used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

When reliable data are available on the absolute or relative bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site Based on available information in the literature on lead absorption in humans the US Environmental Protection Agency (US EPA) estimates that relative bioavailability of lead in soil compared to water and food is about 60 Thus when the measured RBA in soil or dust at a site is found to be less than 60 it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions Conversely if the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

This report summarizes the results of a series of studies performed by scientists in US EPA Region 8 to measure the RBA of lead in a variety of soil and soil-like test materials using both in vivo and in vitro techniques

20 IN VIVO STUDIES

Basic Approach for Measuring RBA In Vivo

The in vivo method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principle that equal absorbed doses of lead will produce equal increases in lead concentration in the tissues of exposed animals Stated another way RBA is the ratio of oral doses that produce equal increases in tissue burden of lead

Based on this the technique for estimating lead RBA in a test material is to administer a series of oral doses of reference material (lead acetate) and test material (site soil) to groups of experimental animals and to measure the increase in lead concentration in one or more tissues in the animals For each tissue the RBA is calculated by fitting an appropriate dose-response model to the data and then solving the equations to find the ratio of doses that produce equal responses The final estimate of RBA for the test material then combines the RBA estimates across the different tissues

OSWER 92857-77 ES-1

Animal Exposure and Sample Collection

All animals used in this program were intact male swine approximately 5 to 6 weeks of age In general exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous injection

Lead concentrations were measured in four different tissues blood liver kidney and bone For blood samples were collected from each animal at multiple times during the course of the study (eg days 0 1 2 3 4 6 9 12 and 15) and the blood concentration integrated over time (commonly referred to as ldquoarea under the curverdquo or AUC) was used as the measure of blood lead response For liver kidney and bone the measure of response was the concentration of lead in these tissues on day 15

Calculation of RBA

Based on testing several different types of dose-response models to the data it was concluded that most dose-response curves for liver kidney and bone lead were well described by a linear model and that most blood lead AUC data sets were well described by an exponential model

Liver Kidney Bone

Ctissue = a + b sdot Dose

Blood AUC

AUC = a + b sdot [1minus exp(minusc sdot Dose)]

where Ctissue is the concentration of lead in a given tissue a b and c are the terms of the mathematic equation used to describe the shape of the curve and Dose is the total daily administered dose of lead (μgkg-day)

Based on these models RBA is calculated from the best model fits as follows

btest material =RBAliver kidney bone breference material

btest material =RBAblood AUC breference material

Results and Discussion

RBA Values for Various Test Materials

Table ES-1 lists the 19 different materials tested in this program and shows the RBA values estimated using each of the four alternative endpoints (blood AUC liver kidney bone)

OSWER 92857-77 ES-2

Based on an analysis that indicated that each endpoint has approximately equal reliability the point estimate for each test material is the mean of the four endpoint-specific values

Inspection of these RBA point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data in order help to improve risk assessments for lead exposure

Correlation of RBA with Mineral Phase

Available data are not yet sufficient to establish reliable quantitative estimates of RBA for each of the different mineral phases of lead that are observed to occur in the test materials However multivariate regression analysis between point estimate RBA values and mineral phase content of the different test materials allows a tentative rank ordering of the phases into three semi-quantitative tiers (low medium or high RBA) as follows

Low Bioavailability Medium Bioavailability High Bioavailability

Fe(M) Sulfate Anglesite Galena Pb(M) Oxide Fe(M) Oxide

Lead Phosphate Lead Oxide

Cerussite Mn(M) Oxide

(M) = Metal

30 IN VITRO STUDIES

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA)

Description of the Method

The IVBA extraction procedure is begun by placing 10 g of test substrate into a bottle and adding 100 mL of extraction fluid (04 M glycine pH 15) This pH is selected because it is similar to the pH in the stomach of a fasting human Each bottle is placed into a water bath adjusted to 37degC and samples are extracted by rotating the samples end-over-end for 1 hour After 1 hour the bottles are removed dried and placed upright on the bench top to allow the soil

OSWER 92857-77 ES-3

to settle to the bottom A sample of supernatant fluid is removed directly from the extraction bottle into a disposable syringe and is filtered to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead

Results

Table ES-2 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program As seen IVBA values span a considerable range (min of 45 max of 87) with a mean of about 55 This variability among test materials indicates that the rate and extent of solubilization of lead from the solid test material into the extraction fluid do depend on the attributes of the test material and that IVBA may be a useful indication of absorption in vivo (see below)

Comparison of In Vivo and In Vitro Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples Figure ES-1 shows the best fit weighted linear regression correlation between the in vivo lead RBA estimates and the in vitro lead bioaccessibility estimates for each of the 19 test materials investigated during this program The equation of the line is

RBA = 0878middotIVBA -0028 (r2 = 0924)

These results indicate that the in vivo RBA of lead in soil-like materials can be estimated by measuring the IVBA and using the equation above to calculate the expected in vivo RBA Actual RBA values may be either higher or lower than the expected value as indicated by the 95 prediction interval shown in Figure ES-1

At present it appears that this equation is likely to be widely applicable having been found to hold true for a wide range of different soil types and lead phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample that contains an unusual andor untested lead phase is evaluated by the in vitro bioaccessibility protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

40 CONCLUSIONS

The data from the investigations performed under this program support the following main conclusions

1 Juvenile swine are believed to be a useful model for the evaluation of lead absorption in children and provide a reliable system for measuring the RBA of lead in a variety of soil and soil-like materials

OSWER 92857-77 ES-4

2 Each of the four different endpoints employed in these studies (blood AUC liver kidney bone) to estimate RBA in vivo yield reasonable data and the best estimate of the RBA value for any particular sample is the average across all four endpoint-specific RBA values

3 There are clear differences in the in vivo RBA of lead between different types of test material ranging from near zero to close to 100 Thus knowledge of the RBA value for different types of materials at a site can be very important in improving lead risk assessments at a site

4 Available data support the view that certain types of lead minerals are well-absorbed (eg cerussite manganese lead oxide) while other forms are poorly absorbed (eg galena anglesite) However the data are not yet sufficient to allow reliable quantitative calculation or prediction of the RBA for a test material based on knowledge of the lead mineral content alone

5 In vitro measurements of bioaccessibility performed using the protocol described in this report correlate well with in vivo measurements of RBA at least for 19 materials tested under this program At present the results appear to be broadly applicable although further testing of a variety of different lead forms is required to determine if there are exceptions to the apparent correlation

OSWER 92857-77 ES-5

TABLE ES-1 SUMMARY OF ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence BoundUB = 95 Upper Confidence Bound

TABLE ES-2 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

FIGURE ES-1 RELATION BETWEEN RBA AND IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

TABLE OF CONTENTS

10 INTRODUCTION 1 11 Overview 1 12 Using Bioavailability Data to Improve Exposure Calculations for Lead 2 13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals 3 14 Overview of Methods for Estimating Lead RBA In Vitro 3

20 IN VIVO STUDIES4 21 Basic Approach for Measuring RBA In Vivo 4 22 Animal Exposure and Sample Collection 4 23 Preparation of Biological Samples for Analysis 5 24 Data Reduction 5 25 Results and Discussion 6

251 Effect of Dosing on Animal Health and Weight 6 252 Time Course of Blood Lead Response 6 253 Dose-Response Patterns 7 254 Estimation of ABA for Lead Acetate 7 255 Estimation of RBA for Lead in Test Materials 8 256 Effect of Food 9 257 Correlation of RBA with Mineral Phase 10 258 Quality Assurance 12

30 IN VITRO STUDIES14 31 Introduction 14 32 In Vitro Method 14

321 Sample Preparation 14 322 Apparatus 14 323 Selection of IVBA Test Conditions 15 324 Summary of Final Leaching Protocol 16 325 Analysis of Extraction Fluid for Lead 17 326 Quality ControlQuality Assurance 17

33 Results and Discussion 18 331 IVBA Values 18 332 Comparison with In Vivo Results 19

40 REFERENCES 21

OSWER 92857-77 i

LIST OF TABLES

TABLE TITLE

2-1 Typical Feed Composition 2-2 Typical In Vivo Study Design 2-3 Description of Phase II Test Materials 2-4 Relative Lead Mass of Mineral Phases Observed in Test Materials 2-5 Matrix Associations for Test Materials 2-6 Particle Size Distributions for Test Materials 2-7 Estimated RBA Values for Test Materials 2-8 Grouped Lead Phases 2-9 Curve Fitting Parameters for Oral Lead Acetate Dose-Response Curves 2-10 Reproducibility of RBA Measurements 3-1 In Vitro Bioaccessibility Values

LIST OF FIGURES

FIGURE TITLE

2-1 Average Rate of Body Weight Gain in Test Animals 2-2 Example Time Course of Blood Lead Response 2-3 Dose Response Curve for Blood Lead AUC 2-4 Dose Response Curve for Liver Lead Concentration 2-5 Dose Response Curve for Kidney Lead Concentration 2-6 Dose Response Curve for Femur Lead Concentration 2-7 Estimated Group-Specific RBA Values 2-8 Correlation of Duplicate Analyses 2-9 Results for CDC Blood Lead Check Samples 2-10 Interlaboratory Comparison of Blood Lead Results 3-1 In Vitro Bioaccessibility Extraction Apparatus 3-2 Effect of Temperature Time and pH on IVBA 3-3 Precision of In Vitro Bioaccessibility Measurements 3-4 Reproducibility of In Vitro Bioaccessibility Measurements 3-5 RBA vs IVBA 3-6 Prediction Interval for RBA Based on Measured IVBA

OSWER 92857-77 ii

C

LIST OF APPENDICES

APPENDIX TITLE

A Evaluation of Juvenile Swine as a Model for Gastrointestinal Absorption in Young Children

B Detailed Description of Animal Exposure

Detailed Methods of Sample Collection and Analysis

D Detailed Methods for Data Reduction and Statistical Analysis

E Detailed Dose-Response Data and Model Fitting Results

F Detailed Lead Speciation Data for Test Materials

OSWER 92857-77 iii

ACRONYMS AND ABBREVIATIONS

degC Degrees Celsius μg Microgram μm Micrometer ABA Absolute bioavailability AFo Oral absorption fraction AIC Akaikersquos Information Criterion AUC Area under the curve cc Cubic centimeter CDC Centers for Disease Control and Prevention dL Deciliter g Gram GLP Good Laboratory Practices HCl Hydrochloric acid HDPE High density polyethylene ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry ICP-MS Inductively Coupled Plasma-Mass Spectrometry IV Intravenous IVBA In vitro bioaccessibility kg Kilogram L Liter M Molar (M) Metal MDL Method detection limit mg Milligram mL Milliliter mm Millimeter NIST National Institute of Standards and Testing Pb Lead PbAc Lead acetate ppm Parts per million RBA Relative bioavailability RLM Relative lead mass

OSWER 92857-77 iv

ACRONYMS AND ABBREVIATIONS (CONTINUED)

rpm Revolutions per minute SOP Standard operating procedure SRM Standard Reference Material TAL Target Analyte List TCLP Toxicity Characteristic Leaching Procedure US EPA US Environmental Protection Agency

OSWER 92857-77 v

This page intentionally left blank to facilitate double-sided printing

ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS

USING IN VIVO AND IN VITRO METHODS

10 INTRODUCTION

11 Overview

Reliable analysis of the potential hazard to children from ingestion of lead in the environment depends on accurate information on a number of key parameters including 1) lead concentration in environmental media (eg soil dust water food air paint) 2) childhood intake rates of each medium and 3) the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Knowledge of lead bioavailability is important because the amount of lead which actually enters the body from an ingested medium depends on the physical-chemical properties of the lead and of the medium For example lead in soil may exist at least in part as poorly water-soluble minerals and may also exist inside particles of inert matrix such as rock or slag of variable size shape and association These chemical and physical properties may tend to influence (usually decrease) the absorption (bioavailability) of lead when ingested Thus equal ingested doses of different forms of lead in different media may not be of equal health concern

Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability) or in relative terms (relative bioavailability)

Absolute Bioavailability (ABA) is the ratio of the amount of lead absorbed compared to the amount ingested

Absorbed DoseABA = Ingested Dose

This ratio is also referred to as the oral absorption fraction (AFo)

Relative Bioavailability (RBA) is the ratio of the absolute bioavailability of lead present in some test material compared to the absolute bioavailability of lead in some appropriate reference material

ABAtest materialRBA = ABAreference material

Usually the form of lead used as reference material is a soluble compound such as lead acetate that is expected to completely dissolve when ingested

For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg entered the body the ABA would be 50100 or 050 (50) Likewise if

OSWER 92857-77 1

100 μg of lead contained in soil were ingested and 30 μg entered the body the ABA for soil would be 30100 or 030 (30) If the lead dissolved in water were used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

For additional discussion about the concept and application of bioavailability see Gibaldi and Perrier (1982) Goodman et al (1990) Mushak (1991) andor Klaassen et al (1996)

12 Using Bioavailability Data to Improve Exposure Calculations for Lead

When reliable data are available on the bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site For example the basic equation for estimating the site-specific ABA of a test soil is as follows

ABAsoil = ABAsoluble sdot RBAsoil

where

ABAsoil = Absolute bioavailability of lead in soil ingested by a child

ABAsoluble = Absolute bioavailability in children of some dissolved or fully soluble form of lead

RBAsoil = Relative bioavailability of lead in soil

Based on available information in the literature on lead absorption in humans the US EPA estimates that the absolute bioavailability of lead from water and the diet is usually about 50 in children (US EPA 1994) Thus when a reliable site-specific RBA value for soil is available it may be used to estimate a site-specific absolute bioavailability in that soil as follows

ABAsoil = 50 sdot RBAsoil

In the absence of site-specific data the absolute absorption of lead from soil dust and other similar media is estimated by US EPA to be about 30 (US EPA 1994) Thus the default RBA used by US EPA for lead in soil and dust compared to lead in water is 3050 or 60 When the measured RBA in soil or dust at a site is found to be less than 60 compared to some fully soluble form of lead it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions If the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

OSWER 92857-77 2

13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals

Scientists in US EPA Region 8 have been engaged in a multi-year investigation of lead absorption from a variety of different environmental media especially soils and solid wastes associated with mining milling and smelting sites All studies in this program employed juvenile swine as the animal model Juvenile swine were selected for use in these studies because they are considered to be a good physiological model for gastrointestinal absorption in children (see Appendix A)

Initial studies in the program (referred to as ldquoPhase Irdquo) were performed by Dr Robert Poppenga and Dr Brad Thacker at Michigan State University (Weis et al 1995) The Phase I study designs and protocols were refined and standardized by Dr Stan Casteel and his colleagues at the University of Missouri Columbia and this group has performed a large number of studies (collectively referred to as ldquoPhase IIrdquo) designed to further characterize the swine model and to quantify lead absorption from a variety of different test materials Section 2 of this report summarizes the Phase II work performed at the University of Missouri

14 Overview of Methods for Estimating Lead RBA In Vitro

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be a feasible option in all cases It is mainly for these reasons that a number of scientists have been working to develop in vitro procedures that may provide faster and less costly alternatives for estimating the RBA of lead in soil or soil-like samples (Miller and Schricker 1982 Imber 1993 Ruby et al 1993 1996 Medlin 1997 Rodriguez et al 1999) These methods are based on the concept that the rate andor extent of lead solubilization in the gastrointestinal fluid are likely to be important determinants of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization from soil into an extraction solvent that resembles gastric fluid To help avoid confusion in nomenclature the fraction of lead which solubilizes in an in vitro system is referred to as bioaccessibility while the fraction that is absorbed in vivo is referred to as bioavailability

More recently development and testing of a simplified in vitro method for estimating lead bioaccessibility has been performed by Dr John Drexler at the University of Colorado Section 3 of this report describes this in vitro method and presents the results

OSWER 92857-77 3

20 IN VIVO STUDIES

21 Basic Approach for Measuring RBA In Vivo

The basic approach for measuring lead absorption in vivo is to administer an oral dose of lead to test animals and measure the increase in lead level in one or more body compartments (blood soft tissue bone) In order to calculate the RBA value of a test material the increase in lead in a body compartment is measured both for that test material and a reference material (lead acetate) Equal absorbed doses of lead (as Pb+2) are expected to produce approximately equal increases in concentration in tissues regardless of the source or nature of the ingested lead so the RBA of a test material is calculated as the ratio of doses (test material and reference material) that produce equal increases in lead concentration in the body compartment Note that this approach is general and yields reliable results for both non-linear and linear responses

22 Animal Exposure and Sample Collection

All in vivo studies carried out during this program were performed as nearly as possible within the spirit and guidelines of Good Laboratory Practices (GLP 40 CFR 792) Standard Operating Procedures (SOPs) for all of the methods are documented in a project notebook that is available through the administrative record

Experimental Animals

All animals used in this program were intact male swine approximately 5 to 6 weeks of age All animals were monitored to ensure they were in good health throughout the study

Diet

In order to minimize lead exposure from the diet animals were fed a special low-lead diet purchased from Zeigler Brothers Inc (Gardners PA) The amount of feed provided was equal to 5 of the average body weight of animals on study The feed was nutritionally complete and met all requirements of the National Institutes of HealthmdashNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 Periodic analysis of feed samples during this program indicated the mean lead level was less than 50 μgkg corresponding to a daily intake of less than 25 μgkgshyday

Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 μgL corresponding to a daily intake of less than 02 μgkg-day

OSWER 92857-77 4

Exposure

Appendix B provides the details of animal exposure including the design (number of dose groups number of animals dosing material and dose levels) for all of the Phase II studies A typical study design is summarized in Table 2-2 In general groups of animals were exposed to a series of doses of either lead acetate or test material For convenience in this report lead acetate is abbreviated as ldquoPbAcrdquo Exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous (IV) injection via an indwelling venous catheter

23 Preparation of Biological Samples for Analysis

Samples of blood were collected from each animal at multiple times during the course of a study (eg days 0 1 2 3 4 6 9 12 and 15) On day 15 the animals were sacrificed and samples of liver kidney and bone (femur) were collected

Appendix C presents details of biological sample collection preparation and analysis In brief samples of blood were diluted in ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDC) for analysis of blood samples for lead (CDC 2001) Samples of soft tissue (kidney liver) were digested in hot acid while samples of bone were ashed and then dissolved in acid

Prepared samples were analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer All results from the analytical laboratory were reported in units of μg PbL of prepared sample The detection limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 μgL)

24 Data Reduction

The basic data reduction task required to calculate an RBA for a test material is to fit mathematical equations to the dose-response data for both the test material and the reference material and then solve the equations to find the ratio of doses that would be expected to yield equal responses After testing a variety of different equations it was found that nearly all blood lead AUC data sets could be well-fit using an exponential equation while most data sets for liver kidney and bone lead could be well-fit using a linear equation

Linear Response = a + b sdot Dose (1)

Exponential Response = a + b sdot [1minus exp(minusc sdot Dose)] (2)

where a b and c are the parameters of the models and Dose is the total daily administered dose of lead (μgkg-day)

OSWER 92857-77 5

Appendix D presents a detailed description of the curve-fitting methods and rationale along with the methods used to quantify uncertainty in the RBA estimates for each test material Detailed dose-response data and curve-fitting results are presented in Appendix E

25 Results and Discussion

251 Effect of Dosing on Animal Health and Weight

Lead exposure levels employed in this program are substantially below those which cause clinical symptoms in swine and no evidence of treatment-related toxicity was observed in any dose group All animals exposed to lead by the oral route remained in good health throughout each study and the only clinical signs observed were characteristic of normal swine However animals implanted with indwelling venous catheters (used for intravenous injections) were subject to infection and a few animals became quite ill This was a problem mainly at the start of the program and tended to diminish as experience was gained on the best surgical and prophylactic techniques for catheter implantation When an animal became ill if good health could not be restored by administration of antibiotics the animal was promptly removed from the study

All animals were weighed every three days during the course of each study The rate of weight gain (kgday) averaged across all Phase II studies is illustrated in Figure 2-1 As shown animals typically gained about 03 to 05 kgday and the rate of weight gain was generally comparable in all groups

252 Time Course of Blood Lead Response

The time course of the blood lead response to oral or intravenous exposure may be thought of on two different time scales the short-term ldquospikerdquo that occurs immediately following an exposure and the longer-term trend toward ldquosteady-staterdquo blood lead following repeated exposures

Initial studies performed during Phase I of this program revealed that a single oral dose of lead acetate causes blood lead levels rise to a peak about two hours post-ingestion and then decrease over the course of 12 to 24 hours to a near steady-state value (Weis et al 1993) Although knowledge of these rapid kinetics is important in fully understanding the toxicokinetics of lead investigations in Phase II of this program focused mainly on quantifying the slower rise in ldquosteady-staterdquo blood lead following repeated exposures To achieve this goal all blood lead samples were collected 17 hours after lead exposure at a time when the rate of change in blood lead due to the preceding dose is minimal

Figure 2-2 presents an example graph of the time course of ldquosteady-staterdquo blood lead levels following repeated oral and intravenous exposure to lead acetate As seen blood lead levels begin below the detection limit (usually about 1 μgdL) and stay very low in control animals throughout the course of the study In animals exposed to lead acetate blood lead values begin to rise within 1 to 2 days and tend to flatten out to a near steady-state in about 7 to 10 days

OSWER 92857-77 6

253 Dose-Response Patterns

Figures 2-3 to 2-6 present the dose response patterns observed for blood liver kidney and bone (femur) following repeated oral or intravenous exposure to lead acetate For blood the endpoint is the area under the blood lead vs time curve (AUC) For femur kidney and liver the endpoint is the concentration in the tissue at the time of sacrifice The data for intravenous exposure are based on a single study1 while the patterns for oral exposure are based on the combined results across all studies performed during Phase II

As seen there is substantial variability in response between individuals (both within and between studies) and this variability tends to increase as dose (and response) increases This pattern of increasing variance in response is referred to as heteroscedasticity and is accounted for in the model-fitting procedure through the use of weighted least squares regression (see Appendix D) Despite the variability in response the regression analyses indicate that the dose response pattern is typically non-linear for blood lead AUC following both oral and intravenous exposure but is approximately linear in both cases for liver kidney and bone lead (see Table D1) This pattern of dose-response relationships suggests that at least over the dose range tested in this program absorption of lead from the gastrointestinal tract of swine is linear and that the non-linearity observed in blood lead AUC response is due to some sort of saturable binding in the blood

254 Estimation of ABA for Lead Acetate

Inspection of Figures 2-3 to 2-6 reveals that each of the measured responses to ingested lead acetate is smaller than the response for intravenously injected lead acetate These data were used to calculate the absolute bioavailability of ingested lead acetate using the data reduction approach described in Section 24 The results are summarized below

Measurement Endpoint Estimated ABA of PbAc

Blood AUC 010 plusmn 002

Liver 016 plusmn 005

Kidney 019 plusmn 005

Femur 014 plusmn 003

Although the four different measurement endpoints do not agree precisely it seems clear that the absolute bioavailability of lead acetate in juvenile swine is about 15 plusmn 4 Although data are limited results from balance studies in infants and young children (age 2 weeks to 8 years) suggest that lead absorption is probably about 42 to 53 (Alexander et al 1974 Ziegler et al 1978) If so lead absorption in juvenile swine is apparently lower than for young

Most studies in Phase II utilized only one intravenous dose level (100 μgkg-day) and hence do not provide dose-response data Study 8 included three intravenous exposure levels (25 50 and 100 μgkg-day) the data from this study are shown in Figures 2-3 to 2-6

OSWER 92857-77 7

1

humans Although the reason for this apparent difference is not known it is important to note that even if swine do absorb less lead than children under similar dosing conditions this does not invalidate the swine as an animal model for estimating relative bioavailability of lead in different test materials

255 Estimation of RBA for Lead in Test Materials

Characterization of Test Materials

Table 2-3 describes the Phase II test materials for which RBA was measured in this program and provides the analytical results for lead Data on other Target Analyte List (TAL) metals if available are provided in Appendix F As seen 17 different samples from eight different sites were investigated along with one sample of paint flakes mixed with clean soil and one sample of finely-ground native galena mixed with clean soil Prior to analysis and dosing all samples were dried (lt40degC) and sieved and only materials which passed through a 60-mesh screen (corresponding to particles smaller than about 250 μm) were used This range of particle sizes was selected because the US EPA considers particles less than about 250 μm to be the most likely to adhere to the hands and be ingested by hand-to-mouth contact especially in young children (US EPA 2000)

Each sample of test material that was evaluated in the swine bioassay program was thoroughly characterized with regard to mineral phase particle size distribution and matrix association using electron microprobe analysis Detailed results for each test material are presented in Appendix F and the results are summarized in Tables 2-4 to 2-6

Table 2-4 lists the different lead phases observed in the test materials and gives the relative lead mass (RLM) for each phase in each test material The RLM is the estimated percentage of the total lead in a sample that is present in a particular phase Of the 22 different phases detected in one or more samples 9 are very minor with RLM values no higher than 2 in any sample However 13 of the phases occur at concentrations that could contribute significantly to the overall bioavailability of the sample (RLM gt10) It should be noted that a particle is classified as ldquoslagrdquo only if the particle is glassy or vitreous in nature Inclusions or other non-vitreous grains of lead-bearing material are classified according to their mineral content and are not classified as slag particles (even if they are observed in bulk samples that are referred to as ldquoslagrdquo)

Table 2-5 summarizes information on the degree to which lead-bearing grains in each sample are partially or entirely liberated (ie exposed to gastric fluids when ingested) or included (ie fully enclosed or encased in mineral or vitreous matrices) Data are presented both on a particle frequency basis and on the basis of relative lead mass As seen the majority of lead-bearing particles in most samples are partially or entirely liberated although the tailings sample from Oregon Gulch is a clear exception

Table 2-6 summarizes data on the distribution (frequency) of particle sizes (measured as the longest dimension) in each sample For convenience the data presented are for liberated particles only (Appendix F contains the data for all particles) As seen most samples contain a

OSWER 92857-77 8

range of particle sizes often with the majority of the particles being less than 50 μm (Remember that all samples were sieved to isolate particles less than 250 μm before analysis)

RBA Results for Test Materials

Detailed model fitting results and RBA calculations for each test material are presented in Appendix E and are summarized in Table 2-7

As shown in Table 2-7 there are four independent estimates of RBA (based on blood AUC liver kidney and bone) for each test material Conceptually each of these four values is an independent estimate of the RBA for the test material so the estimates from all four endpoints need to be combined to yield a final point estimate for each test material As discussed in Appendix D (Section 47) an analysis of the relative statistical reliability of each endpoint (as reflected in the average coefficient of variation in RBA values derived from each endpoint) suggests that the four endpoint-specific RBA values are all approximately equally reliable Based on this the point estimate for a test material is the simple average across the four endpoint-specific RBA values The resulting point estimate values are presented in the far right portion of Table 2-7 Uncertainty bounds around the point estimates were derived as described in Appendix D (Section 47)

Inspection of these point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to about 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data to site-specific samples in order help to improve risk assessments for lead exposure

256 Effect of Food

Studies in humans indicate that lead absorption is reduced by the presence of food in the stomach (Garber and Wei 1974 US EPA 1996) The mechanism by which the presence of food leads to decreased absorption is not certain but may be related to competition between lead and calcium for active andor passive uptake sites in the gastrointestinal epithelium (Diamond 2000) Because of the potential inhibitory effects of food all of the studies performed during this program were designed to estimate the RBA of lead associated with a fasting state each dose being administered to animals no less than six hours after the last feeding In order to investigate how the presence of food in the stomach might influence absorption a study was performed to measure the absorption of lead acetate given two hours before feeding and compare that to the absorption of lead acetate given either at the time of feeding or two hours after feeding The results expressed using the absorption two hours before feeding as the frame of reference are summarized below

OSWER 92857-77 9

Measurement Endpoint

Ratio of PbAc Absorption Given With Food

Compared to PbAc Given Without Food

Ratio of PbAc Absorption Given 2 Hours After Feeding

Compared to PbAc Given Without Food

Blood Lead AUC 039 plusmn 005 040 plusmn 006

Liver Lead 086 plusmn 024 058 plusmn 016

Kidney Lead 072 plusmn 026 073 plusmn 027

Bone Lead 035 plusmn 005 033 plusmn 005

Point Estimate 058 plusmn 028 051 plusmn 022

These findings indicate that uptake of lead is reduced by close to half (RBA point estimates are 51 and 58) when the lead is administered to animals along with food compared to when it is administered on an empty stomach This effect appears to endure for at least two hours after feeding which is consistent with the results of a gastric emptying time study in juvenile swine that indicated that food is held in the stomach for up to four hours after eating (Casteel et al 1998)

This study which utilized lead acetate only does not provide information about the effect of food on the absorption of lead ingested in a solid form such as soil However it is suspected that the magnitude of the decrease in absorption caused by food is likely to be at least as large as that observed for lead acetate and perhaps even larger This is because food may influence not only the absorption of soluble lead ions but might also tend to decrease the rate and extent of lead solubilization from soil by tending to increase the pH of gastric fluids

257 Correlation of RBA with Mineral Phase

In principle each unique combination of phase size and matrix association constitutes a unique mineralogical form of lead and each unique form could be associated with a unique RBA that is the inherent value for that ldquotyperdquo of lead If so then the concentrated-weighted average RBA value for a sample containing a mixture of different types of lead is given by

n s m

RBAsample =sumsumsumCi j k sdotRBA i j k (3) i=1 j=1 k =1

where

RBAsample = Observed RBA of lead in a sample Cijk = Fraction of total lead in phase i of size j and matrix association k RBAijk = RBA of lead in phase i of size j and matrix association k n = Number of different lead phase categories s = Number of different size categories m = Number of different matrix association categories

OSWER 92857-77 10

If the number of different lead phases which can exist in the environment is on the order of 20 the number of size categories is on the order of five and the number of matrix association categories is two (included and liberated) then the total number of different ldquotypesrdquo of lead is on the order of 200 Because measured RBA data are available from this study for only 19 different samples it is clearly impossible (with the present data set) to estimate type-specific RBA values for each combination of phase size and matrix association Therefore in order to simplify the analysis process it was assumed that the measured RBA value for a sample was dominated by the liberated mineral phases present and the effect of included materials or of particle size were not considered That is the data were analyzed according to the following model

n

RBAsample =sumCi liberated sdot RBAi liberated (4) i=1

Because 22 different phases were identified and only 19 different samples were analyzed it was necessary to reduce the number of phases to a smaller number so that regression analysis could be performed Therefore the different phases were grouped into ten categories as shown in Table 2-8 These groups were based on professional judgment regarding the expected degree of similarity between members of a group along with information on the relative abundance of each phase (see Table 2-4)

The total lead mass in each group was calculated by summing the relative lead mass for each individual component in the group As noted above only the lead mass in partially or entirely liberated particles was included in the sum

Group-specific RBA values were estimated by fitting the grouped data to the model (equation 4) using minimization of squared errors Two different options were employed In the first option each parameter (group-specific RBA) was fully constrained to be between zero and one inclusive In the second option each parameter was partially constrained to be greater than or equal to zero Because Group 10 contains only phases which are present in relatively low levels an arbitrary coefficient of 05 was assumed for this group and the coefficient was not treated as a fitting parameter

The resulting estimates of the group-specific RBA values are shown in Figure 2-7 As seen there is a wide range of group-specific RBA values with equal results being obtained by both methods of constraint It is important to stress that these group-specific RBA estimates are derived from a very limited data set (nine independent parameter estimates based on only 19 different measurements) so the group-specific RBA estimates are inherently uncertain In addition both the measured sample RBA values and the relative lead mass in each phase are subject to additional uncertainty Therefore the group-specific RBA estimates should not be considered to be highly precise and calculation of a quantitative sample-specific RBA value from these estimates is not appropriate Rather it is more appropriate to consider the results of this study as sufficient to support only semi-quantitative rank-order classification of phase-specific RBA values as follows

OSWER 92857-77 11

Low Bioavailability (RBA lt025)

Medium Bioavailability (RBA = 025-075)

High Bioavailability (RBA gt075)

Fe(M) Sulfate Anglesite Galena Fe(M) Oxide Pb(M) Oxide

Lead Oxide Lead Phosphate

Cerussite Mn(M) Oxide

(M) = Metal

As noted above the estimates apply only to particles that are liberated not those that are included

258 Quality Assurance

A number of steps were taken throughout each of the studies in this program to assess and document the quality of the data that were collected These steps are summarized below

Duplicates

A randomly selected set of about 5 of all blood and tissue samples generated during each study were submitted to the laboratory in a blind fashion for duplicate analysis Figure 2-8 plots the results for blood (Panel A) and for liver kidney and bone (Panel B) As seen there was good intra-laboratory reproducibility between duplicate samples for both blood and tissues with both linear regression lines having a slope near 10 an intercept near zero and an R2 value near 100

Standards

The CDC provides blood lead ldquocheck samplesrdquo that may be used for use in quality assurance programs for blood lead studies Three types of check samples (nominal concentrations of 17 μgdL 48 μgdL and 149 μgdL) were used in these studies Each day that blood samples were collected from experimental animals several check samples of different concentrations were also prepared and submitted for analysis in random order and in a blind fashion The results (averaged across all studies) are plotted in Figure 2-9 As seen the analytical results obtained for the check samples were generally in good agreement with the expected value at all three concentrations with an overall mean of 14 μgL for the low standards (nominal concentration of 17 μgL) 43 μgL for the middle standard (nominal concentration of 48 μgL) and 145 μgL for the high standards (nominal concentration of 149 μgL)

Interlaboratory Comparison

In each study an interlaboratory comparison of blood lead analytical results was performed by sending a set of about 15 to 20 randomly selected whole blood samples to CDC for blind independent preparation and analysis The results are plotted in Figure 2-10 As seen the results of analyses by US EPArsquos laboratory are generally similar to those of CDC with a mean inter-sample difference (US EPA minus CDC) of 007 μgdL The slope of the best-fit straight line through the data is 084 indicating that the concentration values estimated by the US EPA

OSWER 92857-77 12

laboratories tended to be about 15 lower than those estimated by CDC The reason for this apparent discrepancy between the US EPA laboratory and the CDC laboratory is not clear but might be related to differences in sample preparation techniques Regardless of the reason the differences are sufficiently small that they are likely to have no significant effect on calculated RBA values In particular it is important to realize that if both the lead acetate and test material dose-response curves are biased by the same factor then the biases cancel in the calculation of the ratio

Reproducibility of RBA Estimates

As with any study involving animals there may be substantial variability between animals within each dose group and there may also be variability in observed responses to exposure across different studies Because each study involved administration of a standard series of doses of lead acetate the data for lead acetate can be used to assess the stability and reproducibility of the swine model Table 2-9 lists the best-fit parameters for the best-fit curves for oral lead acetate dose responses for blood AUC liver kidney and bone in each study and for all studies combined As seen the variability (expressed as the between-study coefficient of variation) is generally on the order of 25 to 50 for the b and c parameters with somewhat higher variability in the intercept parameter (a) This degree of between-study variability is not unexpected for a study in animals and emphasizes the need for generating the dose-response curve for the reference material within each study The source of the between-study variation is likely to be mainly a consequence of variation in animals between different groups (different dams different ages different weights) although a possible contribution from other variables (time of year laboratory personnel etc) cannot be excluded

Because RBA calculations are based on the within-study ratio of responses between a test material and reference material the variability in response between studies may be at least partly cancelled in the calculation of the RBA The most direct way to test this hypothesis is to compare RBA estimates for the same material that has been tested in two different studies To date only two test materials have been tested more than once The results are shown in Table 2-10 and are summarized below

For the Palmerton Location 2 sample (tested twice in Phase II) agreement is moderately good between the two studies for the blood AUC and kidney endpoints and for the point estimate although there is relatively low agreement for the liver and bone endpoints For the Residential Soil Composite from the California Gulch Superfund site (tested once by the University of Michigan during Phase I and again by the University of Missouri during Phase II) agreement is good for all four endpoints with between-study differences of less than 20 These differences are generally similar to the within-study confidence bounds which are typically in the 10 to 20 range Taken together these studies support the view that the in vivo RBA assay has acceptable inter-study and inter-laboratory reproducibility

OSWER 92857-77 13

30 IN VITRO STUDIES

31 Introduction

Measurement of lead RBA in animals using the approach described above has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measurement of the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA) which may then be used as an indicator of in vivo RBA

Background on the development and validation of in vitro methods for estimating lead bioaccessibility can be found in Imber (1993) Ruby et al (1993 1996) and Medlin (1997)

32 In Vitro Method

The method described in this report represents a simplification from most preceding approaches The method was designed to be fast easy and reproducible and some test conditions were adjusted to yield results that best correlated with in vivo measurements of lead bioavailability The detailed standard operating procedure (SOP) is presented below additional information on this procedure may be obtained from httpwwwcoloradoedugeolscilegs

321 Sample Preparation

All test materials tested in the bioaccessibility protocol were identical to the test materials administered to swine in the in vivo studies described above As noted previously soils were prepared by drying (lt40degC) and sieving to lt250 μm The lt250-μm size fraction was used because this particle size is representative of that which adheres to childrenrsquos hands Samples were thoroughly mixed prior to use to ensure homogenization All samples were archived after the study completion and retained for further analysis for a period of six months

322 Apparatus

The main piece of equipment used for this procedure is the extraction device shown in Figure 3-1 An electric motor (the same motor as is used in the Toxicity Characteristic Leaching Procedure or TCLP) drives a flywheel which in turn drives a Plexiglass block situated inside a temperature-controlled water bath The Plexiglass block contains ten 5-centimeter holes with stainless steel screw clamps each of which is designed to hold a 125-mL wide-mouth high density polyethylene (HDPE) bottle The water bath was filled such that the extraction bottles were completely immersed Temperature in the water bath was maintained at 37plusmn2 degC using an immersion circulator heater The 125-mL HDPE bottles had air-tight screw-cap seals and care

OSWER 92857-77 14

was taken to ensure that the bottles did not leak during the extraction procedure All equipment was properly cleaned acid washed and rinsed with deionized water prior to use

323 Selection of IVBA Test Conditions

The dissolution of lead from a test material into the extraction fluid depends on a number of variables including extraction fluid composition temperature time agitation solidfluid ratio and pH These parameters were evaluated to determine the optimum values for maximizing sensitivity stability and the correlation between in vitro and in vivo values

All reagents were free of lead and the final fluid was tested to confirm that lead concentrations were less than one-fourth the project required detection limit (PRDL) of 10 μgL (ie less than 2 μgL lead in the final fluid) Cleanliness of all materials used to prepare andor store the extraction fluid and buffer is essential all glassware and equipment used to prepare standards and reagents were properly cleaned acid washed and triple-rinsed with deionized water prior to use

Extraction Fluid The extraction fluid selected for this procedure was 04 M glycine (free base reagent grade glycine in deionized water) adjusted to a pH of 150plusmn005 at 37degC using trace metal grade concentrated hydrochloric acid (HCl) Most previous in vitro test systems have employed a more complex fluid intended to simulate gastric fluid For example Medlin (1997) used a fluid that contained pepsin and a mixture of citric malic lactic acetic and hydrochloric acids When the bioaccessibility of a series of test substances were compared using 04 M glycine buffer (pH 15) with and without the inclusion of these enzymes and metabolic acids no significant difference was observed (p=0196) This indicates that the simplified buffer employed in the procedure is appropriate even though it lacks some constituents known to be present in gastric fluid

Temperature In order to evaluate the effect of the extraction temperature seventeen substrates were analyzed (generally in triplicate) at both 37degC and 20degC The results are shown in Figure 3-2 (Panel A) In some cases temperature had little effect but in three cases the amount of lead solubilized was more than 20 greater at 37degC than at 20degC and in two cases it was more than 20 less Because the results appeared to depend on temperature in at least some cases a temperature of 37degC was selected because this is approximately the temperature of gastric fluid in vivo

Extraction Time The time that ingested material is present in the stomach (ie stomach-emptying time) is about one hour for a child particularly when a fasted state is assumed (see Appendix A) To investigate the effect of extraction time on lead solubilization 11 substrates were extracted for periods of 1 2 or 4 hours The results are shown in Figure 3-2 (Panel B) As seen in most cases the amount of lead solubilized was approximately constant over time with only one substrate (test material 6) showing a variation that exceeded the method precision Therefore an extraction time of one hour was selected for the final method In a subsequent test (data not shown) it was found that allowing the bottles to stand at room temperature for up to 4 hours after rotation at 37degC caused no significant variation (lt10) in lead concentration

OSWER 92857-77 15

pH Human gastric pH values tend to range from about 1 to 4 during fasting (see Appendix A) Previous studies have used stomach phase pH values between 10 and 25 for their in vitro experiments (Ruby et al 1993 CBR 1993 Gasser et al 1996 Buckley 1997 Medlin 1997 Rodriguez et al 1999 Mercier et al 2000) To evaluate the effect of pH on lead bioaccessibility 24 substrates were analyzed at pH values of 15 25 or 35 As shown in Figure 3-2 (Panel C) the amount of lead solubilized is strongly pH-dependent with the highest extraction at pH 15 For the subset of test materials for which in vivo RBA had been estimated at that time (N = 13) the empiric correlation between IVBA and in vivo RBA was slightly better at pH 15 (rho = 0919) than at pH 25 (rho = 0881) Thus a pH of 15 was selected for use in the final protocol

Agitation If the test material is allowed to accumulate at the bottom of the extraction apparatus the effective surface area of contact between the extraction fluid and the test material may be reduced and this may influence the extent of lead solubilization Depending on which theory of dissolution is relevant (Nernst and Brunner 1904 or Dankwerts 1951) agitation will greatly affect either the diffusion layer thickness or the rate of production of fresh surface Previous workers have noted problems associated with both stirring and argon bubbling methods (Medlin and Drexler 1995 Drexler 1997) Although no systematic comparison of agitation methods was performed an end-over-end method of agitation was chosen to best simulate the complex peristaltic motion of the gastrointestinal system

SolidFluid Ratio and Mass of Test Material A solid to fluid ratio of 1100 (mass per unit volume) was chosen to reduce the effects of metal dissolution that were noted by Sorenson et al (1971) when lower ratios (15 and 125) were used Tests using Standard Reference Materials showed no significant variation (within plusmn 1 of control means) in the fraction of lead extracted with soil masses as low as 02 gram (g) per 100 mL However use of low masses of test material could introduce variability due to small scale heterogeneity in the sample andor to weighing errors Therefore the final method employs 10 g of test material in 100 mL of extraction fluid

In special cases the mass of test material may need to be less than 10 g to avoid the potential for saturation of the extraction solution Tests performed using lead acetate lead oxide and lead carbonate indicate that if the bulk concentration of a test material containing these relatively soluble forms of lead exceeds approximately 50000 ppm the extraction fluid becomes saturated at 37degC and upon cooling to room temperature and below lead chloride crystals will precipitate To prevent this from occurring the concentration of lead in the test material should not exceed 50000 ppm or the mass of the test material should be reduced to 050plusmn001g

324 Summary of Final Leaching Protocol

The extraction procedure began by placing 100plusmn005 g of sieved test material and 100plusmn05 mL of the buffered extraction fluid (04 M glycine pH 15) into a 125-mL wide-mouth HDPE bottle Care was taken to ensure that static electricity did not cause soil particles to adhere to the lip or outside threads of the bottle if necessary an antistatic brush was used to eliminate static electricity prior to adding the test substrate The bottle was tightly sealed and then shaken or inverted to ensure that there was no leakage and that no soil was caked on the bottom of the bottle

OSWER 92857-77 16

Each bottle was placed into the modified TCLP extractor (water temperature 37plusmn2degC) Samples were extracted by rotating the samples end-over-end at 30 plusmn 2 rpm for 1 hour After 1 hour the bottles were removed dried and placed upright on the bench top to allow the soil to settle to the bottom A 15-mL sample of supernatant fluid is removed directly from the extraction bottle into a disposable 20-cc syringe After withdrawal of the sample into the syringe a Luer-Lok attachment fitted with a 045-μm cellulose acetate disk filter (25 mm diameter) is attached and the 15 mL aliquot of fluid is filtered through the attachment to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead as described below If the total time elapsed for the extraction process exceeds 90 minutes the test must be repeated

As noted above in some cases (mainly slags) the test material can increase the pH of the extraction buffer and this could influence the results of the bioaccessibility measurement To guard against this the pH of the fluid was measured at the end of the extraction step (just after a sample was withdrawn for filtration and analysis) If the pH was not within 05 pH units of the starting pH (15) the sample was re-analyzed If the second test also resulted in an increase in pH of greater than 05 units it was apparent that the test material was buffering the solution In these cases the test was repeated using manual pH adjustment during the extraction process stopping the extraction at 5 10 15 and 30 minutes and manually adjusting the pH down to pH 15 at each interval by drop-wise addition of HCl

325 Analysis of Extraction Fluid for Lead

The filtered samples of extraction fluid were stored in a refrigerator at 4degC until they were analyzed (within 1 week of extraction) Once received by the laboratory all media were maintained under standard chain-of-custody The samples were analyzed for lead by ICP-AES or ICP-MS (US EPA Method 6010 or 6020 US EPA 1986) The method detection limit (MDL) in extraction fluid was calculated to be around 19 μgL for Method 6010 and typically 01-03 μgL for Method 6020

326 Quality ControlQuality Assurance

Quality assurance for the extraction procedure consisted of the following quality control samples

Reagent Blank mdash extraction fluid analyzed once per batch

Bottle Blank mdash extraction fluid only (no test soil) run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Blank Spike mdash extraction fluid spiked at 10 mgL lead and run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Matrix Spikes mdash a subsample of each material used for duplicate analyses was used as a matrix spike The spike was prepared at 10 mgL lead and run through the extraction procedure at a frequency of 1 in 10 samples (minimum of 1 per batch)

OSWER 92857-77 17

Duplicate Sample mdash duplicate sample extractions were performed on 1 in 10 samples (minimum of 1 per batch)

Control Soil mdash National Institute of Standards and Testing (NIST) Standard Reference Material (SRM) 2711 (Montana Soil) was used as a control soil The SRM was analyzed at a frequency of 1 in 20 samples (minimum 1 per batch)

Control limits for these quality control samples were as follows

Analysis Frequency Control Limits

Reagent blank once per batch lt25 μgL lead

Bottle blank 5 lt50 μgL lead

Blank spike (10 mgL) 5 85-115 recovery

Matrix spike (10 mgL) 10 75-125 recovery

Duplicate sample 10 plusmn20 RPD

Control soil (NIST 2711) 5 plusmn10 RPD

RPD = Relative percent difference Minimum of once per batch

To evaluate the precision of the in vitro bioaccessibility extraction protocol approximately 67 replicate analyses of both NIST SRM 2710 and 2711 were conducted over a period of several months Results are shown in Figure 3-3 As seen both standards yield highly reproducible results with a mean coefficient of variation of about 6

33 Results and Discussion

331 IVBA Values

Table 3-1 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program Each value is the mean and standard deviation of three independent measurements performed at the University of Colorado at Boulder

Figure 3-4 shows the results of an inter-laboratory comparison of results for these test materials The participating laboratories included ACZ Laboratories Inc University of Colorado at Boulder US Bureau of Reclamation Environmental Research Chemistry Laboratory and National Exposure Research Laboratory As seen in the figure within-laboratory variability (as shown by the error bars) is quite small (average le2) and there is very good agreement between laboratories (average difference of 2 to 3 range of difference from 1 to 9)

OSWER 92857-77 18

332 Comparison with In Vivo Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples A scatter plot of the in vivo RBA and in vitro bioaccessibility data from this program is shown in Figure 3-5 The Spearman rank order correlation coefficient between the paired RBA and IVBA point estimates is 0896 (p lt0001) and the Pearson product moment correlation coefficient is 0917 (p lt0001) indicating that there is a statistically significant positive correlation between IVBA and RBA

Several different mathematical models were tested to describe the relation between RBA and IVBA including linear power and exponential All fitting was done using weighted least square regression as detailed in Appendix D The results are summarized below

Model R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting slightly better than the linear model However as discussed in Appendix D the difference in quality of fit between linear and exponential models is not judged to be meaningful and the linear model is selected as the preferred model at present As more data become available in the future the relationship between IVBA and RBA will be reassessed and the best-fit model form will be reconsidered and revised if needed

Because there is measurement error not only in RBA but also in IVBA linear fitting was also performed taking the error in both RBA and IVBA into account There was nearly no difference in fit so the results of the weighted linear regression were selected for simplicity This decision may be revisited as more data become available Based on this decision the currently preferred model is

RBA = 0878middotIVBA ndash 0028

It is important to recognize that use of this equation to calculate RBA from a given IVBA measurement will yield the ldquotypicalrdquo RBA value expected for a test material with that IVBA and the true RBA may be somewhat different (either higher or lower) The best fit line and the 95 prediction interval for this data set are shown in Figure 3-6

Applicability of the IVBA-RBA Model

At present it appears that the equation relating IVBA to RBA should be widely applicable having been found to hold true for a wide range of different soil types and lead

OSWER 92857-77 19

phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample containing an unusual andor untested lead phase is evaluated by the IVBA protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

OSWER 92857-77 20

40 REFERENCES

Alexander FW BE Clayton and HT Delves 1974 Mineral and trace-metal balances in children receiving normal and synthetic diets QJ Med 4389-111

Buckley BT 1997 Estimates of bioavailability of metals in soil with synthetic biofluids Is this a replacement for animal studies In IBC Conference on Bioavailability 1998 Scottsdale AZ

Casteel SW LD Brown J Lattimer and ME Dunsmore 1998 Fasting and feeding effects on gastric emptying time in juvenile swine Contemporary Topics in Laboratory Animal Science 37106-108

CBR 1993 Report Development of a physiologically relevant extraction procedure CB Research International Sidney BC Canada

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National Center for Environmental Health Centers for Disease Control and Prevention Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

Dankwerts PV 1951 Significance of liquid-film coefficients in gas absorption Ind Eng Chem 431460

Diamond GL 2000 Transport of metals in the gastrointestinal system and kidneys In Molecular Biology and Toxicology of Metals RK Zalups and J Koropatnick (eds) Taylor amp Francis London pp 300-344

Drexler JW 1997 Validation of an in vitro method A tandem approach to estimating the bioavailability of lead and arsenic to humans IBC Conference on Bioavailability Scottsdale AZ

Garber BT and E Wei 1974 Influence of dietary factors on the gastrointestinal absorption of lead Toxicol App Pharmacol 27685-691

Gasser UG WJ Walker RS Borch and RG Burau 1996 Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation Env Sci Tech 30761-769

Gibaldi M and D Perrier 1982 Pharmacokinetics (2nd edition) Marcel Dekker Inc NY NY pp 294-297

Goodman AG TW Rall AS Nies and P Taylor 1990 The Pharmacological Basis of Therapeutics (8th ed) Pergamon Press Inc Elmsford NY pp 5-21

OSWER 92857-77 21

Imber BD 1993 Development of a physiologically relevant extraction procedure Prepared for BC Ministry of Environment Lands and Parks Environmental Protection Division Victoria BC CB Research International Corporation Sidney BC

Klaassen CD MO Amdur and J Doull (eds) 1996 Cassarett and Doullrsquos Toxicology The Basic Science of Poisons McGraw-Hill Inc NY NY pp 190

Medlin EA 1997 An in vitro method for estimating the relative bioavailability of lead in humans Masters thesis Department of Geological Sciences University of Colorado Boulder

Medlin E and JW Drexler 1995 Development of an in vitro technique for the determination of bioavailability from metal-bearing solids International Conference on the Biogeochemistry of Trace Elements Paris France

Mercier G J Duchesne and A Carles-Gibergues 2000 A new in vitro test to simulate gastric absorption of copper lead tin and zinc from polluted soils Env Tech 23121-133

Miller DD and BR Schricker 1982 In vitro estimation of food iron bioavailability In Nutritional Bioavailability of Iron ACS Symp Ser 20310-25 1982

Mushak P 1991 Gastro-intestinal absorption of lead in children and adults Overview of biological and biophysico-chemical aspects In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 387-104

Nernst W and E Brunner 1904 Theorie der reaktionsgeschwindigkeit in heterogenen systemen Z Phys Chem 4752

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rodriguez RR NT Basta SW Casteel and LW Pace 1999 An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media Environ Sci Technol 33642-649

Ruby MV A Davis TE Link R Schoof RL Chaney GB Freeman and P Bergstrom 1993 Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead Environ Sci Technol 27(13)2870ndash2877

Ruby MV A Davis R Schoof S Eberle and C M Sellstone 1996 Estimation of lead and arsenic bioavailability using a physiologically based extraction test Environ Sci Technol 30(2)422ndash430

Sorenson RC DD Oelsligle and D Knodsen 1971 Extraction of zinc iron and manganese from soils with 01N hydrochloric acid as affected by soil properties solutionsoil ratio and length of extraction period Soil Sci 111352-359

OSWER 92857-77 22

US EPA 1986 Test methods for evaluating solid waste Volume 1A and 1B Laboratory manual physicalchemical methods SW-846 Third edition United States Environmental Protection Agency Office of Solid Waste and Emergency Response

US EPA 1994 Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children United States Environmental Protection Agency Office of Emergency and Remedial Response Publication Number 92857-15-1 EPA540R-93081

US EPA 1996 Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil United States Environmental Protection Agency Technical Review Workgroup for Lead December 1996

US EPA 2000 Short Sheet TRW Recommendations for Sampling and Analysis of Soil at Lead (Pb) Sites OSWER 92857-38 United States Environmental Protection Agency Office of Solid Waste and Emergency Response

Weis CP GM Henningsen RH Poppenga and BJ Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

Weis CP RH Poppenga BJ Thacker GM Henningsen and A Curtis 1995 Design of pharmacokinetic and bioavailability studies of lead in an immature swine model In Lead in Paint Soil and Dust Health Risks Exposure Studies Control Measures Measurement Methods and Quality Assurance ASTM STP 1226 M E Beard and S D A Iske (eds) American Society for Testing and Materials Philadelphia 1995

Ziegler EE BB Edwards RL Jensen KR Mahaffey and SJ Fomon 1978 Absorption and retention of lead by infants Pediatr Res 1229-34

OSWER 92857-77 23

This page intentionally left blank to facilitate double-sided printing

TABLES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

TABLE 2-1 TYPICAL FEED COMPOSITION

Nutrient Name Amount

Protein 201021

Arginine 12070

Lysine 14690

Methionine 08370

Met+Cys 05876

Tryptophan 02770

Histidine 05580

Leucine 18160

Isoleucine 11310

Phenylalanine 11050

Phe+Tyr 20500

Threonine 08200

Valine 11910

Fat 44440

Saturated Fat 05590

Unsaturated Fat 37410

Linoleic 1826 19350

Linoleic 1833 00430

Crude Fiber 38035

Ash 43347

Calcium 08675

Phos Total 07736

Available Phosphorous 07005

Sodium 02448

Potassium 03733

Nutrient Name Amount

Chlorine 01911

Magnesium 00533

Sulfur 00339

Manganese 204719 ppm

Zinc 1180608 ppm

Iron 1353710 ppm

Copper 81062 ppm

Cobalt 00110 ppm

Iodine 02075 ppm

Selenium 03196 ppm

Nitrogen Free Extract 602340

Vitamin A 51892 kIUkg

Vitamin D3 06486 kIUkg

Vitamin E 872080 IUkg

Vitamin K 09089 ppm

Thiamine 91681 ppm

Riboflavin 102290 ppm

Niacin 301147 ppm

Pantothenic Acid 191250 ppm

Choline 10198600 ppm

Pyridoxine 82302 ppm

Folacin 20476 ppm

Biotin 02038 ppm

Vitamin B12 234416 ppm

Feed obtained from and nutritional values provided by Zeigler Bros Inc

Tablesxls (2-1_Feed)

TABLE 2-2 TYPICAL IN VIVO STUDY DESIGN

Dose Dose Exposure Target Dose Number of Group Material Route ȝg Pbkg-day Animals

1 None Oral -- 2-5 2 Lead Acetate Oral 25 5 3 75 5 4 225 5 5 Test Material 1 Oral 75 5 6 225 5 7 625 5 8 Test Material 2 Oral 75 5 9 225 5 10 625 5 11 Lead Acetate Intravenous 100 5-8

Tablesxls (2-2_Design)

TABLE 2-3 DESCRIPTION OF PHASE II TEST MATERIALS

Experiment Sample Designation Site Sample Description Lead

Concentration (ppm) 1

2

Bingham Creek Residential Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing less than 2500 ppm lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

1590

Bingham Creek Channel Soil Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing 3000 ppm or greater of lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

6330

3

Jasper County High Lead Smelter Jasper County Missouri Superfund Site Soil composite collected from an on-site location 10800

Jasper County Low Lead Yard Jasper County Missouri Superfund Site Soil composite collected from an on-site location 4050

4

Murray Smelter Slag Murray Smelter Superfund Site Murray City Utah

Composite of samples collected from areas where exposed slag existed on site 11700

Jasper County High Lead Mill Jasper County Missouri Superfund Site Soil composite collected from an on-site location 6940

5

Aspen Berm Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from the Racquet Club property (including a parking lot and a vacant lot) 14200

Aspen Residential Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from residential properties within the study area 3870

6

Midvale Slag Midvale Slag NPL Site Midvale Utah Composite of samples collected from a water-quenched slag pile in Midvale Slag Operable Unit 2 8170

Butte Soil Silver Bow CreekButte Area NPL Site Butte Montana

Soil composite collected from waste rock dumps in Butte Priority Soils Operable Unit (BPSOU) 8530

7

California Gulch Phase I Residential Soil

California Gulch NPL Site Leadville Colorado

Soil composite collected from residential properties within Leadville 7510

California Gulch FeMn PbO California Gulch NPL Site Leadville Colorado

Soil composite collected from near the Lake Fork Trailer Park located southwest of Leadville near the Arkansas River 4320

8 California Gulch AV Slag California Gulch NPL Site Leadville Colorado

Sample collected from a water-quenched slag pile on the property of the former Arkansas Valley (AV) Smelter located just west of Leadville

10600

9 Palmerton Location 2 New Jersey Zinc NPL Site

Palmerton Pennsylvania Soil composite collected from on-site 3230

Palmerton Location 4 New Jersey Zinc NPL Site Palmerton Pennsylvania Soil composite collected from on-site 2150

Murray Smelter Soil Murray Smelter Superfund Site Murray City Utah Soil composite collected from on-site 3200

11

NIST Paint --

A mixture of approximately 58 NIST Standard Reference Material (SRM) 2589 and 942 low lead soil (lt 50 ppm) collected in Leadville Colorado NIST SRM 2589 composed of paint collected from the interior surfaces of houses in the US contains a nominal lead concentration of 10 (100000 ppm) the material is powdered with more than 99 of the material being less than 100 um in size

8350

12

Galena-enriched Soil --

A mixture of approximately 12 galena and 988 low lead soil (lt 50 ppm) that was collected in Leadville Colorado The added galena consisted of a mineralogical (ie native) crystal of pure galena that was ground and sieved to obtain fine particles smaller than about 65 um

11200

California Gulch Oregon Gulch TailingsCalifornia Gulch NPL Site Leadville Colorado

A composite of tailings samples collected from the Oregon Gulch tailings impoundment 1270

1 Samples were analyzed for lead by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

Tablesxls (2-3_TMs)

TABLE 2-4 RELATIVE LEAD MASS OF MINERAL PHASES OBSERVED IN TEST MATERIALS

Experiment 2 3 4 5 6 7 8 9 11 12

Phase Bingham

Creek Residential

Bingham Creek

Channel Soil

Jasper County

High Lead Smelter

Jasper County Low Lead Yard

Murray Smelter

Slag

Jasper County

High Lead Mill

Aspen Berm

Aspen Residential

Midvale Slag Butte Soil

Cal Gulch Phase I

Residential Soil

Cal Gulch FeMn PbO

Cal Gulch AV Slag

Palmerton Location 2

Palmerton Location 4

Murray Smelter Soil NIST Paint

Galena-enriched

Soil

Cal Gulch Oregon Gulch

Tailings

Anglesite 28 1 05 10 2 7 1 36 10 2 6 4 1

As(M)O 0003

Calcite 02 01

Cerussite 2 03 32 81 11 57 62 64 4 03 20 1 14 55

Clay 0018 0003 0017 01 01 001 003 013

Fe-Pb Oxide 6 3 14 2 2 10 9 7 03 7 6 8 51 2 2 013

Fe-Pb Sulfate 22 30 3 1 03 1 5 5 01 20 6 3 03 1 06

Galena 9 8 9 3 12 17 6 12 2 3 20 100 100

Lead Barite 004 001 006 0007 015 014 1 01

Lead Organic 03 003 003 011 011 1

Lead Oxide 009 69 7 27 44

Lead Phosphate 50 26 21 6 7 1 1 36 30 15 24 1

Lead Silicate 004 05 19 08 14

Lead Vanidate 01 04 18

Mn-Pb Oxide 18 2 2 2 08 9 4 5 202 22 72 66 66

Native Lead 22 07 2 15

Pb(M)O 4 26 7 3

Pb-As Oxide 2 1 015 6 33 01 31 29

PbO-Cerussite 1

Slag 4 7 1 16 1 10 6

Sulfosalts 04

Zn-Pb Silicate 003 2

(M) = Metal

Tbl 2-4_Lead Phasesxls (Table 2-4)

TABLE 2-5 MATRIX ASSOCIATIONS FOR TEST MATERIALS

Experiment Test Material Particle Frequency Relative Lead Mass

Liberated Included Liberated Included

2 Bingham Creek Residential 100 0 100 0

Bingham Creek Channel Soil 100 0 100 0

3 Jasper County High Lead Smelter 81 19 76 24

Jasper County Low Lead Yard 100 0 94 6

4 Murray Smelter Slag 87 13 77 23

Jasper County High Lead Mill 96 4 93 7

5 Aspen Berm 86 14 93 8

Aspen Residential 98 2 94 6

6 Midvale Slag 91 9 77 23

Butte Soil 91 9 91 9

7 California Gulch Phase I Residential Soil 79 21 65 35

California Gulch FeMn PbO 98 2 100 0

8 California Gulch AV Slag 78 22 80 20

9 Palmerton Location 2 100 0 100 0

Palmerton Location 4 79 21 89 11

11 Murray Smelter Soil 80 20 70 30

NIST Paint 100 0 100 0

12 Galena-enriched Soil 100 0 100 0

California Gulch Oregon Gulch Tailings 2 98 5 95

Tablesxls (2-5_Matrix)

TABLE 2-6 PARTICLE SIZE DISTRIBUTIONS FOR TEST MATERIALS

Experiment Test Material Particle Size (ȝm)

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

2 Bingham Creek Residential 38 22 19 16 4 2 0 0 0

Bingham Creek Channel Soil 66 136 10 61 3 1 0 0 0

3 Jasper County High Lead Smelter 44 19 8 8 9 9 2 1 1

Jasper County Low Lead Yard 29 20 21 20 8 3 0 0 0

4 Murray Smelter Slag 14 13 15 6 20 24 4 3 0

Jasper County High Lead Mill 23 21 22 19 9 6 1 1 0

5 Aspen Berm 27 19 22 17 8 6 1 1 0

Aspen Residential 38 35 12 8 4 2 0 0 0

6 Midvale Slag 6 1 3 4 20 29 18 13 5

Butte Soil 23 15 14 23 14 9 2 1 0

7 California Gulch Phase I Residential Soil 24 9 18 22 15 9 1 1 1

California Gulch FeMn PbO 26 19 24 17 10 4 0 0 0

8 California Gulch AV Slag 19 8 8 5 9 19 10 13 9

9 Palmerton Location 2 26 23 25 18 6 1 0 0 0

Palmerton Location 4 25 15 21 25 13 2 0 0 0

11 Murray Smelter Soil 23 10 29 17 6 8 3 3 1

NIST Paint 76 4 6 8 6 0 0 0 0

12 Galena-enriched Soil 48 2 4 41 4 0 0 0 0

California Gulch Oregon Gulch Tailings 85 8 6 0 0 0 0 0 0

Tablesxls (2-6_Size)

TABLE 2-7 ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence Bound UB = 95 Upper Confidence Bound

Tablesxls (2-7_RBA)

TABLE 2-8 GROUPED LEAD PHASES

Group Group Name Phase Constituents 1 Galena Galena (PbS)

2 Cerussite Cerussite

3 Mn(M) Oxide Mn-Pb Oxide

4 Lead Oxide Lead Oxide

5 Fe(M) Oxide Fe-Pb Oxide (including Fe-Pb Silicate)

Zn-Pb Silicate

6 Lead Phosphate Lead Phosphate

7 Anglesite Anglesite

8 Pb(M) Oxide As(M)O

Lead Silicate

Lead Vanidate

Pb(M)O

Pb-As Oxide

9 Fe(M) Sulfate Fe-Pb Sulfate

Sulfosalts

10 Minor Constituents Calcite

Clay

Lead Barite

Lead Organic

Native Lead

PbO-Cerussite

Slag

(M) = Metal

Tablesxls (2-8_Phases)

TABLE 2-9 CURVE FITTING PARAMETERS FOR ORAL LEAD ACETATE DOSE-RESPONSE CURVES

Experiment Blood AUC Liver Lead Kidney Lead Bone Lead

a b c a b a b a b 2 3 4 5 6 7 8 9 11 12

136 83 85 80 84

a

80 75 72 76

--

116 163 144 163 85

a

159 96 160 169

--

00084 00040 00064 00038 00101

a

00032 00087 00035 00040

--

63 20 10 23 57 17 62 20 23 20 10 17 11 21 11 23 14 13 9 07

44 24 10 22 68 28 60 18 15 21 10 14 17 24 14 23 20 17 8 11

07 0084 18 0062 05 0076 05 0062 04 0043 08 0059 08 0065 06 0071 07 0053 06 0032

Mean Standard Deviation Coefficient of Variation

86 19

23

140 32

23

00058 00026 46

27 18 24 05

88 27

27 20 22 05

84 26

07 0061 04 0015

55 25

Basic Equations Blood AUC = a + b(1-exp(-cDose))

a = baseline blood lead value in unexposed animals b = maximum increase in steady-state blood lead cause by exposure c = shape parameter that determines how steeply the response increases as dose increases

Tissue concentration (bone liver kidney) = a + bDose a = baseline blood lead value in unexposed animals b = slope of the increase in tissue content per unit increase in dose

Coefficient of Variation = Standard Deviation Mean

a Experiment 7 Blood AUC No stable solution was obtained using the exponential model

Tablesxls (2-9_Fits)

TABLE 2-10 REPRODUCIBILITY OF RBA MEASUREMENTS

RBA Palmerton Location 2

California Gulch Phase I Residential Soil

Estimate Test 1 (Phase 2 Study 9)

Test 2 (Phase 2 Study 12)

Test 1 (Phase 1 Study 2)

Test 2 (Phase 2 Study 7)

Blood AUC

Liver

Kidney

Bone

082 plusmn 012

060 plusmn 014

051 plusmn 016

047 plusmn 007

071 plusmn 009

125 plusmn 032

054 plusmn 013

095 plusmn 018

069

058

062

050

088 plusmn 019

075 plusmn 016

073 plusmn 017

053 plusmn 015

Point Estimate 060 plusmn 018 086 plusmn 033 060 072 plusmn 021

Calculated using ordinary least squares

Tablesxls (2-10_Reprod)

TABLE 3-1 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

Tbl 3-1 ES-2_IVBA Dataxls (Table 3-1)

This page intentionally left blank to facilitate double-sided printing

FIGURES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

FIGURE 2-1 AVERAGE RATE OF BODY WEIGHT GAIN IN TEST ANIMALS

00

01

02

03

04

05

06

07

Control PbAc 25 PbAc 75 PbAc 225 Test Material IV 100

Ave

rage

Rat

e of

Wei

ght G

ain

(kg

day)

Figuresxls (2-1_BW)

FIGURE 2-2 EXAMPLE TIME COURSE OF BLOOD LEAD RESPONSE

0

2

4

6

8

10

-6 -4 -2 0 2 4 6 8 10 12 14 16 Study Day

Bloo

d Le

ad (ȝ

gdL

) Control PbAc (75) PbAc (225) Test Material (75) Test Material (225) Test Material (675)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls

FIGURE 2-3 DOSE RESPONSE CURVE FOR BLOOD LEAD AUC

Panel A Lead Acetate - IV

0

50

100

150

200

250

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Panel B Lead Acetate - Oral

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-3_AUC)

FIGURE 2-4 DOSE RESPONSE CURVE FOR LIVER LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-4_Liver)

FIGURE 2-5 DOSE RESPONSE CURVE FOR KIDNEY LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-5_ idney)

FIGURE 2-6 DOSE RESPONSE CURVE FOR FEMUR LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Panel B Lead Acetate - Oral

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-6_Fe ur)

FIGURE 2-7 ESTIMATED GROUP-SPECIFIC RBA VALUES

00

02

04

06

08

10

12

Pb(

M) O

xide

Fe(M

) Sul

fate

Gal

ena

Ang

lesi

te

Fe(M

) Oxi

de

Lead

Pho

spha

te

Lead

Oxi

de

Mn(

M) O

xide

Cer

ussi

te

Group

Estim

ated

Gro

up-S

peci

fic R

BA

Fully constrained Partially constrained

LOW MEDIUM HIGH

Fig 2-7_Phase RBAsxls (Fig 2-7)

FIGURE 2-8 CORRELATION OF DUPLICATE ANALYSES

Panel A Blood Lead

Observed y = 09645x + 00687

R2 = 0981

0

5

10

15

20

25

30

0 5 10 15 20 25 30 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Panel B Tissue Lead

Observed y = 09526x + 18423

R2 = 09472

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Figuresxls (2-8_Dups)

FIGURE 2-9 RESULTS FOR CDC BLOOD LEAD CHECK SAMPLES

0

2

4

6

8

10

12

14

16

18

-5 0 5 10 15 Study Day

Mea

n Bl

ood

Lead

(ȝg

dL)

Low Std Med Std High Std

Figuresxls (2-9_CDC)

FIGURE 2-10 INTERLABORATORY COMPARISON OF BLOOD LEAD RESULTS

y = 08361x + 07385 R2 = 08606

0

5

10

15

20

25

30

0 5 10 15 20 25 30 CDCP Blood Lead Results (ȝgdL)

USE

PA B

lood

Lea

d R

esul

ts (ȝ

gdL

) Line of Identity

Figuresxls (2-10_Interlab)

FIGURE 3-1 IN VITRO BIOACCESSIBILITY EXTRACTION APPARATUS

Figuresxls (3-1_Apparatus)

FIGURE 3-2 EFFECT OF TEMPERATURE TIME AND pH ON IVBA

Fig 3-2_Effects on IVBAxls (Fig 3-2_Effects)

Panel C Effect of pH

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Test Material

IVB

A (

)

pH = 15 pH = 25 pH = 35

Panel A Effect of Temperature

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Test Material

IVB

A (

)

37 C 20 C

Panel B Effect of Extraction Time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 Test Material

IVB

A (

)

1 hour 2 hours 4 hours

FIGURE 3-3 PRECISION OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

100

90

80

70

60 ()

20

30

40

50

In V

itro

RBA

MS 2710 Mean = 755

Std Dev = 47 CV = 0062

N = 68

MS 2711 Mean = 844

Std Dev = 47 CV = 0055

N = 66

10

0

Figuresxls (3-3_Precision)

FIGURE 3-4 REPRODUCIBILITY OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Test Material

Mea

n R

BA

(per

cent

)

ACZ CUB ERCL NERL

Test Materials 1 = Aspen Berm 8 = Jasper County High Lead Smelter 14 = Midvale Slag 2 = Aspen Residential 9 = Jasper County Low Lead Yard 15 = Murray Smelter Slag 3 = Bingham Creek Channel Soil 10 = California Gulch AV Slag 16 = Murray Smelter Soil 4 = Bingham Creek Residential 11 = California Gulch FeMn PbO 17 = Palmerton Location 2 5 = Butte Soil 12 = California Gulch Oregon Gulch Tailings 18 = Palmerton Location 4 6 = Galena-enriched Soil 13 = California Gulch Phase I Residential Soil 19 = NIST Paint 7 = Jasper County High Lead Mill

Laboratories ACZ = ACZ Laboratories Inc

CUB = University of Colorado at BoulderERCL = Environmental Research Chemistry Laboratory US Bureau of Reclamation

NERL = National Exposure Research Laboratory

Fig 3-4_Reproducibilityxls (Fig 3-4)

FIGURE 3-5 RBA vs IVBA

00

01

02

03

04

05

06

07

08

09

10

11

12

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

Fig 3-5_IVBA-RBAxls (Fig 3-5)

FIGURE 3-6 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig 3-6)

APPENDIX A

EVALUATION OF JUVENILE SWINE AS A MODEL FOR GASTROINTESTINAL ABSORPTION

IN YOUNG CHILDREN

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX A EVALUATION OF JUVENILE SWINE AS A MODEL

FOR GASTROINTESTINAL ABSORPTION IN YOUNG CHILDREN

10 INTRODUCTION

Ideally the reliability of an animal model as a predictor for toxicokinetic responses in humans would be based on a direct comparison of results in humans and the animal species under consideration However because intentional dosing of children with lead is not feasible a direct comparison of lead absorption results in swine with that for children is not possible Nevertheless the relevance of the swine as an animal model for lead absorption can be evaluated by comparing a number of physiological attributes of the gastrointestinal system that are likely to be important in influencing the degree to which lead in ingested soil material is released from its soil or mineral matrix to form soluble compounds that can be absorbed into the body Factors that may affect dissolution include gastric acidity and gastric holding time which determine the exposure of the ingested material to the acidic environment of the stomach where dissolution initially occurs Morphological and physiological factors in the small intestine where absorption of lead is thought to occur may also affect RBA however these are likely to be less important for those soil materials for which solubility is the limiting factor for RBA

Weis and LaVelle (1991) and Casteel et al (1996) determined that gastric function in juvenile swine is sufficiently similar to that of human children so that juvenile swine could serve as a model for predicting RBA of soil-borne lead in children This view is supported by several reviews on the comparative anatomy and physiology of the human and pig gastrointestinal systems (Dodds 1982 Miller and Ullrey 1987 Moughan et al 1992 Pond and Houpt 1978) and in particular the following pertinent observations

20 GASTROINTESTINAL TRACT MORPHOLOGY AND HISTOLOGY

The anatomy of the neonatal digestive system in the pig and human are very similar (Moughan et al 1992) The body-weight adjusted ratios of intestinal length to stomach volume in the child and piglet are comparable as shown below

Species Stomach Volume (cm3kg)

Small Intestine Length (cmkg)

Large Intestine length (cmkg)

Small intestine lengthstomach

volume

Large intestine lengthstomach

volume Human 96 956 194 996 493

Swine 289 2292 596 793 385 Source Moughan et al 1992 Birth body weights of 34 (human) and 13 (pig) kg were assumed

The histology of the small intestine colon and rectum in the piglet is similar to that of the human (Moughan et al 1992) Small anatomical differences between humans and swine would

OSWER 92857-77 A-1

not be expected to markedly affect digestion in the neonate (Moughan et al 1992) The piglet is considered to be a useful model of the anatomical development of the human neonatal digestive tract (Moughan et al 1992 Miller and Ullrey 1987)

30 GASTRIC HOLDING TIMES

Gastric emptying time in humans is highly variable (USEPA 2001) The rate of emptying of stomach contents varies depending on the type of food the volume of the meal and its caloric content High caloric substances such as fat empty more slowly than carbohydrates The most important factor effecting liquid gastric emptying is the caloric content of the liquid meal Upright positioning and ambulation have been described to speed gastric emptying Other factors that are believed to affect gastric emptying include the osmolality acidity and chain length of fatty acids in the meal Differences in emptying may also exist between males and females These factors tend to make direct comparisons of data from different reports difficult Nevertheless the available data do not suggest any substantial differences in gastric holding times between children and juvenile swine

In the 4-week old pig gastric emptying following a meal was rapid with 30 to 40 passing into the duodenum within 15 minutes and the remaining portion of gastric contents following about one hour later (Pond and Houpt 1978) Gastric pH did not affect gastric emptying time in juvenile swine (Pond and Houpt 1978) In an unpublished study by Casteel (personal communication) gastric emptying in juvenile swine was shown to be influenced by feeding intervals both pre- and post-dosing The investigators reported rapid clearance of the bolus (complete within 2 hours) after an overnight fast however feeding 4 hours prior to dosing slowed completion of gastric emptying to 4 hours Feeding at two hours post-dosing accelerated the movement of the residual gastric contents although most of the bolus had already cleared the stomach

In humans gastric emptying time in neonates and premature infants is typically about 87 minutes but can be as long as 6 to 8 hours with adult values (typically about 65 minutes) being reached at 6 to 8 months of age (FDA 1998 Balis 2000)

40 GASTRIC ACIDITY

Direct comparisons of gastric acidity as a function of age in humans and swine are not available However available information on gastric acid secretion does not suggest there are any major differences that would affect extrapolation of RBA values measured in juvenile swine to humans Agunod et al (1969) reported that gastric acid output (corrected for body weight) reached normal adult levels in swine at 2 to 3 months post partum In humans gastric pH is neutral at birth but drops to 1 to 3 within hours of birth Gastric acid secretion then declines on days 10 to 30 and does not approach adult values until approximately 3 months of age (FDA 1998) Nagita et al (1996) reported that the intragastric pH of infants was lt4 for only half of the day whereas baseline pH in normal adults is lt2 The development of maximal acid secretion in the pig also has some similarities to that of humans (Xu and Cranwell 1990) In both the pig and human maximal acid secretion correlates with age and body weight with pentagastrin

OSWER 92857-77 A-2

histamine and histalog used as secretagogues (Xu and Cranwell 1990) A limitation of the available pig data is that all of the studies measure the maturation of gastric acid output rather than intragastric pH which Nagita et al (1996) asserts is a preferable measure of gastric maturity Temporal studies of the intragastric pH of juvenile swine are not available

50 REFERENCES

Agunod M N Yamaguchi R Lopez A L Luhby and G B J Glass 1969 Correlative study of hydrochloric acid pepsin and intrinsic factor secretion in newborns and infants Am J Dig Dis 14400-414

Balis F 2000 Module 4 Drug therapy in special populations In Principles of Clinical Pharmacology Published on-line by NIH httpwwwccnihgovcccprinciples

Casteel S W R P Cowart C P Weis G M Henningsen E Hoffman W J Brattin M F Starost J T Payne S L Stockham S V Becker and J R Turk 1996 A swine model for determining the bioavailability of lead from contaminated media In Advances in Swine in Biomedical Research Tumbleson and Schook eds Vol 2 Plenum Press New York Pp 637-46

Cranwell P D 1985 The development of acid and pepsin secretory capacity in the pig the effect of age and weaning 1 Studies in anaesthetized pigs Br J Nutr 54 305-20

Dodds J W 1982 The pig model for biomedical research Fed Proc 41 247-56

FDA 1998 Guidance for Industry General considerations for pediatric pharmacokinetic studies for drugs and biological products US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Published on-line by the Food and Drug Administration November 1998 httpwwwfdagovcberguidelineshtm

Henning S J 1987 Functional development of the gastrointestinal tract In Physiology of the Gastrointestinal Tract Johnson LR ed Raven Press New York Pp 285-300

Miller E R and D E Ullrey 1987 The pig as a model for human nutrition Ann Rev Nutr 7 361-82

Moughan P J M J Birtles P D Cranwell W C Smith and M Pedraza 1992 The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants World Rev Nutr Diet 19926740-113 PMID 1557912

Nagita A K Amemoto A Yoden S Aoki M Sakaguchi K Ashida and M Mino 1996 Diurnal variation in intragastric pH in children with and without peptic ulcers Ped Res 40(4) 528-32

Pond W G and K A Houpt 1978 The Biology of the Pig Ithaca NY Comstock 371 pp

OSWER 92857-77 A-3

Sangild P T P D Cranwell and L Hilsted 1992 Ontogeny of gastric function in the pig Acid secretion and the synthesis and secretion of gastrin Bio Neonate 62 363-72

USEPA 2001 Exploration of perinatal pharmacokinetic issues Final report by Versar to USEPA Risk Assessment Forum Office of Research and Development Washington DC 20460 EPA630R-01004

Waldum H L B K Straume P G Burhol and L B Dahl 1980 Serum group I pepsinogens in children Acta Paediatr Scand 69(2)215-8 PMID 7368925

Weis CP and LaVelle JM 1991 Characteristics to consider when choosing an animal model for the study of lead bioavailability In Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Sci Technol Let 3113B119

WHO 1986 Principles for evaluating health risks from chemicals during infancy and early childhood The need for a special approach Environmental Health Criteria 59 Geneva Switzerland World Health Organization

Xu R J and P D Cranwell 1990 Development of gastric acid secretion in pigs from birth to 36 days of age the response to pentagastrin J Dev Physiol 13 315-26

Xu C D P Wang and J Y Xu 1996 Gastric motility study on non ulcer dyspepsia among children Chin Natl J New Gastroenterol 2(Suppl 1) 129

OSWER 92857-77 A-4

APPENDIX B

DETAILED DESCRIPTION OF ANIMAL EXPOSURE

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B DETAILED DESCRIPTION OF ANIMAL EXPOSURE

10 EXPERIMENTAL ANIMALS

All animals used in this program were young intact males of the Pig Improvement Corporation (PIC) genetically defined Line 26 and were purchased from Chinn Farms Clarence MO The number of animals purchased for each study was typically 6 to 8 more than required by the protocol These animals were usually purchased at age 4 to 5 weeks (weaning occurs at age 3 weeks) and they were then held under quarantine for one week to observe their health before beginning exposure to test materials Any animals that appeared to be in poor health during this quarantine period were excluded To minimize weight variations between animals and groups extra animals that were most different in body weight on day -4 (either heavier or lighter) were also excluded from the study The remaining animals were assigned to dose groups at random When exposure began (day zero) the animals were about 5 to 6 weeks old and weighed an average of about 8 to 11 kg

All animals were housed in individual lead-free stainless steel cages Each animal was examined by a certified veterinary clinician (swine specialist) prior to being placed on study and all animals were examined daily by an attending veterinarian while on study Blood samples were collected for clinical chemistry and hematological analysis on days -4 7 and 15 to assist in clinical health assessments Any animal that became ill and could not be promptly restored to good health by appropriate treatment was promptly removed from the study

20 DIET

Animals provided by the supplier were weaned onto standard pig chow purchased from MFA Inc Columbia MO In order to minimize lead exposure from the diet the animals were gradually transitioned from the MFA feed to a special low-lead feed (guaranteed less than 02 ppm lead purchased from Zeigler Brothers Inc Gardners PA) over the time interval from day -7 to -3 and this feed was then maintained for the duration of the study The feed was nutritionally complete and met all requirements of the National Institutes of HealthBNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 of the main text Periodic analysis of feed samples during this program indicated the mean lead level was less than the detection limit (005 ppm)

Each day every animal was given an amount of feed equal to 5 of the mean body weight of all animals on study Feed was administered in two equal portions of 25 of the mean body weight at each feeding Feed was provided at 1100 AM and 500 PM daily Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 ȝgL

OSWER 92857-77 B-1

30 DOSING

The dose levels used in these studies were selected to be as low as possible in an effort to make measurements at the low end of the dose-response curve where saturation of biological systems is minimal Based on experience from previous investigations doses of lead acetate in the range of 25 to 675 ȝg Pbkg-day were found to give clear and measurable increases in lead levels in all endpoints measured (blood liver kidney bone) so doses in this range (usually 25 to 225 ȝg Pbkg-day) were employed in most studies The doses of test materials were usually set at the same level as lead acetate except that one higher dose was often included in case the test materials were found to yield very low responses Depending on the concentration of lead in the test material and the target dose level for lead soil intake rates by the swine were in the range of 500 to 2500 mgday

Animals were exposed to lead acetate or a test material for 15 days with the dose for each day being administered in two equal portions given at 900 AM and 300 PM (two hours before feeding) These exposure times were selected so that lead ingestion would occur at a time when the stomach was largely or entirely empty of food This is because the presence of food in the stomach is known to reduce lead absorption (eg Chamberlain et al 1978 Rabinowitz et al 1980 Heard and Chamberlain 1982 Blake et al 1983 James et al 1985) Dose calculations were based on measured group mean body weights and were adjusted every three days to account for animal growth

For animals exposed by the oral route dose material was placed in the center of a small portion (about 5 grams) of moistened feed This ldquodoughballrdquo was administered to the animals by hand Most animals consumed the dose promptly but occasionally some animals delayed ingestion of the dose for up to two hours (the time the daily feed portion was provided) Random and intermittent delays of this sort are not considered to be a significant source of error Occasionally some animals did not consume some or all of the dose (usually because the dose dropped from their mouth while chewing) All missed doses were recorded and the time-weighted average dose calculation for each animal was adjusted downward accordingly

For animals exposed by intravenous injection doses were given via a vascular access port (VAP) attached to an indwelling venous catheter that had been surgically implanted according to standard operating procedures by a board-certified veterinary surgeon through the external jugular vein to the cranial vena cava about 3 to 5 days before exposure began

40 REFERENCES

Blake K H C G O Barbezat and M Mann 1983 Effect of dietary constituents on the gastrointestinal absorption of 203Pb in man Environ Res 30182-187

Chamberlain A C M J Heard P Little D Newton A C Wells and R D Wiffen 1978 Investigations into lead from motor vehicles Harwell UK United Kingdom Atomic Energy Authority Report No AERE-9198

OSWER 92857-77 B-2

Heard H J and A C Chamberlain 1982 Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans Human Toxicol 1411-415

James H M M E Hilburn and J A Blair 1985 Effects of metals and meal times on uptake of lead from the gastrointestinal tract in humans Human Toxicol 4401-407

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rabinowitz M B J D Kopple and G W Wetherill 1980 Effect of food intake and fasting on gastrointestinal lead absorption in humans Am J Clin Nutrit 331784-1788

OSWER 92857-77 B-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX B ATTACHMENT 1

DETAILED STUDY DESIGNS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B - ATTACHMENT 1

EXPERIMENT 1A STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

3 20

1 Control 0

2 22 23 24 27

2 PbAc 25

1 26 29 32 35

3 PbAc 75

9 14 17 31 34

4 PbAc (-2 hr) 225

7 12 19 30 33

5 PbAc (0 hr) 225

5 18 21 25 36

6 PbAc (+2 hr) 225

4 15 16

7A PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (1a) Page 1 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 2 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

206 226

1 Control 0

215 220 222 229 251

2 PbAc 25

209 228 244 248 258

3 PbAc 75

204 216 247 252 260

4 PbAc 225

201 207 221 238 259

5 Bingham Creek Residential

75

236 237 240 242 249

6 Bingham Creek Residential

225

224 234 235 243 257

7 Bingham Creek Residential

450

202 217 219 253 254

8 Bingham Creek Channel Soil

75

203 225 227 232 250

9 Bingham Creek Channel Soil

225

205 210 213 218 255

10 Bingham Creek Channel Soil

675

208 214 230 231 239 241 246 256

11 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (2) Page 2 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 3 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

304 339

1 Control 0

309 312 324 337 340

2 PbAc 75

313 315 342 354 356

3 PbAc 225

305 311 318 321 331

4 Jasper County High Lead Smelter

75

316 317 330 352 353

5 Jasper County High Lead Smelter

225

319 341 344 345 348

6 Jasper County High Lead Smelter

625

325 329 338 343 351

7 Jasper County Low Lead Yard

75

302 326 328 332 346

8 Jasper County Low Lead Yard

225

306 333 334 335 349

9 Jasper County Low Lead Yard

625

307 320 322 347 350

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (3) Page 3 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 4 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

417 430

1 Control 0

409 419 429 443 444

2 PbAc 75

408 410 426 449 455

3 PbAc 225

402 407 411 423 450

4 Murray Smelter Slag

75

420 431 432 440 446

5 Murray Smelter Slag

225

412 418 427 437 442

6 Murray Smelter Slag

625

404 406 416 428 454

7 Jasper County High Lead Mill

75

401 433 434 435 441

8 Jasper County High Lead Mill

225

403 405 413 448 453

9 Jasper County High Lead Mill

625

415 421 424 425 438 439 445 451

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (4) Page 4 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 5 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

530 536

1 Control 0

514 518 519 520 524

2 PbAc 75

501 513 529 534 547

3 PbAc 225

503 523 532 549 555

4 Aspen Berm 75

509 512 539 540 550

5 Aspen Berm 225

510 516 525 537 542

6 Aspen Berm 675

502 507 517 522 528

7 Aspen Residential 75

505 506 521 553 554

8 Aspen Residential 225

526 535 541 545 548

9 Aspen Residential 675

504 508 515 538 543 544 546 551

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (5) Page 5 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 6 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

614 638

1 Control 0

613 624 630 639 641

2 PbAc 75

616 644 651 653 654

3 PbAc 225

619 623 626 631 647

4 Midvale Slag 75

602 605 628 640 650

5 Midvale Slag 225

603 615 629 633 645

6 Midvale Slag 675

610 611 617 637 643

7 Butte Soil 75

601 609 618 621 635

8 Butte Soil 225

620 627 634 646 655

9 Butte Soil 675

604 606 607 612 625 632 642 648

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (6) Page 6 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 7 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

706 714 718 735 743

1 Control 0

703 709 748 750 755

2 PbAc 25

711 715 716 747 752

3 PbAc 75

704 712 736 740 753

4 California Gulch Phase I Residential Soil

25

702 708 728 739 756

5 California Gulch Phase I Residential Soil

75

717 723 725 732 737

6 California Gulch Phase I Residential Soil

225

707 713 730 738 741

7 California Gulch FeMn PbO

25

733 742 746 749 751

8 California Gulch FeMn PbO

75

719 721 729 744 745

9 California Gulch FeMn PbO

225

722 724 727 734 754

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (7) Page 7 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 8 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

808 810 836

1 PbAc (IV) 0

805 807 812 827 834

2 PbAc (IV)

25

813 815 825 845 853

3 PbAc (IV)

50

801 816 820 843 852

4 PbAc (IV)

100

809 830 841 848 855

5 Control

0

817 818 819 838 846

6 PbAc

25

804 840 842 844 849

7 PbAc

75

857 826 828 831 851

8 California Gulch AV Slag

25

806 814 823 847 854

9 California Gulch AV Slag

75

811 822 824 837 856

10 California Gulch AV Slag

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (8) Page 8 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 9 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

907 912 919 930 942 943 953

1 PbAc (IV) 100

901 902 920 925 928

2 Control 0

905 909 927 931 940

3 PbAc 25

923 933 948 950 956

4 PbAc 75

911 929 934 947 954

5 Palmerton Location 2

25

903 910 938 951 955

6 Palmerton Location 2

75

906 908 916 918 922

7 Palmerton Location 2

225

913 914 932 937 946

8 Palmerton Location 4

25

924 926 944 949 957

9 Palmerton Location 4

75

917 921 939 941 945

10 Palmerton Location 4

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (9) Page 9 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 11 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1109 1124 1135 1139 1151

1 Control 0

1103 1104 1116 1117 1118

2 PbAc 25

1105 1123 1129 1130 1144

3 PbAc 75

1121 1136 1138 1146 1150

4 PbAc 225

1106 1112 1133 1142 1149

5 Murray Smelter Soil

75

1102 1122 1128 1143 1154

6 Murray Smelter Soil

225

1126 1137 1140 1141 1155

7 Murray Smelter Soil

675

1110 1115 1134 1148 1153

8 NIST Paint 75

1101 1108 1111 1132 1152

9 NIST Paint 225

1113 1119 1120 1125 1147

10 NIST Paint 675

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (11) Page 10 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 12 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1205 1228 1236

1 Control 0

1208 1213 1215 1217 1248

2 PbAc 25

1227 1240 1243 1244 1255

3 PbAc 75

1222 1225 1226 1241 1249

4 PbAc 225

1201 1233 1250 1251 1253

5 Galena-enriched Soil 75

1203 1209 1214 1231 1247

6 Galena-enriched Soil 225

1218 1229 1235 1237 1254

7 Galena-enriched Soil 675

1207 1223 1230 1245 1252

8 Palmerton Location 2 (reproducibility)

25

1202 1210 1212 1220 1232

9 Palmerton Location 2 (reproducibility)

75

1211 1216 1221 1239 1246

10 Palmerton Location 2 (reproducibility)

225

1204 1224 1238 1242

11 California Gulch Oregon Gulch Tailings

225

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (12) Page 11 of 11

This page intentionally left blank to facilitate double-sided printing

APPENDIX C

DETAILED METHODS OF SAMPLE COLLECTION AND ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX C DETAILED METHOD OF SAMPLE COLLECTION AND ANALYSIS

10 COLLECTION OF BIOLOGICAL SAMPLES

Blood

Samples of blood were collected from each animal three or four days before exposure began on the first day of exposure (day 0) and on multiple days thereafter (usually days 1 2 3 5 7 9 12 and 15) All blood samples were collected by vena-puncture of the anterior vena cava and samples were immediately placed in purple-top Vacutainerreg tubes containing EDTA (ethylenediaminetetra-acetic acid) as anticoagulant Blood samples were collected each sampling day beginning at 800 AM approximately one hour before the first of the two daily exposures to lead on the sampling day and 17 hours after the last lead exposure the previous day This blood collection time was selected because the rate of change in blood lead resulting from the preceding exposures is expected to be relatively small after this interval (LaVelle et al 1991 Weis et al 1993) so the exact timing of sample collection relative to last dosing is not likely to be critical

Liver Kidney and Bone

Following collection of the final blood sample at 800 AM on day 15 all animals were humanely euthanized and samples of liver kidney and bone (the right femur) were removed and stored in plastic bags for lead analysis

Samples of all biological samples collected were archived in order to allow for reanalysis and verification of lead levels if needed and possibly for future analysis for other metals (eg arsenic cadmium) All animals were also subjected to detailed examination at necropsy by a certified veterinary pathologist in order to assess overall animal health

20 PREPARATION OF BIOLOGICAL SAMPLES FOR ANALYSIS

Blood

One mL of whole blood was removed from the purple-top Vacutainer and added to 90 mL of ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDCP) for analysis of blood samples for lead (CDC 2001) The composition of matrix modifier is 02 (vv) ultrapure nitric acid 05 (vv) Triton X-100 and 02 (wv) dibasic ammonium phosphate in deionized and ultrafiltered water Samples of the matrix modifier were routinely analyzed for lead to ensure the absence of lead contamination

OSWER 92857-77 C-1

Liver and Kidney

One gram of soft tissue (liver or kidney) was placed in a screw-cap Teflon container with 2 mL of Optima grade concentrated (70) nitric acid and heated in an oven to 90degC overnight After cooling the digestate was transferred to a clean 10 mL volumetric flask and diluted to volume with deionized and ultrafiltered water

Bone

The right femur of each animal was removed defleshed and dried at 100degC overnight The dried bones were then broken in half placed in a muffle furnace and dry-ashed at 450degC for 48 hours Following dry ashing the bone was ground to a fine powder using a mortar and pestle and 200 mg was removed and dissolved in 100 mL of 11 (vv) Optima grade concentrated nitric acidwater After the powdered bone was dissolved and mixed 10 mL of the acid solution was removed and diluted to 100 mL by addition of 01 (wv) lanthanum oxide (La2O3) in deionized and ultrafiltered water

30 LEAD ANALYSIS

Samples of biological tissue (blood liver kidney bone) and other materials (eg food water reagents and solutions) were arranged in a random sequence and provided to USEPArsquos analytical laboratory in a blind fashion (identified to the laboratory only by a chain of custody tag number) Each sample was analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer Internal quality assurance samples were run every tenth sample and the instrument was recalibrated every 15th sample A blank duplicate and spiked sample were run every 20th sample In addition a series of quality assurance (QA) samples were prepared and submitted to the laboratory in bland fashion including a variety of duplicates blanks and standards

All results from the analytical laboratory were reported in units of ȝg PbL of prepared sample The quantitation limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 ȝgL) The standard deviation was usually about 03 ȝgL so the quantitation limit was usually about 09 to 10 ȝgL (ppb) However because different dilution factors were used for different sample types the detection limit varies from sample type to sample type For prepared blood samples (diluted 110) this corresponds to a quantitation limit of 10 ȝgL (1 ȝgdL) For soft tissues (liver and kidney also diluted 110) this corresponds to a quantitation limit of 10 ȝgkg (ppb) wet weight and for bone (final dilution of 1500) the corresponding quantitation limit is 05 ȝgg (ppm) ashed weight

40 REFERENCES

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National

OSWER 92857-77 C-2

Center for Environmental Health Center for Disease Control Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

LaVelle J M R H Poppenga B J Thacker J P Giesy C Weis R Othoudt and C Vandervoot 1991 Bioavailability of lead in mining waste An oral intubation study in young swine In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 3105-111

Weis C P G M Henningsen R H Poppenga and B J Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

OSWER 92857-77 C-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

DETAILED METHODS FOR DATA REDUCTION AND STATISTICAL ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX D DETAILED METHODS FOR DATA REDUCTION

AND STATISTICAL ANALYSIS

10 INTRODUCTION

The method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principal that equal absorbed doses of lead will produce equal biological responses By definition

Absorbed Doseref Administered Doseref ABAref

Absorbed Dosetest Administered Dosetest ABAtest

where ref and test indicate the reference and test material respectively When the responses are equal then

Administered Doseref ABAref Administered Dosetest ABAtest

Thus

ABAtest Administered DoserefRBA ABAref Administered Dosetest

That is given the dose-response curve for some particular endpoint (eg the concentration of lead in blood or tissue) for both the reference material and the test material RBA may be calculated as the ratio of administered doses that produce equal biological responses

Note that in this approach the mathematical form of the dose-response model must be the same for both reference material and test material This is because the shape of the dose-response curve is a function only of the pharmacokinetic response of the biological organism to an absorbed dose of lead and the response per unit dose absorbed dose does not depend on whether the absorbed lead was derived from reference material or test material Another way to envision this is to recognize that if the unit of exposure were absorbed dose (rather than administered dose) the dose-response curves for reference material and test material would be identical Note that in this approach RBA is a sample-specific constant and does not depend on administered dose

Based on this the general procedure for estimating the value of RBA from measured dose-response data for reference and test materials is as follows

1 Plot the biological responses of individual animals exposed to a series of oral doses of reference material Select an exposure-response model which can fit smoothly

OSWER 92857-77 D-1

through the observed data points The model may be either linear or non-linear depending on the response endpoint being used

2 Plot the biological responses of individual animals exposed to a series of doses of test material Fit the same exposure-response model as was used for the reference material Note that the intercept term must be the same for both curves but that other coefficients may be different

3 To find the ratio of doses that produce equal responses set the two exposure response curves equal to each other and solve for the ratio of doses expressed in terms of the model parameters

For example assume that the increase in lead in femur (PbF) is observed to be a linear function of administered dose Assume that the best-fit exposure-response models derived from the experimental data for animals exposed to reference material and test material are as follows

PbFref 2 6 Doseref

PbFtest 2 3 Dosetest

Setting the two equations equal yields

2 6 Doseref 2 3 Dosetest

Solving yields

Doseref 3 05Dosetest 6

That is the ratio of administered doses that produce equal responses is 05 so the RBA is 05 (50)

An important assumption used in this approach is that administration of increasing doses of test material will cause increased biological responses However this may not occur in the case of a test material in which the form of lead has very low solubility For example the solubility of lead sulfide (galena) in water is less than 1 ȝgL Thus if a dose of lead sulfide results in saturation of the gastric fluid administration of more lead sulfide will not increase the concentration of bioavailable lead and hence little or no increase in response would be expected An example of this is shown in Figure D-1 In this case RBA cannot be defined as the ratio of doses that produce equal responses since many different doses of lead sulfide all produce the same response However this is not a substantial difficulty since the amount of lead that becomes bioavailable will be small (and hence the response will be close to control) and simple inspection of the data will demonstrate that the test material is not likely to be of health concern

OSWER 92857-77 D-2

20 MEASUREMENT ENDPOINTS

21 Description of Measurement Endpoints

Four independent measurement endpoints were evaluated in each study based on the concentration of lead observed in blood liver kidney and bone (femur) For liver kidney and bone the measurement endpoint was simply the concentration in the tissue at the time of sacrifice (day 15) For blood the measurement endpoint used to quantify response was the area under the curve (AUC) for blood lead vs time (days 0-15) The area under the blood lead vs time curve for each animal was calculated by finding the area under the curve for each time step (ie the interval between successive blood collection days) using the trapezoidal rule

AUC(di to d j ) 05 (ri rj ) (d j di )

where

d = day number where i and j are successive blood sampling events

r = response (blood lead value) on day i (ri) or day j (rj)

The areas of the trapezoids for each time step were then summed to yield the final AUC for each animal

22 Responses Below Quantitation Limit

In some cases most or all of the responses in a group of animals were below the quantitation limit for the endpoint being measured For example this was normally the case for blood lead values in unexposed animals (both on day -4 and day 0 and in control animals) and also occurred during the early days in the study for animals given test materials with low bioavailability In these cases all animals which yielded responses below the quantitation limit were evaluated as if they had responded at one-half the quantitation limit This approach was used because an assumed value of one-half the detection limit minimizes the potential bias in the assumption

23 Assessment of Blood Lead Outliers

Occasionally blood lead values were obtained that were clearly different than expected A value was considered to be an outlier if it was clearly different from other values within the same dose group on the same day andor if the value was clearly different from the time trend established by preceding and following time points in the same animal A total of 21 such cases occurred out of a total of 4284 blood lead data points (05) These values were excluded in the calculation of AUC and the missing value was replaced by a value interpolated from the preceding and following values from the same animal

OSWER 92857-77 D-3

30 DERIVATION OF STATISTICAL DOSE-RESPONSE MODELS

The techniques used to derive statistical models of the dose-response data and to estimate RBA are based on the methods recommended by Finney (1978) All model fitting was performed using JMPtrade version 322 a commercial software package developed by SASreg Details are provided below

31 Use of Simultaneous Regression

As noted by Finney (1978) when the data to be analyzed consist of two dose-response curves (the reference material and the test material) it is obvious that both curves must have the same intercept since there is no difference between the curves when the dose is zero This requirement is achieved by combining the two dose response equations into one and solving for the parameters simultaneously For example if the dose response model is linear the approach is as follows

Separate Models

P r (i) a br xr (i)

P t (i) a bt xt (i)

Combined Model

P(i) a br xr (i) bt xt (i)

where ȝ(i) indicates the expected mean response of animals exposed at dose x(i) and the subscripts r and t refer to reference and test material respectively The coefficients of this combined model are derived using multivariate regression with the understanding that the combined data set is restricted to cases in which one (or both) of xr and xt are zero (Finney 1978) The same approach may be extended for use when there are three data sets (reference material test material 1 test material 2) that are all derived from a single study and must therefore all have the same intercept

32 Use of Weighted Regression

Regression analysis based on ordinary least squares assumes that the variance of the responses is independent of the dose andor the response (Draper and Smith 1998) In these studies this assumption is generally not satisfied Figure D-2 provides two example data sets that show a clear increase in the variability of the responses as a function of increasing dose This is referred to as heteroscedasticity Most other data sets from this study display a similar tendency toward increasing variance in response as a function of increasing dose

OSWER 92857-77 D-4

One method for dealing with heteroscedasticity is through the use of weighted least squares regression (Draper and Smith 1998) In this approach each observation in a group of animals is assigned a weight that is inversely proportional to the variance of the response in that group

1 wi V 2 i

where

wi = weight assigned to all data points in dose group iı2

i = variance of responses in animals in dose group i

When the distributions of responses at each dose level are normal weighted regression is equivalent to the maximum likelihood method There are several options available for estimating the value of ı2

i

Option 1 Utilize the observed variance (s2 i) in the responses of animals in dose group i

Option 2 Establish a variance model of the form ı2 i = Įȝi

ȡ where ȝi is the predicted mean response for dose group i Simultaneously fit the data to derive values of Į and ȡ along with the other coefficients of the dose-response model using the data from a particular study This approach is identical to the non-constant variance approach used by USEPArsquos BMDS (USEPA 1995 2000a)

Option 3A Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the predicted mean response for that dose group

Option 3B Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the observed mean response level for that dose group

In this study all four options were investigated for possible use The advantages and disadvantages of each are discussed below

Option 1 (use of group-specific sample variances) is the simplest approach and does not require any assumptions or extrapolations If the number of animals in each dose group was large enough to provide reliable estimates of the true variance for the dose group this would be the preferred method However sample variance in a dose group is a random variable and because the sample variance is based on only five observations (five animals per dose group) it can vary widely (especially when true variance is large) Therefore weights assigned using this approach may occasionally be substantially higher or lower than the data actually warrant For

OSWER 92857-77 D-5

example this approach yielded poor results in cases where two adjacent groups (usually the control and the low dose group) had very low variance In this situation the weights for those groups were so high that the model fit was constrained to pass through them with very little deviation and other dose groups exerted very little influence Figure D-3 shows an example of this Because this outcome was judged to be inappropriate Option 1 was not used

Option 2 (using a non-constant variance model derived from the within-study data only) utilizes the entire data set from a single study to estimate expected variance as a function of dose and so is less vulnerable to random variations in group-specific sample variances than Method 1 Despite this advantage however this approach requires that two additional parameters (Į and ȡ) be derived along with the other model parameters This tends to over-parameterize the model and when this option was tested (using the Solver tool in Microsoftreg Excel) the fits were often not stable (ie different results were obtained with different starting guesses) On this basis Option 2 was not employed

Option 3 (both Options 3A and 3B) requires development of an external variance model based on the consolidated data from all studies Figure D-4 shows the log-variance in response plotted as a function of the log-mean response in the group1 One panel is presented for each of the four different endpoints As seen log-variance increases as an approximately linear function of log-mean response for all four endpoints

ln(s2 i ) k1 k2 ln(yi )

Values of k1 and k2 are derived from the data for each endpoint using ordinary least squares minimization and the resulting values are shown in the figures Note that this variance model is of the same basic form as used in Option 2

s2 i exp(k1) ( yi )

k 2

In Option 3A the weights for each response are assigned based on the predicted mean response at each dose level within that model For example assuming a linear model

Px (i) a b1 x1(i) b2 x2 (i)

2V i expgtk1 k2 ln(Px (i))

In Option 3B the same approach is used except that the observed mean response rather than the predicted mean response is used to estimate ı2

i

2V i expgtk1 k2 ln(Px (i))

1 In this analysis some dose groups were excluded if the estimate of variance andor mean response was judged to be unreliable based on the following two criteria a) the number of animals in the dose group was 2 or b) the fraction of responses below the detection limit was more than 20 For the blood lead AUC endpoint (where the raw data consist of multiple blood lead values as a function of time) this corresponds to an AUC less than about 15 ȝgdL-days

OSWER 92857-77 D-6

In testing both options it was found that Options 3A and 3B gave similar results in most cases However Option 3A (in which weights are not pre-assigned but are optimized during the fitting procedure) tended to be very sensitive to starting guesses often failing to find solutions even when the starting guesses were good and sometimes yielding different results depending on the starting guesses In addition this approach uses the expected mean response rather than the observed mean response to estimate the variance which tends to diminish the role of the measured data in defining the best fit curve In contrast Option 3B was less prone to unstable solutions and is based more directly on the data

Based on a consideration of the advantages and disadvantages of each approach Option 3B was selected for use in this project This is mainly because it is has relatively less vulnerability than Option A to random variations in observed variances in a dose group (which results is assignment of weights that are either too high or too low) and also because it is could be implemented with relatively few difficulties It should be noted however that Option 3B is somewhat vulnerable to poor fits when one particular dose group in a data set lies well below the expected smooth fit through the other dose groups In this case the variance assigned to the group (based on the observed mean response) is lower than typical for that dose level (and hence the weights assigned to the data are higher than usual) tending to force the line through that data set at the expense of the other data sets

33 Choice of Model Forms

As noted above the main objective of the curve-fitting effort is to find a mathematical model that fits both the reference and test group dose-response data sets smoothly Note that there is no requirement that the model have a mechanistic basis or that the coefficients have a biological meaning As discussed by Finney (1978) it is generally not appropriate to choose the form of the dose-response model based on only one experiment but to make the choice based on the weight of observations across many different studies Because simple inspection of the data suggest that over the range of doses tested in these studies some dose-response curves (mainly those for liver kidney and bone) appear to be approximately linear while others (mainly those for blood lead AUC) appear to be nonlinear (tending to plateau as dose increases) the linear model and three alternative non-linear models were evaluated

1) Linear y a br xr bt xt

btRBA br

2) Exponential y a b 1 exp cr xr b 1 exp ct xt

RBA ct

cr

OSWER 92857-77 D-7

3) Michaelis-Menton y a b umlsect

cx

r

x

cx

t

x cedilmiddot

copy r r t t sup1

RBA cr

ct

4) Power y a br xr c bt xt

c

1 c

RBA umlsect bt cedil

middot

copy br sup1

Appendix E presents the detailed results for every data set fit to each of the four different models investigated Goodness-of-fit was assessed using the F test statistic and the adjusted coefficient of multiple determination (Adj R2) calculated as follows (Draper and Smith 1998)

F MSE fit

MSEerror

Adj R 2 1 MSEerror

MSEtotal

where

MSE fit brvbarwi P i

p y 12

MSEerror brvbarwi P

ni

yp

i 2

brvbar iy

n y 12

MSEtotal w i

and

brvbarwi yi ybrvbarwi

p = number of parameters in model

n = number of observations (animals)

F is distributed as an F distribution with (p-1) and (n-p) degrees of freedom Models with p values larger than 005 were not considered to be acceptable Of the models that were acceptable

OSWER 92857-77 D-8

(p lt 005) the preferred model was identified based on Akaikersquos Information Criterion (AIC) (USEPA 2000a and 2000b) which is calculated as

AIC 2 L 2 p

where

L = Log-likelihood function

p = number of parameters in the model

At the kth dose the sample log-likelihood function is

k ln2 k 2 brvbargtyk j f xkL N k SV 2 1 Nk

2

2 2V k j 1

(Nelson 1982) The overall log-likelihood is the sum across all dose groups (g)

g

L brvbar L k k 1

so that

L g N k ln2SV 2

g 1

Nk gty f 2

xbrvbar 2 k brvbar 2V 2 brvbar k j kk 1 k 1 k j 1

The detailed results are presented in Appendix E and the findings are summarized in Table D-1 Inspection of this table reveals the following main conclusions

x For liver kidney and bone the linear model generally gave the best fit although this varied somewhat by endpoint (710 for kidney 610 for bone 410 for liver) In cases where the linear model was not the best fit the RBA value given by the linear model was usually close to that given by whatever other model did provide the best fit with an average absolute difference of 12 (6 if one data set [study 9] was excluded) On this basis the linear model was selected for application to all dose-response data sets for liver kidney and bone

x For the blood lead AUC endpoint the linear model usually gave the worst fit and on this basis it was rejected as a candidate for the AUC endpoint In general each of the three nonlinear models (exponential Michaelis-Menton and power) all tended to give similar results in terms of RBA value (the standard deviation in RBA for a particular test material averaged across the three models was usually less than 3) and differences in the AIC were usually small On this basis it was concluded that any of these three models would be acceptable The power model was not selected because it does not tend toward a plateau while data from early blood lead pilot

OSWER 92857-77 D-9

studies (using higher doses than commonly used in the Phase II studies) suggest that the blood lead endpoint does tend to do so Of the remaining two models (exponential and Michaelis-Menton) the exponential model was selected mainly because it yielded the best fit more often than the Michaelis-Menton model (4 out of 10 vs 2 out of 10) and because the exponential model had been used in previous analyses of the data Thus the exponential model was selected for application to all dose-response data sets for the blood AUC endpoint except in one special case noted below in section 45

34 Assessment of Endpoint Outliers

In biological assays it is not uncommon to note the occurrence of individual measured responses that appear atypical compared to the responses from other animals in the same dose group For the purposes of this program endpoint responses that yielded standardized weighted residuals greater than 35 or less than -35 were considered to be potential outliers (Canavos 1984) When such data points were encountered in a data set the RBA was calculated both with and without the potential outlier(s) excluded and the result with the outlier excluded was used as the preferred estimate

35 Treatment of Problematic Data Sets

Although the data reduction approach described above works well in most cases a few data sets yielded atypical results In particular fitting the blood lead data set from Experiment 7 proved difficult In this study the blood lead AUC data set did not yield a solution in JMP for the exponential model even though solutions could be obtained in Excel using minimization of weighted squared errors However the solutions tended to be unstable This difficulty in modeling the data appears to be due to the fact that the data have relatively less curvature than most blood lead AUC data sets Because of this lack of curvature it is not possible to estimate the exponential plateau value (b) with confidence which in turns makes it difficult to estimate the other parameters of the exponential model

Several alternative solutions were evaluated including a) using the model fits from one of the other nonlinear models b) using the fit for the linear model and c) fitting the data to the exponential model using a defined value for the plateau based on results from other data sets The results (ie the RBA values based on the blood lead AUC endpoint) were generally similar for all three of these approaches

OSWER 92857-77 D-10

Model RBA of TM1 RBA of TM2

Power 065 083 Linear 069 090 Michaelis-Menton 069 plusmn 001 090 plusmn 001 Exponential fit 070 plusmn 002 093 plusmn004 Exponential fit (parameter b = 1264) 075 104 Exponential fit (parameter b = 1691) 074 101

Solution was unstable values represent the mean and standard deviation of five different fitting results Parameter b set to the mean of the estimates obtained for all other blood AUC data sets using the exponential model Parameter b set to the maximum of the estimates obtained for all other blood AUC data sets using the exponential model All estimates are based on all data (outliers not excluded)

Based on these results it was concluded that the results from the linear fit were representative of the range of values derived by other alternatives so the JMP fit for the linear model was used for this data set

36 Characterization of Uncertainty Bounds

Each RBA value is calculated as the ratio of a model coefficient for the reference data set and for the test data set

RBAlinear endpoints bbt

r

RBAblood AUC ct

cr

However there is uncertainty in the estimates of the model coefficients in both the numerator and denominator and hence there is uncertainty in the ratio As described by Finney (1978) the fiduciary limits (uncertainly range) about the ratio R of two model coefficients may be calculated using Fiellerrsquos Theorem

R g covarr t r

t W

var bLBUB r r

1 g

W var 2 R covar R 2 var g umlumlsect var

covarr 2t

cedilcedilmiddot

t t r t r copy varr sup1

OSWER 92857-77 D-11

t 2

gb2 varr

r

where

R = ratio ( bt br for linear model ct cr for exponential model)

varr = variance in the coefficient for the reference material

covarrt = covariance in the coefficients for the reference and test materials

br = coefficient for the reference material (cr in the case of the exponential model)

t = t statistic for alpha (005) and (n-p) degrees of freedom

When g is small (lt005) the variance of the ratio is approximated as (Finney 1978)

var 2 R covarr t R2 varrtvarR 2br

37 Combination of RBA Estimates Across Endpoints

As discussed above each study of RBA utilized four different endpoints to estimate absorption of lead including blood AUC liver kidney and bone Consequently each study yielded four independent estimates of RBA for each test material Thus the final RBA estimate for a test material involves combining the four end-point specific RBA values into a single value (point estimate) and estimating the uncertainty around that point estimate The methods used to achieve these goals are described below

Derivation of the Point Estimate

The basic strategy for deriving a point estimate of RBA for a test material is to calculate a confidence-weighted average of the four endpoint-specific RBA values If all four endpoints are considered to be equally reliable the weighting factors are all equal (ie the point estimate is the simple average) If reliability is considered to differ from endpoint to endpoint then weights are assigned in proportion to the reliability

brvbarRBAi wi RBApoint estimate brvbarwi

Because each endpoint-specific RBA value is calculated as the ratio of the parameters of the dose-response curves fitted to the experimental data for reference material and test material the reliability of an endpoint-specific RBA is inherently related to the quality of the data that define the dose-response curve for that endpoint For endpoints that tend to have low within-group variability and generate data that fit the dose-response model well the uncertainty around

OSWER 92857-77 D-12

the model parameters will tend to be small and hence the uncertainty around the RBA value will also tend to be small Conversely if the underlying dose-response data for an endpoint are highly variable and the dose-response model does not fit the data well there will tend to be high uncertainty in the model parameters and hence in the RBA estimate Thus a good indicator of relative reliability between the four different endpoints is the relative magnitude of the uncertainty (standard error) around RBA estimates based on each endpoint

Figure D-5 plots the standard error in each RBA estimate as a function of the RBA value for each of the four different endpoints As seen uncertainty in RBA increases as a function of the estimated value of RBA in all four cases This is expected because of the heteroscedastisity in the underlying dose-response data Although RBA values based on blood AUC and femur tend to yield estimates with slightly lower standard errors than RBA values based on liver or kidney the magnitude of the standard errors tends to be generally similar for all four endpoints and the difference between the four regression lines is not statistically significant (p = 0699) Based on this each endpoint-specific RBA value was judged to have approximately equal validity and the point estimate was calculated as the simple average across all four endpoint-specific RBA values

Estimation of Uncertainty Bounds Around the Point Estimate

The uncertainty bounds around each point estimate were estimated using Monte Carlo simulation For each test material values for RBA were drawn from the uncertainty distributions for each endpoint with equal frequency Each endpoint-specific uncertainty distribution was assumed to be normal with the mean equal to the best estimate of RBA and the standard deviation estimated from Fiellerrsquos Theorem (see Section 46 above) The uncertainty in the point estimate was characterized as the range from the 5th to the 95th percentile of the average across endpoints

OSWER 92857-77 D-13

40 RELATION BETWEEN RBA AND IVBA

41 Choice of Model Form

As discussed in Section 332 of the main text one of the important objectives of this program was to characterize the degree to which measures of in vitro bioaccessibility (IVBA) correlate with and can be used to predict in vivo measurements of RBA This objective was approached by plotting the point estimate of in vivo RBA vs the corresponding IVBA value for each of the 19 different test materials and fitting several different mathematical models to the data Because the measurement error in RBA is heteroscedastic (tending to increase as RBA increases) all of the model fitting was performed by minimizing the sum of the weighted squared errors between observed and predicted RBA as described above (Section 42) The weighting factor assigned to each RBA point estimate was the inverse of the variance derived from Monte Carlo simulation as described in Section 47 and shown in Table D-2 Goodness of fit was assessed using the AIC as described in Section 43 The fitting results are shown in Figure D-6 (Panels A to D) and are summarized below

Model a b c R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

-0028

-0003

-0634

-0476

0878

0978

0619

0464

--

1293

1225

--

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting somewhat better than the linear model However the improved fit of the exponential models is due mainly to the fact that the two data points that occur in the central part of the x-range (IVBA = 0378 and 0470) lie below the best fit linear line and these two data points tend to pull the central part of the curve down slightly when a non-linear model is used If these two data points were absent or if a third data point were present that were above the linear fit the quality of the fits would be approximately equal for linear and non-linear models Based on the judgment that two data points are not sufficient evidence to conclude that a non-linear fit is preferable to a linear model the linear model is selected as the interim recommended model As more data become available in the future the relationship between IVBA and RBA will be reassessed and the model will be revised if needed

Figure D-7 shows a graph of the best fit linear model through the data along with the 95 prediction interval calculated using SASreg As noted above the best fit equation is

RBA = 0878middotIVBA ndash 0028

OSWER 92857-77 D-14

42 Adjusting for Measurement Error in Both IVBA and RBA

In most cases linear and non-linear regression techniques assume that there are no measurement errors in the independent variable (IVBA) However as noted in Section 3 of the main text IVBA is derived by experimental measurement and hence there is some degree of measurement error in each IVBA value In this situation use of weighted linear regression (which accounts only for the measurement errors in RBA) may yield a fit that is biased with the magnitude of the error depending on the relative magnitude of the measurement errors in IVBA compared to RBA In order to investigate whether this was an important adjustment the data were fit by minimizing the chi-square merit function for a linear model (Cheng and Van Ness 1999)

amp 2 brvbar (RBAi a b IVBAi )2

Syi 2 b2 Sxi

2 where

a = Intercept of the linear equation

b = Slope of the linear equation

Sy2 i = Variance of RBA estimate i

Sx2 i = Variance of IVBA estimate i

As above the value of Sy2 i was derived from the Monte Carlo simulation used to derive

the point estimate for each RBA value and the value of Sx2 i was the variance of the three

independent measurements of IVBA (see Table D-2) Based on this approach the best fit equation is

RBA = 0884middotIVBA ndash 0028

As seen this fit is very similar to the weighted linear regression fit above with the same intercept and a slightly greater slope This relatively small effect of adjusting for measurement error in IVBA is expected because measurement errors in IVBA tend to be substantially smaller (average coefficient of variation = 6) than those in RBA (average coefficient of variation = 33) (see Table D-2) Because the difference in results is so small for this data set the fit based on weighted linear regression is selected as the preferred model at this time because of its relative simplicity This decision may be re-evaluated in the future as additional data become available

OSWER 92857-77 D-15

50 REFERENCES

Canavos C G 1984 Applied Probability and Statistical Methods Little Brown and Co Boston

Cheng C-L and J W Van Ness 1999 Statistical Regression with Measurement Error Oxford University Press New York

Draper N R and H Smith 1998 Applied Regression Analysis (3rd Edition) John Wiley amp Sons New York

Finney D J 1978 Statistical Method in Biological Assay (3rd Edition) Charles Griffin and Co London

Nelson W 1982 Applied Life Data Analysis John Wiley amp Sons New York

USEPA 1995 The Use of the Benchmark Dose Approach in Health Risk Assessment US Environmental Protection Agency Office of Research and Development Risk Assessment Forum EPA630R-94007 February 1995

USEPA 2000a Help Manual for Benchmark Dose Software Version 120 US Environmental Protection Agency Office of Research and Development EPA 600R-00014F February 2000

USEPA 2000b Benchmark Dose Technical Guidance Document External Review Draft US Environmental Protection Agency Risk Assessment Forum EPA630R-00001 October 2000

OSWER 92857-77 D-16

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

TABLE D-1 MODEL COMPARISONS

Endpoint Experiment LINEAR EXPONENTIAL MICHAELIS-MENTON POWER Lowest

AICAIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3

Blood AUC 2 4124014 lt 0001 0779 038 031 -- 3936549 lt 0001 0827 034 030 -- 3918262 lt 0001 0831 033 030 -- 3861163 lt 0001 0846 034 030 -- POWER

Blood AUC 3 4285143 lt 0001 0818 053 063 -- 3778492 lt 0001 0896 065 094 -- 3760574 lt 0001 0899 065 094 -- 3744287 lt 0001 0902 062 085 -- POWER

Blood AUC 4 4556739 lt 0001 0787 034 048 -- 3829415 lt 0001 0896 047 084 -- 3796654 lt 0001 0901 047 084 -- 3742627 lt 0001 0909 040 073 -- POWER

Blood AUC 5 38503 lt 0001 0864 050 055 -- 3451702 lt 0001 0933 069 072 -- 3447351 lt 0001 0934 068 073 -- 3449323 lt 0001 0934 061 068 -- MM

Blood AUC 6 3335853 lt 0001 0820 028 030 -- 3118304 lt 0001 0888 021 019 -- 3123221 lt 0001 0886 021 019 -- 316066 lt 0001 0875 024 023 -- EXP

Blood AUC 7 3943537 lt 0001 0692 069 090 -- NS NS NS NS NS -- NS NS NS NS NS -- 3942826 lt 0001 0689 065 083 -- POWER

Blood AUC 8 3771965 lt 0001 0822 026 -- -- 3379125 lt 0001 0898 026 -- -- 3369394 lt 0001 0900 026 -- -- 3443656 lt 0001 0885 020 -- -- MM

Blood AUC 9 3287634 lt 0001 0862 062 054 -- 3122198 lt 0001 0909 082 062 -- 3126794 lt 0001 0908 080 062 -- 3161967 lt 0001 0899 073 060 -- EXP

Blood AUC 11 4364331 lt 0001 0857 049 060 -- 3904143 lt 0001 0922 070 086 -- 3913314 lt 0001 0921 070 086 -- 4023932 lt 0001 0905 066 083 -- EXP

Blood AUC 12 3751354 lt 0001 0906 001 078 009 3703802 lt 0001 0910 001 071 007 3707599 lt 0001 0910 001 072 007 3748385 lt 0001 0905 001 074 007 EXP

Liver 2 5432988 lt 0001 0567 035 025 -- NS NS NS NS NS -- NS NS NS NS NS -- 5430502 lt 0001 0574 039 026 -- POWER

Liver 3 5622981 lt 0001 0782 056 120 -- NS NS NS NS NS -- NS NS NS NS NS -- 5614696 lt 0001 0786 060 108 -- POWER

Liver 4 5585529 lt 0001 0564 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5558161 lt 0001 0586 039 074 -- POWER

Liver 5 6744086 0003 0268 093 113 -- NS NS NS NS NS -- NS NS NS NS NS -- 6758198 0007 0249 087 102 -- LIN

Liver 6 4683743 lt 0001 0622 013 014 -- 4703592 lt 0001 0612 013 014 -- 4703592 lt 0001 0612 013 014 -- 4702987 lt 0001 0613 013 013 -- LIN

Liver 7 5034618 lt 0001 0679 054 071 -- 50544 lt 0001 0671 054 072 -- NS NS NS NS NS -- 5053976 lt 0001 0672 054 072 -- LIN

Liver 8 6296988 lt 0001 0452 018 -- -- NS NS NS NS -- -- NS NS NS NS -- -- 6306132 lt 0001 0441 018 -- -- LIN

Liver 9 4849237 lt 0001 0727 060 053 -- 4706533 lt 0001 0777 111 065 -- 4716336 lt 0001 0774 107 065 -- 4757101 lt 0001 0760 089 062 -- EXP

Liver 11 5614438 lt 0001 0757 058 073 -- 5615909 lt 0001 0757 066 071 -- 5615427 lt 0001 0757 065 071 -- 5609762 lt 0001 0759 063 073 -- POWER

Liver 12 506975 lt 0001 0716 002 125 011 NS NS NS NS NS NS NS NS NS NS NS NS 4937966 lt 0001 0746 002 098 012 POWER

Kidney 2 5302226 lt 0001 0687 022 027 -- NS NS NS NS NS -- NS NS NS NS NS -- 5322104 lt 0001 0679 022 027 -- LIN

Kidney 3 5335968 lt 0001 0834 058 091 -- 5342703 lt 0001 0833 058 097 -- 534219 lt 0001 0834 058 097 -- 5340045 lt 0001 0834 056 095 -- LIN

Kidney 4 5501067 lt 0001 0715 031 070 -- NS NS NS NS NS -- NS NS NS NS NS -- 5518207 lt 0001 0709 030 068 -- LIN

Kidney 5 5478196 lt 0001 0529 073 078 -- NS NS NS NS NS -- NS NS NS NS NS -- 5480081 lt 0001 0527 064 074 -- LIN

Kidney 6 5002596 lt 0001 0552 012 016 -- 5016143 lt 0001 0543 011 014 -- 5016373 lt 0001 0543 011 014 -- 5019909 lt 0001 0541 012 014 -- LIN

Kidney 7 5015953 lt 0001 0657 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5035096 lt 0001 0649 051 085 -- LIN

Kidney 8 5865547 lt 0001 0573 014 -- -- 5859632 lt 0001 0571 014 -- -- 5859527 lt 0001 0571 014 -- -- 5812902 lt 0001 0587 013 -- -- POWER

Kidney 9 5358631 lt 0001 0579 051 041 -- 5116407 lt 0001 0661 162 052 -- 5135473 lt 0001 0655 163 055 -- 5187502 lt 0001 0636 136 056 -- EXP

Kidney 11 5766481 lt 0001 0725 036 055 -- 5786496 lt 0001 0718 053 047 -- 5787016 lt 0001 0717 048 048 -- 5782471 lt 0001 0720 039 052 -- LIN

Kidney 12 8689066 lt 0001 0329 001 047 004 8700698 lt 0001 0315 001 034 003 87032 lt 0001 0315 001 036 003 8645181 lt 0001 0326 001 073 008 POWER

Femur 2 1805215 lt 0001 0863 024 026 -- NS NS NS NS NS -- NS NS NS NS NS -- 1825211 lt 0001 0859 024 026 -- LIN

Femur 3 1872204 lt 0001 0863 065 075 -- 1861918 lt 0001 0870 070 081 -- 1861445 lt 0001 0870 070 081 -- 186099 lt 0001 0870 068 079 -- POWER

Femur 4 1961178 lt 0001 0886 031 089 -- NS NS NS NS NS -- NS NS NS NS NS -- 1956032 lt 0001 0888 032 096 -- POWER

Femur 5 2211807 lt 0001 0856 067 073 -- NS NS NS NS NS -- NS NS NS NS NS -- 2225578 lt 0001 0854 065 072 -- LIN

Femur 6 2277994 lt 0001 0465 011 010 -- 2297051 lt 0001 0451 011 010 -- 2297112 lt 0001 0451 011 010 -- 229612 lt 0001 0451 011 011 -- LIN

Femur 7 2163481 lt 0001 0615 053 080 -- 2165913 lt 0001 0611 056 095 -- NS NS NS NS NS -- 2163737 lt 0001 0612 056 093 -- LIN

Femur 8 1939091 lt 0001 0830 020 -- -- 1951797 lt 0001 0828 020 -- -- 1951037 lt 0001 0828 020 -- -- 1855952 lt 0001 0850 018 -- -- POWER

Femur 9 1186208 lt 0001 0855 047 040 -- 112175 lt 0001 0884 050 043 -- 1119654 lt 0001 0885 050 043 -- 1111541 lt 0001 0888 048 041 -- POWER

Femur 11 1982084 lt 0001 0871 039 074 -- NS NS NS NS NS -- NS NS NS NS NS -- 2000238 lt 0001 0869 038 073 -- LIN

Femur 12 1371663 lt 0001 0865 001 095 001 1391501 lt 0001 0856 001 095 001 1391506 lt 0001 0856 001 095 001 1391826 lt 0001 0861 001 095 001 LIN

-- = The respective test material does not exist for this studyNS = No solution the software could not find a solution or the solution was unstable andor had unrealistic parameter estimatesNA = Not applicable the preferred model has the best fit or no solution was found for the preferred model

OSWER 92857-77Appendix D_Tables amp Figuresxls (Tbl D-1_Models)

APPENDIX D

TABLE D-2 DATA FOR WEIGHTED REGRESSION OF RBA vs IVBA

Sample RBA IVBA

Best Estimate

Standard Deviation Variance Best

Estimate Standard Deviation Variance

Galena-enriched Soil

California Gulch AV Slag

California Gulch Oregon Gulch Tailings

Midvale Slag

Butte Soil

Bingham Creek Channel Soil

Bingham Creek Residential

Palmerton Location 2

Murray Smelter Slag

Aspen Berm

California Gulch Phase I Residential Soil

Jasper County High Lead Smelter

Palmerton Location 4

Aspen Residential

NIST Paint (SRM 2589)

Murray Smelter Soil

Jasper County Low Lead Yard

Jasper County High Lead Mill

California Gulch FeMn PbO

0011

0199

0061

0141

0144

0266

0268

0602

0401

0740

0723

0609

0493

0749

0719

0508

0900

0823

1049

0009 82

0065 33

0047 78

0050 35

0049 34

0053 20

0068 25

0184 31

0132 33

0182 25

0212 29

0108 18

0136 28

0164 22

0165 23

0164 32

0178 20

0192 23

0299 28

812E-05

426E-03

224E-03

249E-03

239E-03

278E-03

458E-03

338E-02

173E-02

331E-02

450E-02

116E-02

185E-02

268E-02

272E-02

269E-02

318E-02

368E-02

893E-02

0045

0094

0112

0174

0223

0378

0470

0636

0643

0649

0651

0693

0697

0714

0725

0747

0790

0853

0872

0012 26

0016 17

0009 8

0009 5

0006 2

0007 2

0012 3

0004 1

0073 11

0016 2

0015 2

0055 8

0027 4

0020 3

0020 3

0068 9

0056 7

0002 0

0005 1

140E-04

264E-04

773E-05

893E-05

303E-05

501E-05

145E-04

129E-05

539E-03

245E-04

220E-04

304E-03

751E-04

383E-04

412E-04

464E-03

313E-03

297E-06

237E-05

OSWER 92857-77Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (TblD-2_Data)

APPENDIX D

FIGURE D-1 DOSE-RESPONSE CURVE FOR GALENA

Experiment 12 Blood AUC Test Material 1 (Galena-enriched soil)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Lead Acetate Galena

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-1_Saturation)

APPENDIX D

FIGURE D-2 EXAMPLES OF HETEROSCEDASTICITY

Experiment 9 Blood AUC Lead Acetate

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Experiment 7 Liver Test Material 2

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 Dose (ȝg Pbkg-day)

Tiss

ue C

once

ntra

tion

(ȝg

g w

et w

eigh

t)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-2_Heteroscedasticity)

APPENDIX D

FIGURE D-3 EXAMPLE OF POOR FIT DUE TO LOW VARIANCEIN SOME DOSE GROUPS

Option 1 Linear Fit Experiment 12 Liver Lead Acetate

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

Dose (ȝg Pbkg-day)

Lead

Con

cent

ratio

n in

Tis

sue

(ȝg

g)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-3_Poor Fit)

APPENDIX D

FIGURE D-4 VARIANCE MODELS All Phase II Lead Studies Data Quality Exclusion Rules Enforced

LIVER

y = 20999x - 26015 R2 = 07966

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

KIDNEY

y = 19557x - 18499 R2 = 07035

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

FEMUR

y = 1656x - 19713 R2 = 07022

-3

-2

-1

0

1

2

3

4

5

6

-05 00 05 10 15 20 25 30 35 40 45

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

BLOOD AUC

y = 15516x - 13226 R2 = 05046

0

1

2

3

4

5

6

7

8

9

20 25 30 35 40 45 50 55 60

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-4_Variance)

APPENDIX D

FIGURE D-5 EVALUATION OF RELATIVE PRECISION OF MEASUREMENT ENDPOINTS

000

005

010

015

020

025

030

035

00 02 04 06 08 10 12 14 16

RBA

Sta

ndar

d E

rror

of R

BA

Blood AUC Liver Kidney Femur

Blood AUC

Kidney

Liver

Femur

Endpoint Slope Intercept R2

Blood AUC 0177 -0002 0867 Liver 0227 0000 0916 Kidney 0219 0006 0914 Femur 0162 0008 0732

Comparison of Regression Lines

F 0638 Fcrit(005) 2227 p 0699

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-5_Precision)

APPENDIX D

FIGURE D-6 FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel A Linear Model (y = a + bx)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RBA

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00281 r2 09243 b 08782 Adj r2 09199

AIC -3046

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6A_Lin) Page 1 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel B Power Model (y = a + bx^c)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00033 R2 09307 b 09775 Adj R2 09220 c 12933 AIC -2992

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6B_Power) Page 2 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel C 2-Parameter Exponential Model (y = a + bexp(x))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -06339 R2 09355 b 06193 Adj R2 09317

AIC -3302

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6C_2Exp) Page 3 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel D 3-Parameter Exponential Model (y = a + bexp(cx))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -04756 R2 09359 b 04639 Adj R2 09279 c 12245 AIC -3111

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6D_3Exp) Page 4 of 4

APPENDIX D

FIGURE D-7 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RB

A

95 Prediction Interval

0878IVBA - 0028

OSWER 92857-77Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig D-7)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

DETAILED DOSE-RESPONSE DATA AND MODEL FITTING RESULTS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 1a Effects of Food

Test Material 1 Lead Acetate simultaneous with feeding Test Material 2 Lead Acetate 2 hours after feeding

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 1a Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180200

180 160

160

160

140

140

140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

120120

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

40 40

20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 154E+01 281E+00 b1 645E-01 597E-02 b2 372E-01 515E-02 b3 366E-01 504E-02

Covariance (c1c2) 00887 --Covariance (c1c3) 00872 --Degrees of Freedom 23 --

Statistic Estimate F 64226 p lt 0001

Adjusted R2 08795 AIC 246105

PbAc 0 hr PbAc +2 hr RBA 058 057 Lower bound 043 042 Upper bound 075 074 Standard Error 0092 0090

Exp1a_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 1a Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180180

160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

404040

202020

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 107E+01 155E+00 b 133E+02 104E+01 c1 123E-02 188E-03 c2 481E-03 884E-04 c3 488E-03 919E-04

Covariance (c1c2) 06771 --Covariance (c1c3) 06779 --Degrees of Freedom 22 --

Statistic Estimate F 202312 p lt 0001

Adjusted R2 09687 AIC 215723

PbAc 0 hr PbAc +2 hr RBA 039 040 Lower bound 030 030 Upper bound 049 050 Standard Error 0054 0056 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 1a Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180180

160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 40 40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 106E+01 153E+00 b 180E+02 189E+01 c1 975E+01 202E+01 c2 235E+02 570E+01 c3 231E+02 570E+01

Covariance (c1c2) 08053 --Covariance (c1c3) 08061 --Degrees of Freedom 22 --

Statistic Estimate F 211024 p lt 0001

Adjusted R2 09700 AIC 215293

PbAc 0 hr PbAc +2 hr RBA 042 042 Lower bound 033 033 Upper bound 056 057 Standard Error 0060 0062 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 1a Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180 180

160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 4040

20 2020

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 104E+01 158E+00

b1 694E+00 153E+00 b2 474E+00 123E+00 b3 475E+00 124E+00 c 540E-01 457E-02

Covariance (b1b2) 09528 --Covariance (b1b3) 09534 --Degrees of Freedom 22 --

Statistic Estimate F 199941 p lt 0001

Adjusted R2 09684 AIC 215846

PbAc 0 hr PbAc +2 hr RBA 049 050 Lower bound 034 034 Upper bound 062 063 Standard Error -- --

Exp1a_AUCxls (Graph_POWER)

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 130E+02 411E+01 b1 489E+00 118E+00 b2 370E+00 111E+00 b3 249E+00 794E-01

Covariance (c1c2) 00810 --Covariance (c1c3) 01091 --Degrees of Freedom 23 --

Statistic Estimate F 11055 p lt 0001

Adjusted R2 05371 AIC 402563

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound 035 023 Upper bound 144 097 Standard Error 0279 0192 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN)

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+02 291E+01 b1 431E+00 843E-01 b2 369E+00 786E-01 b3 248E+00 563E-01

Covariance (c1c2) 00807 --Covariance (c1c3) 01085 --Degrees of Freedom 22 --

Statistic Estimate F 16332 p lt 0001

Adjusted R2 06479 AIC 364272

PbAc 0 hr PbAc +2 hr RBA 086 058 Lower bound 051 034 Upper bound 140 094 Standard Error 0238 0163 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 1a Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 117E+02 517E+01 b 245E+03 445E+03 c1 250E-03 567E-03 c2 188E-03 439E-03 c3 120E-03 261E-03

Covariance (c1c2) 09805 --Covariance (c1c3) 09802 --Degrees of Freedom 22 --

Statistic Estimate F 8087 p lt 0001

Adjusted R2 05216 AIC 403989

PbAc 0 hr PbAc +2 hr RBA 075 048 Lower bound Upper bound Standard Error 0345 0216 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 1a Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 1a Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 128E+02 530E+01 b1 534E+00 763E+00 b2 406E+00 634E+00 b3 274E+00 437E+00 c 983E-01 276E-01

Covariance (b1b2) 09689 --Covariance (b1b3) 09684 --Degrees of Freedom 22 --

Statistic Estimate F 7934 p lt 0001

Adjusted R2 05162 AIC 404552

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound Upper bound Standard Error -- --

Exp1a_Liverxls (Graph_POWER)

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 1a Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 443E+01 179E+01 b1 450E+00 893E-01 b2 324E+00 981E-01 b3 326E+00 105E+00

Covariance (c1c2) 00197 --Covariance (c1c3) 00178 --Degrees of Freedom 23 --

Statistic Estimate F 14903 p lt 0001

Adjusted R2 06160 AIC 408462

PbAc 0 hr PbAc +2 hr RBA 072 073 Lower bound 033 031 Upper bound 129 132 Standard Error 0259 0271 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F 1175 RBA DIV0 DIV0b 000E+00 000E+00 p 03492 Lower boundc1 000E+00 000E+00 Adjusted R2 00262 Upper boundc2 000E+00 000E+00 AIC 623577 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 1a Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 1a Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 380E+01 179E+01 b 133E+03 908E+02 c1 169E+02 169E+02 c2 181E+02 299E+02 c3 138E+02 269E+02

Covariance (c1c2) 08873 --Covariance (c1c3) 08896 --Degrees of Freedom 22 --

Statistic Estimate F 12449 p lt 0001

Adjusted R2 06379 AIC 402853

PbAc 0 hr PbAc +2 hr RBA 094 122 Lower bound Upper bound Standard Error 0835 1405 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 1a Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 383E+01 182E+01 b1 165E+01 148E+01 b2 143E+01 158E+01 b3 148E+01 165E+01 c 727E-01 196E-01

Covariance (b1b2) 09430 --Covariance (b1b3) 09407 --Degrees of Freedom 22 --

Statistic Estimate F 11992 p lt 0001

Adjusted R2 06284 AIC 404685

PbAc 0 hr PbAc +2 hr RBA 082 086 Lower bound Upper bound Standard Error -- --

Exp1a_Kidneyxls (Graph_POWER)

5

10

15

20

25

30

APPENDIX E

Figure 4a - All DataPhase II Experiment 1a Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 158E+00 291E-01 b1 887E-02 740E-03 b2 312E-02 444E-03 b3 294E-02 426E-03

Covariance (c1c2) 01245 --Covariance (c1c3) 01250 --Degrees of Freedom 23 --

Statistic Estimate F 66771 p lt 0001

Adjusted R2 08836 AIC 116460

PbAc 0 hr PbAc +2 hr RBA 035 033 Lower bound 026 025 Upper bound 045 043 Standard Error 0055 0052

Exp1a_Femurxls (Graph_LIN)

5

10

15

20

25

APPENDIX E

Figure 4b - All DataPhase II Experiment 1a Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 317E-01 b 383E+01 207E+01 c1 299E-03 207E-03 c2 931E-04 592E-04 c3 880E-04 560E-04

Covariance (c1c2) 09665 --Covariance (c1c3) 09659 --Degrees of Freedom 22 --

Statistic Estimate F 53359 p lt 0001

Adjusted R2 08896 AIC 116514

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_EXP)

5

10

15

20

25

APPENDIX E

Figure 4c - All DataPhase II Experiment 1a Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 318E-01 b 671E+01 416E+01 c1 580E+02 453E+02 c2 186E+03 135E+03 c3 197E+03 143E+03

Covariance (c1c2) 09741 --Covariance (c1c3) 09736 --Degrees of Freedom 22 --

Statistic Estimate F 53403 p lt 0001

Adjusted R2 08896 AIC 116500

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_MM)

5

10

15

20

25

APPENDIX E

Figure 4d - All DataPhase II Experiment 1a Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 329E-01 b1 171E-01 808E-02 b2 647E-02 354E-02 b3 615E-02 339E-02 c 871E-01 943E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09598 --Degrees of Freedom 22 --

Statistic Estimate F 52175 p lt 0001

Adjusted R2 08873 AIC 116905

PbAc 0 hr PbAc +2 hr RBA 033 031 Lower bound 007 006 Upper bound 045 042 Standard Error -- --

Exp1a_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 2

Test Material 1 Bingham Creek Residential Test Material 2 Bingham Creek Channel Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

APPENDIX E

Figure 1a - All DataPhase II Experiment 2 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

4040

20 20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 197E+01 256E+00 b1 478E-01 561E-02 b2 180E-01 219E-02 b3 146E-01 176E-02

Covariance (c1c2) 01488 --Covariance (c1c3) 01354 --Degrees of Freedom 42 --

Statistic Estimate F 53890 p lt 0001

Adjusted R2 07791 AIC 412401

Test Material 1 Test Material 2 RBA 038 031 Lower bound 029 023 Upper bound 049 040 Standard Error 0059 0048

Exp2_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 2 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 100

80

60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

404040

202020

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 136E+01 284E+00 b 116E+02 183E+01 c1 836E-03 264E-03 c2 281E-03 842E-04 c3 250E-03 772E-04

Covariance (c1c2) 07931 --Covariance (c1c3) 07868 --Degrees of Freedom 41 --

Statistic Estimate F 54613 p lt 0001

Adjusted R2 08266 AIC 393655

Test Material 1 Test Material 2 RBA 034 030 Lower bound 023 020 Upper bound 050 045 Standard Error 0067 0061 g 005 estimate is uncertain

Exp2_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 2 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 129E+01 288E+00 b 164E+02 313E+01 c1 148E+02 560E+01 c2 446E+02 162E+02 c3 497E+02 185E+02

Covariance (c1c2) 08595 --Covariance (c1c3) 08572 --Degrees of Freedom 41 --

Statistic Estimate F 56405 p lt 0001

Adjusted R2 08312 AIC 391826

Test Material 1 Test Material 2 RBA 033 030 Lower bound 021 019 Upper bound 049 046 Standard Error 0065 0060 g 005 estimate is uncertain

Exp2_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 2 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 114E+01 284E+00

b1 390E+00 136E+00 b2 201E+00 818E-01 b3 188E+00 793E-01 c 606E-01 668E-02

Covariance (b1b2) 09568 --Covariance (b1b3) 09581 --Degrees of Freedom 41 --

Statistic Estimate F 62696 p lt 0001

Adjusted R2 08458 AIC 386116

Test Material 1 Test Material 2 RBA 034 030 Lower bound 017 014 Upper bound 046 041 Standard Error -- --

Exp2_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Test Material 2

Outlier Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 579E+01 118E+01

b1 207E+00 355E-01 b2 717E-01 136E-01 b3 510E-01 951E-02

Covariance (c1c2) 02250 --Covariance (c1c3) 02118 --Degrees of Freedom 42 --

Statistic Estimate F 20611 p lt 0001

Adjusted R2 05666 AIC 543299

Test Material 1 Test Material 2 RBA 035 025 Lower bound 023 016 Upper bound 051 036 Standard Error 0078 0055 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

900900

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 628E+01 937E+00

b1 201E+00 287E-01 b2 563E-01 934E-02 b3 490E-01 767E-02

Covariance (c1c2) 02120 --Covariance (c1c3) 02047 --Degrees of Freedom 41 --

Statistic Estimate F 29241 p lt 0001

Adjusted R2 06582 AIC 507050

Test Material 1 Test Material 2 RBA 028 024 Lower bound 020 017 Upper bound 039 034 Standard Error 0055 0046 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 6812 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03406 Upper boundc2 000E+00 000E+00 AIC 904060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 2 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 2 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 2 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 11200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 747E+01 160E+01 b1 440E-01 588E-01 b2 129E-01 195E-01 b3 768E-02 125E-01 c 130E+00 251E-01

Covariance (b1b2) 09848 --Covariance (b1b3) 09854 --Degrees of Freedom 41 --

Statistic Estimate F 16144 p lt 0001

Adjusted R2 05738 AIC 543050

Test Material 1 Test Material 2 RBA 039 026 Lower bound Upper bound Standard Error -- --

Exp2_Liverxls (Graph_POWER)

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 2 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 442E+01 871E+00 b1 236E+00 352E-01 b2 517E-01 826E-02 b3 632E-01 895E-02

Covariance (c1c2) 01831 --Covariance (c1c3) 01458 --Degrees of Freedom 42 --

Statistic Estimate F 33908 p lt 0001

Adjusted R2 06869 AIC 530223

Test Material 1 Test Material 2 RBA 022 027 Lower bound 015 019 Upper bound 031 037 Standard Error 0043 0051 g 005 estimate is uncertain

Exp2_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5920 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03043 Upper boundc2 000E+00 000E+00 AIC 892708 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 2 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 2 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 2 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 21200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 450E+01 112E+01

b1 220E+00 151E+00 b2 469E-01 410E-01 b3 573E-01 504E-01 c 102E+00 139E-01

Covariance (b1b2) 09660 --Covariance (b1b3) 09676 --Degrees of Freedom 41 --

Statistic Estimate F 24834 p lt 0001

Adjusted R2 06793 AIC 532210

Test Material 1 Test Material 2 RBA 022 027 Lower bound 050 063 Upper bound 032 038 Standard Error -- --

Exp2_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4a - All DataPhase II Experiment 2 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 725E-01 166E-01 b1 837E-02 742E-03 b2 197E-02 194E-03 b3 214E-02 196E-03

Covariance (c1c2) 01156 --Covariance (c1c3) 01070 --Degrees of Freedom 42 --

Statistic Estimate F 95226 p lt 0001

Adjusted R2 08627 AIC 180521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 019 021 Upper bound 029 031 Standard Error 0029 0031

Exp2_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4345 RBA DIV0 DIV0b 000E+00 000E+00 p 00051 Lower boundc1 000E+00 000E+00 Adjusted R2 02292 Upper boundc2 000E+00 000E+00 AIC 791096 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4b - All DataPhase II Experiment 2 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4c - All DataPhase II Experiment 2 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve 35

Control Lead Acetate

Control Test Material 130

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_MM)

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4d - All DataPhase II Experiment 2 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Lead Acetate

Control Test Material 1

Control Test Material 230 30

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

25

20

15

10

5

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 723E-01 198E-01 b1 843E-02 329E-02 b2 199E-02 963E-03 b3 216E-02 106E-02 c 999E-01 787E-02

Covariance (b1b2) 09581 --Covariance (b1b3) 09605 --Degrees of Freedom 41 --

Statistic Estimate F 69720 p lt 0001

Adjusted R2 08593 AIC 182521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 011 012 Upper bound 029 031 Standard Error -- --

Exp2_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 3

Test Material 1 Jasper County High Lead Smelter Test Material 2 Jasper County Low Lead Yard

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 3 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 135E+01 271E+00 b1 409E-01 570E-02 b2 215E-01 244E-02 b3 259E-01 277E-02

Covariance (c1c2) 00086 --Covariance (c1c3) 00740 --Degrees of Freedom 38 --

Statistic Estimate F 62590 p lt 0001

Adjusted R2 08184 AIC 428514

Test Material 1 Test Material 2 RBA 053 063 Lower bound 039 048 Upper bound 072 086 Standard Error 0094 0107 g 005 estimate is uncertain

Exp3_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 3 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 150

100

150

100

150

100

505050

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 827E+00 227E+00 b 163E+02 192E+01 c1 397E-03 875E-04 c2 256E-03 570E-04 c3 373E-03 876E-04

Covariance (c1c2) 06715 --Covariance (c1c3) 06719 --Degrees of Freedom 37 --

Statistic Estimate F 89559 p lt 0001

Adjusted R2 08963 AIC 377849

Test Material 1 Test Material 2 RBA 065 094 Lower bound 047 066 Upper bound 089 130 Standard Error 0116 0174 g 005 estimate is uncertain

Exp3_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 3 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 792E+00 227E+00 b 229E+02 348E+01 c1 319E+02 873E+01 c2 494E+02 137E+02 c3 340E+02 101E+02

Covariance (c1c2) 07827 --Covariance (c1c3) 07877 --Degrees of Freedom 37 --

Statistic Estimate F 92316 p lt 0001

Adjusted R2 08991 AIC 376057

Test Material 1 Test Material 2 RBA 065 094 Lower bound 046 067 Upper bound 091 138 Standard Error 0117 0176 g 005 estimate is uncertain

Exp3_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 3 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 746E+00 226E+00

b1 343E+00 105E+00 b2 256E+00 865E-01 b3 311E+00 105E+00 c 606E-01 557E-02

Covariance (b1b2) 09351 --Covariance (b1b3) 09366 --Degrees of Freedom 37 --

Statistic Estimate F 94960 p lt 0001

Adjusted R2 09016 AIC 374429

Test Material 1 Test Material 2 RBA 062 085 Lower bound 038 053 Upper bound 086 119 Standard Error -- --

Exp3_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Outlier

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 951E+00 283E+00 b1 228E+00 360E-01 b2 128E+00 176E-01 b3 273E+00 354E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00039 --Degrees of Freedom 38 --

Statistic Estimate F 50038 p lt 0001

Adjusted R2 07820 AIC 562298

Test Material 1 Test Material 2 RBA 056 120 Lower bound 040 085 Upper bound 081 173 Standard Error 0117 0245 g 005 estimate is uncertain

Exp3_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 959E+00 227E+00 b1 228E+00 290E-01 b2 128E+00 141E-01 b3 227E+00 247E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00041 --Degrees of Freedom 37 --

Statistic Estimate F 75057 p lt 0001

Adjusted R2 08474 AIC 519560

Test Material 1 Test Material 2 RBA 056 100 Lower bound 042 075 Upper bound 075 134 Standard Error 0094 0167

Exp3_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1218 RBA DIV0 DIV0b 000E+00 000E+00 p 03197 Lower boundc1 000E+00 000E+00 Adjusted R2 00208 Upper boundc2 000E+00 000E+00 AIC 873157 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 3 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 3 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 3 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 980E+00 281E+00 b1 123E+00 609E-01 b2 694E-01 351E-01 b3 134E+00 745E-01 c 113E+00 949E-02

Covariance (b1b2) 09157 --Covariance (b1b3) 09221 --Degrees of Freedom 37 --

Statistic Estimate F 38601 p lt 0001

Adjusted R2 07858 AIC 561470

Test Material 1 Test Material 2 RBA 060 108 Lower bound 032 032 Upper bound 100 162 Standard Error -- --

Exp3_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 3 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 104E+01 314E+00

b1 219E+00 302E-01 b2 126E+00 144E-01 b3 199E+00 219E-01

Covariance (c1c2) 00096 --Covariance (c1c3) 00050 --Degrees of Freedom 38 --

Statistic Estimate F 69473 p lt 0001

Adjusted R2 08336 AIC 533597

Test Material 1 Test Material 2 RBA 058 091 Lower bound 043 068 Upper bound 079 124 Standard Error 0103 0160 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 3 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 308E+03 288E+03 c1 770E-04 783E-04 c2 444E-04 451E-04 c3 746E-04 798E-04

Covariance (c1c2) 09824 --Covariance (c1c3) 09828 --Degrees of Freedom 37 --

Statistic Estimate F 52252 p lt 0001

Adjusted R2 08333 AIC 534270

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 3 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 545E+03 536E+03 c1 229E+03 245E+03 c2 398E+03 424E+03 c3 236E+03 264E+03

Covariance (c1c2) 09839 --Covariance (c1c3) 09844 --Degrees of Freedom 37 --

Statistic Estimate F 52312 p lt 0001

Adjusted R2 08335 AIC 534219

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 3 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 994E+00 316E+00 b1 348E+00 153E+00 b2 206E+00 950E-01 b3 334E+00 159E+00 c 910E-01 826E-02

Covariance (b1b2) 09216 --Covariance (b1b3) 09256 --Degrees of Freedom 37 --

Statistic Estimate F 52565 p lt 0001

Adjusted R2 08342 AIC 534005

Test Material 1 Test Material 2 RBA 056 095 Lower bound 031 049 Upper bound 088 144 Standard Error -- --

Exp3_Kidneyxls (Graph_POWER)

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 3 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Lead Acetate

Control Test Material 1

50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 183E+00 396E-01 b1 621E-02 698E-03 b2 403E-02 375E-03 b3 466E-02 455E-03

Covariance (c1c2) 01624 --Covariance (c1c3) 01457 --Degrees of Freedom 33 --

Statistic Estimate F 76883 p lt 0001

Adjusted R2 08635 AIC 187220

Test Material 1 Test Material 2 RBA 065 075 Lower bound 052 060 Upper bound 082 095 Standard Error 0087 0103

Exp3_Femurxls (Graph_LIN)

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 3 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 141E+00 467E-01 b 620E+01 308E+01 c1 117E-03 692E-04 c2 817E-04 506E-04 c3 952E-04 593E-04

Covariance (c1c2) 09723 --Covariance (c1c3) 09705 --Degrees of Freedom 32 --

Statistic Estimate F 61268 p lt 0001

Adjusted R2 08701 AIC 186192

Test Material 1 Test Material 2 RBA 070 081 Lower bound 482 747 Upper bound 228 225 Standard Error 0101 0123 g 005 estimate is uncertain

Exp3_Femurxls (Graph_EXP)

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 3 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 139E+00 472E-01 b 109E+02 603E+01 c1 148E+03 977E+02 c2 213E+03 146E+03 c3 182E+03 126E+03

Covariance (c1c2) 09775 --Covariance (c1c3) 09761 --Degrees of Freedom 32 --

Statistic Estimate F 61359 p lt 0001

Adjusted R2 08702 AIC 186145

Test Material 1 Test Material 2 RBA 070 081 Lower bound Upper bound Standard Error 0101 0122 g 005 estimate is uncertain

Exp3_Femurxls (Graph_MM)

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 3 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 132E+00 498E-01 b1 129E-01 545E-02 b2 926E-02 431E-02 b3 106E-01 484E-02 c 867E-01 744E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09575 --Degrees of Freedom 32 --

Statistic Estimate F 61446 p lt 0001

Adjusted R2 08704 AIC 186099

Test Material 1 Test Material 2 RBA 068 079 Lower bound 039 047 Upper bound 089 106 Standard Error -- --

Exp3_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 4

Test Material 1 Murray Smelter Slag Test Material 2 Jasper County High Lead Mill

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 4 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 143E+01 304E+00 b1 542E-01 780E-02 b2 186E-01 249E-02 b3 258E-01 304E-02

Covariance (c1c2) 00818 --Covariance (c1c3) 00672 --Degrees of Freedom 38 --

Statistic Estimate F 51413 p lt 0001

Adjusted R2 07867 AIC 455674

Test Material 1 Test Material 2 RBA 034 048 Lower bound 025 035 Upper bound 048 066 Standard Error 0065 0086 g 005 estimate is uncertain

Exp4_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 4 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 852E+00 232E+00 b 144E+02 147E+01 c1 636E-03 140E-03 c2 298E-03 651E-04 c3 533E-03 120E-03

Covariance (c1c2) 05953 --Covariance (c1c3) 05796 --Degrees of Freedom 37 --

Statistic Estimate F 89273 p lt 0001

Adjusted R2 08960 AIC 382941

Test Material 1 Test Material 2 RBA 047 084 Lower bound 033 058 Upper bound 067 121 Standard Error 0092 0171 g 005 estimate is uncertain

Exp4_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 4 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 813E+00 228E+00 b 190E+02 247E+01 c1 177E+02 484E+01 c2 380E+02 103E+02 c3 211E+02 615E+01

Covariance (c1c2) 07225 --Covariance (c1c3) 07236 --Degrees of Freedom 37 --

Statistic Estimate F 94291 p lt 0001

Adjusted R2 09010 AIC 379665

Test Material 1 Test Material 2 RBA 047 084 Lower bound 032 057 Upper bound 068 128 Standard Error 0094 0177 g 005 estimate is uncertain

Exp4_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 4 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 757E+00 220E+00

b1 688E+00 192E+00 b2 435E+00 141E+00 b3 587E+00 186E+00 c 504E-01 534E-02

Covariance (b1b2) 09315 --Covariance (b1b3) 09341 --Degrees of Freedom 37 --

Statistic Estimate F 103784 p lt 0001

Adjusted R2 09093 AIC 374263

Test Material 1 Test Material 2 RBA 040 073 Lower bound 023 043 Upper bound 059 106 Standard Error -- --

Exp4_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - All DataPhase II Experiment 4 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 571E+01 177E+01

b1 173E+00 426E-01 b2 889E-01 150E-01 b3 149E+00 295E-01

Covariance (c1c2) 01813 --Covariance (c1c3) 02399 --Degrees of Freedom 38 --

Statistic Estimate F 18693 p lt 0001

Adjusted R2 05642 AIC 558553

Test Material 1 Test Material 2 RBA 051 086 Lower bound 033 054 Upper bound 088 147 Standard Error 0140 0238 g 005 estimate is uncertain

Exp4_Liverxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5080 RBA DIV0 DIV0b 000E+00 000E+00 p 00023 Lower boundc1 000E+00 000E+00 Adjusted R2 02847 Upper boundc2 000E+00 000E+00 AIC 846060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 4 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 4 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 4 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+01 198E+01 b1 376E-01 369E-01 b2 109E-01 134E-01 b3 252E-01 290E-01 c 132E+00 186E-01

Covariance (b1b2) 09617 --Covariance (b1b3) 09615 --Degrees of Freedom 37 --

Statistic Estimate F 15495 p lt 0001

Adjusted R2 05858 AIC 555816

Test Material 1 Test Material 2 RBA 039 074 Lower bound Upper bound Standard Error -- --

Exp4_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 4 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 679E+01 162E+01

b1 280E+00 481E-01 b2 877E-01 134E-01 b3 197E+00 263E-01

Covariance (c1c2) 01300 --Covariance (c1c3) 01213 --Degrees of Freedom 38 --

Statistic Estimate F 35326 p lt 0001

Adjusted R2 07152 AIC 550107

Test Material 1 Test Material 2 RBA 031 070 Lower bound 022 050 Upper bound 046 102 Standard Error 0067 0143 g 005 estimate is uncertain

Exp4_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4572 RBA DIV0 DIV0b 000E+00 000E+00 p 00042 Lower boundc1 000E+00 000E+00 Adjusted R2 02584 Upper boundc2 000E+00 000E+00 AIC 885551 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 4 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 4 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 4 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 724E+01 186E+01 b1 209E+00 137E+00 b2 588E-01 486E-01 b3 138E+00 105E+00 c 106E+00 127E-01

Covariance (b1b2) 09527 --Covariance (b1b3) 09542 --Degrees of Freedom 37 --

Statistic Estimate F 25994 p lt 0001

Adjusted R2 07092 AIC 551821

Test Material 1 Test Material 2 RBA 030 068 Lower bound 069 Upper bound 050 Standard Error -- --

Exp4_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4a - All DataPhase II Experiment 4 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 535E-01 164E-01 b1 765E-02 101E-02 b2 235E-02 247E-03 b3 680E-02 560E-03

Covariance (c1c2) 00238 --Covariance (c1c3) 00207 --Degrees of Freedom 33 --

Statistic Estimate F 94431 p lt 0001

Adjusted R2 08862 AIC 196118

Test Material 1 Test Material 2 RBA 031 089 Lower bound 023 069 Upper bound 041 118 Standard Error 0051 0137 g 005 estimate is uncertain

Exp4_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1274 RBA DIV0 DIV0b 000E+00 000E+00 p 03008 Lower boundc1 000E+00 000E+00 Adjusted R2 00295 Upper boundc2 000E+00 000E+00 AIC 773426 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4b - All DataPhase II Experiment 4 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4c - All DataPhase II Experiment 4 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 1

Control Test Material 2

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4d - All DataPhase II Experiment 4 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Lead Acetate

Control Test Material 1

Control Test Material 260 60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 488E-01 166E-01 b1 129E-01 499E-02 b2 471E-02 226E-02 b3 124E-01 532E-02 c 892E-01 756E-02

Covariance (b1b2) 09218 --Covariance (b1b3) 09254 --Degrees of Freedom 32 --

Statistic Estimate F 72328 p lt 0001

Adjusted R2 08880 AIC 195603

Test Material 1 Test Material 2 RBA 032 096 Lower bound 013 056 Upper bound 045 134 Standard Error -- --

Exp4_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 5

Test Material 1 Aspen Berm Test Material 2 Aspen Residential

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 5 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 129E+01 219E+00 b1 425E-01 490E-02 b2 211E-01 199E-02 b3 232E-01 212E-02

Covariance (c1c2) 00903 --Covariance (c1c3) 00880 --Degrees of Freedom 38 --

Statistic Estimate F 87459 p lt 0001

Adjusted R2 08635 AIC 385030

Test Material 1 Test Material 2 RBA 050 055 Lower bound 039 043 Upper bound 064 070 Standard Error 0071 0077

Exp5_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 5 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 803E+00 172E+00 b 163E+02 169E+01 c1 382E-03 683E-04 c2 263E-03 497E-04 c3 276E-03 526E-04

Covariance (c1c2) 07323 --Covariance (c1c3) 07322 --Degrees of Freedom 37 --

Statistic Estimate F 143955 p lt 0001

Adjusted R2 09331 AIC 345170

Test Material 1 Test Material 2 RBA 069 072 Lower bound 054 056 Upper bound 087 091 Standard Error 0093 0098 g 005 estimate is uncertain

Exp5_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 5 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200 200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 781E+00 173E+00 b 239E+02 323E+01 c1 355E+02 797E+01 c2 524E+02 124E+02 c3 489E+02 118E+02

Covariance (c1c2) 08270 --Covariance (c1c3) 08275 --Degrees of Freedom 37 --

Statistic Estimate F 145720 p lt 0001

Adjusted R2 09339 AIC 344735

Test Material 1 Test Material 2 RBA 068 073 Lower bound 053 057 Upper bound 088 095 Standard Error 0093 0100 g 005 estimate is uncertain

Exp5_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 5 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 741E+00 176E+00

b1 270E+00 667E-01 b2 197E+00 550E-01 b3 210E+00 584E-01 c 649E-01 456E-02

Covariance (b1b2) 09387 --Covariance (b1b3) 09389 --Degrees of Freedom 37 --

Statistic Estimate F 144915 p lt 0001

Adjusted R2 09335 AIC 344932

Test Material 1 Test Material 2 RBA 061 068 Lower bound 044 049 Upper bound 078 086 Standard Error -- --

Exp5_AUCxls (Graph_POWER)

-2

-1

0

1

2

3

4

5

6

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

APPENDIX E

Figure 2a - All DataPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000

Outlier Control Test Material 2

Control Test Material 1

Control Lead Acetate 4500 4500

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

Control Test Material 1

5

4

3

2

1

0

-1

-2

5

4

3

2

1

0

-1

-2

-3 -3 -3

-4 -4 -4

0 05 1 15 2 25 3 0 05 1 15 2 25 3 SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

0 05 1 15 2 25 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 107E+02 509E+01 b1 158E+00 786E-01 b2 147E+00 519E-01 b3 179E+00 547E-01

Covariance (c1c2) 02781 --Covariance (c1c3) 01555 --Degrees of Freedom 36 --

Statistic Estimate F 5754 p 00025

Adjusted R2 02678 AIC 674409

Test Material 1 Test Material 2 RBA 093 113 Lower bound 038 048 Upper bound 514 678 Standard Error 0490 0616 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 621E+01 246E+01 b1 196E+00 429E-01 b2 171E+00 285E-01 b3 150E+00 292E-01

Covariance (c1c2) 02174 --Covariance (c1c3) 02847 --Degrees of Freedom 35 --

Statistic Estimate F 18566 p lt 0001

Adjusted R2 05810 AIC 526951

Test Material 1 Test Material 2 RBA 087 077 Lower bound 058 050 Upper bound 139 121 Standard Error 0214 0190 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3654 RBA DIV0 DIV0b 000E+00 000E+00 p 00137 Lower boundc1 000E+00 000E+00 Adjusted R2 02139 Upper boundc2 000E+00 000E+00 AIC 937766 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 5 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500050005000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

450045004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 5 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 50005000

Control Test Material 1

Control Test Material 2

Control Lead Acetate 4500 45004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_MM)

0

1

2

3

4

5

6

APPENDIX E

Figure 2d - All DataPhase II Experiment 5 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000 5000

Control Lead Acetate

Control Test Material 1

Control Test Material 24500 4500 4500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

-3 -3

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-3

-4 -4 -4 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

55

44

33

22

11

0 0

-1 -1 -1

-2 -2 -2

Parameter Estimate Standard Error a 120E+02 637E+01

b1 819E-01 173E+00 b2 698E-01 163E+00 b3 839E-01 193E+00 c 112E+00 367E-01

Covariance (b1b2) 09666 --Covariance (b1b3) 09647 --Degrees of Freedom 35 --

Statistic Estimate F 4240 p 00067

Adjusted R2 02494 AIC 675820

Test Material 1 Test Material 2 RBA 087 102 Lower bound Upper bound Standard Error -- --

Exp5_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

1800

APPENDIX E

Figure 3a - All DataPhase II Experiment 5 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 16001600

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 602E+01 263E+01

b1 184E+00 456E-01 b2 134E+00 250E-01 b3 143E+00 292E-01

Covariance (c1c2) 02137 --Covariance (c1c3) 02775 --Degrees of Freedom 36 --

Statistic Estimate F 15575 p lt 0001

Adjusted R2 05286 AIC 547820

Test Material 1 Test Material 2 RBA 073 078 Lower bound 046 049 Upper bound 126 133 Standard Error 0202 0214 g 005 estimate is uncertain

Exp5_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4815 RBA DIV0 DIV0b 000E+00 000E+00 p 00034 Lower boundc1 000E+00 000E+00 Adjusted R2 02812 Upper boundc2 000E+00 000E+00 AIC 863863 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 5 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180018001800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 160016001600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 5 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 18001800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600

1400

1200

1000

800

600

400

200

1600 1600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 5 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800 1800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600 1600 1600

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 899E+01 432E+01 b1 581E-01 947E-01 b2 336E-01 635E-01 b3 405E-01 734E-01 c 121E+00 285E-01

Covariance (b1b2) 09831 --Covariance (b1b3) 09834 --Degrees of Freedom 35 --

Statistic Estimate F 11844 p lt 0001

Adjusted R2 05266 AIC 548008

Test Material 1 Test Material 2 RBA 064 074 Lower bound Upper bound Standard Error -- --

Exp5_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 5 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

50 50

40

30

20

10

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 485E-01 213E-01 b1 619E-02 812E-03 b2 414E-02 415E-03 b3 451E-02 447E-03

Covariance (c1c2) 00463 --Covariance (c1c3) 00555 --Degrees of Freedom 36 --

Statistic Estimate F 78581 p lt 0001

Adjusted R2 08565 AIC 221181

Test Material 1 Test Material 2 RBA 067 073 Lower bound 051 056 Upper bound 089 097 Standard Error 0108 0117

Exp5_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1927 RBA DIV0 DIV0b 000E+00 000E+00 p 01278 Lower boundc1 000E+00 000E+00 Adjusted R2 00868 Upper boundc2 000E+00 000E+00 AIC 853823 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 5 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 5 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 5 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 528E-01 229E-01 b1 500E-02 214E-02 b2 321E-02 157E-02 b3 353E-02 169E-02 c 104E+00 794E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09328 --Degrees of Freedom 35 --

Statistic Estimate F 57870 p lt 0001

Adjusted R2 08536 AIC 222558

Test Material 1 Test Material 2 RBA 065 072 Lower bound 033 039 Upper bound 088 097 Standard Error -- --

Exp5_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 6

Test Material 1 Midvale Slag Test Material 2 Butte Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 6 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 122E+01 166E+00 b1 327E-01 347E-02 b2 931E-02 106E-02 b3 978E-02 115E-02

Covariance (c1c2) 01007 --Covariance (c1c3) 01127 --Degrees of Freedom 38 --

Statistic Estimate F 63445 p lt 0001

Adjusted R2 08204 AIC 333585

Test Material 1 Test Material 2 RBA 028 030 Lower bound 022 023 Upper bound 036 038 Standard Error 0042 0045

Exp6_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 6 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50 60 70

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 837E+00 161E+00 b 851E+01 989E+00 c1 101E-02 283E-03 c2 206E-03 466E-04 c3 193E-03 428E-04

Covariance (c1c2) 07145 --Covariance (c1c3) 07021 --Degrees of Freedom 37 --

Statistic Estimate F 81898 p lt 0001

Adjusted R2 08875 AIC 311830

Test Material 1 Test Material 2 RBA 021 019 Lower bound 015 014 Upper bound 031 029 Standard Error 0041 0039 g 005 estimate is uncertain

Exp6_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 6 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 805E+00 168E+00 b 122E+02 201E+01 c1 131E+02 496E+01 c2 626E+02 191E+02 c3 679E+02 201E+02

Covariance (c1c2) 08466 --Covariance (c1c3) 08359 --Degrees of Freedom 37 --

Statistic Estimate F 80706 p lt 0001

Adjusted R2 08861 AIC 312322

Test Material 1 Test Material 2 RBA 021 019 Lower bound 012 011 Upper bound 029 027 Standard Error 0042 0040 g 005 estimate is uncertain

Exp6_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 6 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 732E+00 188E+00

b1 238E+00 892E-01 b2 943E-01 410E-01 b3 906E-01 388E-01 c 647E-01 678E-02

Covariance (b1b2) 09646 --Covariance (b1b3) 09617 --Degrees of Freedom 37 --

Statistic Estimate F 72563 p lt 0001

Adjusted R2 08747 AIC 316066

Test Material 1 Test Material 2 RBA 024 023 Lower bound 012 012 Upper bound 032 030 Standard Error -- --

Exp6_AUCxls (Graph_POWER)

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 1400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

OutlierOutlier Control Lead Acetate

Outlier Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 213E+01 697E+00 b1 202E+00 328E-01 b2 260E-01 452E-02 b3 278E-01 587E-02

Covariance (c1c2) 01005 --Covariance (c1c3) 01298 --Degrees of Freedom 38 --

Statistic Estimate F 23514 p lt 0001

Adjusted R2 06223 AIC 468374

Test Material 1 Test Material 2 RBA 013 014 Lower bound 009 009 Upper bound 019 021 Standard Error 0029 0034 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN)

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate 900 900

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 233E+01 558E+00 b1 200E+00 269E-01 b2 254E-01 369E-02 b3 267E-01 477E-02

Covariance (c1c2) 00962 --Covariance (c1c3) 01248 --Degrees of Freedom 37 --

Statistic Estimate F 34108 p lt 0001

Adjusted R2 07129 AIC 430977

Test Material 1 Test Material 2 RBA 013 013 Lower bound 009 009 Upper bound 017 019 Standard Error 0024 0028 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 6 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 210E+01 824E+00 b 621E+03 655E+04 c1 333E-04 363E-03 c2 426E-05 460E-04 c3 455E-05 491E-04

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06121 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_EXP)

APPENDIX E

Figure 2c - All DataPhase II Experiment 6 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 209E+01 829E+00 b 121E+04 127E+05 c1 582E+03 629E+04 c2 455E+04 486E+05 c3 427E+04 457E+05

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06122 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 6 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 181E+01 176E+01 b1 270E+00 363E+00 b2 386E-01 687E-01 b3 405E-01 720E-01 c 943E-01 262E-01

Covariance (b1b2) 09893 --Covariance (b1b3) 09877 --Degrees of Freedom 37 --

Statistic Estimate F 17205 p lt 0001

Adjusted R2 06126 AIC 470299

Test Material 1 Test Material 2 RBA 013 013 Lower bound Upper bound Standard Error -- --

Exp6_Liverxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Outlier Control Test Material 1 Outlier

Control Test Material 2Outlier

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 115E+01 929E+00 b1 212E+00 383E-01 b2 264E-01 524E-02 b3 334E-01 887E-02

Covariance (c1c2) 00947 --Covariance (c1c3) 01423 --Degrees of Freedom 38 --

Statistic Estimate F 17831 p lt 0001

Adjusted R2 05519 AIC 500260

Test Material 1 Test Material 2 RBA 012 016 Lower bound 008 009 Upper bound 019 025 Standard Error 0032 0047 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Control Test Material 1

Control Test Material 2

Control Lead Acetate 700

600

500

400

300

200

100

700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 149E+01 731E+00 b1 210E+00 319E-01 b2 255E-01 432E-02 b3 310E-01 717E-02

Covariance (c1c2) 00853 --Covariance (c1c3) 01306 --Degrees of Freedom 37 --

Statistic Estimate F 25046 p lt 0001

Adjusted R2 06433 AIC 454018

Test Material 1 Test Material 2 RBA 012 015 Lower bound 008 009 Upper bound 018 022 Standard Error 0026 0038 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN_outliers)

-4

0

1

2

3

APPENDIX E

Figure 3b - All DataPhase II Experiment 6 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 55

4 44

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 936E+00 113E+01 b 121E+03 210E+03 c1 212E-03 439E-03 c2 242E-04 464E-04 c3 297E-04 574E-04

Covariance (c1c2) 09899 --Covariance (c1c3) 09860 --Degrees of Freedom 37 --

Statistic Estimate F 13189 p lt 0001

Adjusted R2 05432 AIC 501614

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 6 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 2

Control Test Material 1

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 928E+00 116E+01 b 222E+03 440E+03 c1 866E+02 204E+03 c2 754E+03 165E+04 c3 617E+03 136E+04

Covariance (c1c2) 09923 --Covariance (c1c3) 09893 --Degrees of Freedom 37 --

Statistic Estimate F 13183 p lt 0001

Adjusted R2 05431 AIC 501637

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 6 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 515E+00 247E+01 b1 377E+00 585E+00 b2 563E-01 114E+00 b3 658E-01 131E+00 c 891E-01 294E-01

Covariance (b1b2) 09901 --Covariance (b1b3) 09869 --Degrees of Freedom 37 --

Statistic Estimate F 13091 p lt 0001

Adjusted R2 05412 AIC 501991

Test Material 1 Test Material 2 RBA 012 014 Lower bound Upper bound Standard Error -- --

Exp6_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4a - All DataPhase II Experiment 6 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 2

Control Test Material 1

Control Lead Acetate

1818

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 16

14

12

10

8

6

4

16

14

12

10

8

6

4

22 2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

600 800 1000

Control Test Material 2

0 200 400 SQRT(W) Dose

-4

0 200 400 600 800 1000 SQRT(W) Dose

Control Test Material 1

-4 -4

-5 -5 -5

0 100 200 300 400 500 600 700 800 900 1000

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 369E-01 221E-01

b1 426E-02 827E-03 b2 463E-03 122E-03 b3 436E-03 168E-03

Covariance (c1c2) 00873 --Covariance (c1c3) 01409 --Degrees of Freedom 38 --

Statistic Estimate F 12878 p lt 0001

Adjusted R2 04650 AIC 227799

Test Material 1 Test Material 2 RBA 011 010 Lower bound 006 004 Upper bound 018 019 Standard Error 0034 0042 g 005 estimate is uncertain

Exp6_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 6 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 202020

Control Test Material 2

Control Test Material 1

Control Lead Acetate

181818

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

16

14

12

10

8

6

4

2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 238E-01 b 738E+01 510E+02 c1 611E-04 443E-03 c2 646E-05 455E-04 c3 598E-05 420E-04

Covariance (c1c2) 09990 --Covariance (c1c3) 09982 --Degrees of Freedom 37 --

Statistic Estimate F 9415 p lt 0001

Adjusted R2 04508 AIC 229705

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0041 0048 g 005 estimate is uncertain

Exp6_Femurxls (Graph_EXP)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4c - All DataPhase II Experiment 6 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 1

Control Test Material 2

Control Lead Acetate 18 18

16

14

12

10

8

6

4

2

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 239E-01 b 152E+02 113E+03 c1 337E+03 265E+04 c2 318E+04 243E+05 c3 344E+04 262E+05

Covariance (c1c2) 09991 --Covariance (c1c3) 09985 --Degrees of Freedom 37 --

Statistic Estimate F 9414 p lt 0001

Adjusted R2 04508 AIC 229711

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0042 0047 g 005 estimate is uncertain

Exp6_Femurxls (Graph_MM)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4d - All DataPhase II Experiment 6 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Lead Acetate

Control Test Material 1

Control Test Material 2

18 18

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 418E-01 329E-01 b1 285E-02 508E-02 b2 273E-03 624E-03 b3 275E-03 616E-03 c 108E+00 336E-01

Covariance (b1b2) 09875 --Covariance (b1b3) 09814 --Degrees of Freedom 37 --

Statistic Estimate F 9426 p lt 0001

Adjusted R2 04512 AIC 229612

Test Material 1 Test Material 2 RBA 011 011 Lower bound Upper bound Standard Error -- --

Exp6_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 7

Test Material 1 California Gulch Phase I Residential Soil Test Material 2 California Gulch FeMn PbO

Figure 1a Blood AUC - Linear Model (All Data) Figure 1a Blood AUC - Linear Model (Outlier Excluded) Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

APPENDIX E

Figure 1a - All DataPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140

Control Test Material 2

Outlier

Control Lead Acetate

Control Test Material 1

120120

100100

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 646E+00 159E+00 b1 439E-01 925E-02 b2 303E-01 449E-02 b3 397E-01 509E-02

Covariance (c1c2) 01719 --Covariance (c1c3) 01351 --Degrees of Freedom 41 --

Statistic Estimate F 33889 p lt 0001

Adjusted R2 06916 AIC 394354

Test Material 1 Test Material 2 RBA 069 090 Lower bound 047 063 Upper bound 108 142 Standard Error 0163 0209 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - Outlier ExcludedPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 674E+00 130E+00 b1 340E-01 688E-02 b2 300E-01 369E-02 b3 394E-01 418E-02

Covariance (c1c2) 01724 --Covariance (c1c3) 01355 --Degrees of Freedom 40 --

Statistic Estimate F 47669 p lt 0001

Adjusted R2 07650 AIC 341729

Test Material 1 Test Material 2 RBA 088 116 Lower bound 062 083 Upper bound 134 176 Standard Error 0192 0249 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5028 RBA DIV0 DIV0b 000E+00 000E+00 p 00022 Lower boundc1 000E+00 000E+00 Adjusted R2 02680 Upper boundc2 000E+00 000E+00 AIC 1170590 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1b - All DataPhase II Experiment 7 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1c - All DataPhase II Experiment 7 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140140

120 120120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 7 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140 140

120 120 120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

80

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 734E+00 195E+00

b1 270E-01 192E-01 b2 168E-01 140E-01 b3 219E-01 179E-01 c 111E+00 156E-01

Covariance (b1b2) 09447 --Covariance (b1b3) 09455 --Degrees of Freedom 40 --

Statistic Estimate F 25364 p lt 0001

Adjusted R2 06890 AIC 394283

Test Material 1 Test Material 2 RBA 065 083 Lower bound Upper bound Standard Error -- --

Exp7_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 2a - All DataPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 102E+01 208E+00 b1 229E+00 481E-01 b2 124E+00 201E-01 b3 163E+00 260E-01

Covariance (c1c2) 00199 --Covariance (c1c3) 00177 --Degrees of Freedom 41 --

Statistic Estimate F 32074 p lt 0001

Adjusted R2 06794 AIC 503462

Test Material 1 Test Material 2 RBA 054 071 Lower bound 035 046 Upper bound 089 116 Standard Error 0142 0186 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 103E+01 168E+00 b1 165E+00 289E-01 b2 124E+00 162E-01 b3 163E+00 211E-01

Covariance (c1c2) 00204 --Covariance (c1c3) 00181 --Degrees of Freedom 40 --

Statistic Estimate F 48222 p lt 0001

Adjusted R2 07671 AIC 451637

Test Material 1 Test Material 2 RBA 075 099 Lower bound 053 069 Upper bound 112 146 Standard Error 0163 0213 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 7 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800800800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 101E+01 213E+00 b 622E+03 644E+04 c1 371E-04 399E-03 c2 202E-04 218E-03 c3 266E-04 288E-03

Covariance (c1c2) 09997 --Covariance (c1c3) 09997 --Degrees of Freedom 40 --

Statistic Estimate F 23468 p lt 0001

Adjusted R2 06713 AIC 505440

Test Material 1 Test Material 2 RBA 054 072 Lower bound Upper bound Standard Error 0145 0196 g 005 estimate is uncertain

Exp7_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 7 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 800800

Control Lead Acetate

Control Test Material 1700 700

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 7 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800 800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

700 700

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 101E+01 214E+00

b1 248E+00 128E+00 b2 137E+00 806E-01 b3 179E+00 103E+00 c 979E-01 126E-01

Covariance (b1b2) 08779 --Covariance (b1b3) 08769 --Degrees of Freedom 40 --

Statistic Estimate F 23491 p lt 0001

Adjusted R2 06716 AIC 505398

Test Material 1 Test Material 2 RBA 054 072 Lower bound 001 008 Upper bound 108 146 Standard Error -- --

Exp7_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 3a - All DataPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 978E+00 253E+00 b1 201E+00 446E-01 b2 102E+00 177E-01 b3 173E+00 275E-01

Covariance (c1c2) 00375 --Covariance (c1c3) 00222 --Degrees of Freedom 41 --

Statistic Estimate F 29081 p lt 0001

Adjusted R2 06569 AIC 501595

Test Material 1 Test Material 2 RBA 051 086 Lower bound 032 056 Upper bound 085 145 Standard Error 0141 0234 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 199E+00 b1 138E+00 259E-01 b2 101E+00 139E-01 b3 173E+00 216E-01

Covariance (c1c2) 00390 --Covariance (c1c3) 00230 --Degrees of Freedom 40 --

Statistic Estimate F 45535 p lt 0001

Adjusted R2 07565 AIC 446484

Test Material 1 Test Material 2 RBA 073 125 Lower bound 050 088 Upper bound 112 191 Standard Error 0167 0280 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 2799 RBA DIV0 DIV0b 000E+00 000E+00 p 00386 Lower boundc1 000E+00 000E+00 Adjusted R2 01406 Upper boundc2 000E+00 000E+00 AIC 836197 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 7 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700700

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 7 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve 700700

Dose-Response Curve

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 7 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700 700

Control Lead Acetate

Control Test Material 1

Control Test Material 2600

500

400

300

200

100

600

500

400

300

200

100

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 35 4 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 990E+00 264E+00

b1 183E+00 989E-01 b2 914E-01 560E-01 b3 155E+00 955E-01 c 102E+00 128E-01

Covariance (b1b2) 08746 --Covariance (b1b3) 08793 --Degrees of Freedom 40 --

Statistic Estimate F 21305 p lt 0001

Adjusted R2 06486 AIC 503510

Test Material 1 Test Material 2 RBA 051 085 Lower bound Upper bound 112 183 Standard Error -- --

Exp7_Kidneyxls (Graph_POWER)

2

4

6

8

10

12

APPENDIX E

Figure 4a - All DataPhase II Experiment 7 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 845E-01 198E-01 b1 591E-02 146E-02 b2 311E-02 578E-03 b3 473E-02 742E-03

Covariance (c1c2) 01175 --Covariance (c1c3) 00828 --Degrees of Freedom 41 --

Statistic Estimate F 24456 p lt 0001

Adjusted R2 06153 AIC 216348

Test Material 1 Test Material 2 RBA 053 080 Lower bound 033 051 Upper bound 093 140 Standard Error 0153 0225 g 005 estimate is uncertain

Exp7_Femurxls (Graph_LIN)

2

4

6

8

10

12

APPENDIX E

Figure 4b - All DataPhase II Experiment 7 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 787E-01 214E-01 b 209E+01 214E+01 c1 308E-03 358E-03 c2 173E-03 209E-03 c3 291E-03 375E-03

Covariance (c1c2) 09636 --Covariance (c1c3) 09659 --Degrees of Freedom 40 --

Statistic Estimate F 18305 p lt 0001

Adjusted R2 06114 AIC 216591

Test Material 1 Test Material 2 RBA 056 095 Lower bound Upper bound Standard Error 0181 0324 g 005 estimate is uncertain

Exp7_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

2

4

6

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 7 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 1616

14 1414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Femurxls (Graph_MM)

2

4

6

8

10

12

APPENDIX E

Figure 4d - All DataPhase II Experiment 7 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 16 16

14 14 14

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E-01 224E-01 b1 103E-01 671E-02 b2 631E-02 486E-02 b3 973E-02 739E-02 c 859E-01 151E-01

Covariance (b1b2) 09128 --Covariance (b1b3) 09157 --Degrees of Freedom 40 --

Statistic Estimate F 18357 p lt 0001

Adjusted R2 06121 AIC 216374

Test Material 1 Test Material 2 RBA 056 093 Lower bound Upper bound Standard Error -- --

Exp7_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 8

Test Material 1 California Gulch AV Slag Test Material 2 Lead Acetate - IV (for ABA determination)

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

100

150

200

250

APPENDIX E

Figure 1a - All DataPhase II Experiment 8 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve 250

Control Test Material 1

Control Lead Acetate

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 859E+00 120E+00 b1 444E-01 745E-02 b2 117E-01 220E-02 b3 180E+00 141E-01

Covariance (c1c2) 01238 --Covariance (c1c3) 00351 --Degrees of Freedom 42 --

Statistic Estimate F 70263 p lt 0001

Adjusted R2 08220 AIC 377196

Test Material 1

RBA 026

Lower bound 017

Upper bound 039

Standard Error 0062

Lead Acetate ABA 025 Lower bound 017 Upper bound 033 Standard Error 0045

g 005 estimate is uncertain

Exp8_AUCxls (Graph_LIN)

0

1

2

3

4

APPENDIX E

Figure 1b - All DataPhase II Experiment 8 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

55

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate IV

Control Test Material 1

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 804E+00 929E-01 b 159E+02 176E+01 c1 320E-03 586E-04 c2 834E-04 159E-04 c3 308E-02 840E-03

Covariance (c1c2) 04920 --Covariance (c1c3) 05858 --Degrees of Freedom 41 --

Statistic Estimate F 99719 p lt 0001

Adjusted R2 08977 AIC 337913

Test Material 1

RBA 026

Lower bound 019

Upper bound 036

Standard Error 0049

Lead Acetate ABA 010 Lower bound 007 Upper bound 017 Standard Error 0023

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 8 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

50 50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 793E+00 930E-01 b 200E+02 332E+01 c1 367E+02 885E+01 c2 142E+03 347E+02 c3 318E+01 139E+01

Covariance (c1c2) 06808 --Covariance (c1c3) 07694 --Degrees of Freedom 41 --

Statistic Estimate F 101785 p lt 0001

Adjusted R2 08996 AIC 336939

Test Material 1

RBA 026

Lower bound 018

Upper bound 037

Standard Error 0050

Lead Acetate ABA 009 Lower bound 003 Upper bound 013 Standard Error 0026

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 8 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250 250

Control Lead Acetate

Control Test Material 1

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

5050

0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 689E+00 111E+00 b1 286E+00 101E+00 b2 116E+00 493E-01 b3 130E+01 452E+00 c 556E-01 815E-02

Covariance (b1b2) 08993 --Covariance (b1b3) 09228 --Degrees of Freedom 41 --

Statistic Estimate F 87734 p lt 0001

Adjusted R2 08852 AIC 344366

Test Material 1

RBA 020

Lower bound 007

Upper bound 034

Standard Error --

Lead Acetate ABA 007 Lower bound 004 Upper bound 011 Standard Error --

Exp8_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - All DataPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier

Dose-Response Curve Dose-Response Curve 3500

Outlier

Control Test Material 1

Outlier

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 156E+01 376E+00 b1 194E+00 576E-01 b2 355E-01 104E-01 b3 125E+01 291E+00

Covariance (c1c2) 00491 --Covariance (c1c3) 00059 --Degrees of Freedom 42 --

Statistic Estimate F 13353 p lt 0001

Adjusted R2 04516 AIC 629699

Test Material 1

RBA 018

Lower bound 008

Upper bound 040

Standard Error 0074

Lead Acetate ABA 015 Lower bound 007 Upper bound 029 Standard Error 0058

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 3500

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 110E+01 203E+00 b1 207E+00 445E-01 b2 391E-01 797E-02 b3 127E+01 226E+00

Covariance (c1c2) 00243 --Covariance (c1c3) 00028 --Degrees of Freedom 41 --

Statistic Estimate F 25206 p lt 0001

Adjusted R2 06227 AIC 537628

Test Material 1

RBA 019

Lower bound 011

Upper bound 032

Standard Error 0055

Lead Acetate ABA 016 Lower bound 010 Upper bound 026 Standard Error 0046

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F 3186 RBA ABA DIV0b 000E+00 000E+00 p 00228 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 01627 Upper bound Upper boundc2 000E+00 000E+00 AIC 983795 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and UncertaintyTest Material 1

DIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2b - All DataPhase II Experiment 8 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350035003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F DIV0 RBA ABA DIV0b 000E+00 000E+00 p DIV0 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper bound Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

ABA and Uncertainty

DIV0

Summary of Fitting Goodness of Fit RBA and UncertaintyTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2c - All DataPhase II Experiment 8 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 35003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 8 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 3500 3500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 149E+01 393E+00

b1 360E+00 367E+00 b2 877E-01 119E+00 b3 231E+01 232E+01 c 833E-01 263E-01

Covariance (b1b2) 09380 --Covariance (b1b3) 09287 --Degrees of Freedom 41 --

Statistic Estimate F 9890 p lt 0001

Adjusted R2 04414 AIC 630613

Test Material 1

RBA 018

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 011 Lower bound Upper bound Standard Error --

Exp8_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate IV

Outlier

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Control Lead Acetate

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3 -3

Parameter Estimate Standard Error a 166E+01 421E+00

b1 239E+00 576E-01 b2 342E-01 948E-02 b3 123E+01 207E+00

Covariance (c1c2) 00503 --Covariance (c1c3) 00067 --Degrees of Freedom 42 --

Statistic Estimate F 21139 p lt 0001

Adjusted R2 05731 AIC 586555

Test Material 1

RBA 014

Lower bound 007

Upper bound 027

Standard Error 0051

Lead Acetate ABA 019 Lower bound 011 Upper bound 031 Standard Error 0057

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400

1200

1000

800

600

400

200

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 167E+01 365E+00 b1 239E+00 505E-01 b2 341E-01 829E-02 b3 123E+01 182E+00

Covariance (c1c2) 00519 --Covariance (c1c3) 00065 --Degrees of Freedom 41 --

Statistic Estimate F 27487 p lt 0001

Adjusted R2 06436 AIC 540150

Test Material 1

RBA 014

Lower bound 008

Upper bound 025

Standard Error 0045

Lead Acetate ABA 019 Lower bound 012 Upper bound 029 Standard Error 0050

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 8 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 165E+01 423E+00 b 172E+03 160E+03 c1 144E-03 144E-03 c2 205E-04 204E-04 c3 100E-02 129E-02

Covariance (c1c2) 09322 --Covariance (c1c3) 09527 --Degrees of Freedom 41 --

Statistic Estimate F 15994 p lt 0001

Adjusted R2 05713 AIC 585963

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0052

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0064

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 8 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Test Material 1

Control Lead Acetate IV

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 164E+01 423E+00 b 281E+03 320E+03 c1 113E+03 137E+03 c2 792E+03 953E+03 c3 158E+02 246E+02

Covariance (c1c2) 09535 --Covariance (c1c3) 09679 --Degrees of Freedom 41 --

Statistic Estimate F 15996 p lt 0001

Adjusted R2 05714 AIC 585953

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0053

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0068

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 8 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 153E+01 423E+00

b1 975E+00 760E+00 b2 277E+00 294E+00 b3 593E+01 488E+01 c 616E-01 204E-01

Covariance (b1b2) 09292 --Covariance (b1b3) 09318 --Degrees of Freedom 41 --

Statistic Estimate F 16981 p lt 0001

Adjusted R2 05869 AIC 581290

Test Material 1

RBA 013

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 005 Lower bound Upper bound Standard Error --

Exp8_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 8 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate

50

40

30

20

10

50

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Lead Acetate IV

-4 -4

0 50 100 150 200 250 300 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 754E-01 121E-01

b1 649E-02 105E-02 b2 132E-02 245E-03 b3 453E-01 353E-02

Covariance (c1c2) 00708 --Covariance (c1c3) 00128 --Degrees of Freedom 42 --

Statistic Estimate F 74474 p lt 0001

Adjusted R2 08305 AIC 193909

Test Material 1

RBA 020

Lower bound 013

Upper bound 030

Standard Error 0048

Lead Acetate ABA 014 Lower bound 010 Upper bound 019 Standard Error 0026

g 005 estimate is uncertain

Exp8_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 8 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 606060

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 505050

40

30

20

10

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

20

Control Lead Acetate IV

0 5 10 15 SQRT(W) Dose

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 750E-01 122E-01 b 148E+02 203E+02 c1 447E-04 630E-04 c2 903E-05 127E-04 c3 347E-03 542E-03

Covariance (c1c2) 09853 --Covariance (c1c3) 09917 --Degrees of Freedom 41 --

Statistic Estimate F 55160 p lt 0001

Adjusted R2 08280 AIC 195180

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 4c - All DataPhase II Experiment 8 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 6060

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 5050

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 749E-01 122E-01 b 247E+02 332E+02 c1 372E+03 514E+03 c2 184E+04 254E+04 c3 472E+02 729E+02

Covariance (c1c2) 09848 --Covariance (c1c3) 09913 --Degrees of Freedom 41 --

Statistic Estimate F 55226 p lt 0001

Adjusted R2 08282 AIC 195104

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 4d - All DataPhase II Experiment 8 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60 60

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 672E-01 118E-01 b1 256E-01 115E-01 b2 815E-02 463E-02 b3 181E+00 796E-01 c 666E-01 107E-01

Covariance (b1b2) 09154 --Covariance (b1b3) 09329 --Degrees of Freedom 41 --

Statistic Estimate F 64812 p lt 0001

Adjusted R2 08501 AIC 185595

Test Material 1

RBA 018

Lower bound 001

Upper bound 031

Standard Error --

Lead Acetate ABA 005 Lower bound 003 Upper bound 010 Standard Error --

Exp8_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 9

Test Material 1 Palmerton Location 2 Test Material 2 Palmerton Location 4

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 9 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 961E+00 108E+00 b1 594E-01 690E-02 b2 371E-01 320E-02 b3 320E-01 290E-02

Covariance (c1c2) 00930 --Covariance (c1c3) 01000 --Degrees of Freedom 41 --

Statistic Estimate F 92835 p lt 0001

Adjusted R2 08623 AIC 328763

Test Material 1 Test Material 2 RBA 062 054 Lower bound 050 043 Upper bound 080 069 Standard Error 0086 0075

Exp9_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 9 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 751E+00 994E-01 b 955E+01 141E+01 c1 868E-03 198E-03 c2 709E-03 178E-03 c3 541E-03 131E-03

Covariance (c1c2) 08172 --Covariance (c1c3) 08147 --Degrees of Freedom 40 --

Statistic Estimate F 111320 p lt 0001

Adjusted R2 09093 AIC 312220

Test Material 1 Test Material 2 RBA 082 062 Lower bound 061 047 Upper bound 105 080 Standard Error 0119 0089 g 005 estimate is uncertain

Exp9_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 9 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 750E+00 101E+00 b 152E+02 298E+01 c1 177E+02 515E+01 c2 221E+02 700E+01 c3 284E+02 870E+01

Covariance (c1c2) 08860 --Covariance (c1c3) 08834 --Degrees of Freedom 40 --

Statistic Estimate F 109669 p lt 0001

Adjusted R2 09081 AIC 312679

Test Material 1 Test Material 2 RBA 080 062 Lower bound 062 048 Upper bound 110 084 Standard Error 0118 0090 g 005 estimate is uncertain

Exp9_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 9 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 749E+00 108E+00

b1 178E+00 467E-01 b2 141E+00 422E-01 b3 122E+00 368E-01 c 743E-01 586E-02

Covariance (b1b2) 09184 --Covariance (b1b3) 09173 --Degrees of Freedom 40 --

Statistic Estimate F 98378 p lt 0001

Adjusted R2 08985 AIC 316197

Test Material 1 Test Material 2 RBA 073 060 Lower bound 051 041 Upper bound 095 078 Standard Error -- --

Exp9_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 2a - All DataPhase II Experiment 9 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 107E+01 188E+00

b1 230E+00 398E-01 b2 139E+00 214E-01 b3 122E+00 175E-01

Covariance (c1c2) 00117 --Covariance (c1c3) 00189 --Degrees of Freedom 41 --

Statistic Estimate F 40132 p lt 0001

Adjusted R2 07274 AIC 484924

Test Material 1 Test Material 2 RBA 060 053 Lower bound 041 037 Upper bound 091 079 Standard Error 0139 0119 g 005 estimate is uncertain

Exp9_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 9 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 987E+00 172E+00 b 299E+02 729E+01 c1 901E-03 315E-03 c2 997E-03 396E-03 c3 583E-03 208E-03

Covariance (c1c2) 07276 --Covariance (c1c3) 07387 --Degrees of Freedom 40 --

Statistic Estimate F 39356 p lt 0001

Adjusted R2 07771 AIC 470653

Test Material 1 Test Material 2 RBA 111 065 Lower bound 056 038 Upper bound 186 109 Standard Error 0309 0165 g 005 estimate is uncertain

Exp9_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 9 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 988E+00 174E+00 b 466E+02 153E+02 c1 167E+02 750E+01 c2 156E+02 813E+01 c3 257E+02 119E+02

Covariance (c1c2) 08328 --Covariance (c1c3) 08354 --Degrees of Freedom 40 --

Statistic Estimate F 38613 p lt 0001

Adjusted R2 07737 AIC 471634

Test Material 1 Test Material 2 RBA 107 065 Lower bound 060 035 Upper bound 355 133 Standard Error 0309 0170 g 005 estimate is uncertain

Exp9_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 9 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 991E+00 180E+00 b1 594E+00 226E+00 b2 545E+00 253E+00 b3 420E+00 184E+00 c 732E-01 960E-02

Covariance (b1b2) 08634 --Covariance (b1b3) 08614 --Degrees of Freedom 40 --

Statistic Estimate F 35748 p lt 0001

Adjusted R2 07595 AIC 475710

Test Material 1 Test Material 2 RBA 089 062 Lower bound 029 025 Upper bound 152 108 Standard Error -- --

Exp9_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 3a - All DataPhase II Experiment 9 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 145E+01 355E+00

b1 233E+00 537E-01 b2 120E+00 249E-01 b3 961E-01 193E-01

Covariance (c1c2) 00182 --Covariance (c1c3) 00342 --Degrees of Freedom 41 --

Statistic Estimate F 2121 p lt 0001

Adjusted R2 0579 AIC 535863

Test Material 1 Test Material 2 RBA 051 041 Lower bound 030 025 Upper bound 091 072 Standard Error 0158 0124 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 9 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 127E+01 325E+00 b 238E+02 533E+01 c1 120E-02 475E-03 c2 195E-02 903E-03 c3 628E-03 247E-03

Covariance (c1c2) 05421 --Covariance (c1c3) 05740 --Degrees of Freedom 40 --

Statistic Estimate F 2248 p lt 0001

Adjusted R2 0661 AIC 511641

Test Material 1 Test Material 2 RBA 162 052 Lower bound 050 024 Upper bound 366 116 Standard Error 0672 0190 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 9 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 126E+01 329E+00 b 310E+02 928E+01 c1 994E+01 500E+01 c2 609E+01 395E+01 c3 182E+02 929E+01

Covariance (c1c2) 06978 --Covariance (c1c3) 06997 --Degrees of Freedom 40 --

Statistic Estimate F 2185 p lt 0001

Adjusted R2 0655 AIC 513547

Test Material 1 Test Material 2 RBA 163 055 Lower bound 059 017 Upper bound -663 189 Standard Error 0763 0215 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 9 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 125E+01 339E+00 b1 117E+01 596E+00 b2 138E+01 875E+00 b3 850E+00 509E+00 c 540E-01 131E-01

Covariance (b1b2) 08697 --Covariance (b1b3) 08638 --Degrees of Freedom 40 --

Statistic Estimate F 2025 p lt 0001

Adjusted R2 0636 AIC 518750

Test Material 1 Test Material 2 RBA 136 056 Lower bound Upper bound 422 194 Standard Error -- --

Exp9_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4a - All DataPhase II Experiment 9 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 8

7

6

5

4

3

2

1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 617E-01 833E-02 b1 710E-02 790E-03 b2 334E-02 315E-03 b3 287E-02 285E-03

Covariance (c1c2) 00554 --Covariance (c1c3) 00566 --Degrees of Freedom 41 --

Statistic Estimate F 87669 p lt 0001

Adjusted R2 08553 AIC 118621

Test Material 1 Test Material 2 RBA 047 040 Lower bound 037 032 Upper bound 060 052 Standard Error 0067 0058

Exp9_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 9 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

150 200

Control Test Material 2

0 50 100 SQRT(W) Dose

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 520E-01 802E-02 b 908E+00 203E+00 c1 112E-02 377E-03 c2 558E-03 187E-03 c3 480E-03 160E-03

Covariance (c1c2) 08717 --Covariance (c1c3) 08714 --Degrees of Freedom 40 --

Statistic Estimate F 84798 p lt 0001

Adjusted R2 08840 AIC 112175

Test Material 1 Test Material 2 RBA 050 043 Lower bound 035 030 Upper bound 070 060 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_EXP)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 9 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 1010

9 99

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 516E-01 803E-02 b 145E+01 390E+00 c1 136E+02 541E+01 c2 274E+02 109E+02 c3 320E+02 126E+02

Covariance (c1c2) 09096 --Covariance (c1c3) 09088 --Degrees of Freedom 40 --

Statistic Estimate F 85458 p lt 0001

Adjusted R2 08848 AIC 111965

Test Material 1 Test Material 2 RBA 050 043 Lower bound 034 029 Upper bound 072 062 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_MM)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4d - All DataPhase II Experiment 9 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 10 10

9 9 9

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 502E-01 802E-02 b1 209E-01 576E-02 b2 122E-01 388E-02 b3 108E-01 351E-02 c 740E-01 647E-02

Covariance (b1b2) 09159 --Covariance (b1b3) 09151 --Degrees of Freedom 40 --

Statistic Estimate F 88101 p lt 0001

Adjusted R2 08879 AIC 111154

Test Material 1 Test Material 2 RBA 048 041 Lower bound 032 027 Upper bound 064 055 Standard Error -- --

Exp9_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 11

Test Material 1 Murray Smelter Soil Test Material 2 NIST Paint

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 11 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250200200

180180

200160160

140140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ua

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

120

100

80

60

150

100

40 50

20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 970E+00 148E+00 b1 412E-01 459E-02 b2 203E-01 190E-02 b3 246E-01 220E-02

Covariance (c1c2) 00667 --Covariance (c1c3) 00600 --Degrees of Freedom 45 --

Statistic Estimate F 96525 p lt 0001

Adjusted R2 08565 AIC 436433

Test Material 1 Test Material 2 RBA 049 060 Lower bound 039 048 Upper bound 063 076 Standard Error 0069 0083

Exp11_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 11 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200200200

180180180

160160160

140140140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

120

100

80

60

120

100

80

60

120

100

80

60

404040

20 2020

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 721E+00 118E+00 b 160E+02 175E+01 c1 354E-03 621E-04 c2 249E-03 496E-04 c3 304E-03 615E-04

Covariance (c1c2) 07274 --Covariance (c1c3) 07186 --Degrees of Freedom 44 --

Statistic Estimate F 143605 p lt 0001

Adjusted R2 09224 AIC 390414

Test Material 1 Test Material 2 RBA 070 086 Lower bound 054 066 Upper bound 089 109 Standard Error 0098 0123 g 005 estimate is uncertain

Exp11_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 11 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200200

180 180

160

180

160 160

140 140 140

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 40 40

20 20 20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 716E+00 120E+00 b 244E+02 362E+01 c1 411E+02 921E+01 c2 591E+02 150E+02 c3 476E+02 124E+02

Covariance (c1c2) 08303 --Covariance (c1c3) 08277 --Degrees of Freedom 44 --

Statistic Estimate F 141020 p lt 0001

Adjusted R2 09211 AIC 391331

Test Material 1 Test Material 2 RBA 070 086 Lower bound 055 068 Upper bound 093 117 Standard Error 0099 0126 g 005 estimate is uncertain

Exp11_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 11 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200 200

180 180 180

160 160 160

140 140 140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 4040

20 2020

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 704E+00 134E+00

b1 171E+00 452E-01 b2 127E+00 406E-01 b3 149E+00 474E-01 c 712E-01 518E-02

Covariance (b1b2) 09262 --Covariance (b1b3) 09264 --Degrees of Freedom 44 --

Statistic Estimate F 115506 p lt 0001

Adjusted R2 09051 AIC 402393

Test Material 1 Test Material 2 RBA 066 083 Lower bound 042 054 Upper bound 085 107 Standard Error -- --

Exp11_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 2a - All DataPhase II Experiment 11 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 137E+01 230E+00

b1 131E+00 180E-01 b2 759E-01 100E-01 b3 962E-01 141E-01

Covariance (c1c2) 00165 --Covariance (c1c3) 00209 --Degrees of Freedom 44 --

Statistic Estimate F 50849 p lt 0001

Adjusted R2 07570 AIC 561444

Test Material 1 Test Material 2 RBA 058 073 Lower bound 042 052 Upper bound 080 103 Standard Error 0109 0145 g 005 estimate is uncertain

Exp11_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 11 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 233E+00 b 111E+03 946E+02 c1 129E-03 121E-03 c2 853E-04 865E-04 c3 921E-04 871E-04

Covariance (c1c2) 09770 --Covariance (c1c3) 09728 --Degrees of Freedom 43 --

Statistic Estimate F 50761 p lt 0001

Adjusted R2 07567 AIC 561591

Test Material 1 Test Material 2 RBA 066 071 Lower bound Upper bound Standard Error 0147 0156 g 005 estimate is uncertain

Exp11_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 11 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 234E+00 b 207E+03 204E+03 c1 144E+03 155E+03 c2 221E+03 254E+03 c3 202E+03 219E+03

Covariance (c1c2) 09824 --Covariance (c1c3) 09793 --Degrees of Freedom 43 --

Statistic Estimate F 50798 p lt 0001

Adjusted R2 07568 AIC 561543

Test Material 1 Test Material 2 RBA 065 071 Lower bound Upper bound Standard Error 0146 0157 g 005 estimate is uncertain

Exp11_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 11 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1600 1600

Control Lead Acetate

Control Test Material 11400

1200

1000

800

600

400

200

1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+01 234E+00 b1 205E+00 953E-01 b2 134E+00 773E-01 b3 154E+00 793E-01 c 905E-01 976E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09175 --Degrees of Freedom 43 --

Statistic Estimate F 51275 p lt 0001

Adjusted R2 07586 AIC 560976

Test Material 1 Test Material 2 RBA 063 073 Lower bound 006 028 Upper bound 091 117 Standard Error -- --

Exp11_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 11 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 203E+01 413E+00

b1 168E+00 248E-01 b2 612E-01 905E-02 b3 918E-01 144E-01

Covariance (c1c2) 00267 --Covariance (c1c3) 00454 --Degrees of Freedom 44 --

Statistic Estimate F 43248 p lt 0001

Adjusted R2 07253 AIC 576648

Test Material 1 Test Material 2 RBA 036 055 Lower bound 025 038 Upper bound 052 078 Standard Error 0075 0115 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 11 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 189E+01 424E+00 b 549E+02 204E+02 c1 383E-03 188E-03 c2 203E-03 117E-03 c3 180E-03 867E-04

Covariance (c1c2) 08761 --Covariance (c1c3) 08456 --Degrees of Freedom 43 --

Statistic Estimate F 31501 p lt 0001

Adjusted R2 07177 AIC 578650

Test Material 1 Test Material 2 RBA 053 047 Lower bound 005 022 Upper bound 093 104 Standard Error 0148 0127 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 11 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 191E+01 426E+00 b 111E+03 656E+02 c1 534E+02 390E+02 c2 112E+03 929E+02 c3 111E+03 791E+02

Covariance (c1c2) 09475 --Covariance (c1c3) 09350 --Degrees of Freedom 43 --

Statistic Estimate F 31472 p lt 0001

Adjusted R2 07175 AIC 578702

Test Material 1 Test Material 2 RBA 048 048 Lower bound Upper bound Standard Error 0128 0126 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 11 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 195E+01 430E+00 b1 261E+00 140E+00 b2 112E+00 779E-01 b3 146E+00 867E-01 c 907E-01 111E-01

Covariance (b1b2) 09422 --Covariance (b1b3) 09294 --Degrees of Freedom 43 --

Statistic Estimate F 31801 p lt 0001

Adjusted R2 07196 AIC 578247

Test Material 1 Test Material 2 RBA 039 052 Lower bound Upper bound 058 096 Standard Error -- --

Exp11_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4a - All DataPhase II Experiment 11 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate 4040

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 698E-01 132E-01 b1 528E-02 546E-03 b2 205E-02 192E-03 b3 390E-02 339E-03

Covariance (c1c2) 00688 --Covariance (c1c3) 00673 --Degrees of Freedom 44 --

Statistic Estimate F 108800 p lt 0001

Adjusted R2 08708 AIC 198208

Test Material 1 Test Material 2 RBA 039 074 Lower bound 031 059 Upper bound 049 093 Standard Error 0052 0096

Exp11_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3663 RBA DIV0 DIV0b 000E+00 000E+00 p 00117 Lower boundc1 000E+00 000E+00 Adjusted R2 01816 Upper boundc2 000E+00 000E+00 AIC 856334 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4b - All DataPhase II Experiment 11 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate

4040

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

45

APPENDIX E

Figure 4c - All DataPhase II Experiment 11 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240

35

30

40 40

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_MM)

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4d - All DataPhase II Experiment 11 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240 40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 35

30

25

20

15

10

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

35

30

25

20

15

10

5

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 721E-01 144E-01 b1 456E-02 171E-02 b2 167E-02 795E-03 b3 327E-02 143E-02 c 103E+00 740E-02

Covariance (b1b2) 09444 --Covariance (b1b3) 09443 --Degrees of Freedom 43 --

Statistic Estimate F 80328 p lt 0001

Adjusted R2 08686 AIC 200024

Test Material 1 Test Material 2 RBA 038 073 Lower bound 018 045 Upper bound 048 091 Standard Error -- --

Exp11_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 12

Test Material 1 Galena-enriched Soil Test Material 2 Palmerton Location 2 (Reproducibility Study)

Test Material 3 California Gulch Oregon Gulch Tailings

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outliers Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

160

APPENDIX E

Figure 1a - All DataPhase II Experiment 12 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate 120120

100

80

60

40

20

0

100

80

60

40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lAU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

20

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate

40 60 80 100 SQRT(W) Dose

Control

Test Material 3

0 20

Control

Test Material 2

-4

0 50 100 150 200 250 300 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 855E+00 963E-01

b1 476E-01 369E-02 b2 310E-03 291E-03 b3 372E-01 324E-02 b4 434E-02 132E-02

Covariance (c1c2) 01535 --Covariance (c1c3) 00703 --Covariance (c1c4) 00746 --Degrees of Freedom 47 --

Statistic Estimate F 124227

p lt 0001

Adjusted R2 09062

AIC 375135

Test Material 1 Test Material 2 Test Material 3 RBA 001 078 009 Lower bound 000 064 004 Upper bound 002 094 014 Standard Error 0006 0088 0028

Exp12_AUCxls (Graph_LIN)

APPENDIX E

Figure 1b - All DataPhase II Experiment 12 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

AU

C (u

gdL

-day

s)

Stan

dard

ized

Wei

ghte

d R

esid

ual

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 762E+00 962E-01 b 169E+02 482E+01 c1 402E-03 159E-03 c2 293E-05 200E-05 c3 286E-03 107E-03

Covariance (c1c2) 05770 --Covariance (c1c3) 09418 --Degrees of Freedom 46 --

Statistic Estimate F 104665

p lt 0001

Adjusted R2 09104

AIC 370380

Test Material 1 Test Material 2 Test Material 3 RBA 001 071 007 Lower bound 000 055 004 Upper bound 002 099 013 Standard Error 0004 0094 0020 g 005 estimate is uncertain

Exp12_AUCxls (Graph_EXP)

APPENDIX E

Figure 1c - All DataPhase II Experiment 12 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Residual Plot Residual Plot 5 5

4

3

2

1

0

-1

-2

-3

Control

Test Material 2 4

3

2

1

0

-1

-2

-3

Control

Test Material 3

-4

-5 -4

-5 0 20 40 60 80 100 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 764E+00 971E-01 b 298E+02 106E+02 c1 438E+02 208E+02 c2 604E+04 445E+04 c3 612E+02 278E+02

Covariance (c1c2) 06443 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 104126

p lt 0001

Adjusted R2 09100

AIC 370760

Test Material 1 Test Material 2 Test Material 3 RBA 001 072 007 Lower bound 000 046 003 Upper bound -001 095 016 Standard Error 0004 0094 0021 g 005 estimate is uncertain

Exp12_AUCxls (Graph_MM)

-4

-3

-2

-1

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 12 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual PlotResidual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

Control

Lead Acetate

5

4

3

2

1

0

-1

-2

-3

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

-5

-4

-5 0 5 10 15 20

SQRT(W) Dose 0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+00 110E+00 b1 101E+00 355E-01 b2 124E-02 109E-02 b3 778E-01 275E-01 c 855E-01 523E-02

Covariance (b1b2) 07381 --Covariance (b1b3) 09551 --Degrees of Freedom 46 --

Statistic Estimate F 98107

p lt 0001

Adjusted R2 09049

AIC 374839

Test Material 1 Test Material 2 Test Material 3 RBA 001 074 007 Lower bound 057 Upper bound 001 095 012 Standard Error -- -- --

Exp12_AUCxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 2a - All DataPhase II Experiment 12 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

00

600

500

400

300

200

100

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot Residual Plot Residual Plot 5 5

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3 4 4

3

2

1

0

-1

-2

-3

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4 -4

-5 -5 0 2 4 6 8 10

SQRT(W) Dose 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 938E+00 221E+00 b1 690E-01 149E-01 b2 126E-02 784E-03 b3 863E-01 145E-01 b4 751E-02 301E-02

Covariance (c1c2) 02961 --Covariance (c1c3) 01132 --Covariance (c1c4) 01251 --Degrees of Freedom 47 --

Statistic Estimate F 33199

p lt 0001

Adjusted R2 07163

AIC 506975

Test Material 1 Test Material 2 Test Material 3 RBA 002 125 011 Lower bound 000 082 004 Upper bound 004 203 021 Standard Error 0011 0322 0047 g 005 estimate is uncertain

Exp12_Liverxls (Graph_LIN)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom

020809573

930704

000E+00000E+00000E+00 -00841

0

000E+00000E+00

0000000000

DIV0Test Material 1

RBA and UncertaintyEstimateEstimate

Goodness of FitSummary of Fitting

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2b - All DataPhase II Experiment 12 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_EXP)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom 0

Goodness of FitSummary of Fitting

000E+00000E+00

0000000000

DIV0DIV0

DIV0

Estimate000E+00000E+00000E+00 DIV0

Test Material 1RBA and Uncertainty

EstimateDIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2c - All DataPhase II Experiment 12 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_MM)

Reference Material (Lead Acetate)

APPENDIX E

Figure 2d - All DataPhase II Experiment 12 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

700

600

500

400

300

200

100

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

RBA and Uncertainty

Control

Test Material 3

5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 110E+01 194E+00 b1 167E-01 121E-01 b2 103E-03 138E-03 b3 164E-01 125E-01 c 135E+00 152E-01

Covariance (b1b2) 08593 --Covariance (b1b3) 09467 --Degrees of Freedom 46 --

Statistic Estimate F 31031

p lt 0001

Adjusted R2 07465

AIC 493797

Test Material 1 Test Material 2 Test Material 3 RBA 002 098 012 Lower bound Upper bound Standard Error -- -- --

Exp12_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 30003000

Control

Test Material 3

Outlier

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot Residual Plot 55

Control

Lead Acetate

Control

Test Material 2

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4-4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1-1

-2-2

-3-3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 771E+00 483E+00 b1 124E+00 435E-01 b2 956E-03 130E-02 b3 580E-01 264E-01 b4 549E-02 539E-02

Covariance (c1c2) 00560 --Covariance (c1c3) 00379 --Covariance (c1c4) 00304 --Degrees of Freedom 47 --

Statistic Estimate F 7238

p lt 0001

Adjusted R2 03285

AIC 868907

Test Material 1 Test Material 2 Test Material 3 RBA 001 047 004 Lower bound -001 011 -003 Upper bound 003 130 016 Standard Error 0011 0264 0046 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

APPENDIX E

Figure 3a - Outliers ExcludedPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350350

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

300

250

200

150

100

50

00

300

250

200

150

100

50

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 768E+00 172E+00

b1 107E+00 160E-01 b2 972E-03 537E-03 b3 581E-01 112E-01 b4 551E-02 232E-02

Covariance (c1c2) 01129 --Covariance (c1c3) 00686 --Covariance (c1c4) 00542 --Degrees of Freedom 45 --

Statistic Estimate F 37309

p lt 0001

Adjusted R2 07477

AIC 458069

Test Material 1 Test Material 2 Test Material 3 RBA 001 054 005 Lower bound 000 035 002 Upper bound 002 080 009 Standard Error 0005 0128 0023 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN_outliers)

APPENDIX E

Figure 3b - All DataPhase II Experiment 12 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 772E+00 499E+00 b 489E+02 101E+03 c1 353E-03 963E-03 c2 196E-05 503E-05 c3 119E-03 263E-03

Covariance (c1c2) 08332 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 5696

p lt 0001

Adjusted R2 03152

AIC 870070

Test Material 1 Test Material 2 Test Material 3 RBA 001 034 003 Lower bound Upper bound Standard Error 0009 0285 0040 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 12 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Reference Material (Lead Acetate)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 772E+00 499E+00 b 108E+03 346E+03 c1 669E+02 265E+03 c2 113E+05 407E+05 c3 186E+03 631E+03

Covariance (c1c2) 09197 --Covariance (c1c3) 09839 --Degrees of Freedom 46 --

Statistic Estimate F 5687

p lt 0001

Adjusted R2 03148

AIC 870320

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10

RBA and Uncertainty Test Material 1 Test Material 2 Test Material 3

RBA 001 036 003 Lower bound Upper bound Standard Error 0009 0315 0044 g 005 estimate is uncertain

20 30 40 50

SQRT(W) Dose

Exp12_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 12 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Residual Plot

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

0

500

1000

1500

2000

2500

3000 Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control

Test Material 3

Parameter Estimate Standard Error a 877E+00 486E+00

b1 298E-01 594E-01 b2 136E-03 451E-03 b3 199E-01 356E-01 c 126E+00 371E-01

Covariance (b1b2) 08626 --Covariance (b1b3) 09574 --Degrees of Freedom 46 --

Statistic Estimate F 5929

p lt 0001

Adjusted R2 03258

AIC 864518

Test Material 1 Test Material 2 Test Material 3 RBA 001 073 008 Lower bound Upper bound Standard Error -- -- --

Exp12_Kidneyxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

2

4

6

8

10

12

14

APPENDIX E

Figure 4a - All DataPhase II Experiment 12 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1414

Control

Lead Acetate Control

Test Material 1

Control

Test Material 3

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0

12

10

8

6

4

2

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot 5

4Control

Lead Acetate Control

Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4

-5 0 50 100 150 200

SQRT(W) Dose 0 50 100 150 200

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 569E-01 105E-01 b1 318E-02 424E-03 b2 301E-04 312E-04 b3 301E-02 425E-03 b4 358E-04 900E-04

Covariance (c1c2) 01724 --Covariance (c1c3) 00760 --Covariance (c1c4) 01361 --Degrees of Freedom 47 --

Statistic Estimate F 82424

p lt 0001

Adjusted R2 08646

AIC 137166

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound -001 069 -004 Upper bound 003 130 006 Standard Error 0010 0177 0028 g 005 estimate is uncertain

Exp12_Femurxls (Graph_LIN)

APPENDIX E

Figure 4b - All DataPhase II Experiment 12 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 500 1000 1500

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 655E+01 273E+02 c1 507E-04 221E-03 c2 487E-06 219E-05 c3 482E-04 209E-03

Covariance (c1c2) 09760 --Covariance (c1c3) 09990 --Degrees of Freedom 46 --

Statistic Estimate F 61801

p lt 0001

Adjusted R2 08563

AIC 139150

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0185 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_EXP)

APPENDIX E

Figure 4c - All DataPhase II Experiment 12 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

5

4

3

2

1

0

-1

-2

-3

-4

-5

Residual Plot

Control

Test Material 2

0 50 100 150 200 SQRT(W) Dose

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 131E+02 571E+02 c1 394E+03 180E+04 c2 410E+05 193E+06 c3 415E+03 189E+04

Covariance (c1c2) 09781 --Covariance (c1c3) 09991 --Degrees of Freedom 46 --

Statistic Estimate F 61857

p lt 0001

Adjusted R2 08565

AIC 139151

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0184 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_MM)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

APPENDIX E

Figure 4d - All DataPhase II Experiment 12 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Control

Test Material 1

Dose-Response Curve 14

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12 12

10 10

8 8

6 6

4 4

2 2Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0

Control

Test Material 3

0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 567E-01 118E-01 b1 325E-02 213E-02 b2 314E-04 482E-04 b3 308E-02 201E-02 c 995E-01 127E-01

Covariance (b1b2) 07455 --Covariance (b1b3) 09584 --Degrees of Freedom 46 --

Statistic Estimate F 63930

p lt 0001

Adjusted R2 08605

AIC 139183

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound 006 Upper bound 004 Standard Error -- -- --

Exp12_Femurxls (Graph_POWER)

APPENDIX F

DETAILED LEAD SPECIATION DATA FOR TEST MATERIALS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX F

METAL CONTENT OF TEST MATERIALS

Experiment Test Material Concentration (ppm)

Al As Au Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Na Ni Pb Sb Se Tl V Zn

2 Bingham Creek Residential 10600 512 41 143 071 13600 42 75 166 691 16100 - 4340 7020 466 362 150 1590 10 U lt17 lt17 208 903

Bingham Creek Channel Soil 10100 1490 172 152 073 8500 87 79 179 1720 22500 - 4150 5970 376 314 151 6330 187 lt17 lt17 220 -

3 Jasper County High Lead Smelter 8850 251 13 284 170 45800 337 193 238 94 40200 064 1490 7860 784 399 448 10800 490 10U 14U 225 10000

Jasper County Low Lead Yard 4370 107 06 94 100 81800 1880 64 152 144 18000 130 927 1390 240 403 301 4050 10 U 10U 180 148 50000

4 Murray Smelter Slag 9370 710 183 2140 086 89600 309 454 340 2100 170000 100 2430 11200 2640 836 167 11700 557 4390 1260 736 49500

Jasper County High Lead Mill 9380 164 188 211 140 19900 1390 343 646 96 26600 1210 1400 2280 1270 339 1100 6940 10 U 10U 14U 230 17200

5 Aspen Berm 5070 669 923 1640 130 37200 419 171 77 145 33700 077 1090 14300 2220 249 298 14200 520 200 180 115 6580

Aspen Residential 8440 167 189 1030 082 17300 474 111 104 52 23000 023 2140 6890 934 114 219 3870 114 038 027 160 4110

6 Midvale Slag 10500 619 11U 637 058 93200 245 330 1420 1330 202000 074 4250 6180 1640 7910 31U 8170 719 3970 810 101U 33300

Butte Soil 7540 226 405 134 056 15700 422 92 69 838 48500 220 3560 2950 12800 530 80 8530 1060 027 180 270 12100

7

California Gulch Phase I Residential Soil 8670 203 430 605 060 20100 599 20 91 657 68120 126 1500 9521 7090 6560 56 7510 180 190 lt05 337 13738

California Gulch FeMn PbO 11900 110 167 266 100 3930 385 69 75 165 27500 490 1770 2520 1190 279 75 4320 600 080 370 179 2650

8 California Gulch AV Slag 20800 1050 212 2430 120 117000 128 538 431 2080 207000 011 7390 6360 6910 4080 71 10600 572 6130 180 372 67300

9 Palmerton Location 2 7750 110 95 6850 140 1160 1950 188 303 462 25900 170 515 725 6320 667 150 3230 600 1180 190 531 6500

Palmerton Location 4 7850 1340 51 1090 200 2480 3190 174 266 350 26700 110 512 684 9230 2100 268 2150 740 690 085 498 19100

11 Murray Smelter Soil 6520 310 111 584 048b 69000 238 115 164 856 38700 052 2040 15000 863 5320b 104 3200 200 680 480 283 10400

NIST Paint 5850 48 063U 1320 047b 11800 40 83 208 12 8890 092 1360 2900 272 819b 580b 8350 87 U 061U 087U 116 1880

12 Galena-enriched Soil 6340 49 063U 112 049b 2650 08 31 102 11 10000 006b 1460 2790 293 3120b 380b 11200 870 061U 087U 1260b 107

California Gulch Oregon Gulch Tailings 248 1290 417 14 200 8290 40 101 80 350 391000 024 451 118 126 34 282 1270 744 053 086 477 441

All samples were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

OSWER 92857-77 Appendix F_TALxls (TAL)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min Max Total Lib Total Lib

Density Fraction Cerussite 2 2 4 2 5 10 10 028 028 66 0776 Fe-Pb Oxide 30 30 15 2 75 151 151 1793 1793 4 0052 Fe-Pb Silicate 14 14 10 8 20 70 70 552 552 35 0052 Mn-Pb Oxide 21 21 22 2 110 106 106 1813 1813 51 0159 Pb-As Oxide 3 3 4 2 8 15 15 052 052 6 05 Pb Phosphate 43 43 13 1 110 216 216 2170 2170 51 037 Fe-Pb Sulfate 86 86 10 1 120 432 432 3591 3591 37 0134

TOTAL 199 199 13 1000 1000 10000 10000

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 382 382 82 82 5-9 221 221 122 122 10-19 191 191 130 130 20-49 156 156 303 303 50-99 35 35 188 188 100-149 15 15 176 176 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib 18 46 12

181 19

504 219

18 46 12

181 19

504 219

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Mn-Pb Oxide

Pb-As Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 57 56 4 1Anglesite 30 116 114 626 623 63 0684 1 1 2 2Cerussite 2 02 02 005 005 66 0776 25 25 17 4Fe-Pb Oxide 60 51 51 1088 1088 40 0053 1 1 5 5FeSbO 5 02 02 013 013 4 4 15 10Fe-Pb Silicate 20 08 08 156 156 35 0057 1 1 50 50Galena 50 02 02 130 130 75 0866 5 5 21 5Mn-Pb Oxide 50 10 10 267 267 51 0159 2 2 105 100Lead Organic 110 04 04 545 545 13 0037 3 3 4 1Pb-As Oxide 8 06 06 029 029 60 0500 1 1 10 10Lead Barite 10 02 02 026 026 45 0031

42 42 12 1Lead Phosphate 100 86 86 1301 1301 51 0370 349 349 6 1Fe-Pb Sulfate 110 711 711 5815 5815 37 0134

491 490 8TOTAL 1000 998 10000 9997

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 662 660 139 138 5-9 136 136 175 175 10-19 98 98 184 184 20-49 61 61 200 200 50-99 31 31 205 205 100-149 12 12 96 96 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib

284 283 03 03 24 24 00 00 03 03 89 89 23 23 03 03 09 09 00 00

258 258 304 304

1000 999

OSWER 92857-77 Appendix F_Tablesxls (2_Ch)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Lead Organic

Pb-As Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Ch)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 1 1 12 12 2 2 48 35

Anglesite Calcite

12 025 025 60 050 050

011 087

011 087

63 28

0684 0050

12 11 31 8Cerussite 90 30 28 339 326 66 0776 2 2 35 10 24 24 45 10

Clay Fe-Pb Oxide

60 050 050 150 60 60

064 1004

064 1004

31 40

0005 0037

22 22 83 4Fe-Pb Silicate 175 55 55 1680 1680 37 0100 5 5 47 12Mn-Pb Oxide 100 13 13 218 218 51 0112 56 0 2 1Native Lead 9 140 00 107 000 113 1000 6 1 6 1Lead Oxide 10 15 03 031 002 40 0037

117 117 7 1 62 62 94 15 90 75 5 1

Lead Phosphate Slag Fe-Pb Sulfate

90 293 293 300 155 155 10 226 188

725 5358 375

725 5358 320

51 37 37

0310 0012 0100

399 322 27TOTAL 1000 807 10000 9795

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5

Total Freq Lib Freq Total RLM 444 281 172

Lib RLM 38

5-9 185 160 150 57 10-19 80 75 78 64 20-49 83 83 140 140 50-99 100-149

90 90 319 88 88 96

319 96

150-199 200-249

20 20 38 05 05 03

38 03

gt250 05 05 04 04

TOTAL 100 81 100 76

Relative Lead Mass () Total Lib 09 09 02 02 321 307 002 002 27 27 115 115 23 23

222 00 009 001 211 211 43 43 26 22

1000 760

OSWER 92857-77 Appendix F_Tablesxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Oxide

Native Lead

Mn-Pb Oxide

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadTotal Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 3 3 3 2 95 95 15 1 1 1 15 15 18 18 36 8 9 9 33 5 2 1 53 25 10 10 25 8 1 1 8 8 2 2 2 1 32 32 11 1 9 9 20 1

Anglesite Cerussite Clay Fe-Pb Oxide Fe-Pb Silicate Galena Mn-Pb Oxide Pb-As Oxide Lead Silicate Lead Phosphate Fe-Pb Sulfate

6 16 16 130 522 522 15 05 05

100 99 99 100 49 49 80 11 05 55 55 55 8 05 05 2 11 11

80 176 176 100 49 49

031 4337 046

1953 911 321 773 024 009

1042 553

031 4337 046

1953 911 076 773 024 009

1042 553

63 66 31 4

37 75 51 71 8

51 37

0684 0776 0005 0037

01 0866 0112 0243 0167 031 01

182 181 18TOTAL 1000 995 10000 9756

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5 5-9 10-19 20-49 50-99 100-149

Total Freq Lib Freq Total RLM 286 286 50 203 203 85 209 209 171 198 198 302 77 71 236 27 27 156

Lib RLM 50 85

171 302 178 156

150-199 200-249

00 00 00 00 00 00

00 00

gt250 00 00 00 00

TOTAL 100 99 100 94

Relative Lead Mass ()Total Lib

048 048 811 811 0003 0003 11 11 12 12 76 18 16 16 015 015 004 004 60 60 075 075

1000 942

OSWER 92857-77 Appendix F_Tablesxls (3_LL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Lead Phosphate

Lead Silicate

Pb-As Oxide

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Anglesite

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_LL)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

10 00 11 10

004 004 00 00 15 15 92 26 08 08 07 05 57 51 39 33

687 546 70 70 03 03 003 003

1000 768

Mineral

Anglesite 3 0 12 10 15 02 00 004 000 63 0684 Cerussite 4 3 8 3 15 03 02 004 004 66 0776 Fe-Pb Oxide 3 3 18 8 35 02 02 007 007 4 0031 Fe-As Oxide 3 3 17 4 35 02 02 006 006 Fe-Pb Silicate 9 9 28 8 80 07 07 032 032 4 022 Galena 98 7 2 1 15 72 05 027 008 75 0866 Mn-Pb Oxide 7 7 31 8 110 05 05 028 028 51 0112 Native Lead 3 2 3 2 4 02 01 001 001 113 1 Pb-As Oxide 39 31 6 1 60 29 23 030 027 71 05 Pb(M)O 8 3 18 2 110 06 02 019 016 8 05 Lead Oxide 143 79 8 1 100 105 58 148 118 95 093 Slag 1037 1037 73 5 310 761 761 9671 9671 365 00038 Fe-Pb Sulfate 2 2 55 10 100 01 01 014 014 37 01 Zn-Pb Silicate 4 3 16 10 30 03 02 008 007 51 0014

TOTAL 1363 1189 58 1000 872 10000 9938

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 145 41 156 54 5-9 126 112 137 79 10-19 147 139 229 173 20-49 62 62 171 153 50-99 203 203 162 162 100-149 238 238 128 128 150-199 42 42 08 08 200-249 32 32 08 08 gt250 04 04 01 01

TOTAL 100 87 100 77

OSWER 92857-77 Appendix F_Tablesxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-As Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Native Lead

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Zn-Pb Silicate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

16 16 001 001 01 01 570 570 002 002 16 16 81 81 34 00 87 87 22 00 65 52 053 053 74 74 14 14 14 14

1000 931

Mineral

Anglesite 1 1 25 25 25 036 036 036 036 63 0684 Lead Barite 1 1 3 3 3 036 036 004 004 45 0045 Calcite 1 1 25 25 25 036 036 036 036 28 005 Cerussite 90 90 8 1 70 320 320 1074 1074 66 0776 Clay 3 3 24 8 40 11 11 104 104 31 0005 Fe-Pb Oxide 33 33 22 3 110 117 117 1044 1044 4 0037 Fe-Pb Silicate 41 41 36 1 210 146 146 2116 2116 37 01 Galena 6 0 6 1 30 21 00 051 000 75 0866 Mn-Pb Oxide 39 39 27 3 125 139 139 1477 1477 51 0112 Native Lead 3 0 4 1 10 11 00 018 000 113 1 Lead Oxide 3 1 17 5 40 107 036 071 057 95 093 Lead Silicate 1 1 10 10 10 036 036 014 014 8 045 Lead Phosphate 15 15 21 2 100 53 53 453 453 51 031 Slag 24 24 92 15 210 85 85 3145 3145 365 0012 Fe-Pb Sulfate 20 20 13 3 60 71 71 358 358 37 01

TOTAL 281 270 25 1000 961 10000 9916

This mineral is now considered to be equivalent to Fe-Pb Oxide Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 228 203 83 72 5-9 206 199 129 116 10-19 221 217 243 227 20-49 189 185 337 309 50-99 85 85 128 128 100-149 57 57 65 65 150-199 07 07 02 02 200-249 07 07 13 13 gt250 00 00 00 00

TOTAL 100 96 100 93

OSWER 92857-77 Appendix F_Tablesxls (4_HL)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Silicate

Lead Oxide

Native Lead

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Lead Barite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_HL)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01 66 66 01 01

617 596 91 79 120 101 45 45 00 00 13 13 47 24

1000 925

Mineral Total Lib Avg Min Max Total Lib

Clay 4 4 55 10 Anglesite 34 34 5 1 Lead Barite 3 3 10 2 Cerussite 71 68 20 1 Fe-Pb Oxide 80 69 35 2 Galena 8 6 27 10 Mn-Pb Oxide 9 9 56 10 Lead Organic 2 2 70 40 Lead Phosphate 7 7 45 10 Fe-Pb Sulfate 61 39 15 4

TOTAL 279 241 24

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

120 14 14 330 330 26 002 90 122 122 263 263 63 0684 25 11 11 045 045 45 005

110 254 244 2080 2011 66 0776 210 287 247 4143 3609 4 0095 50 29 22 323 270 75 086

150 32 32 758 758 51 02 100 07 07 210 210 13 0018 110 25 25 473 473 51 009 90 219 140 1375 687 37 016

1000 864 10000 8657

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 265 254 25 23 190 158 59 56 215 176 144 126 172 143 297 263 82 57 253 234 61 61 190 190 07 07 18 18 07 07 14 14 00 00 00 00

100 86 100 92

OSWER 92857-77 Appendix F_Tablesxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

421

Density Fraction

5

Max Total Lib Total Lib

07 07 027 027 63 0684 125 120 120 2457 2457 66 0776 100 474 474 3818 3818 4 0095 110 24 03 521 331 75 086 80 48 48 973 973 51 02 80 03 03 241 241 13 0018 60 24 24 449 449 51 009 60 299 299 1515 1515 37 016

1000 979 10000 9810

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 385 385 45 45 351 340 93 75 124 117 92 72 82 79 227 202 38 38 86 86 21 21 457 457 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 94

Relative Lead Mass ()Total Lib

06 06 642 642 74 74 171 109 51 51 00 00 11 11 46 46

1000 938

Anglesite Cerussite Fe-Pb Oxide Galena Mn-Pb Oxide Lead Organic Lead Phosphate Fe-Pb Sulfate

TOTAL

2 2 535 35 23138 138 97 1 25

14 14 231 1 807 7 2187 87 6

291 285 11

558031

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (5_Res)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250 Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Res)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Cerussite Fe-Pb Oxide Galena Native Lead Pb-As Oxide Lead Oxide Slag Sulfosalts Fe-Pb Sulfate

TOTAL

7 7 22 10 4 4 26 12 2 2 90 80

67 6 4 1 119 41 16 1 61 29 12 1

1721 1721 131 10 1 1 50 50 2 2 15 15

1984 1813 115

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 04 04 007 007 66 0776 45 02 02 004 004 4 015

100 01 01 008 008 75 0866 40 34 03 012 004 113 1

100 60 21 082 061 71 05 55 31 15 031 026 9 083

600 867 867 9852 9852 365 0004 50 01 01 002 002 6 025 15 01 01 001 001 37 014

1000 914 10000 9965

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 65 01 84 02 10 05 35 22 32 18 177 87 44 41 337 292 203 203 177 177 286 286 94 94 185 185 40 40 129 129 38 38 47 47 18 18

100 91 100 77

Relative Lead Mass () Total Lib 38 38 03 03 57 57

154 50 326 242 259 216 160 160 04 04 01 01

1000 770

OSWER 92857-77 Appendix F_Tablesxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Galena

Native Lead

Pb-As Oxide

Lead Oxide

Slag

Sulfosalts

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01

362 356 03 03 70 56 125 124 202 181 00 00 36 01

201 186

1000 907

Mineral Total Lib Avg Min Max Total Lib

Clay 3 3 58 30 Anglesite 138 134 12 1 Cerussite 1 1 10 10 Fe-Pb Oxide 37 27 61 4 Galena 37 35 10 1 Mn-Pb Oxide 161 150 44 3 Lead Barite 1 1 5 5 Lead Phosphate 12 1 54 5 Fe-Pb Sulfate 245 226 38 2

TOTAL 635 578 34

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

100 05 05 082 082 32 0039 100 217 211 751 737 63 0684 10 02 02 005 005 66 0776

180 58 43 1048 828 4 015 55 58 55 172 170 75 0866

200 254 236 3277 2929 51 0108 5 02 02 002 002 45 0058

200 19 02 303 006 51 0208 250 386 356 4361 4055 37 0111

1000 910 10000 8813

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 230 222 34 33 148 132 98 95 140 124 114 107 230 217 265 258 137 113 250 221 90 80 170 151 16 14 29 29 08 05 33 15 02 02 06 06

100 91 100 91

OSWER 92857-77 Appendix F_Tablesxls (6_Butte)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Butte)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Total Lib

102 80 197 187 58 58 222 222 301 286 01 00 01 01 59 59 11 00 01 01 20 00 19 19 01 01 06 06

1000 920

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib Anglesite 54 28 9 1 45 81 42 202 158 63 0684 Cerussite 53 33 14 1 125 80 50 328 311 66 0776 Fe-Pb Sulfate 70 65 31 1 120 105 98 959 956 37 014 Mn-Pb Oxide 83 83 43 1 250 125 125 1577 1577 5 024 Lead Phosphate 150 115 19 1 150 226 173 1257 1196 51 04 Pb-As Oxide 3 0 3 1 5 05 00 004 000 71 024 Lead Barite 6 1 18 2 100 09 02 048 044 45 0058 Fe-Pb Oxide 176 166 52 1 300 265 250 4045 4040 4 0031 PbO-Cerussite 15 0 3 1 10 23 00 018 000 66 0776 Lead Organic 9 9 78 20 110 14 14 308 308 13 0023 Galena 19 0 3 1 10 29 00 027 000 75 0866 Lead Silicate 4 4 30 10 50 06 06 053 053 6 05 Lead Vanidate 1 1 10 10 10 02 02 004 004 64 032 Slag 22 22 121 25 250 33 33 1171 1171 365 0012

TOTAL 665 527 34 1000 792 10000 9818

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 244 83 51 17 5-9 90 50 53 20 10-19 177 173 119 112 20-49 220 220 223 223 50-99 146 144 224 217 100-149 92 92 274 274 150-199 12 12 30 30 200-249 11 11 06 06 gt250 09 09 21 21

TOTAL 100 79 100 92

OSWER 92857-77 Appendix F_Tablesxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Pb-As Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

PbO-Cerussite

Slag

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Lead Barite 7 1 5 2 Clay 1 1 50 50 Fe-Pb Oxide 186 186 20 0 Mn-Pb Oxide 71 71 45 2 Lead Organic 2 2 103 80 Lead Silicate 1 1 15 15 Lead Vanidate 2 2 6 3 Lead Phosphate 66 64 8 1 Fe-Pb Sulfate 48 48 10 3

TOTAL 384 376 21

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 18 03 040 010 45 005 50 03 03 061 061 31 0005

130 484 484 4485 4485 4 0031 125 185 185 3914 3914 51 024 125 05 05 249 249 13 00232 15 03 03 018 018 6 05 8 05 05 013 013 64 032 60 172 167 616 609 51 031 100 125 125 603 603 37 01

1000 979 10000 9962

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 255 240 40 38 193 190 48 47 240 237 109 108 172 172 234 234 104 104 417 417 36 36 153 153 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 997

Relative Lead Mass ()Total Lib 01 00 00 00 84 84 721 721 01 01 08 08 04 04

147 145 34 34

1000 997

OSWER 92857-77 Appendix F_Tablesxls (7_FeMn)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

Clay

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_FeMn)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Anglesite 3 3 37 30 Cerussite 3 3 11 8 Galena 6 1 16 1 Native Lead 4 1 6 2 Pb-As Oxide 253 34 8 1 Lead Oxide 139 18 8 1 Slag 1206 1206 126 5 Fe-Pb Sulfate 5 1 37 10

TOTAL 1619 1267 96

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 02 02 007 007 63 0684 15 02 02 002 002 66 0776 80 04 01 006 005 75 0866 15 02 01 002 001 1134 1 125 156 21 130 090 6 05 125 86 11 073 059 95 0930 450 745 745 9768 9768 365 00035 55 03 01 012 004 37 0091

1000 783 10000 9936

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 191 01 113 01 85 69 47 06 82 74 68 44 50 46 235 209 86 86 242 242 192 192 224 224 101 101 17 17 128 128 27 27 86 86 27 27

100 78 100 80

Relative Lead Mass () Total Lib 24 24 09 09 31 27 14 09 309 214 510 415 99 99 03 01

1000 796

OSWER 92857-77 Appendix F_Tablesxls (8_AV)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Galena

Pb-As Oxide

Native Lead

Fe-Pb Sulfate

Slag

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (8_AV)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 1 1 10 10 Anglesite 2 2 4 3 Lead Barite 11 11 8 1 Fe-Pb oxide 15 15 8 3 Mn-Pb Oxide 68 68 17 2 Lead Phosphate 16 16 19 1 Fe-Pb Sulfate 1 1 8 8

TOTAL 114 114 11

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 09 09 06 06 31 0005 4 18 18 04 04 63 0684 41 96 96 50 50 45 0018 20 132 132 74 74 4 0015

100 596 596 688 688 51 0055 45 140 140 174 174 51 008 8 09 09 05 05 37 01

1000 1000 1000 1000

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 263 263 108 108 228 228 54 54 254 254 167 167 184 184 276 276 61 61 324 324 09 09 71 71 00 00 00 00 00 00 00 00 00 00 00 00

100 100 100 100

Relative Lead Mass ()Total Lib 00 60 14 15

661 244 06

00 60 14 15

661 244 06

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 3 3 Anglesite 8 0 Lead Barite 1 1 Fe-Pb Oxide 14 14 Mn-Pb Oxide 65 65 Pb-As Oxide 17 0 Lead Silicate 1 1 Lead Vanidate 5 5 Lead Phosphate 1 1 Zn-Pb Silicate 2 2

TOTAL 117 92

24 8 1 1 12 12 16 8 31 4 1 1 4 4 15 5 15 15 26 12

15

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 26 26 290 290 31 0005 1 68 00 032 000 63 0684 12 09 09 048 048 45 0018 40 120 120 902 902 4 0015 110 556 556 8082 8082 51 0055 1 145 00 068 000 71 05 4 09 09 016 016 6 05 35 43 43 298 298 64 032 15 09 09 060 060 51 008 40 17 17 207 207 55 005

1000 786 1000 990

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 248 34 127 18 145 145 50 50 214 214 88 88 248 248 344 344 128 128 323 323 17 17 68 68 00 00 00 00 00 00 00 00 00 00 00 00

100 79 100 89

Relative Lead Mass ()Total Lib 01 01 40 00 01 01 16 16 658 658 70 00 14 14

177 177 07 07 16 16

1000 891

OSWER 92857-77 Appendix F_Tablesxls (9_P4)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Pb-As Oxide

Lead Silicate

Lead Vanidate

Lead Phosphate

Zn-Pb Silicate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P4)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead

358112

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib 3 02 02 002 002 65 0005 40 16 14 066 038 63 0684 8 09 09 022 022 4 0031

30 129 02 062 021 75 0866 55 103 37 159 122 71 0527 15 14 09 027 018 7 03 25 23 19 061 056 95 093

310 700 700 9576 9576 365 00037 35 02 02 024 024 37 014

1000 796 10000 9878

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 227 33 265 52 103 98 106 88 293 290 176 169 171 169 334 275 59 59 78 78 84 84 18 18 28 28 08 08 26 26 10 10 09 09 05 05

100 80 100 70

Relative Lead Mass ()Total Lib 00 00

140 82 01 01

200 66 294 224 28 18

266 242 64 64 06 06

1000 704

As(M)O Cerussite Fe-Pb Oxide Galena Pb-As Oxide Pb(M)O Lead Oxide Slag Fe-Pb Sulfate

TOTAL

1 1 37 6 144 4 855 1 244 16 56 4 710 8 9299 299 471 1 35

427 340 34

2535

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

As(M)O

Cerussite

Fe-Pb Oxide

Galena

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Mineral Total Lib Avg Min

Anglesite 3 3 7 4 Cerussite 183 183 9 1 Lead Oxide 88 88 9 1

TOTAL 274 274 9

Size Total Freq Lib Freq lt5 755 755 5-9 44 44 10-19 58 58 20-49 80 80 50-99 58 58 100-149 04 04 150-199 00 00 200-249 00 00 gt250 00 00

TOTAL 100 100

Density FractionMax Total Lib Total Lib Total Lib 12 11 11 087 087 63 0684 06 06

110 668 668 6780 6780 66 0776 553 553 80 321 321 3132 3132 95 093 441 441

1000 1000 10000 10000 1000 1000

Particle Size Distribution

Total RLM Lib RLM 150 150 31 31 64 64 278 278 439 439 37 37 00 00 00 00 00 00

100 100

OSWER 92857-77 Appendix F_Tablesxls (11_NIST)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (11_NIST)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 224 224

TOTAL 224 224

Avg 17

17

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 80 1000 1000 10000 10000 75 0866

1000 1000 10000 10000

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 1000

1000 1000

Total Freq Lib Freq 478 22 45 411 45 00 00 00 00

478 22 45

411 45 00 00 00 00

Total RLM 49 07 33

759 153 00 00 00 00

Lib RLM 49 07 33

759 153 00 00 00 00

100 100 100 100

OSWER 92857-77 Appendix F_Tablesxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Speciation and Particle Size Data

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 217 4

TOTAL 217 4

Avg 2

2

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 25 1000 18 10000 514 75 0866

1000 18 10000 514

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 51

1000 51

Total Freq Lib Freq 853 09 468 12 83 00 215 00 60 09 267 40 05 00 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Total RLM Lib RLM

100 2 100 5

OSWER 92857-77 Appendix F_Tablesxls (12_Or)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Or)

This page intentionally left blank to facilitate double-sided printing

  • ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS USING IN VIVO AND IN VITRO METHODS
  • EXECUTIVE SUMMARY
  • TABLE OF CONTENTS
  • 10 INTRODUCTION
  • 20 IN VIVO STUDIES
  • 30 IN VITRO STUDIES
  • 40 REFERENCES
  • TABLES
  • FIGURES
  • APPENDIX A
  • APPENDIX B
  • APPENDIX B ATTACHMENT 1
  • APPENDIX C
  • APPENDIX D
  • APPENDIX E
  • APPENDIX F

ACKNOWLEDGMENTS

The work described in this report is the product of a team effort involving a large number of people In particular the following individuals contributed significantly to the findings reported here and the preparation of this report

PROGRAM SUPPORT

US Environmental Protection Agency (US EPA) support for the development of this report was provided by Michael Beringer US EPA Region 7 Kansas City KS Jim Luey US EPA Region 8 Denver CO and Richard Troast formerly with US EPA Office of Superfund Remediation and Technology Innovation Washington DC Contractor support to US EPA was provided by Syracuse Research Corporation

IN VIVO STUDIES

All of the in vivo studies described in this report were planned and sponsored by US EPA Region 8 The technical direction for all aspects of the in vivo portion of this project was provided by Christopher P Weis PhD DABT and Gerry M Henningsen DVM PhD DABTDABVT Mr Stan Christensen provided oversight and quality assurance support for analyses of blood during the later studies performed in this program

All of the in vivo studies described in this report were performed by Stan W Casteel DVM PhD DABVT at the Veterinary Medical Diagnostic Laboratory College of Veterinary Medicine University of Missouri Columbia Missouri Dr Casteel was supported by Larry D Brown DVM MPH Ross P Cowart DVM MS DACVIM James R Turk DVM PhD DACVP John T Payne DVM MS DACVS Steven L Stockham DVM MS DACVP and Roberto E Guzman DVM MS Analysis of biological samples (blood tissues) was performed by Dr Edward Hindenberger of LET Inc Columbia Missouri

IN VITRO STUDIES

Development of the method used to estimate in vitro bioaccessibility was performed primarily by John Drexler PhD at the University of Colorado Boulder with input and suggestions from a consortium of industry academic and governmental personnel organized by Mr Michael V Ruby at Exponent Dr Drexler also performed all of the electron microprobe and particle size analyses of the test materials evaluated in these studies

STATISTICAL ANALYSIS

Dr Timothy Barry US EPA National Center for Environmental Economics provided on going support in the selection and application of the statistical methods used in dose-response curve-fitting and data reduction In addition Glenn Shaul and Lauren Drees at US EPArsquos National Risk Management Research Laboratory provided several rounds of valuable review comments and constructive discussions regarding statistical methodology

OSWER 92857-77

REVIEWERS

A draft of this report was provided to three independent experts for external peer review and comment This satisfies the Agencyrsquos requirements for peer review These reviewers were

Paul Mushak PB Associates Durham NC Michael Rabinowitz Marine Biological Laboratory Woods Hole MA Rosalind Schoof Integral Consulting Inc Mercer Island WA

The Agency has responded to the peer review comments as appropriate The comments and Agency responses are contained in a responsiveness summary that has been placed in the Administrative Record

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

EXECUTIVE SUMMARY

10 INTRODUCTION

Reliable analysis of the potential hazard to children from ingestion of lead in environmental media depends on accurate information on a number of key parameters including the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability ABA) or in relative terms (relative bioavailability RBA) For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg were absorbed into the body the ABA would be 050 (50) Likewise if 100 μg of lead contained in soil were ingested and 30 μg were absorbed into the body the ABA for soil would be 030 (30) If the lead dissolved in water was used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

When reliable data are available on the absolute or relative bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site Based on available information in the literature on lead absorption in humans the US Environmental Protection Agency (US EPA) estimates that relative bioavailability of lead in soil compared to water and food is about 60 Thus when the measured RBA in soil or dust at a site is found to be less than 60 it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions Conversely if the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

This report summarizes the results of a series of studies performed by scientists in US EPA Region 8 to measure the RBA of lead in a variety of soil and soil-like test materials using both in vivo and in vitro techniques

20 IN VIVO STUDIES

Basic Approach for Measuring RBA In Vivo

The in vivo method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principle that equal absorbed doses of lead will produce equal increases in lead concentration in the tissues of exposed animals Stated another way RBA is the ratio of oral doses that produce equal increases in tissue burden of lead

Based on this the technique for estimating lead RBA in a test material is to administer a series of oral doses of reference material (lead acetate) and test material (site soil) to groups of experimental animals and to measure the increase in lead concentration in one or more tissues in the animals For each tissue the RBA is calculated by fitting an appropriate dose-response model to the data and then solving the equations to find the ratio of doses that produce equal responses The final estimate of RBA for the test material then combines the RBA estimates across the different tissues

OSWER 92857-77 ES-1

Animal Exposure and Sample Collection

All animals used in this program were intact male swine approximately 5 to 6 weeks of age In general exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous injection

Lead concentrations were measured in four different tissues blood liver kidney and bone For blood samples were collected from each animal at multiple times during the course of the study (eg days 0 1 2 3 4 6 9 12 and 15) and the blood concentration integrated over time (commonly referred to as ldquoarea under the curverdquo or AUC) was used as the measure of blood lead response For liver kidney and bone the measure of response was the concentration of lead in these tissues on day 15

Calculation of RBA

Based on testing several different types of dose-response models to the data it was concluded that most dose-response curves for liver kidney and bone lead were well described by a linear model and that most blood lead AUC data sets were well described by an exponential model

Liver Kidney Bone

Ctissue = a + b sdot Dose

Blood AUC

AUC = a + b sdot [1minus exp(minusc sdot Dose)]

where Ctissue is the concentration of lead in a given tissue a b and c are the terms of the mathematic equation used to describe the shape of the curve and Dose is the total daily administered dose of lead (μgkg-day)

Based on these models RBA is calculated from the best model fits as follows

btest material =RBAliver kidney bone breference material

btest material =RBAblood AUC breference material

Results and Discussion

RBA Values for Various Test Materials

Table ES-1 lists the 19 different materials tested in this program and shows the RBA values estimated using each of the four alternative endpoints (blood AUC liver kidney bone)

OSWER 92857-77 ES-2

Based on an analysis that indicated that each endpoint has approximately equal reliability the point estimate for each test material is the mean of the four endpoint-specific values

Inspection of these RBA point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data in order help to improve risk assessments for lead exposure

Correlation of RBA with Mineral Phase

Available data are not yet sufficient to establish reliable quantitative estimates of RBA for each of the different mineral phases of lead that are observed to occur in the test materials However multivariate regression analysis between point estimate RBA values and mineral phase content of the different test materials allows a tentative rank ordering of the phases into three semi-quantitative tiers (low medium or high RBA) as follows

Low Bioavailability Medium Bioavailability High Bioavailability

Fe(M) Sulfate Anglesite Galena Pb(M) Oxide Fe(M) Oxide

Lead Phosphate Lead Oxide

Cerussite Mn(M) Oxide

(M) = Metal

30 IN VITRO STUDIES

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA)

Description of the Method

The IVBA extraction procedure is begun by placing 10 g of test substrate into a bottle and adding 100 mL of extraction fluid (04 M glycine pH 15) This pH is selected because it is similar to the pH in the stomach of a fasting human Each bottle is placed into a water bath adjusted to 37degC and samples are extracted by rotating the samples end-over-end for 1 hour After 1 hour the bottles are removed dried and placed upright on the bench top to allow the soil

OSWER 92857-77 ES-3

to settle to the bottom A sample of supernatant fluid is removed directly from the extraction bottle into a disposable syringe and is filtered to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead

Results

Table ES-2 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program As seen IVBA values span a considerable range (min of 45 max of 87) with a mean of about 55 This variability among test materials indicates that the rate and extent of solubilization of lead from the solid test material into the extraction fluid do depend on the attributes of the test material and that IVBA may be a useful indication of absorption in vivo (see below)

Comparison of In Vivo and In Vitro Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples Figure ES-1 shows the best fit weighted linear regression correlation between the in vivo lead RBA estimates and the in vitro lead bioaccessibility estimates for each of the 19 test materials investigated during this program The equation of the line is

RBA = 0878middotIVBA -0028 (r2 = 0924)

These results indicate that the in vivo RBA of lead in soil-like materials can be estimated by measuring the IVBA and using the equation above to calculate the expected in vivo RBA Actual RBA values may be either higher or lower than the expected value as indicated by the 95 prediction interval shown in Figure ES-1

At present it appears that this equation is likely to be widely applicable having been found to hold true for a wide range of different soil types and lead phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample that contains an unusual andor untested lead phase is evaluated by the in vitro bioaccessibility protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

40 CONCLUSIONS

The data from the investigations performed under this program support the following main conclusions

1 Juvenile swine are believed to be a useful model for the evaluation of lead absorption in children and provide a reliable system for measuring the RBA of lead in a variety of soil and soil-like materials

OSWER 92857-77 ES-4

2 Each of the four different endpoints employed in these studies (blood AUC liver kidney bone) to estimate RBA in vivo yield reasonable data and the best estimate of the RBA value for any particular sample is the average across all four endpoint-specific RBA values

3 There are clear differences in the in vivo RBA of lead between different types of test material ranging from near zero to close to 100 Thus knowledge of the RBA value for different types of materials at a site can be very important in improving lead risk assessments at a site

4 Available data support the view that certain types of lead minerals are well-absorbed (eg cerussite manganese lead oxide) while other forms are poorly absorbed (eg galena anglesite) However the data are not yet sufficient to allow reliable quantitative calculation or prediction of the RBA for a test material based on knowledge of the lead mineral content alone

5 In vitro measurements of bioaccessibility performed using the protocol described in this report correlate well with in vivo measurements of RBA at least for 19 materials tested under this program At present the results appear to be broadly applicable although further testing of a variety of different lead forms is required to determine if there are exceptions to the apparent correlation

OSWER 92857-77 ES-5

TABLE ES-1 SUMMARY OF ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence BoundUB = 95 Upper Confidence Bound

TABLE ES-2 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

FIGURE ES-1 RELATION BETWEEN RBA AND IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

TABLE OF CONTENTS

10 INTRODUCTION 1 11 Overview 1 12 Using Bioavailability Data to Improve Exposure Calculations for Lead 2 13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals 3 14 Overview of Methods for Estimating Lead RBA In Vitro 3

20 IN VIVO STUDIES4 21 Basic Approach for Measuring RBA In Vivo 4 22 Animal Exposure and Sample Collection 4 23 Preparation of Biological Samples for Analysis 5 24 Data Reduction 5 25 Results and Discussion 6

251 Effect of Dosing on Animal Health and Weight 6 252 Time Course of Blood Lead Response 6 253 Dose-Response Patterns 7 254 Estimation of ABA for Lead Acetate 7 255 Estimation of RBA for Lead in Test Materials 8 256 Effect of Food 9 257 Correlation of RBA with Mineral Phase 10 258 Quality Assurance 12

30 IN VITRO STUDIES14 31 Introduction 14 32 In Vitro Method 14

321 Sample Preparation 14 322 Apparatus 14 323 Selection of IVBA Test Conditions 15 324 Summary of Final Leaching Protocol 16 325 Analysis of Extraction Fluid for Lead 17 326 Quality ControlQuality Assurance 17

33 Results and Discussion 18 331 IVBA Values 18 332 Comparison with In Vivo Results 19

40 REFERENCES 21

OSWER 92857-77 i

LIST OF TABLES

TABLE TITLE

2-1 Typical Feed Composition 2-2 Typical In Vivo Study Design 2-3 Description of Phase II Test Materials 2-4 Relative Lead Mass of Mineral Phases Observed in Test Materials 2-5 Matrix Associations for Test Materials 2-6 Particle Size Distributions for Test Materials 2-7 Estimated RBA Values for Test Materials 2-8 Grouped Lead Phases 2-9 Curve Fitting Parameters for Oral Lead Acetate Dose-Response Curves 2-10 Reproducibility of RBA Measurements 3-1 In Vitro Bioaccessibility Values

LIST OF FIGURES

FIGURE TITLE

2-1 Average Rate of Body Weight Gain in Test Animals 2-2 Example Time Course of Blood Lead Response 2-3 Dose Response Curve for Blood Lead AUC 2-4 Dose Response Curve for Liver Lead Concentration 2-5 Dose Response Curve for Kidney Lead Concentration 2-6 Dose Response Curve for Femur Lead Concentration 2-7 Estimated Group-Specific RBA Values 2-8 Correlation of Duplicate Analyses 2-9 Results for CDC Blood Lead Check Samples 2-10 Interlaboratory Comparison of Blood Lead Results 3-1 In Vitro Bioaccessibility Extraction Apparatus 3-2 Effect of Temperature Time and pH on IVBA 3-3 Precision of In Vitro Bioaccessibility Measurements 3-4 Reproducibility of In Vitro Bioaccessibility Measurements 3-5 RBA vs IVBA 3-6 Prediction Interval for RBA Based on Measured IVBA

OSWER 92857-77 ii

C

LIST OF APPENDICES

APPENDIX TITLE

A Evaluation of Juvenile Swine as a Model for Gastrointestinal Absorption in Young Children

B Detailed Description of Animal Exposure

Detailed Methods of Sample Collection and Analysis

D Detailed Methods for Data Reduction and Statistical Analysis

E Detailed Dose-Response Data and Model Fitting Results

F Detailed Lead Speciation Data for Test Materials

OSWER 92857-77 iii

ACRONYMS AND ABBREVIATIONS

degC Degrees Celsius μg Microgram μm Micrometer ABA Absolute bioavailability AFo Oral absorption fraction AIC Akaikersquos Information Criterion AUC Area under the curve cc Cubic centimeter CDC Centers for Disease Control and Prevention dL Deciliter g Gram GLP Good Laboratory Practices HCl Hydrochloric acid HDPE High density polyethylene ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry ICP-MS Inductively Coupled Plasma-Mass Spectrometry IV Intravenous IVBA In vitro bioaccessibility kg Kilogram L Liter M Molar (M) Metal MDL Method detection limit mg Milligram mL Milliliter mm Millimeter NIST National Institute of Standards and Testing Pb Lead PbAc Lead acetate ppm Parts per million RBA Relative bioavailability RLM Relative lead mass

OSWER 92857-77 iv

ACRONYMS AND ABBREVIATIONS (CONTINUED)

rpm Revolutions per minute SOP Standard operating procedure SRM Standard Reference Material TAL Target Analyte List TCLP Toxicity Characteristic Leaching Procedure US EPA US Environmental Protection Agency

OSWER 92857-77 v

This page intentionally left blank to facilitate double-sided printing

ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS

USING IN VIVO AND IN VITRO METHODS

10 INTRODUCTION

11 Overview

Reliable analysis of the potential hazard to children from ingestion of lead in the environment depends on accurate information on a number of key parameters including 1) lead concentration in environmental media (eg soil dust water food air paint) 2) childhood intake rates of each medium and 3) the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Knowledge of lead bioavailability is important because the amount of lead which actually enters the body from an ingested medium depends on the physical-chemical properties of the lead and of the medium For example lead in soil may exist at least in part as poorly water-soluble minerals and may also exist inside particles of inert matrix such as rock or slag of variable size shape and association These chemical and physical properties may tend to influence (usually decrease) the absorption (bioavailability) of lead when ingested Thus equal ingested doses of different forms of lead in different media may not be of equal health concern

Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability) or in relative terms (relative bioavailability)

Absolute Bioavailability (ABA) is the ratio of the amount of lead absorbed compared to the amount ingested

Absorbed DoseABA = Ingested Dose

This ratio is also referred to as the oral absorption fraction (AFo)

Relative Bioavailability (RBA) is the ratio of the absolute bioavailability of lead present in some test material compared to the absolute bioavailability of lead in some appropriate reference material

ABAtest materialRBA = ABAreference material

Usually the form of lead used as reference material is a soluble compound such as lead acetate that is expected to completely dissolve when ingested

For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg entered the body the ABA would be 50100 or 050 (50) Likewise if

OSWER 92857-77 1

100 μg of lead contained in soil were ingested and 30 μg entered the body the ABA for soil would be 30100 or 030 (30) If the lead dissolved in water were used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

For additional discussion about the concept and application of bioavailability see Gibaldi and Perrier (1982) Goodman et al (1990) Mushak (1991) andor Klaassen et al (1996)

12 Using Bioavailability Data to Improve Exposure Calculations for Lead

When reliable data are available on the bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site For example the basic equation for estimating the site-specific ABA of a test soil is as follows

ABAsoil = ABAsoluble sdot RBAsoil

where

ABAsoil = Absolute bioavailability of lead in soil ingested by a child

ABAsoluble = Absolute bioavailability in children of some dissolved or fully soluble form of lead

RBAsoil = Relative bioavailability of lead in soil

Based on available information in the literature on lead absorption in humans the US EPA estimates that the absolute bioavailability of lead from water and the diet is usually about 50 in children (US EPA 1994) Thus when a reliable site-specific RBA value for soil is available it may be used to estimate a site-specific absolute bioavailability in that soil as follows

ABAsoil = 50 sdot RBAsoil

In the absence of site-specific data the absolute absorption of lead from soil dust and other similar media is estimated by US EPA to be about 30 (US EPA 1994) Thus the default RBA used by US EPA for lead in soil and dust compared to lead in water is 3050 or 60 When the measured RBA in soil or dust at a site is found to be less than 60 compared to some fully soluble form of lead it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions If the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

OSWER 92857-77 2

13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals

Scientists in US EPA Region 8 have been engaged in a multi-year investigation of lead absorption from a variety of different environmental media especially soils and solid wastes associated with mining milling and smelting sites All studies in this program employed juvenile swine as the animal model Juvenile swine were selected for use in these studies because they are considered to be a good physiological model for gastrointestinal absorption in children (see Appendix A)

Initial studies in the program (referred to as ldquoPhase Irdquo) were performed by Dr Robert Poppenga and Dr Brad Thacker at Michigan State University (Weis et al 1995) The Phase I study designs and protocols were refined and standardized by Dr Stan Casteel and his colleagues at the University of Missouri Columbia and this group has performed a large number of studies (collectively referred to as ldquoPhase IIrdquo) designed to further characterize the swine model and to quantify lead absorption from a variety of different test materials Section 2 of this report summarizes the Phase II work performed at the University of Missouri

14 Overview of Methods for Estimating Lead RBA In Vitro

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be a feasible option in all cases It is mainly for these reasons that a number of scientists have been working to develop in vitro procedures that may provide faster and less costly alternatives for estimating the RBA of lead in soil or soil-like samples (Miller and Schricker 1982 Imber 1993 Ruby et al 1993 1996 Medlin 1997 Rodriguez et al 1999) These methods are based on the concept that the rate andor extent of lead solubilization in the gastrointestinal fluid are likely to be important determinants of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization from soil into an extraction solvent that resembles gastric fluid To help avoid confusion in nomenclature the fraction of lead which solubilizes in an in vitro system is referred to as bioaccessibility while the fraction that is absorbed in vivo is referred to as bioavailability

More recently development and testing of a simplified in vitro method for estimating lead bioaccessibility has been performed by Dr John Drexler at the University of Colorado Section 3 of this report describes this in vitro method and presents the results

OSWER 92857-77 3

20 IN VIVO STUDIES

21 Basic Approach for Measuring RBA In Vivo

The basic approach for measuring lead absorption in vivo is to administer an oral dose of lead to test animals and measure the increase in lead level in one or more body compartments (blood soft tissue bone) In order to calculate the RBA value of a test material the increase in lead in a body compartment is measured both for that test material and a reference material (lead acetate) Equal absorbed doses of lead (as Pb+2) are expected to produce approximately equal increases in concentration in tissues regardless of the source or nature of the ingested lead so the RBA of a test material is calculated as the ratio of doses (test material and reference material) that produce equal increases in lead concentration in the body compartment Note that this approach is general and yields reliable results for both non-linear and linear responses

22 Animal Exposure and Sample Collection

All in vivo studies carried out during this program were performed as nearly as possible within the spirit and guidelines of Good Laboratory Practices (GLP 40 CFR 792) Standard Operating Procedures (SOPs) for all of the methods are documented in a project notebook that is available through the administrative record

Experimental Animals

All animals used in this program were intact male swine approximately 5 to 6 weeks of age All animals were monitored to ensure they were in good health throughout the study

Diet

In order to minimize lead exposure from the diet animals were fed a special low-lead diet purchased from Zeigler Brothers Inc (Gardners PA) The amount of feed provided was equal to 5 of the average body weight of animals on study The feed was nutritionally complete and met all requirements of the National Institutes of HealthmdashNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 Periodic analysis of feed samples during this program indicated the mean lead level was less than 50 μgkg corresponding to a daily intake of less than 25 μgkgshyday

Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 μgL corresponding to a daily intake of less than 02 μgkg-day

OSWER 92857-77 4

Exposure

Appendix B provides the details of animal exposure including the design (number of dose groups number of animals dosing material and dose levels) for all of the Phase II studies A typical study design is summarized in Table 2-2 In general groups of animals were exposed to a series of doses of either lead acetate or test material For convenience in this report lead acetate is abbreviated as ldquoPbAcrdquo Exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous (IV) injection via an indwelling venous catheter

23 Preparation of Biological Samples for Analysis

Samples of blood were collected from each animal at multiple times during the course of a study (eg days 0 1 2 3 4 6 9 12 and 15) On day 15 the animals were sacrificed and samples of liver kidney and bone (femur) were collected

Appendix C presents details of biological sample collection preparation and analysis In brief samples of blood were diluted in ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDC) for analysis of blood samples for lead (CDC 2001) Samples of soft tissue (kidney liver) were digested in hot acid while samples of bone were ashed and then dissolved in acid

Prepared samples were analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer All results from the analytical laboratory were reported in units of μg PbL of prepared sample The detection limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 μgL)

24 Data Reduction

The basic data reduction task required to calculate an RBA for a test material is to fit mathematical equations to the dose-response data for both the test material and the reference material and then solve the equations to find the ratio of doses that would be expected to yield equal responses After testing a variety of different equations it was found that nearly all blood lead AUC data sets could be well-fit using an exponential equation while most data sets for liver kidney and bone lead could be well-fit using a linear equation

Linear Response = a + b sdot Dose (1)

Exponential Response = a + b sdot [1minus exp(minusc sdot Dose)] (2)

where a b and c are the parameters of the models and Dose is the total daily administered dose of lead (μgkg-day)

OSWER 92857-77 5

Appendix D presents a detailed description of the curve-fitting methods and rationale along with the methods used to quantify uncertainty in the RBA estimates for each test material Detailed dose-response data and curve-fitting results are presented in Appendix E

25 Results and Discussion

251 Effect of Dosing on Animal Health and Weight

Lead exposure levels employed in this program are substantially below those which cause clinical symptoms in swine and no evidence of treatment-related toxicity was observed in any dose group All animals exposed to lead by the oral route remained in good health throughout each study and the only clinical signs observed were characteristic of normal swine However animals implanted with indwelling venous catheters (used for intravenous injections) were subject to infection and a few animals became quite ill This was a problem mainly at the start of the program and tended to diminish as experience was gained on the best surgical and prophylactic techniques for catheter implantation When an animal became ill if good health could not be restored by administration of antibiotics the animal was promptly removed from the study

All animals were weighed every three days during the course of each study The rate of weight gain (kgday) averaged across all Phase II studies is illustrated in Figure 2-1 As shown animals typically gained about 03 to 05 kgday and the rate of weight gain was generally comparable in all groups

252 Time Course of Blood Lead Response

The time course of the blood lead response to oral or intravenous exposure may be thought of on two different time scales the short-term ldquospikerdquo that occurs immediately following an exposure and the longer-term trend toward ldquosteady-staterdquo blood lead following repeated exposures

Initial studies performed during Phase I of this program revealed that a single oral dose of lead acetate causes blood lead levels rise to a peak about two hours post-ingestion and then decrease over the course of 12 to 24 hours to a near steady-state value (Weis et al 1993) Although knowledge of these rapid kinetics is important in fully understanding the toxicokinetics of lead investigations in Phase II of this program focused mainly on quantifying the slower rise in ldquosteady-staterdquo blood lead following repeated exposures To achieve this goal all blood lead samples were collected 17 hours after lead exposure at a time when the rate of change in blood lead due to the preceding dose is minimal

Figure 2-2 presents an example graph of the time course of ldquosteady-staterdquo blood lead levels following repeated oral and intravenous exposure to lead acetate As seen blood lead levels begin below the detection limit (usually about 1 μgdL) and stay very low in control animals throughout the course of the study In animals exposed to lead acetate blood lead values begin to rise within 1 to 2 days and tend to flatten out to a near steady-state in about 7 to 10 days

OSWER 92857-77 6

253 Dose-Response Patterns

Figures 2-3 to 2-6 present the dose response patterns observed for blood liver kidney and bone (femur) following repeated oral or intravenous exposure to lead acetate For blood the endpoint is the area under the blood lead vs time curve (AUC) For femur kidney and liver the endpoint is the concentration in the tissue at the time of sacrifice The data for intravenous exposure are based on a single study1 while the patterns for oral exposure are based on the combined results across all studies performed during Phase II

As seen there is substantial variability in response between individuals (both within and between studies) and this variability tends to increase as dose (and response) increases This pattern of increasing variance in response is referred to as heteroscedasticity and is accounted for in the model-fitting procedure through the use of weighted least squares regression (see Appendix D) Despite the variability in response the regression analyses indicate that the dose response pattern is typically non-linear for blood lead AUC following both oral and intravenous exposure but is approximately linear in both cases for liver kidney and bone lead (see Table D1) This pattern of dose-response relationships suggests that at least over the dose range tested in this program absorption of lead from the gastrointestinal tract of swine is linear and that the non-linearity observed in blood lead AUC response is due to some sort of saturable binding in the blood

254 Estimation of ABA for Lead Acetate

Inspection of Figures 2-3 to 2-6 reveals that each of the measured responses to ingested lead acetate is smaller than the response for intravenously injected lead acetate These data were used to calculate the absolute bioavailability of ingested lead acetate using the data reduction approach described in Section 24 The results are summarized below

Measurement Endpoint Estimated ABA of PbAc

Blood AUC 010 plusmn 002

Liver 016 plusmn 005

Kidney 019 plusmn 005

Femur 014 plusmn 003

Although the four different measurement endpoints do not agree precisely it seems clear that the absolute bioavailability of lead acetate in juvenile swine is about 15 plusmn 4 Although data are limited results from balance studies in infants and young children (age 2 weeks to 8 years) suggest that lead absorption is probably about 42 to 53 (Alexander et al 1974 Ziegler et al 1978) If so lead absorption in juvenile swine is apparently lower than for young

Most studies in Phase II utilized only one intravenous dose level (100 μgkg-day) and hence do not provide dose-response data Study 8 included three intravenous exposure levels (25 50 and 100 μgkg-day) the data from this study are shown in Figures 2-3 to 2-6

OSWER 92857-77 7

1

humans Although the reason for this apparent difference is not known it is important to note that even if swine do absorb less lead than children under similar dosing conditions this does not invalidate the swine as an animal model for estimating relative bioavailability of lead in different test materials

255 Estimation of RBA for Lead in Test Materials

Characterization of Test Materials

Table 2-3 describes the Phase II test materials for which RBA was measured in this program and provides the analytical results for lead Data on other Target Analyte List (TAL) metals if available are provided in Appendix F As seen 17 different samples from eight different sites were investigated along with one sample of paint flakes mixed with clean soil and one sample of finely-ground native galena mixed with clean soil Prior to analysis and dosing all samples were dried (lt40degC) and sieved and only materials which passed through a 60-mesh screen (corresponding to particles smaller than about 250 μm) were used This range of particle sizes was selected because the US EPA considers particles less than about 250 μm to be the most likely to adhere to the hands and be ingested by hand-to-mouth contact especially in young children (US EPA 2000)

Each sample of test material that was evaluated in the swine bioassay program was thoroughly characterized with regard to mineral phase particle size distribution and matrix association using electron microprobe analysis Detailed results for each test material are presented in Appendix F and the results are summarized in Tables 2-4 to 2-6

Table 2-4 lists the different lead phases observed in the test materials and gives the relative lead mass (RLM) for each phase in each test material The RLM is the estimated percentage of the total lead in a sample that is present in a particular phase Of the 22 different phases detected in one or more samples 9 are very minor with RLM values no higher than 2 in any sample However 13 of the phases occur at concentrations that could contribute significantly to the overall bioavailability of the sample (RLM gt10) It should be noted that a particle is classified as ldquoslagrdquo only if the particle is glassy or vitreous in nature Inclusions or other non-vitreous grains of lead-bearing material are classified according to their mineral content and are not classified as slag particles (even if they are observed in bulk samples that are referred to as ldquoslagrdquo)

Table 2-5 summarizes information on the degree to which lead-bearing grains in each sample are partially or entirely liberated (ie exposed to gastric fluids when ingested) or included (ie fully enclosed or encased in mineral or vitreous matrices) Data are presented both on a particle frequency basis and on the basis of relative lead mass As seen the majority of lead-bearing particles in most samples are partially or entirely liberated although the tailings sample from Oregon Gulch is a clear exception

Table 2-6 summarizes data on the distribution (frequency) of particle sizes (measured as the longest dimension) in each sample For convenience the data presented are for liberated particles only (Appendix F contains the data for all particles) As seen most samples contain a

OSWER 92857-77 8

range of particle sizes often with the majority of the particles being less than 50 μm (Remember that all samples were sieved to isolate particles less than 250 μm before analysis)

RBA Results for Test Materials

Detailed model fitting results and RBA calculations for each test material are presented in Appendix E and are summarized in Table 2-7

As shown in Table 2-7 there are four independent estimates of RBA (based on blood AUC liver kidney and bone) for each test material Conceptually each of these four values is an independent estimate of the RBA for the test material so the estimates from all four endpoints need to be combined to yield a final point estimate for each test material As discussed in Appendix D (Section 47) an analysis of the relative statistical reliability of each endpoint (as reflected in the average coefficient of variation in RBA values derived from each endpoint) suggests that the four endpoint-specific RBA values are all approximately equally reliable Based on this the point estimate for a test material is the simple average across the four endpoint-specific RBA values The resulting point estimate values are presented in the far right portion of Table 2-7 Uncertainty bounds around the point estimates were derived as described in Appendix D (Section 47)

Inspection of these point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to about 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data to site-specific samples in order help to improve risk assessments for lead exposure

256 Effect of Food

Studies in humans indicate that lead absorption is reduced by the presence of food in the stomach (Garber and Wei 1974 US EPA 1996) The mechanism by which the presence of food leads to decreased absorption is not certain but may be related to competition between lead and calcium for active andor passive uptake sites in the gastrointestinal epithelium (Diamond 2000) Because of the potential inhibitory effects of food all of the studies performed during this program were designed to estimate the RBA of lead associated with a fasting state each dose being administered to animals no less than six hours after the last feeding In order to investigate how the presence of food in the stomach might influence absorption a study was performed to measure the absorption of lead acetate given two hours before feeding and compare that to the absorption of lead acetate given either at the time of feeding or two hours after feeding The results expressed using the absorption two hours before feeding as the frame of reference are summarized below

OSWER 92857-77 9

Measurement Endpoint

Ratio of PbAc Absorption Given With Food

Compared to PbAc Given Without Food

Ratio of PbAc Absorption Given 2 Hours After Feeding

Compared to PbAc Given Without Food

Blood Lead AUC 039 plusmn 005 040 plusmn 006

Liver Lead 086 plusmn 024 058 plusmn 016

Kidney Lead 072 plusmn 026 073 plusmn 027

Bone Lead 035 plusmn 005 033 plusmn 005

Point Estimate 058 plusmn 028 051 plusmn 022

These findings indicate that uptake of lead is reduced by close to half (RBA point estimates are 51 and 58) when the lead is administered to animals along with food compared to when it is administered on an empty stomach This effect appears to endure for at least two hours after feeding which is consistent with the results of a gastric emptying time study in juvenile swine that indicated that food is held in the stomach for up to four hours after eating (Casteel et al 1998)

This study which utilized lead acetate only does not provide information about the effect of food on the absorption of lead ingested in a solid form such as soil However it is suspected that the magnitude of the decrease in absorption caused by food is likely to be at least as large as that observed for lead acetate and perhaps even larger This is because food may influence not only the absorption of soluble lead ions but might also tend to decrease the rate and extent of lead solubilization from soil by tending to increase the pH of gastric fluids

257 Correlation of RBA with Mineral Phase

In principle each unique combination of phase size and matrix association constitutes a unique mineralogical form of lead and each unique form could be associated with a unique RBA that is the inherent value for that ldquotyperdquo of lead If so then the concentrated-weighted average RBA value for a sample containing a mixture of different types of lead is given by

n s m

RBAsample =sumsumsumCi j k sdotRBA i j k (3) i=1 j=1 k =1

where

RBAsample = Observed RBA of lead in a sample Cijk = Fraction of total lead in phase i of size j and matrix association k RBAijk = RBA of lead in phase i of size j and matrix association k n = Number of different lead phase categories s = Number of different size categories m = Number of different matrix association categories

OSWER 92857-77 10

If the number of different lead phases which can exist in the environment is on the order of 20 the number of size categories is on the order of five and the number of matrix association categories is two (included and liberated) then the total number of different ldquotypesrdquo of lead is on the order of 200 Because measured RBA data are available from this study for only 19 different samples it is clearly impossible (with the present data set) to estimate type-specific RBA values for each combination of phase size and matrix association Therefore in order to simplify the analysis process it was assumed that the measured RBA value for a sample was dominated by the liberated mineral phases present and the effect of included materials or of particle size were not considered That is the data were analyzed according to the following model

n

RBAsample =sumCi liberated sdot RBAi liberated (4) i=1

Because 22 different phases were identified and only 19 different samples were analyzed it was necessary to reduce the number of phases to a smaller number so that regression analysis could be performed Therefore the different phases were grouped into ten categories as shown in Table 2-8 These groups were based on professional judgment regarding the expected degree of similarity between members of a group along with information on the relative abundance of each phase (see Table 2-4)

The total lead mass in each group was calculated by summing the relative lead mass for each individual component in the group As noted above only the lead mass in partially or entirely liberated particles was included in the sum

Group-specific RBA values were estimated by fitting the grouped data to the model (equation 4) using minimization of squared errors Two different options were employed In the first option each parameter (group-specific RBA) was fully constrained to be between zero and one inclusive In the second option each parameter was partially constrained to be greater than or equal to zero Because Group 10 contains only phases which are present in relatively low levels an arbitrary coefficient of 05 was assumed for this group and the coefficient was not treated as a fitting parameter

The resulting estimates of the group-specific RBA values are shown in Figure 2-7 As seen there is a wide range of group-specific RBA values with equal results being obtained by both methods of constraint It is important to stress that these group-specific RBA estimates are derived from a very limited data set (nine independent parameter estimates based on only 19 different measurements) so the group-specific RBA estimates are inherently uncertain In addition both the measured sample RBA values and the relative lead mass in each phase are subject to additional uncertainty Therefore the group-specific RBA estimates should not be considered to be highly precise and calculation of a quantitative sample-specific RBA value from these estimates is not appropriate Rather it is more appropriate to consider the results of this study as sufficient to support only semi-quantitative rank-order classification of phase-specific RBA values as follows

OSWER 92857-77 11

Low Bioavailability (RBA lt025)

Medium Bioavailability (RBA = 025-075)

High Bioavailability (RBA gt075)

Fe(M) Sulfate Anglesite Galena Fe(M) Oxide Pb(M) Oxide

Lead Oxide Lead Phosphate

Cerussite Mn(M) Oxide

(M) = Metal

As noted above the estimates apply only to particles that are liberated not those that are included

258 Quality Assurance

A number of steps were taken throughout each of the studies in this program to assess and document the quality of the data that were collected These steps are summarized below

Duplicates

A randomly selected set of about 5 of all blood and tissue samples generated during each study were submitted to the laboratory in a blind fashion for duplicate analysis Figure 2-8 plots the results for blood (Panel A) and for liver kidney and bone (Panel B) As seen there was good intra-laboratory reproducibility between duplicate samples for both blood and tissues with both linear regression lines having a slope near 10 an intercept near zero and an R2 value near 100

Standards

The CDC provides blood lead ldquocheck samplesrdquo that may be used for use in quality assurance programs for blood lead studies Three types of check samples (nominal concentrations of 17 μgdL 48 μgdL and 149 μgdL) were used in these studies Each day that blood samples were collected from experimental animals several check samples of different concentrations were also prepared and submitted for analysis in random order and in a blind fashion The results (averaged across all studies) are plotted in Figure 2-9 As seen the analytical results obtained for the check samples were generally in good agreement with the expected value at all three concentrations with an overall mean of 14 μgL for the low standards (nominal concentration of 17 μgL) 43 μgL for the middle standard (nominal concentration of 48 μgL) and 145 μgL for the high standards (nominal concentration of 149 μgL)

Interlaboratory Comparison

In each study an interlaboratory comparison of blood lead analytical results was performed by sending a set of about 15 to 20 randomly selected whole blood samples to CDC for blind independent preparation and analysis The results are plotted in Figure 2-10 As seen the results of analyses by US EPArsquos laboratory are generally similar to those of CDC with a mean inter-sample difference (US EPA minus CDC) of 007 μgdL The slope of the best-fit straight line through the data is 084 indicating that the concentration values estimated by the US EPA

OSWER 92857-77 12

laboratories tended to be about 15 lower than those estimated by CDC The reason for this apparent discrepancy between the US EPA laboratory and the CDC laboratory is not clear but might be related to differences in sample preparation techniques Regardless of the reason the differences are sufficiently small that they are likely to have no significant effect on calculated RBA values In particular it is important to realize that if both the lead acetate and test material dose-response curves are biased by the same factor then the biases cancel in the calculation of the ratio

Reproducibility of RBA Estimates

As with any study involving animals there may be substantial variability between animals within each dose group and there may also be variability in observed responses to exposure across different studies Because each study involved administration of a standard series of doses of lead acetate the data for lead acetate can be used to assess the stability and reproducibility of the swine model Table 2-9 lists the best-fit parameters for the best-fit curves for oral lead acetate dose responses for blood AUC liver kidney and bone in each study and for all studies combined As seen the variability (expressed as the between-study coefficient of variation) is generally on the order of 25 to 50 for the b and c parameters with somewhat higher variability in the intercept parameter (a) This degree of between-study variability is not unexpected for a study in animals and emphasizes the need for generating the dose-response curve for the reference material within each study The source of the between-study variation is likely to be mainly a consequence of variation in animals between different groups (different dams different ages different weights) although a possible contribution from other variables (time of year laboratory personnel etc) cannot be excluded

Because RBA calculations are based on the within-study ratio of responses between a test material and reference material the variability in response between studies may be at least partly cancelled in the calculation of the RBA The most direct way to test this hypothesis is to compare RBA estimates for the same material that has been tested in two different studies To date only two test materials have been tested more than once The results are shown in Table 2-10 and are summarized below

For the Palmerton Location 2 sample (tested twice in Phase II) agreement is moderately good between the two studies for the blood AUC and kidney endpoints and for the point estimate although there is relatively low agreement for the liver and bone endpoints For the Residential Soil Composite from the California Gulch Superfund site (tested once by the University of Michigan during Phase I and again by the University of Missouri during Phase II) agreement is good for all four endpoints with between-study differences of less than 20 These differences are generally similar to the within-study confidence bounds which are typically in the 10 to 20 range Taken together these studies support the view that the in vivo RBA assay has acceptable inter-study and inter-laboratory reproducibility

OSWER 92857-77 13

30 IN VITRO STUDIES

31 Introduction

Measurement of lead RBA in animals using the approach described above has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measurement of the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA) which may then be used as an indicator of in vivo RBA

Background on the development and validation of in vitro methods for estimating lead bioaccessibility can be found in Imber (1993) Ruby et al (1993 1996) and Medlin (1997)

32 In Vitro Method

The method described in this report represents a simplification from most preceding approaches The method was designed to be fast easy and reproducible and some test conditions were adjusted to yield results that best correlated with in vivo measurements of lead bioavailability The detailed standard operating procedure (SOP) is presented below additional information on this procedure may be obtained from httpwwwcoloradoedugeolscilegs

321 Sample Preparation

All test materials tested in the bioaccessibility protocol were identical to the test materials administered to swine in the in vivo studies described above As noted previously soils were prepared by drying (lt40degC) and sieving to lt250 μm The lt250-μm size fraction was used because this particle size is representative of that which adheres to childrenrsquos hands Samples were thoroughly mixed prior to use to ensure homogenization All samples were archived after the study completion and retained for further analysis for a period of six months

322 Apparatus

The main piece of equipment used for this procedure is the extraction device shown in Figure 3-1 An electric motor (the same motor as is used in the Toxicity Characteristic Leaching Procedure or TCLP) drives a flywheel which in turn drives a Plexiglass block situated inside a temperature-controlled water bath The Plexiglass block contains ten 5-centimeter holes with stainless steel screw clamps each of which is designed to hold a 125-mL wide-mouth high density polyethylene (HDPE) bottle The water bath was filled such that the extraction bottles were completely immersed Temperature in the water bath was maintained at 37plusmn2 degC using an immersion circulator heater The 125-mL HDPE bottles had air-tight screw-cap seals and care

OSWER 92857-77 14

was taken to ensure that the bottles did not leak during the extraction procedure All equipment was properly cleaned acid washed and rinsed with deionized water prior to use

323 Selection of IVBA Test Conditions

The dissolution of lead from a test material into the extraction fluid depends on a number of variables including extraction fluid composition temperature time agitation solidfluid ratio and pH These parameters were evaluated to determine the optimum values for maximizing sensitivity stability and the correlation between in vitro and in vivo values

All reagents were free of lead and the final fluid was tested to confirm that lead concentrations were less than one-fourth the project required detection limit (PRDL) of 10 μgL (ie less than 2 μgL lead in the final fluid) Cleanliness of all materials used to prepare andor store the extraction fluid and buffer is essential all glassware and equipment used to prepare standards and reagents were properly cleaned acid washed and triple-rinsed with deionized water prior to use

Extraction Fluid The extraction fluid selected for this procedure was 04 M glycine (free base reagent grade glycine in deionized water) adjusted to a pH of 150plusmn005 at 37degC using trace metal grade concentrated hydrochloric acid (HCl) Most previous in vitro test systems have employed a more complex fluid intended to simulate gastric fluid For example Medlin (1997) used a fluid that contained pepsin and a mixture of citric malic lactic acetic and hydrochloric acids When the bioaccessibility of a series of test substances were compared using 04 M glycine buffer (pH 15) with and without the inclusion of these enzymes and metabolic acids no significant difference was observed (p=0196) This indicates that the simplified buffer employed in the procedure is appropriate even though it lacks some constituents known to be present in gastric fluid

Temperature In order to evaluate the effect of the extraction temperature seventeen substrates were analyzed (generally in triplicate) at both 37degC and 20degC The results are shown in Figure 3-2 (Panel A) In some cases temperature had little effect but in three cases the amount of lead solubilized was more than 20 greater at 37degC than at 20degC and in two cases it was more than 20 less Because the results appeared to depend on temperature in at least some cases a temperature of 37degC was selected because this is approximately the temperature of gastric fluid in vivo

Extraction Time The time that ingested material is present in the stomach (ie stomach-emptying time) is about one hour for a child particularly when a fasted state is assumed (see Appendix A) To investigate the effect of extraction time on lead solubilization 11 substrates were extracted for periods of 1 2 or 4 hours The results are shown in Figure 3-2 (Panel B) As seen in most cases the amount of lead solubilized was approximately constant over time with only one substrate (test material 6) showing a variation that exceeded the method precision Therefore an extraction time of one hour was selected for the final method In a subsequent test (data not shown) it was found that allowing the bottles to stand at room temperature for up to 4 hours after rotation at 37degC caused no significant variation (lt10) in lead concentration

OSWER 92857-77 15

pH Human gastric pH values tend to range from about 1 to 4 during fasting (see Appendix A) Previous studies have used stomach phase pH values between 10 and 25 for their in vitro experiments (Ruby et al 1993 CBR 1993 Gasser et al 1996 Buckley 1997 Medlin 1997 Rodriguez et al 1999 Mercier et al 2000) To evaluate the effect of pH on lead bioaccessibility 24 substrates were analyzed at pH values of 15 25 or 35 As shown in Figure 3-2 (Panel C) the amount of lead solubilized is strongly pH-dependent with the highest extraction at pH 15 For the subset of test materials for which in vivo RBA had been estimated at that time (N = 13) the empiric correlation between IVBA and in vivo RBA was slightly better at pH 15 (rho = 0919) than at pH 25 (rho = 0881) Thus a pH of 15 was selected for use in the final protocol

Agitation If the test material is allowed to accumulate at the bottom of the extraction apparatus the effective surface area of contact between the extraction fluid and the test material may be reduced and this may influence the extent of lead solubilization Depending on which theory of dissolution is relevant (Nernst and Brunner 1904 or Dankwerts 1951) agitation will greatly affect either the diffusion layer thickness or the rate of production of fresh surface Previous workers have noted problems associated with both stirring and argon bubbling methods (Medlin and Drexler 1995 Drexler 1997) Although no systematic comparison of agitation methods was performed an end-over-end method of agitation was chosen to best simulate the complex peristaltic motion of the gastrointestinal system

SolidFluid Ratio and Mass of Test Material A solid to fluid ratio of 1100 (mass per unit volume) was chosen to reduce the effects of metal dissolution that were noted by Sorenson et al (1971) when lower ratios (15 and 125) were used Tests using Standard Reference Materials showed no significant variation (within plusmn 1 of control means) in the fraction of lead extracted with soil masses as low as 02 gram (g) per 100 mL However use of low masses of test material could introduce variability due to small scale heterogeneity in the sample andor to weighing errors Therefore the final method employs 10 g of test material in 100 mL of extraction fluid

In special cases the mass of test material may need to be less than 10 g to avoid the potential for saturation of the extraction solution Tests performed using lead acetate lead oxide and lead carbonate indicate that if the bulk concentration of a test material containing these relatively soluble forms of lead exceeds approximately 50000 ppm the extraction fluid becomes saturated at 37degC and upon cooling to room temperature and below lead chloride crystals will precipitate To prevent this from occurring the concentration of lead in the test material should not exceed 50000 ppm or the mass of the test material should be reduced to 050plusmn001g

324 Summary of Final Leaching Protocol

The extraction procedure began by placing 100plusmn005 g of sieved test material and 100plusmn05 mL of the buffered extraction fluid (04 M glycine pH 15) into a 125-mL wide-mouth HDPE bottle Care was taken to ensure that static electricity did not cause soil particles to adhere to the lip or outside threads of the bottle if necessary an antistatic brush was used to eliminate static electricity prior to adding the test substrate The bottle was tightly sealed and then shaken or inverted to ensure that there was no leakage and that no soil was caked on the bottom of the bottle

OSWER 92857-77 16

Each bottle was placed into the modified TCLP extractor (water temperature 37plusmn2degC) Samples were extracted by rotating the samples end-over-end at 30 plusmn 2 rpm for 1 hour After 1 hour the bottles were removed dried and placed upright on the bench top to allow the soil to settle to the bottom A 15-mL sample of supernatant fluid is removed directly from the extraction bottle into a disposable 20-cc syringe After withdrawal of the sample into the syringe a Luer-Lok attachment fitted with a 045-μm cellulose acetate disk filter (25 mm diameter) is attached and the 15 mL aliquot of fluid is filtered through the attachment to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead as described below If the total time elapsed for the extraction process exceeds 90 minutes the test must be repeated

As noted above in some cases (mainly slags) the test material can increase the pH of the extraction buffer and this could influence the results of the bioaccessibility measurement To guard against this the pH of the fluid was measured at the end of the extraction step (just after a sample was withdrawn for filtration and analysis) If the pH was not within 05 pH units of the starting pH (15) the sample was re-analyzed If the second test also resulted in an increase in pH of greater than 05 units it was apparent that the test material was buffering the solution In these cases the test was repeated using manual pH adjustment during the extraction process stopping the extraction at 5 10 15 and 30 minutes and manually adjusting the pH down to pH 15 at each interval by drop-wise addition of HCl

325 Analysis of Extraction Fluid for Lead

The filtered samples of extraction fluid were stored in a refrigerator at 4degC until they were analyzed (within 1 week of extraction) Once received by the laboratory all media were maintained under standard chain-of-custody The samples were analyzed for lead by ICP-AES or ICP-MS (US EPA Method 6010 or 6020 US EPA 1986) The method detection limit (MDL) in extraction fluid was calculated to be around 19 μgL for Method 6010 and typically 01-03 μgL for Method 6020

326 Quality ControlQuality Assurance

Quality assurance for the extraction procedure consisted of the following quality control samples

Reagent Blank mdash extraction fluid analyzed once per batch

Bottle Blank mdash extraction fluid only (no test soil) run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Blank Spike mdash extraction fluid spiked at 10 mgL lead and run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Matrix Spikes mdash a subsample of each material used for duplicate analyses was used as a matrix spike The spike was prepared at 10 mgL lead and run through the extraction procedure at a frequency of 1 in 10 samples (minimum of 1 per batch)

OSWER 92857-77 17

Duplicate Sample mdash duplicate sample extractions were performed on 1 in 10 samples (minimum of 1 per batch)

Control Soil mdash National Institute of Standards and Testing (NIST) Standard Reference Material (SRM) 2711 (Montana Soil) was used as a control soil The SRM was analyzed at a frequency of 1 in 20 samples (minimum 1 per batch)

Control limits for these quality control samples were as follows

Analysis Frequency Control Limits

Reagent blank once per batch lt25 μgL lead

Bottle blank 5 lt50 μgL lead

Blank spike (10 mgL) 5 85-115 recovery

Matrix spike (10 mgL) 10 75-125 recovery

Duplicate sample 10 plusmn20 RPD

Control soil (NIST 2711) 5 plusmn10 RPD

RPD = Relative percent difference Minimum of once per batch

To evaluate the precision of the in vitro bioaccessibility extraction protocol approximately 67 replicate analyses of both NIST SRM 2710 and 2711 were conducted over a period of several months Results are shown in Figure 3-3 As seen both standards yield highly reproducible results with a mean coefficient of variation of about 6

33 Results and Discussion

331 IVBA Values

Table 3-1 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program Each value is the mean and standard deviation of three independent measurements performed at the University of Colorado at Boulder

Figure 3-4 shows the results of an inter-laboratory comparison of results for these test materials The participating laboratories included ACZ Laboratories Inc University of Colorado at Boulder US Bureau of Reclamation Environmental Research Chemistry Laboratory and National Exposure Research Laboratory As seen in the figure within-laboratory variability (as shown by the error bars) is quite small (average le2) and there is very good agreement between laboratories (average difference of 2 to 3 range of difference from 1 to 9)

OSWER 92857-77 18

332 Comparison with In Vivo Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples A scatter plot of the in vivo RBA and in vitro bioaccessibility data from this program is shown in Figure 3-5 The Spearman rank order correlation coefficient between the paired RBA and IVBA point estimates is 0896 (p lt0001) and the Pearson product moment correlation coefficient is 0917 (p lt0001) indicating that there is a statistically significant positive correlation between IVBA and RBA

Several different mathematical models were tested to describe the relation between RBA and IVBA including linear power and exponential All fitting was done using weighted least square regression as detailed in Appendix D The results are summarized below

Model R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting slightly better than the linear model However as discussed in Appendix D the difference in quality of fit between linear and exponential models is not judged to be meaningful and the linear model is selected as the preferred model at present As more data become available in the future the relationship between IVBA and RBA will be reassessed and the best-fit model form will be reconsidered and revised if needed

Because there is measurement error not only in RBA but also in IVBA linear fitting was also performed taking the error in both RBA and IVBA into account There was nearly no difference in fit so the results of the weighted linear regression were selected for simplicity This decision may be revisited as more data become available Based on this decision the currently preferred model is

RBA = 0878middotIVBA ndash 0028

It is important to recognize that use of this equation to calculate RBA from a given IVBA measurement will yield the ldquotypicalrdquo RBA value expected for a test material with that IVBA and the true RBA may be somewhat different (either higher or lower) The best fit line and the 95 prediction interval for this data set are shown in Figure 3-6

Applicability of the IVBA-RBA Model

At present it appears that the equation relating IVBA to RBA should be widely applicable having been found to hold true for a wide range of different soil types and lead

OSWER 92857-77 19

phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample containing an unusual andor untested lead phase is evaluated by the IVBA protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

OSWER 92857-77 20

40 REFERENCES

Alexander FW BE Clayton and HT Delves 1974 Mineral and trace-metal balances in children receiving normal and synthetic diets QJ Med 4389-111

Buckley BT 1997 Estimates of bioavailability of metals in soil with synthetic biofluids Is this a replacement for animal studies In IBC Conference on Bioavailability 1998 Scottsdale AZ

Casteel SW LD Brown J Lattimer and ME Dunsmore 1998 Fasting and feeding effects on gastric emptying time in juvenile swine Contemporary Topics in Laboratory Animal Science 37106-108

CBR 1993 Report Development of a physiologically relevant extraction procedure CB Research International Sidney BC Canada

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National Center for Environmental Health Centers for Disease Control and Prevention Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

Dankwerts PV 1951 Significance of liquid-film coefficients in gas absorption Ind Eng Chem 431460

Diamond GL 2000 Transport of metals in the gastrointestinal system and kidneys In Molecular Biology and Toxicology of Metals RK Zalups and J Koropatnick (eds) Taylor amp Francis London pp 300-344

Drexler JW 1997 Validation of an in vitro method A tandem approach to estimating the bioavailability of lead and arsenic to humans IBC Conference on Bioavailability Scottsdale AZ

Garber BT and E Wei 1974 Influence of dietary factors on the gastrointestinal absorption of lead Toxicol App Pharmacol 27685-691

Gasser UG WJ Walker RS Borch and RG Burau 1996 Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation Env Sci Tech 30761-769

Gibaldi M and D Perrier 1982 Pharmacokinetics (2nd edition) Marcel Dekker Inc NY NY pp 294-297

Goodman AG TW Rall AS Nies and P Taylor 1990 The Pharmacological Basis of Therapeutics (8th ed) Pergamon Press Inc Elmsford NY pp 5-21

OSWER 92857-77 21

Imber BD 1993 Development of a physiologically relevant extraction procedure Prepared for BC Ministry of Environment Lands and Parks Environmental Protection Division Victoria BC CB Research International Corporation Sidney BC

Klaassen CD MO Amdur and J Doull (eds) 1996 Cassarett and Doullrsquos Toxicology The Basic Science of Poisons McGraw-Hill Inc NY NY pp 190

Medlin EA 1997 An in vitro method for estimating the relative bioavailability of lead in humans Masters thesis Department of Geological Sciences University of Colorado Boulder

Medlin E and JW Drexler 1995 Development of an in vitro technique for the determination of bioavailability from metal-bearing solids International Conference on the Biogeochemistry of Trace Elements Paris France

Mercier G J Duchesne and A Carles-Gibergues 2000 A new in vitro test to simulate gastric absorption of copper lead tin and zinc from polluted soils Env Tech 23121-133

Miller DD and BR Schricker 1982 In vitro estimation of food iron bioavailability In Nutritional Bioavailability of Iron ACS Symp Ser 20310-25 1982

Mushak P 1991 Gastro-intestinal absorption of lead in children and adults Overview of biological and biophysico-chemical aspects In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 387-104

Nernst W and E Brunner 1904 Theorie der reaktionsgeschwindigkeit in heterogenen systemen Z Phys Chem 4752

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rodriguez RR NT Basta SW Casteel and LW Pace 1999 An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media Environ Sci Technol 33642-649

Ruby MV A Davis TE Link R Schoof RL Chaney GB Freeman and P Bergstrom 1993 Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead Environ Sci Technol 27(13)2870ndash2877

Ruby MV A Davis R Schoof S Eberle and C M Sellstone 1996 Estimation of lead and arsenic bioavailability using a physiologically based extraction test Environ Sci Technol 30(2)422ndash430

Sorenson RC DD Oelsligle and D Knodsen 1971 Extraction of zinc iron and manganese from soils with 01N hydrochloric acid as affected by soil properties solutionsoil ratio and length of extraction period Soil Sci 111352-359

OSWER 92857-77 22

US EPA 1986 Test methods for evaluating solid waste Volume 1A and 1B Laboratory manual physicalchemical methods SW-846 Third edition United States Environmental Protection Agency Office of Solid Waste and Emergency Response

US EPA 1994 Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children United States Environmental Protection Agency Office of Emergency and Remedial Response Publication Number 92857-15-1 EPA540R-93081

US EPA 1996 Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil United States Environmental Protection Agency Technical Review Workgroup for Lead December 1996

US EPA 2000 Short Sheet TRW Recommendations for Sampling and Analysis of Soil at Lead (Pb) Sites OSWER 92857-38 United States Environmental Protection Agency Office of Solid Waste and Emergency Response

Weis CP GM Henningsen RH Poppenga and BJ Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

Weis CP RH Poppenga BJ Thacker GM Henningsen and A Curtis 1995 Design of pharmacokinetic and bioavailability studies of lead in an immature swine model In Lead in Paint Soil and Dust Health Risks Exposure Studies Control Measures Measurement Methods and Quality Assurance ASTM STP 1226 M E Beard and S D A Iske (eds) American Society for Testing and Materials Philadelphia 1995

Ziegler EE BB Edwards RL Jensen KR Mahaffey and SJ Fomon 1978 Absorption and retention of lead by infants Pediatr Res 1229-34

OSWER 92857-77 23

This page intentionally left blank to facilitate double-sided printing

TABLES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

TABLE 2-1 TYPICAL FEED COMPOSITION

Nutrient Name Amount

Protein 201021

Arginine 12070

Lysine 14690

Methionine 08370

Met+Cys 05876

Tryptophan 02770

Histidine 05580

Leucine 18160

Isoleucine 11310

Phenylalanine 11050

Phe+Tyr 20500

Threonine 08200

Valine 11910

Fat 44440

Saturated Fat 05590

Unsaturated Fat 37410

Linoleic 1826 19350

Linoleic 1833 00430

Crude Fiber 38035

Ash 43347

Calcium 08675

Phos Total 07736

Available Phosphorous 07005

Sodium 02448

Potassium 03733

Nutrient Name Amount

Chlorine 01911

Magnesium 00533

Sulfur 00339

Manganese 204719 ppm

Zinc 1180608 ppm

Iron 1353710 ppm

Copper 81062 ppm

Cobalt 00110 ppm

Iodine 02075 ppm

Selenium 03196 ppm

Nitrogen Free Extract 602340

Vitamin A 51892 kIUkg

Vitamin D3 06486 kIUkg

Vitamin E 872080 IUkg

Vitamin K 09089 ppm

Thiamine 91681 ppm

Riboflavin 102290 ppm

Niacin 301147 ppm

Pantothenic Acid 191250 ppm

Choline 10198600 ppm

Pyridoxine 82302 ppm

Folacin 20476 ppm

Biotin 02038 ppm

Vitamin B12 234416 ppm

Feed obtained from and nutritional values provided by Zeigler Bros Inc

Tablesxls (2-1_Feed)

TABLE 2-2 TYPICAL IN VIVO STUDY DESIGN

Dose Dose Exposure Target Dose Number of Group Material Route ȝg Pbkg-day Animals

1 None Oral -- 2-5 2 Lead Acetate Oral 25 5 3 75 5 4 225 5 5 Test Material 1 Oral 75 5 6 225 5 7 625 5 8 Test Material 2 Oral 75 5 9 225 5 10 625 5 11 Lead Acetate Intravenous 100 5-8

Tablesxls (2-2_Design)

TABLE 2-3 DESCRIPTION OF PHASE II TEST MATERIALS

Experiment Sample Designation Site Sample Description Lead

Concentration (ppm) 1

2

Bingham Creek Residential Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing less than 2500 ppm lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

1590

Bingham Creek Channel Soil Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing 3000 ppm or greater of lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

6330

3

Jasper County High Lead Smelter Jasper County Missouri Superfund Site Soil composite collected from an on-site location 10800

Jasper County Low Lead Yard Jasper County Missouri Superfund Site Soil composite collected from an on-site location 4050

4

Murray Smelter Slag Murray Smelter Superfund Site Murray City Utah

Composite of samples collected from areas where exposed slag existed on site 11700

Jasper County High Lead Mill Jasper County Missouri Superfund Site Soil composite collected from an on-site location 6940

5

Aspen Berm Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from the Racquet Club property (including a parking lot and a vacant lot) 14200

Aspen Residential Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from residential properties within the study area 3870

6

Midvale Slag Midvale Slag NPL Site Midvale Utah Composite of samples collected from a water-quenched slag pile in Midvale Slag Operable Unit 2 8170

Butte Soil Silver Bow CreekButte Area NPL Site Butte Montana

Soil composite collected from waste rock dumps in Butte Priority Soils Operable Unit (BPSOU) 8530

7

California Gulch Phase I Residential Soil

California Gulch NPL Site Leadville Colorado

Soil composite collected from residential properties within Leadville 7510

California Gulch FeMn PbO California Gulch NPL Site Leadville Colorado

Soil composite collected from near the Lake Fork Trailer Park located southwest of Leadville near the Arkansas River 4320

8 California Gulch AV Slag California Gulch NPL Site Leadville Colorado

Sample collected from a water-quenched slag pile on the property of the former Arkansas Valley (AV) Smelter located just west of Leadville

10600

9 Palmerton Location 2 New Jersey Zinc NPL Site

Palmerton Pennsylvania Soil composite collected from on-site 3230

Palmerton Location 4 New Jersey Zinc NPL Site Palmerton Pennsylvania Soil composite collected from on-site 2150

Murray Smelter Soil Murray Smelter Superfund Site Murray City Utah Soil composite collected from on-site 3200

11

NIST Paint --

A mixture of approximately 58 NIST Standard Reference Material (SRM) 2589 and 942 low lead soil (lt 50 ppm) collected in Leadville Colorado NIST SRM 2589 composed of paint collected from the interior surfaces of houses in the US contains a nominal lead concentration of 10 (100000 ppm) the material is powdered with more than 99 of the material being less than 100 um in size

8350

12

Galena-enriched Soil --

A mixture of approximately 12 galena and 988 low lead soil (lt 50 ppm) that was collected in Leadville Colorado The added galena consisted of a mineralogical (ie native) crystal of pure galena that was ground and sieved to obtain fine particles smaller than about 65 um

11200

California Gulch Oregon Gulch TailingsCalifornia Gulch NPL Site Leadville Colorado

A composite of tailings samples collected from the Oregon Gulch tailings impoundment 1270

1 Samples were analyzed for lead by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

Tablesxls (2-3_TMs)

TABLE 2-4 RELATIVE LEAD MASS OF MINERAL PHASES OBSERVED IN TEST MATERIALS

Experiment 2 3 4 5 6 7 8 9 11 12

Phase Bingham

Creek Residential

Bingham Creek

Channel Soil

Jasper County

High Lead Smelter

Jasper County Low Lead Yard

Murray Smelter

Slag

Jasper County

High Lead Mill

Aspen Berm

Aspen Residential

Midvale Slag Butte Soil

Cal Gulch Phase I

Residential Soil

Cal Gulch FeMn PbO

Cal Gulch AV Slag

Palmerton Location 2

Palmerton Location 4

Murray Smelter Soil NIST Paint

Galena-enriched

Soil

Cal Gulch Oregon Gulch

Tailings

Anglesite 28 1 05 10 2 7 1 36 10 2 6 4 1

As(M)O 0003

Calcite 02 01

Cerussite 2 03 32 81 11 57 62 64 4 03 20 1 14 55

Clay 0018 0003 0017 01 01 001 003 013

Fe-Pb Oxide 6 3 14 2 2 10 9 7 03 7 6 8 51 2 2 013

Fe-Pb Sulfate 22 30 3 1 03 1 5 5 01 20 6 3 03 1 06

Galena 9 8 9 3 12 17 6 12 2 3 20 100 100

Lead Barite 004 001 006 0007 015 014 1 01

Lead Organic 03 003 003 011 011 1

Lead Oxide 009 69 7 27 44

Lead Phosphate 50 26 21 6 7 1 1 36 30 15 24 1

Lead Silicate 004 05 19 08 14

Lead Vanidate 01 04 18

Mn-Pb Oxide 18 2 2 2 08 9 4 5 202 22 72 66 66

Native Lead 22 07 2 15

Pb(M)O 4 26 7 3

Pb-As Oxide 2 1 015 6 33 01 31 29

PbO-Cerussite 1

Slag 4 7 1 16 1 10 6

Sulfosalts 04

Zn-Pb Silicate 003 2

(M) = Metal

Tbl 2-4_Lead Phasesxls (Table 2-4)

TABLE 2-5 MATRIX ASSOCIATIONS FOR TEST MATERIALS

Experiment Test Material Particle Frequency Relative Lead Mass

Liberated Included Liberated Included

2 Bingham Creek Residential 100 0 100 0

Bingham Creek Channel Soil 100 0 100 0

3 Jasper County High Lead Smelter 81 19 76 24

Jasper County Low Lead Yard 100 0 94 6

4 Murray Smelter Slag 87 13 77 23

Jasper County High Lead Mill 96 4 93 7

5 Aspen Berm 86 14 93 8

Aspen Residential 98 2 94 6

6 Midvale Slag 91 9 77 23

Butte Soil 91 9 91 9

7 California Gulch Phase I Residential Soil 79 21 65 35

California Gulch FeMn PbO 98 2 100 0

8 California Gulch AV Slag 78 22 80 20

9 Palmerton Location 2 100 0 100 0

Palmerton Location 4 79 21 89 11

11 Murray Smelter Soil 80 20 70 30

NIST Paint 100 0 100 0

12 Galena-enriched Soil 100 0 100 0

California Gulch Oregon Gulch Tailings 2 98 5 95

Tablesxls (2-5_Matrix)

TABLE 2-6 PARTICLE SIZE DISTRIBUTIONS FOR TEST MATERIALS

Experiment Test Material Particle Size (ȝm)

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

2 Bingham Creek Residential 38 22 19 16 4 2 0 0 0

Bingham Creek Channel Soil 66 136 10 61 3 1 0 0 0

3 Jasper County High Lead Smelter 44 19 8 8 9 9 2 1 1

Jasper County Low Lead Yard 29 20 21 20 8 3 0 0 0

4 Murray Smelter Slag 14 13 15 6 20 24 4 3 0

Jasper County High Lead Mill 23 21 22 19 9 6 1 1 0

5 Aspen Berm 27 19 22 17 8 6 1 1 0

Aspen Residential 38 35 12 8 4 2 0 0 0

6 Midvale Slag 6 1 3 4 20 29 18 13 5

Butte Soil 23 15 14 23 14 9 2 1 0

7 California Gulch Phase I Residential Soil 24 9 18 22 15 9 1 1 1

California Gulch FeMn PbO 26 19 24 17 10 4 0 0 0

8 California Gulch AV Slag 19 8 8 5 9 19 10 13 9

9 Palmerton Location 2 26 23 25 18 6 1 0 0 0

Palmerton Location 4 25 15 21 25 13 2 0 0 0

11 Murray Smelter Soil 23 10 29 17 6 8 3 3 1

NIST Paint 76 4 6 8 6 0 0 0 0

12 Galena-enriched Soil 48 2 4 41 4 0 0 0 0

California Gulch Oregon Gulch Tailings 85 8 6 0 0 0 0 0 0

Tablesxls (2-6_Size)

TABLE 2-7 ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence Bound UB = 95 Upper Confidence Bound

Tablesxls (2-7_RBA)

TABLE 2-8 GROUPED LEAD PHASES

Group Group Name Phase Constituents 1 Galena Galena (PbS)

2 Cerussite Cerussite

3 Mn(M) Oxide Mn-Pb Oxide

4 Lead Oxide Lead Oxide

5 Fe(M) Oxide Fe-Pb Oxide (including Fe-Pb Silicate)

Zn-Pb Silicate

6 Lead Phosphate Lead Phosphate

7 Anglesite Anglesite

8 Pb(M) Oxide As(M)O

Lead Silicate

Lead Vanidate

Pb(M)O

Pb-As Oxide

9 Fe(M) Sulfate Fe-Pb Sulfate

Sulfosalts

10 Minor Constituents Calcite

Clay

Lead Barite

Lead Organic

Native Lead

PbO-Cerussite

Slag

(M) = Metal

Tablesxls (2-8_Phases)

TABLE 2-9 CURVE FITTING PARAMETERS FOR ORAL LEAD ACETATE DOSE-RESPONSE CURVES

Experiment Blood AUC Liver Lead Kidney Lead Bone Lead

a b c a b a b a b 2 3 4 5 6 7 8 9 11 12

136 83 85 80 84

a

80 75 72 76

--

116 163 144 163 85

a

159 96 160 169

--

00084 00040 00064 00038 00101

a

00032 00087 00035 00040

--

63 20 10 23 57 17 62 20 23 20 10 17 11 21 11 23 14 13 9 07

44 24 10 22 68 28 60 18 15 21 10 14 17 24 14 23 20 17 8 11

07 0084 18 0062 05 0076 05 0062 04 0043 08 0059 08 0065 06 0071 07 0053 06 0032

Mean Standard Deviation Coefficient of Variation

86 19

23

140 32

23

00058 00026 46

27 18 24 05

88 27

27 20 22 05

84 26

07 0061 04 0015

55 25

Basic Equations Blood AUC = a + b(1-exp(-cDose))

a = baseline blood lead value in unexposed animals b = maximum increase in steady-state blood lead cause by exposure c = shape parameter that determines how steeply the response increases as dose increases

Tissue concentration (bone liver kidney) = a + bDose a = baseline blood lead value in unexposed animals b = slope of the increase in tissue content per unit increase in dose

Coefficient of Variation = Standard Deviation Mean

a Experiment 7 Blood AUC No stable solution was obtained using the exponential model

Tablesxls (2-9_Fits)

TABLE 2-10 REPRODUCIBILITY OF RBA MEASUREMENTS

RBA Palmerton Location 2

California Gulch Phase I Residential Soil

Estimate Test 1 (Phase 2 Study 9)

Test 2 (Phase 2 Study 12)

Test 1 (Phase 1 Study 2)

Test 2 (Phase 2 Study 7)

Blood AUC

Liver

Kidney

Bone

082 plusmn 012

060 plusmn 014

051 plusmn 016

047 plusmn 007

071 plusmn 009

125 plusmn 032

054 plusmn 013

095 plusmn 018

069

058

062

050

088 plusmn 019

075 plusmn 016

073 plusmn 017

053 plusmn 015

Point Estimate 060 plusmn 018 086 plusmn 033 060 072 plusmn 021

Calculated using ordinary least squares

Tablesxls (2-10_Reprod)

TABLE 3-1 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

Tbl 3-1 ES-2_IVBA Dataxls (Table 3-1)

This page intentionally left blank to facilitate double-sided printing

FIGURES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

FIGURE 2-1 AVERAGE RATE OF BODY WEIGHT GAIN IN TEST ANIMALS

00

01

02

03

04

05

06

07

Control PbAc 25 PbAc 75 PbAc 225 Test Material IV 100

Ave

rage

Rat

e of

Wei

ght G

ain

(kg

day)

Figuresxls (2-1_BW)

FIGURE 2-2 EXAMPLE TIME COURSE OF BLOOD LEAD RESPONSE

0

2

4

6

8

10

-6 -4 -2 0 2 4 6 8 10 12 14 16 Study Day

Bloo

d Le

ad (ȝ

gdL

) Control PbAc (75) PbAc (225) Test Material (75) Test Material (225) Test Material (675)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls

FIGURE 2-3 DOSE RESPONSE CURVE FOR BLOOD LEAD AUC

Panel A Lead Acetate - IV

0

50

100

150

200

250

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Panel B Lead Acetate - Oral

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-3_AUC)

FIGURE 2-4 DOSE RESPONSE CURVE FOR LIVER LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-4_Liver)

FIGURE 2-5 DOSE RESPONSE CURVE FOR KIDNEY LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-5_ idney)

FIGURE 2-6 DOSE RESPONSE CURVE FOR FEMUR LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Panel B Lead Acetate - Oral

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-6_Fe ur)

FIGURE 2-7 ESTIMATED GROUP-SPECIFIC RBA VALUES

00

02

04

06

08

10

12

Pb(

M) O

xide

Fe(M

) Sul

fate

Gal

ena

Ang

lesi

te

Fe(M

) Oxi

de

Lead

Pho

spha

te

Lead

Oxi

de

Mn(

M) O

xide

Cer

ussi

te

Group

Estim

ated

Gro

up-S

peci

fic R

BA

Fully constrained Partially constrained

LOW MEDIUM HIGH

Fig 2-7_Phase RBAsxls (Fig 2-7)

FIGURE 2-8 CORRELATION OF DUPLICATE ANALYSES

Panel A Blood Lead

Observed y = 09645x + 00687

R2 = 0981

0

5

10

15

20

25

30

0 5 10 15 20 25 30 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Panel B Tissue Lead

Observed y = 09526x + 18423

R2 = 09472

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Figuresxls (2-8_Dups)

FIGURE 2-9 RESULTS FOR CDC BLOOD LEAD CHECK SAMPLES

0

2

4

6

8

10

12

14

16

18

-5 0 5 10 15 Study Day

Mea

n Bl

ood

Lead

(ȝg

dL)

Low Std Med Std High Std

Figuresxls (2-9_CDC)

FIGURE 2-10 INTERLABORATORY COMPARISON OF BLOOD LEAD RESULTS

y = 08361x + 07385 R2 = 08606

0

5

10

15

20

25

30

0 5 10 15 20 25 30 CDCP Blood Lead Results (ȝgdL)

USE

PA B

lood

Lea

d R

esul

ts (ȝ

gdL

) Line of Identity

Figuresxls (2-10_Interlab)

FIGURE 3-1 IN VITRO BIOACCESSIBILITY EXTRACTION APPARATUS

Figuresxls (3-1_Apparatus)

FIGURE 3-2 EFFECT OF TEMPERATURE TIME AND pH ON IVBA

Fig 3-2_Effects on IVBAxls (Fig 3-2_Effects)

Panel C Effect of pH

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Test Material

IVB

A (

)

pH = 15 pH = 25 pH = 35

Panel A Effect of Temperature

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Test Material

IVB

A (

)

37 C 20 C

Panel B Effect of Extraction Time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 Test Material

IVB

A (

)

1 hour 2 hours 4 hours

FIGURE 3-3 PRECISION OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

100

90

80

70

60 ()

20

30

40

50

In V

itro

RBA

MS 2710 Mean = 755

Std Dev = 47 CV = 0062

N = 68

MS 2711 Mean = 844

Std Dev = 47 CV = 0055

N = 66

10

0

Figuresxls (3-3_Precision)

FIGURE 3-4 REPRODUCIBILITY OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Test Material

Mea

n R

BA

(per

cent

)

ACZ CUB ERCL NERL

Test Materials 1 = Aspen Berm 8 = Jasper County High Lead Smelter 14 = Midvale Slag 2 = Aspen Residential 9 = Jasper County Low Lead Yard 15 = Murray Smelter Slag 3 = Bingham Creek Channel Soil 10 = California Gulch AV Slag 16 = Murray Smelter Soil 4 = Bingham Creek Residential 11 = California Gulch FeMn PbO 17 = Palmerton Location 2 5 = Butte Soil 12 = California Gulch Oregon Gulch Tailings 18 = Palmerton Location 4 6 = Galena-enriched Soil 13 = California Gulch Phase I Residential Soil 19 = NIST Paint 7 = Jasper County High Lead Mill

Laboratories ACZ = ACZ Laboratories Inc

CUB = University of Colorado at BoulderERCL = Environmental Research Chemistry Laboratory US Bureau of Reclamation

NERL = National Exposure Research Laboratory

Fig 3-4_Reproducibilityxls (Fig 3-4)

FIGURE 3-5 RBA vs IVBA

00

01

02

03

04

05

06

07

08

09

10

11

12

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

Fig 3-5_IVBA-RBAxls (Fig 3-5)

FIGURE 3-6 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig 3-6)

APPENDIX A

EVALUATION OF JUVENILE SWINE AS A MODEL FOR GASTROINTESTINAL ABSORPTION

IN YOUNG CHILDREN

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX A EVALUATION OF JUVENILE SWINE AS A MODEL

FOR GASTROINTESTINAL ABSORPTION IN YOUNG CHILDREN

10 INTRODUCTION

Ideally the reliability of an animal model as a predictor for toxicokinetic responses in humans would be based on a direct comparison of results in humans and the animal species under consideration However because intentional dosing of children with lead is not feasible a direct comparison of lead absorption results in swine with that for children is not possible Nevertheless the relevance of the swine as an animal model for lead absorption can be evaluated by comparing a number of physiological attributes of the gastrointestinal system that are likely to be important in influencing the degree to which lead in ingested soil material is released from its soil or mineral matrix to form soluble compounds that can be absorbed into the body Factors that may affect dissolution include gastric acidity and gastric holding time which determine the exposure of the ingested material to the acidic environment of the stomach where dissolution initially occurs Morphological and physiological factors in the small intestine where absorption of lead is thought to occur may also affect RBA however these are likely to be less important for those soil materials for which solubility is the limiting factor for RBA

Weis and LaVelle (1991) and Casteel et al (1996) determined that gastric function in juvenile swine is sufficiently similar to that of human children so that juvenile swine could serve as a model for predicting RBA of soil-borne lead in children This view is supported by several reviews on the comparative anatomy and physiology of the human and pig gastrointestinal systems (Dodds 1982 Miller and Ullrey 1987 Moughan et al 1992 Pond and Houpt 1978) and in particular the following pertinent observations

20 GASTROINTESTINAL TRACT MORPHOLOGY AND HISTOLOGY

The anatomy of the neonatal digestive system in the pig and human are very similar (Moughan et al 1992) The body-weight adjusted ratios of intestinal length to stomach volume in the child and piglet are comparable as shown below

Species Stomach Volume (cm3kg)

Small Intestine Length (cmkg)

Large Intestine length (cmkg)

Small intestine lengthstomach

volume

Large intestine lengthstomach

volume Human 96 956 194 996 493

Swine 289 2292 596 793 385 Source Moughan et al 1992 Birth body weights of 34 (human) and 13 (pig) kg were assumed

The histology of the small intestine colon and rectum in the piglet is similar to that of the human (Moughan et al 1992) Small anatomical differences between humans and swine would

OSWER 92857-77 A-1

not be expected to markedly affect digestion in the neonate (Moughan et al 1992) The piglet is considered to be a useful model of the anatomical development of the human neonatal digestive tract (Moughan et al 1992 Miller and Ullrey 1987)

30 GASTRIC HOLDING TIMES

Gastric emptying time in humans is highly variable (USEPA 2001) The rate of emptying of stomach contents varies depending on the type of food the volume of the meal and its caloric content High caloric substances such as fat empty more slowly than carbohydrates The most important factor effecting liquid gastric emptying is the caloric content of the liquid meal Upright positioning and ambulation have been described to speed gastric emptying Other factors that are believed to affect gastric emptying include the osmolality acidity and chain length of fatty acids in the meal Differences in emptying may also exist between males and females These factors tend to make direct comparisons of data from different reports difficult Nevertheless the available data do not suggest any substantial differences in gastric holding times between children and juvenile swine

In the 4-week old pig gastric emptying following a meal was rapid with 30 to 40 passing into the duodenum within 15 minutes and the remaining portion of gastric contents following about one hour later (Pond and Houpt 1978) Gastric pH did not affect gastric emptying time in juvenile swine (Pond and Houpt 1978) In an unpublished study by Casteel (personal communication) gastric emptying in juvenile swine was shown to be influenced by feeding intervals both pre- and post-dosing The investigators reported rapid clearance of the bolus (complete within 2 hours) after an overnight fast however feeding 4 hours prior to dosing slowed completion of gastric emptying to 4 hours Feeding at two hours post-dosing accelerated the movement of the residual gastric contents although most of the bolus had already cleared the stomach

In humans gastric emptying time in neonates and premature infants is typically about 87 minutes but can be as long as 6 to 8 hours with adult values (typically about 65 minutes) being reached at 6 to 8 months of age (FDA 1998 Balis 2000)

40 GASTRIC ACIDITY

Direct comparisons of gastric acidity as a function of age in humans and swine are not available However available information on gastric acid secretion does not suggest there are any major differences that would affect extrapolation of RBA values measured in juvenile swine to humans Agunod et al (1969) reported that gastric acid output (corrected for body weight) reached normal adult levels in swine at 2 to 3 months post partum In humans gastric pH is neutral at birth but drops to 1 to 3 within hours of birth Gastric acid secretion then declines on days 10 to 30 and does not approach adult values until approximately 3 months of age (FDA 1998) Nagita et al (1996) reported that the intragastric pH of infants was lt4 for only half of the day whereas baseline pH in normal adults is lt2 The development of maximal acid secretion in the pig also has some similarities to that of humans (Xu and Cranwell 1990) In both the pig and human maximal acid secretion correlates with age and body weight with pentagastrin

OSWER 92857-77 A-2

histamine and histalog used as secretagogues (Xu and Cranwell 1990) A limitation of the available pig data is that all of the studies measure the maturation of gastric acid output rather than intragastric pH which Nagita et al (1996) asserts is a preferable measure of gastric maturity Temporal studies of the intragastric pH of juvenile swine are not available

50 REFERENCES

Agunod M N Yamaguchi R Lopez A L Luhby and G B J Glass 1969 Correlative study of hydrochloric acid pepsin and intrinsic factor secretion in newborns and infants Am J Dig Dis 14400-414

Balis F 2000 Module 4 Drug therapy in special populations In Principles of Clinical Pharmacology Published on-line by NIH httpwwwccnihgovcccprinciples

Casteel S W R P Cowart C P Weis G M Henningsen E Hoffman W J Brattin M F Starost J T Payne S L Stockham S V Becker and J R Turk 1996 A swine model for determining the bioavailability of lead from contaminated media In Advances in Swine in Biomedical Research Tumbleson and Schook eds Vol 2 Plenum Press New York Pp 637-46

Cranwell P D 1985 The development of acid and pepsin secretory capacity in the pig the effect of age and weaning 1 Studies in anaesthetized pigs Br J Nutr 54 305-20

Dodds J W 1982 The pig model for biomedical research Fed Proc 41 247-56

FDA 1998 Guidance for Industry General considerations for pediatric pharmacokinetic studies for drugs and biological products US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Published on-line by the Food and Drug Administration November 1998 httpwwwfdagovcberguidelineshtm

Henning S J 1987 Functional development of the gastrointestinal tract In Physiology of the Gastrointestinal Tract Johnson LR ed Raven Press New York Pp 285-300

Miller E R and D E Ullrey 1987 The pig as a model for human nutrition Ann Rev Nutr 7 361-82

Moughan P J M J Birtles P D Cranwell W C Smith and M Pedraza 1992 The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants World Rev Nutr Diet 19926740-113 PMID 1557912

Nagita A K Amemoto A Yoden S Aoki M Sakaguchi K Ashida and M Mino 1996 Diurnal variation in intragastric pH in children with and without peptic ulcers Ped Res 40(4) 528-32

Pond W G and K A Houpt 1978 The Biology of the Pig Ithaca NY Comstock 371 pp

OSWER 92857-77 A-3

Sangild P T P D Cranwell and L Hilsted 1992 Ontogeny of gastric function in the pig Acid secretion and the synthesis and secretion of gastrin Bio Neonate 62 363-72

USEPA 2001 Exploration of perinatal pharmacokinetic issues Final report by Versar to USEPA Risk Assessment Forum Office of Research and Development Washington DC 20460 EPA630R-01004

Waldum H L B K Straume P G Burhol and L B Dahl 1980 Serum group I pepsinogens in children Acta Paediatr Scand 69(2)215-8 PMID 7368925

Weis CP and LaVelle JM 1991 Characteristics to consider when choosing an animal model for the study of lead bioavailability In Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Sci Technol Let 3113B119

WHO 1986 Principles for evaluating health risks from chemicals during infancy and early childhood The need for a special approach Environmental Health Criteria 59 Geneva Switzerland World Health Organization

Xu R J and P D Cranwell 1990 Development of gastric acid secretion in pigs from birth to 36 days of age the response to pentagastrin J Dev Physiol 13 315-26

Xu C D P Wang and J Y Xu 1996 Gastric motility study on non ulcer dyspepsia among children Chin Natl J New Gastroenterol 2(Suppl 1) 129

OSWER 92857-77 A-4

APPENDIX B

DETAILED DESCRIPTION OF ANIMAL EXPOSURE

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B DETAILED DESCRIPTION OF ANIMAL EXPOSURE

10 EXPERIMENTAL ANIMALS

All animals used in this program were young intact males of the Pig Improvement Corporation (PIC) genetically defined Line 26 and were purchased from Chinn Farms Clarence MO The number of animals purchased for each study was typically 6 to 8 more than required by the protocol These animals were usually purchased at age 4 to 5 weeks (weaning occurs at age 3 weeks) and they were then held under quarantine for one week to observe their health before beginning exposure to test materials Any animals that appeared to be in poor health during this quarantine period were excluded To minimize weight variations between animals and groups extra animals that were most different in body weight on day -4 (either heavier or lighter) were also excluded from the study The remaining animals were assigned to dose groups at random When exposure began (day zero) the animals were about 5 to 6 weeks old and weighed an average of about 8 to 11 kg

All animals were housed in individual lead-free stainless steel cages Each animal was examined by a certified veterinary clinician (swine specialist) prior to being placed on study and all animals were examined daily by an attending veterinarian while on study Blood samples were collected for clinical chemistry and hematological analysis on days -4 7 and 15 to assist in clinical health assessments Any animal that became ill and could not be promptly restored to good health by appropriate treatment was promptly removed from the study

20 DIET

Animals provided by the supplier were weaned onto standard pig chow purchased from MFA Inc Columbia MO In order to minimize lead exposure from the diet the animals were gradually transitioned from the MFA feed to a special low-lead feed (guaranteed less than 02 ppm lead purchased from Zeigler Brothers Inc Gardners PA) over the time interval from day -7 to -3 and this feed was then maintained for the duration of the study The feed was nutritionally complete and met all requirements of the National Institutes of HealthBNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 of the main text Periodic analysis of feed samples during this program indicated the mean lead level was less than the detection limit (005 ppm)

Each day every animal was given an amount of feed equal to 5 of the mean body weight of all animals on study Feed was administered in two equal portions of 25 of the mean body weight at each feeding Feed was provided at 1100 AM and 500 PM daily Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 ȝgL

OSWER 92857-77 B-1

30 DOSING

The dose levels used in these studies were selected to be as low as possible in an effort to make measurements at the low end of the dose-response curve where saturation of biological systems is minimal Based on experience from previous investigations doses of lead acetate in the range of 25 to 675 ȝg Pbkg-day were found to give clear and measurable increases in lead levels in all endpoints measured (blood liver kidney bone) so doses in this range (usually 25 to 225 ȝg Pbkg-day) were employed in most studies The doses of test materials were usually set at the same level as lead acetate except that one higher dose was often included in case the test materials were found to yield very low responses Depending on the concentration of lead in the test material and the target dose level for lead soil intake rates by the swine were in the range of 500 to 2500 mgday

Animals were exposed to lead acetate or a test material for 15 days with the dose for each day being administered in two equal portions given at 900 AM and 300 PM (two hours before feeding) These exposure times were selected so that lead ingestion would occur at a time when the stomach was largely or entirely empty of food This is because the presence of food in the stomach is known to reduce lead absorption (eg Chamberlain et al 1978 Rabinowitz et al 1980 Heard and Chamberlain 1982 Blake et al 1983 James et al 1985) Dose calculations were based on measured group mean body weights and were adjusted every three days to account for animal growth

For animals exposed by the oral route dose material was placed in the center of a small portion (about 5 grams) of moistened feed This ldquodoughballrdquo was administered to the animals by hand Most animals consumed the dose promptly but occasionally some animals delayed ingestion of the dose for up to two hours (the time the daily feed portion was provided) Random and intermittent delays of this sort are not considered to be a significant source of error Occasionally some animals did not consume some or all of the dose (usually because the dose dropped from their mouth while chewing) All missed doses were recorded and the time-weighted average dose calculation for each animal was adjusted downward accordingly

For animals exposed by intravenous injection doses were given via a vascular access port (VAP) attached to an indwelling venous catheter that had been surgically implanted according to standard operating procedures by a board-certified veterinary surgeon through the external jugular vein to the cranial vena cava about 3 to 5 days before exposure began

40 REFERENCES

Blake K H C G O Barbezat and M Mann 1983 Effect of dietary constituents on the gastrointestinal absorption of 203Pb in man Environ Res 30182-187

Chamberlain A C M J Heard P Little D Newton A C Wells and R D Wiffen 1978 Investigations into lead from motor vehicles Harwell UK United Kingdom Atomic Energy Authority Report No AERE-9198

OSWER 92857-77 B-2

Heard H J and A C Chamberlain 1982 Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans Human Toxicol 1411-415

James H M M E Hilburn and J A Blair 1985 Effects of metals and meal times on uptake of lead from the gastrointestinal tract in humans Human Toxicol 4401-407

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rabinowitz M B J D Kopple and G W Wetherill 1980 Effect of food intake and fasting on gastrointestinal lead absorption in humans Am J Clin Nutrit 331784-1788

OSWER 92857-77 B-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX B ATTACHMENT 1

DETAILED STUDY DESIGNS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B - ATTACHMENT 1

EXPERIMENT 1A STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

3 20

1 Control 0

2 22 23 24 27

2 PbAc 25

1 26 29 32 35

3 PbAc 75

9 14 17 31 34

4 PbAc (-2 hr) 225

7 12 19 30 33

5 PbAc (0 hr) 225

5 18 21 25 36

6 PbAc (+2 hr) 225

4 15 16

7A PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (1a) Page 1 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 2 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

206 226

1 Control 0

215 220 222 229 251

2 PbAc 25

209 228 244 248 258

3 PbAc 75

204 216 247 252 260

4 PbAc 225

201 207 221 238 259

5 Bingham Creek Residential

75

236 237 240 242 249

6 Bingham Creek Residential

225

224 234 235 243 257

7 Bingham Creek Residential

450

202 217 219 253 254

8 Bingham Creek Channel Soil

75

203 225 227 232 250

9 Bingham Creek Channel Soil

225

205 210 213 218 255

10 Bingham Creek Channel Soil

675

208 214 230 231 239 241 246 256

11 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (2) Page 2 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 3 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

304 339

1 Control 0

309 312 324 337 340

2 PbAc 75

313 315 342 354 356

3 PbAc 225

305 311 318 321 331

4 Jasper County High Lead Smelter

75

316 317 330 352 353

5 Jasper County High Lead Smelter

225

319 341 344 345 348

6 Jasper County High Lead Smelter

625

325 329 338 343 351

7 Jasper County Low Lead Yard

75

302 326 328 332 346

8 Jasper County Low Lead Yard

225

306 333 334 335 349

9 Jasper County Low Lead Yard

625

307 320 322 347 350

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (3) Page 3 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 4 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

417 430

1 Control 0

409 419 429 443 444

2 PbAc 75

408 410 426 449 455

3 PbAc 225

402 407 411 423 450

4 Murray Smelter Slag

75

420 431 432 440 446

5 Murray Smelter Slag

225

412 418 427 437 442

6 Murray Smelter Slag

625

404 406 416 428 454

7 Jasper County High Lead Mill

75

401 433 434 435 441

8 Jasper County High Lead Mill

225

403 405 413 448 453

9 Jasper County High Lead Mill

625

415 421 424 425 438 439 445 451

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (4) Page 4 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 5 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

530 536

1 Control 0

514 518 519 520 524

2 PbAc 75

501 513 529 534 547

3 PbAc 225

503 523 532 549 555

4 Aspen Berm 75

509 512 539 540 550

5 Aspen Berm 225

510 516 525 537 542

6 Aspen Berm 675

502 507 517 522 528

7 Aspen Residential 75

505 506 521 553 554

8 Aspen Residential 225

526 535 541 545 548

9 Aspen Residential 675

504 508 515 538 543 544 546 551

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (5) Page 5 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 6 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

614 638

1 Control 0

613 624 630 639 641

2 PbAc 75

616 644 651 653 654

3 PbAc 225

619 623 626 631 647

4 Midvale Slag 75

602 605 628 640 650

5 Midvale Slag 225

603 615 629 633 645

6 Midvale Slag 675

610 611 617 637 643

7 Butte Soil 75

601 609 618 621 635

8 Butte Soil 225

620 627 634 646 655

9 Butte Soil 675

604 606 607 612 625 632 642 648

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (6) Page 6 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 7 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

706 714 718 735 743

1 Control 0

703 709 748 750 755

2 PbAc 25

711 715 716 747 752

3 PbAc 75

704 712 736 740 753

4 California Gulch Phase I Residential Soil

25

702 708 728 739 756

5 California Gulch Phase I Residential Soil

75

717 723 725 732 737

6 California Gulch Phase I Residential Soil

225

707 713 730 738 741

7 California Gulch FeMn PbO

25

733 742 746 749 751

8 California Gulch FeMn PbO

75

719 721 729 744 745

9 California Gulch FeMn PbO

225

722 724 727 734 754

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (7) Page 7 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 8 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

808 810 836

1 PbAc (IV) 0

805 807 812 827 834

2 PbAc (IV)

25

813 815 825 845 853

3 PbAc (IV)

50

801 816 820 843 852

4 PbAc (IV)

100

809 830 841 848 855

5 Control

0

817 818 819 838 846

6 PbAc

25

804 840 842 844 849

7 PbAc

75

857 826 828 831 851

8 California Gulch AV Slag

25

806 814 823 847 854

9 California Gulch AV Slag

75

811 822 824 837 856

10 California Gulch AV Slag

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (8) Page 8 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 9 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

907 912 919 930 942 943 953

1 PbAc (IV) 100

901 902 920 925 928

2 Control 0

905 909 927 931 940

3 PbAc 25

923 933 948 950 956

4 PbAc 75

911 929 934 947 954

5 Palmerton Location 2

25

903 910 938 951 955

6 Palmerton Location 2

75

906 908 916 918 922

7 Palmerton Location 2

225

913 914 932 937 946

8 Palmerton Location 4

25

924 926 944 949 957

9 Palmerton Location 4

75

917 921 939 941 945

10 Palmerton Location 4

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (9) Page 9 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 11 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1109 1124 1135 1139 1151

1 Control 0

1103 1104 1116 1117 1118

2 PbAc 25

1105 1123 1129 1130 1144

3 PbAc 75

1121 1136 1138 1146 1150

4 PbAc 225

1106 1112 1133 1142 1149

5 Murray Smelter Soil

75

1102 1122 1128 1143 1154

6 Murray Smelter Soil

225

1126 1137 1140 1141 1155

7 Murray Smelter Soil

675

1110 1115 1134 1148 1153

8 NIST Paint 75

1101 1108 1111 1132 1152

9 NIST Paint 225

1113 1119 1120 1125 1147

10 NIST Paint 675

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (11) Page 10 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 12 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1205 1228 1236

1 Control 0

1208 1213 1215 1217 1248

2 PbAc 25

1227 1240 1243 1244 1255

3 PbAc 75

1222 1225 1226 1241 1249

4 PbAc 225

1201 1233 1250 1251 1253

5 Galena-enriched Soil 75

1203 1209 1214 1231 1247

6 Galena-enriched Soil 225

1218 1229 1235 1237 1254

7 Galena-enriched Soil 675

1207 1223 1230 1245 1252

8 Palmerton Location 2 (reproducibility)

25

1202 1210 1212 1220 1232

9 Palmerton Location 2 (reproducibility)

75

1211 1216 1221 1239 1246

10 Palmerton Location 2 (reproducibility)

225

1204 1224 1238 1242

11 California Gulch Oregon Gulch Tailings

225

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (12) Page 11 of 11

This page intentionally left blank to facilitate double-sided printing

APPENDIX C

DETAILED METHODS OF SAMPLE COLLECTION AND ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX C DETAILED METHOD OF SAMPLE COLLECTION AND ANALYSIS

10 COLLECTION OF BIOLOGICAL SAMPLES

Blood

Samples of blood were collected from each animal three or four days before exposure began on the first day of exposure (day 0) and on multiple days thereafter (usually days 1 2 3 5 7 9 12 and 15) All blood samples were collected by vena-puncture of the anterior vena cava and samples were immediately placed in purple-top Vacutainerreg tubes containing EDTA (ethylenediaminetetra-acetic acid) as anticoagulant Blood samples were collected each sampling day beginning at 800 AM approximately one hour before the first of the two daily exposures to lead on the sampling day and 17 hours after the last lead exposure the previous day This blood collection time was selected because the rate of change in blood lead resulting from the preceding exposures is expected to be relatively small after this interval (LaVelle et al 1991 Weis et al 1993) so the exact timing of sample collection relative to last dosing is not likely to be critical

Liver Kidney and Bone

Following collection of the final blood sample at 800 AM on day 15 all animals were humanely euthanized and samples of liver kidney and bone (the right femur) were removed and stored in plastic bags for lead analysis

Samples of all biological samples collected were archived in order to allow for reanalysis and verification of lead levels if needed and possibly for future analysis for other metals (eg arsenic cadmium) All animals were also subjected to detailed examination at necropsy by a certified veterinary pathologist in order to assess overall animal health

20 PREPARATION OF BIOLOGICAL SAMPLES FOR ANALYSIS

Blood

One mL of whole blood was removed from the purple-top Vacutainer and added to 90 mL of ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDCP) for analysis of blood samples for lead (CDC 2001) The composition of matrix modifier is 02 (vv) ultrapure nitric acid 05 (vv) Triton X-100 and 02 (wv) dibasic ammonium phosphate in deionized and ultrafiltered water Samples of the matrix modifier were routinely analyzed for lead to ensure the absence of lead contamination

OSWER 92857-77 C-1

Liver and Kidney

One gram of soft tissue (liver or kidney) was placed in a screw-cap Teflon container with 2 mL of Optima grade concentrated (70) nitric acid and heated in an oven to 90degC overnight After cooling the digestate was transferred to a clean 10 mL volumetric flask and diluted to volume with deionized and ultrafiltered water

Bone

The right femur of each animal was removed defleshed and dried at 100degC overnight The dried bones were then broken in half placed in a muffle furnace and dry-ashed at 450degC for 48 hours Following dry ashing the bone was ground to a fine powder using a mortar and pestle and 200 mg was removed and dissolved in 100 mL of 11 (vv) Optima grade concentrated nitric acidwater After the powdered bone was dissolved and mixed 10 mL of the acid solution was removed and diluted to 100 mL by addition of 01 (wv) lanthanum oxide (La2O3) in deionized and ultrafiltered water

30 LEAD ANALYSIS

Samples of biological tissue (blood liver kidney bone) and other materials (eg food water reagents and solutions) were arranged in a random sequence and provided to USEPArsquos analytical laboratory in a blind fashion (identified to the laboratory only by a chain of custody tag number) Each sample was analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer Internal quality assurance samples were run every tenth sample and the instrument was recalibrated every 15th sample A blank duplicate and spiked sample were run every 20th sample In addition a series of quality assurance (QA) samples were prepared and submitted to the laboratory in bland fashion including a variety of duplicates blanks and standards

All results from the analytical laboratory were reported in units of ȝg PbL of prepared sample The quantitation limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 ȝgL) The standard deviation was usually about 03 ȝgL so the quantitation limit was usually about 09 to 10 ȝgL (ppb) However because different dilution factors were used for different sample types the detection limit varies from sample type to sample type For prepared blood samples (diluted 110) this corresponds to a quantitation limit of 10 ȝgL (1 ȝgdL) For soft tissues (liver and kidney also diluted 110) this corresponds to a quantitation limit of 10 ȝgkg (ppb) wet weight and for bone (final dilution of 1500) the corresponding quantitation limit is 05 ȝgg (ppm) ashed weight

40 REFERENCES

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National

OSWER 92857-77 C-2

Center for Environmental Health Center for Disease Control Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

LaVelle J M R H Poppenga B J Thacker J P Giesy C Weis R Othoudt and C Vandervoot 1991 Bioavailability of lead in mining waste An oral intubation study in young swine In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 3105-111

Weis C P G M Henningsen R H Poppenga and B J Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

OSWER 92857-77 C-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

DETAILED METHODS FOR DATA REDUCTION AND STATISTICAL ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX D DETAILED METHODS FOR DATA REDUCTION

AND STATISTICAL ANALYSIS

10 INTRODUCTION

The method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principal that equal absorbed doses of lead will produce equal biological responses By definition

Absorbed Doseref Administered Doseref ABAref

Absorbed Dosetest Administered Dosetest ABAtest

where ref and test indicate the reference and test material respectively When the responses are equal then

Administered Doseref ABAref Administered Dosetest ABAtest

Thus

ABAtest Administered DoserefRBA ABAref Administered Dosetest

That is given the dose-response curve for some particular endpoint (eg the concentration of lead in blood or tissue) for both the reference material and the test material RBA may be calculated as the ratio of administered doses that produce equal biological responses

Note that in this approach the mathematical form of the dose-response model must be the same for both reference material and test material This is because the shape of the dose-response curve is a function only of the pharmacokinetic response of the biological organism to an absorbed dose of lead and the response per unit dose absorbed dose does not depend on whether the absorbed lead was derived from reference material or test material Another way to envision this is to recognize that if the unit of exposure were absorbed dose (rather than administered dose) the dose-response curves for reference material and test material would be identical Note that in this approach RBA is a sample-specific constant and does not depend on administered dose

Based on this the general procedure for estimating the value of RBA from measured dose-response data for reference and test materials is as follows

1 Plot the biological responses of individual animals exposed to a series of oral doses of reference material Select an exposure-response model which can fit smoothly

OSWER 92857-77 D-1

through the observed data points The model may be either linear or non-linear depending on the response endpoint being used

2 Plot the biological responses of individual animals exposed to a series of doses of test material Fit the same exposure-response model as was used for the reference material Note that the intercept term must be the same for both curves but that other coefficients may be different

3 To find the ratio of doses that produce equal responses set the two exposure response curves equal to each other and solve for the ratio of doses expressed in terms of the model parameters

For example assume that the increase in lead in femur (PbF) is observed to be a linear function of administered dose Assume that the best-fit exposure-response models derived from the experimental data for animals exposed to reference material and test material are as follows

PbFref 2 6 Doseref

PbFtest 2 3 Dosetest

Setting the two equations equal yields

2 6 Doseref 2 3 Dosetest

Solving yields

Doseref 3 05Dosetest 6

That is the ratio of administered doses that produce equal responses is 05 so the RBA is 05 (50)

An important assumption used in this approach is that administration of increasing doses of test material will cause increased biological responses However this may not occur in the case of a test material in which the form of lead has very low solubility For example the solubility of lead sulfide (galena) in water is less than 1 ȝgL Thus if a dose of lead sulfide results in saturation of the gastric fluid administration of more lead sulfide will not increase the concentration of bioavailable lead and hence little or no increase in response would be expected An example of this is shown in Figure D-1 In this case RBA cannot be defined as the ratio of doses that produce equal responses since many different doses of lead sulfide all produce the same response However this is not a substantial difficulty since the amount of lead that becomes bioavailable will be small (and hence the response will be close to control) and simple inspection of the data will demonstrate that the test material is not likely to be of health concern

OSWER 92857-77 D-2

20 MEASUREMENT ENDPOINTS

21 Description of Measurement Endpoints

Four independent measurement endpoints were evaluated in each study based on the concentration of lead observed in blood liver kidney and bone (femur) For liver kidney and bone the measurement endpoint was simply the concentration in the tissue at the time of sacrifice (day 15) For blood the measurement endpoint used to quantify response was the area under the curve (AUC) for blood lead vs time (days 0-15) The area under the blood lead vs time curve for each animal was calculated by finding the area under the curve for each time step (ie the interval between successive blood collection days) using the trapezoidal rule

AUC(di to d j ) 05 (ri rj ) (d j di )

where

d = day number where i and j are successive blood sampling events

r = response (blood lead value) on day i (ri) or day j (rj)

The areas of the trapezoids for each time step were then summed to yield the final AUC for each animal

22 Responses Below Quantitation Limit

In some cases most or all of the responses in a group of animals were below the quantitation limit for the endpoint being measured For example this was normally the case for blood lead values in unexposed animals (both on day -4 and day 0 and in control animals) and also occurred during the early days in the study for animals given test materials with low bioavailability In these cases all animals which yielded responses below the quantitation limit were evaluated as if they had responded at one-half the quantitation limit This approach was used because an assumed value of one-half the detection limit minimizes the potential bias in the assumption

23 Assessment of Blood Lead Outliers

Occasionally blood lead values were obtained that were clearly different than expected A value was considered to be an outlier if it was clearly different from other values within the same dose group on the same day andor if the value was clearly different from the time trend established by preceding and following time points in the same animal A total of 21 such cases occurred out of a total of 4284 blood lead data points (05) These values were excluded in the calculation of AUC and the missing value was replaced by a value interpolated from the preceding and following values from the same animal

OSWER 92857-77 D-3

30 DERIVATION OF STATISTICAL DOSE-RESPONSE MODELS

The techniques used to derive statistical models of the dose-response data and to estimate RBA are based on the methods recommended by Finney (1978) All model fitting was performed using JMPtrade version 322 a commercial software package developed by SASreg Details are provided below

31 Use of Simultaneous Regression

As noted by Finney (1978) when the data to be analyzed consist of two dose-response curves (the reference material and the test material) it is obvious that both curves must have the same intercept since there is no difference between the curves when the dose is zero This requirement is achieved by combining the two dose response equations into one and solving for the parameters simultaneously For example if the dose response model is linear the approach is as follows

Separate Models

P r (i) a br xr (i)

P t (i) a bt xt (i)

Combined Model

P(i) a br xr (i) bt xt (i)

where ȝ(i) indicates the expected mean response of animals exposed at dose x(i) and the subscripts r and t refer to reference and test material respectively The coefficients of this combined model are derived using multivariate regression with the understanding that the combined data set is restricted to cases in which one (or both) of xr and xt are zero (Finney 1978) The same approach may be extended for use when there are three data sets (reference material test material 1 test material 2) that are all derived from a single study and must therefore all have the same intercept

32 Use of Weighted Regression

Regression analysis based on ordinary least squares assumes that the variance of the responses is independent of the dose andor the response (Draper and Smith 1998) In these studies this assumption is generally not satisfied Figure D-2 provides two example data sets that show a clear increase in the variability of the responses as a function of increasing dose This is referred to as heteroscedasticity Most other data sets from this study display a similar tendency toward increasing variance in response as a function of increasing dose

OSWER 92857-77 D-4

One method for dealing with heteroscedasticity is through the use of weighted least squares regression (Draper and Smith 1998) In this approach each observation in a group of animals is assigned a weight that is inversely proportional to the variance of the response in that group

1 wi V 2 i

where

wi = weight assigned to all data points in dose group iı2

i = variance of responses in animals in dose group i

When the distributions of responses at each dose level are normal weighted regression is equivalent to the maximum likelihood method There are several options available for estimating the value of ı2

i

Option 1 Utilize the observed variance (s2 i) in the responses of animals in dose group i

Option 2 Establish a variance model of the form ı2 i = Įȝi

ȡ where ȝi is the predicted mean response for dose group i Simultaneously fit the data to derive values of Į and ȡ along with the other coefficients of the dose-response model using the data from a particular study This approach is identical to the non-constant variance approach used by USEPArsquos BMDS (USEPA 1995 2000a)

Option 3A Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the predicted mean response for that dose group

Option 3B Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the observed mean response level for that dose group

In this study all four options were investigated for possible use The advantages and disadvantages of each are discussed below

Option 1 (use of group-specific sample variances) is the simplest approach and does not require any assumptions or extrapolations If the number of animals in each dose group was large enough to provide reliable estimates of the true variance for the dose group this would be the preferred method However sample variance in a dose group is a random variable and because the sample variance is based on only five observations (five animals per dose group) it can vary widely (especially when true variance is large) Therefore weights assigned using this approach may occasionally be substantially higher or lower than the data actually warrant For

OSWER 92857-77 D-5

example this approach yielded poor results in cases where two adjacent groups (usually the control and the low dose group) had very low variance In this situation the weights for those groups were so high that the model fit was constrained to pass through them with very little deviation and other dose groups exerted very little influence Figure D-3 shows an example of this Because this outcome was judged to be inappropriate Option 1 was not used

Option 2 (using a non-constant variance model derived from the within-study data only) utilizes the entire data set from a single study to estimate expected variance as a function of dose and so is less vulnerable to random variations in group-specific sample variances than Method 1 Despite this advantage however this approach requires that two additional parameters (Į and ȡ) be derived along with the other model parameters This tends to over-parameterize the model and when this option was tested (using the Solver tool in Microsoftreg Excel) the fits were often not stable (ie different results were obtained with different starting guesses) On this basis Option 2 was not employed

Option 3 (both Options 3A and 3B) requires development of an external variance model based on the consolidated data from all studies Figure D-4 shows the log-variance in response plotted as a function of the log-mean response in the group1 One panel is presented for each of the four different endpoints As seen log-variance increases as an approximately linear function of log-mean response for all four endpoints

ln(s2 i ) k1 k2 ln(yi )

Values of k1 and k2 are derived from the data for each endpoint using ordinary least squares minimization and the resulting values are shown in the figures Note that this variance model is of the same basic form as used in Option 2

s2 i exp(k1) ( yi )

k 2

In Option 3A the weights for each response are assigned based on the predicted mean response at each dose level within that model For example assuming a linear model

Px (i) a b1 x1(i) b2 x2 (i)

2V i expgtk1 k2 ln(Px (i))

In Option 3B the same approach is used except that the observed mean response rather than the predicted mean response is used to estimate ı2

i

2V i expgtk1 k2 ln(Px (i))

1 In this analysis some dose groups were excluded if the estimate of variance andor mean response was judged to be unreliable based on the following two criteria a) the number of animals in the dose group was 2 or b) the fraction of responses below the detection limit was more than 20 For the blood lead AUC endpoint (where the raw data consist of multiple blood lead values as a function of time) this corresponds to an AUC less than about 15 ȝgdL-days

OSWER 92857-77 D-6

In testing both options it was found that Options 3A and 3B gave similar results in most cases However Option 3A (in which weights are not pre-assigned but are optimized during the fitting procedure) tended to be very sensitive to starting guesses often failing to find solutions even when the starting guesses were good and sometimes yielding different results depending on the starting guesses In addition this approach uses the expected mean response rather than the observed mean response to estimate the variance which tends to diminish the role of the measured data in defining the best fit curve In contrast Option 3B was less prone to unstable solutions and is based more directly on the data

Based on a consideration of the advantages and disadvantages of each approach Option 3B was selected for use in this project This is mainly because it is has relatively less vulnerability than Option A to random variations in observed variances in a dose group (which results is assignment of weights that are either too high or too low) and also because it is could be implemented with relatively few difficulties It should be noted however that Option 3B is somewhat vulnerable to poor fits when one particular dose group in a data set lies well below the expected smooth fit through the other dose groups In this case the variance assigned to the group (based on the observed mean response) is lower than typical for that dose level (and hence the weights assigned to the data are higher than usual) tending to force the line through that data set at the expense of the other data sets

33 Choice of Model Forms

As noted above the main objective of the curve-fitting effort is to find a mathematical model that fits both the reference and test group dose-response data sets smoothly Note that there is no requirement that the model have a mechanistic basis or that the coefficients have a biological meaning As discussed by Finney (1978) it is generally not appropriate to choose the form of the dose-response model based on only one experiment but to make the choice based on the weight of observations across many different studies Because simple inspection of the data suggest that over the range of doses tested in these studies some dose-response curves (mainly those for liver kidney and bone) appear to be approximately linear while others (mainly those for blood lead AUC) appear to be nonlinear (tending to plateau as dose increases) the linear model and three alternative non-linear models were evaluated

1) Linear y a br xr bt xt

btRBA br

2) Exponential y a b 1 exp cr xr b 1 exp ct xt

RBA ct

cr

OSWER 92857-77 D-7

3) Michaelis-Menton y a b umlsect

cx

r

x

cx

t

x cedilmiddot

copy r r t t sup1

RBA cr

ct

4) Power y a br xr c bt xt

c

1 c

RBA umlsect bt cedil

middot

copy br sup1

Appendix E presents the detailed results for every data set fit to each of the four different models investigated Goodness-of-fit was assessed using the F test statistic and the adjusted coefficient of multiple determination (Adj R2) calculated as follows (Draper and Smith 1998)

F MSE fit

MSEerror

Adj R 2 1 MSEerror

MSEtotal

where

MSE fit brvbarwi P i

p y 12

MSEerror brvbarwi P

ni

yp

i 2

brvbar iy

n y 12

MSEtotal w i

and

brvbarwi yi ybrvbarwi

p = number of parameters in model

n = number of observations (animals)

F is distributed as an F distribution with (p-1) and (n-p) degrees of freedom Models with p values larger than 005 were not considered to be acceptable Of the models that were acceptable

OSWER 92857-77 D-8

(p lt 005) the preferred model was identified based on Akaikersquos Information Criterion (AIC) (USEPA 2000a and 2000b) which is calculated as

AIC 2 L 2 p

where

L = Log-likelihood function

p = number of parameters in the model

At the kth dose the sample log-likelihood function is

k ln2 k 2 brvbargtyk j f xkL N k SV 2 1 Nk

2

2 2V k j 1

(Nelson 1982) The overall log-likelihood is the sum across all dose groups (g)

g

L brvbar L k k 1

so that

L g N k ln2SV 2

g 1

Nk gty f 2

xbrvbar 2 k brvbar 2V 2 brvbar k j kk 1 k 1 k j 1

The detailed results are presented in Appendix E and the findings are summarized in Table D-1 Inspection of this table reveals the following main conclusions

x For liver kidney and bone the linear model generally gave the best fit although this varied somewhat by endpoint (710 for kidney 610 for bone 410 for liver) In cases where the linear model was not the best fit the RBA value given by the linear model was usually close to that given by whatever other model did provide the best fit with an average absolute difference of 12 (6 if one data set [study 9] was excluded) On this basis the linear model was selected for application to all dose-response data sets for liver kidney and bone

x For the blood lead AUC endpoint the linear model usually gave the worst fit and on this basis it was rejected as a candidate for the AUC endpoint In general each of the three nonlinear models (exponential Michaelis-Menton and power) all tended to give similar results in terms of RBA value (the standard deviation in RBA for a particular test material averaged across the three models was usually less than 3) and differences in the AIC were usually small On this basis it was concluded that any of these three models would be acceptable The power model was not selected because it does not tend toward a plateau while data from early blood lead pilot

OSWER 92857-77 D-9

studies (using higher doses than commonly used in the Phase II studies) suggest that the blood lead endpoint does tend to do so Of the remaining two models (exponential and Michaelis-Menton) the exponential model was selected mainly because it yielded the best fit more often than the Michaelis-Menton model (4 out of 10 vs 2 out of 10) and because the exponential model had been used in previous analyses of the data Thus the exponential model was selected for application to all dose-response data sets for the blood AUC endpoint except in one special case noted below in section 45

34 Assessment of Endpoint Outliers

In biological assays it is not uncommon to note the occurrence of individual measured responses that appear atypical compared to the responses from other animals in the same dose group For the purposes of this program endpoint responses that yielded standardized weighted residuals greater than 35 or less than -35 were considered to be potential outliers (Canavos 1984) When such data points were encountered in a data set the RBA was calculated both with and without the potential outlier(s) excluded and the result with the outlier excluded was used as the preferred estimate

35 Treatment of Problematic Data Sets

Although the data reduction approach described above works well in most cases a few data sets yielded atypical results In particular fitting the blood lead data set from Experiment 7 proved difficult In this study the blood lead AUC data set did not yield a solution in JMP for the exponential model even though solutions could be obtained in Excel using minimization of weighted squared errors However the solutions tended to be unstable This difficulty in modeling the data appears to be due to the fact that the data have relatively less curvature than most blood lead AUC data sets Because of this lack of curvature it is not possible to estimate the exponential plateau value (b) with confidence which in turns makes it difficult to estimate the other parameters of the exponential model

Several alternative solutions were evaluated including a) using the model fits from one of the other nonlinear models b) using the fit for the linear model and c) fitting the data to the exponential model using a defined value for the plateau based on results from other data sets The results (ie the RBA values based on the blood lead AUC endpoint) were generally similar for all three of these approaches

OSWER 92857-77 D-10

Model RBA of TM1 RBA of TM2

Power 065 083 Linear 069 090 Michaelis-Menton 069 plusmn 001 090 plusmn 001 Exponential fit 070 plusmn 002 093 plusmn004 Exponential fit (parameter b = 1264) 075 104 Exponential fit (parameter b = 1691) 074 101

Solution was unstable values represent the mean and standard deviation of five different fitting results Parameter b set to the mean of the estimates obtained for all other blood AUC data sets using the exponential model Parameter b set to the maximum of the estimates obtained for all other blood AUC data sets using the exponential model All estimates are based on all data (outliers not excluded)

Based on these results it was concluded that the results from the linear fit were representative of the range of values derived by other alternatives so the JMP fit for the linear model was used for this data set

36 Characterization of Uncertainty Bounds

Each RBA value is calculated as the ratio of a model coefficient for the reference data set and for the test data set

RBAlinear endpoints bbt

r

RBAblood AUC ct

cr

However there is uncertainty in the estimates of the model coefficients in both the numerator and denominator and hence there is uncertainty in the ratio As described by Finney (1978) the fiduciary limits (uncertainly range) about the ratio R of two model coefficients may be calculated using Fiellerrsquos Theorem

R g covarr t r

t W

var bLBUB r r

1 g

W var 2 R covar R 2 var g umlumlsect var

covarr 2t

cedilcedilmiddot

t t r t r copy varr sup1

OSWER 92857-77 D-11

t 2

gb2 varr

r

where

R = ratio ( bt br for linear model ct cr for exponential model)

varr = variance in the coefficient for the reference material

covarrt = covariance in the coefficients for the reference and test materials

br = coefficient for the reference material (cr in the case of the exponential model)

t = t statistic for alpha (005) and (n-p) degrees of freedom

When g is small (lt005) the variance of the ratio is approximated as (Finney 1978)

var 2 R covarr t R2 varrtvarR 2br

37 Combination of RBA Estimates Across Endpoints

As discussed above each study of RBA utilized four different endpoints to estimate absorption of lead including blood AUC liver kidney and bone Consequently each study yielded four independent estimates of RBA for each test material Thus the final RBA estimate for a test material involves combining the four end-point specific RBA values into a single value (point estimate) and estimating the uncertainty around that point estimate The methods used to achieve these goals are described below

Derivation of the Point Estimate

The basic strategy for deriving a point estimate of RBA for a test material is to calculate a confidence-weighted average of the four endpoint-specific RBA values If all four endpoints are considered to be equally reliable the weighting factors are all equal (ie the point estimate is the simple average) If reliability is considered to differ from endpoint to endpoint then weights are assigned in proportion to the reliability

brvbarRBAi wi RBApoint estimate brvbarwi

Because each endpoint-specific RBA value is calculated as the ratio of the parameters of the dose-response curves fitted to the experimental data for reference material and test material the reliability of an endpoint-specific RBA is inherently related to the quality of the data that define the dose-response curve for that endpoint For endpoints that tend to have low within-group variability and generate data that fit the dose-response model well the uncertainty around

OSWER 92857-77 D-12

the model parameters will tend to be small and hence the uncertainty around the RBA value will also tend to be small Conversely if the underlying dose-response data for an endpoint are highly variable and the dose-response model does not fit the data well there will tend to be high uncertainty in the model parameters and hence in the RBA estimate Thus a good indicator of relative reliability between the four different endpoints is the relative magnitude of the uncertainty (standard error) around RBA estimates based on each endpoint

Figure D-5 plots the standard error in each RBA estimate as a function of the RBA value for each of the four different endpoints As seen uncertainty in RBA increases as a function of the estimated value of RBA in all four cases This is expected because of the heteroscedastisity in the underlying dose-response data Although RBA values based on blood AUC and femur tend to yield estimates with slightly lower standard errors than RBA values based on liver or kidney the magnitude of the standard errors tends to be generally similar for all four endpoints and the difference between the four regression lines is not statistically significant (p = 0699) Based on this each endpoint-specific RBA value was judged to have approximately equal validity and the point estimate was calculated as the simple average across all four endpoint-specific RBA values

Estimation of Uncertainty Bounds Around the Point Estimate

The uncertainty bounds around each point estimate were estimated using Monte Carlo simulation For each test material values for RBA were drawn from the uncertainty distributions for each endpoint with equal frequency Each endpoint-specific uncertainty distribution was assumed to be normal with the mean equal to the best estimate of RBA and the standard deviation estimated from Fiellerrsquos Theorem (see Section 46 above) The uncertainty in the point estimate was characterized as the range from the 5th to the 95th percentile of the average across endpoints

OSWER 92857-77 D-13

40 RELATION BETWEEN RBA AND IVBA

41 Choice of Model Form

As discussed in Section 332 of the main text one of the important objectives of this program was to characterize the degree to which measures of in vitro bioaccessibility (IVBA) correlate with and can be used to predict in vivo measurements of RBA This objective was approached by plotting the point estimate of in vivo RBA vs the corresponding IVBA value for each of the 19 different test materials and fitting several different mathematical models to the data Because the measurement error in RBA is heteroscedastic (tending to increase as RBA increases) all of the model fitting was performed by minimizing the sum of the weighted squared errors between observed and predicted RBA as described above (Section 42) The weighting factor assigned to each RBA point estimate was the inverse of the variance derived from Monte Carlo simulation as described in Section 47 and shown in Table D-2 Goodness of fit was assessed using the AIC as described in Section 43 The fitting results are shown in Figure D-6 (Panels A to D) and are summarized below

Model a b c R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

-0028

-0003

-0634

-0476

0878

0978

0619

0464

--

1293

1225

--

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting somewhat better than the linear model However the improved fit of the exponential models is due mainly to the fact that the two data points that occur in the central part of the x-range (IVBA = 0378 and 0470) lie below the best fit linear line and these two data points tend to pull the central part of the curve down slightly when a non-linear model is used If these two data points were absent or if a third data point were present that were above the linear fit the quality of the fits would be approximately equal for linear and non-linear models Based on the judgment that two data points are not sufficient evidence to conclude that a non-linear fit is preferable to a linear model the linear model is selected as the interim recommended model As more data become available in the future the relationship between IVBA and RBA will be reassessed and the model will be revised if needed

Figure D-7 shows a graph of the best fit linear model through the data along with the 95 prediction interval calculated using SASreg As noted above the best fit equation is

RBA = 0878middotIVBA ndash 0028

OSWER 92857-77 D-14

42 Adjusting for Measurement Error in Both IVBA and RBA

In most cases linear and non-linear regression techniques assume that there are no measurement errors in the independent variable (IVBA) However as noted in Section 3 of the main text IVBA is derived by experimental measurement and hence there is some degree of measurement error in each IVBA value In this situation use of weighted linear regression (which accounts only for the measurement errors in RBA) may yield a fit that is biased with the magnitude of the error depending on the relative magnitude of the measurement errors in IVBA compared to RBA In order to investigate whether this was an important adjustment the data were fit by minimizing the chi-square merit function for a linear model (Cheng and Van Ness 1999)

amp 2 brvbar (RBAi a b IVBAi )2

Syi 2 b2 Sxi

2 where

a = Intercept of the linear equation

b = Slope of the linear equation

Sy2 i = Variance of RBA estimate i

Sx2 i = Variance of IVBA estimate i

As above the value of Sy2 i was derived from the Monte Carlo simulation used to derive

the point estimate for each RBA value and the value of Sx2 i was the variance of the three

independent measurements of IVBA (see Table D-2) Based on this approach the best fit equation is

RBA = 0884middotIVBA ndash 0028

As seen this fit is very similar to the weighted linear regression fit above with the same intercept and a slightly greater slope This relatively small effect of adjusting for measurement error in IVBA is expected because measurement errors in IVBA tend to be substantially smaller (average coefficient of variation = 6) than those in RBA (average coefficient of variation = 33) (see Table D-2) Because the difference in results is so small for this data set the fit based on weighted linear regression is selected as the preferred model at this time because of its relative simplicity This decision may be re-evaluated in the future as additional data become available

OSWER 92857-77 D-15

50 REFERENCES

Canavos C G 1984 Applied Probability and Statistical Methods Little Brown and Co Boston

Cheng C-L and J W Van Ness 1999 Statistical Regression with Measurement Error Oxford University Press New York

Draper N R and H Smith 1998 Applied Regression Analysis (3rd Edition) John Wiley amp Sons New York

Finney D J 1978 Statistical Method in Biological Assay (3rd Edition) Charles Griffin and Co London

Nelson W 1982 Applied Life Data Analysis John Wiley amp Sons New York

USEPA 1995 The Use of the Benchmark Dose Approach in Health Risk Assessment US Environmental Protection Agency Office of Research and Development Risk Assessment Forum EPA630R-94007 February 1995

USEPA 2000a Help Manual for Benchmark Dose Software Version 120 US Environmental Protection Agency Office of Research and Development EPA 600R-00014F February 2000

USEPA 2000b Benchmark Dose Technical Guidance Document External Review Draft US Environmental Protection Agency Risk Assessment Forum EPA630R-00001 October 2000

OSWER 92857-77 D-16

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

TABLE D-1 MODEL COMPARISONS

Endpoint Experiment LINEAR EXPONENTIAL MICHAELIS-MENTON POWER Lowest

AICAIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3

Blood AUC 2 4124014 lt 0001 0779 038 031 -- 3936549 lt 0001 0827 034 030 -- 3918262 lt 0001 0831 033 030 -- 3861163 lt 0001 0846 034 030 -- POWER

Blood AUC 3 4285143 lt 0001 0818 053 063 -- 3778492 lt 0001 0896 065 094 -- 3760574 lt 0001 0899 065 094 -- 3744287 lt 0001 0902 062 085 -- POWER

Blood AUC 4 4556739 lt 0001 0787 034 048 -- 3829415 lt 0001 0896 047 084 -- 3796654 lt 0001 0901 047 084 -- 3742627 lt 0001 0909 040 073 -- POWER

Blood AUC 5 38503 lt 0001 0864 050 055 -- 3451702 lt 0001 0933 069 072 -- 3447351 lt 0001 0934 068 073 -- 3449323 lt 0001 0934 061 068 -- MM

Blood AUC 6 3335853 lt 0001 0820 028 030 -- 3118304 lt 0001 0888 021 019 -- 3123221 lt 0001 0886 021 019 -- 316066 lt 0001 0875 024 023 -- EXP

Blood AUC 7 3943537 lt 0001 0692 069 090 -- NS NS NS NS NS -- NS NS NS NS NS -- 3942826 lt 0001 0689 065 083 -- POWER

Blood AUC 8 3771965 lt 0001 0822 026 -- -- 3379125 lt 0001 0898 026 -- -- 3369394 lt 0001 0900 026 -- -- 3443656 lt 0001 0885 020 -- -- MM

Blood AUC 9 3287634 lt 0001 0862 062 054 -- 3122198 lt 0001 0909 082 062 -- 3126794 lt 0001 0908 080 062 -- 3161967 lt 0001 0899 073 060 -- EXP

Blood AUC 11 4364331 lt 0001 0857 049 060 -- 3904143 lt 0001 0922 070 086 -- 3913314 lt 0001 0921 070 086 -- 4023932 lt 0001 0905 066 083 -- EXP

Blood AUC 12 3751354 lt 0001 0906 001 078 009 3703802 lt 0001 0910 001 071 007 3707599 lt 0001 0910 001 072 007 3748385 lt 0001 0905 001 074 007 EXP

Liver 2 5432988 lt 0001 0567 035 025 -- NS NS NS NS NS -- NS NS NS NS NS -- 5430502 lt 0001 0574 039 026 -- POWER

Liver 3 5622981 lt 0001 0782 056 120 -- NS NS NS NS NS -- NS NS NS NS NS -- 5614696 lt 0001 0786 060 108 -- POWER

Liver 4 5585529 lt 0001 0564 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5558161 lt 0001 0586 039 074 -- POWER

Liver 5 6744086 0003 0268 093 113 -- NS NS NS NS NS -- NS NS NS NS NS -- 6758198 0007 0249 087 102 -- LIN

Liver 6 4683743 lt 0001 0622 013 014 -- 4703592 lt 0001 0612 013 014 -- 4703592 lt 0001 0612 013 014 -- 4702987 lt 0001 0613 013 013 -- LIN

Liver 7 5034618 lt 0001 0679 054 071 -- 50544 lt 0001 0671 054 072 -- NS NS NS NS NS -- 5053976 lt 0001 0672 054 072 -- LIN

Liver 8 6296988 lt 0001 0452 018 -- -- NS NS NS NS -- -- NS NS NS NS -- -- 6306132 lt 0001 0441 018 -- -- LIN

Liver 9 4849237 lt 0001 0727 060 053 -- 4706533 lt 0001 0777 111 065 -- 4716336 lt 0001 0774 107 065 -- 4757101 lt 0001 0760 089 062 -- EXP

Liver 11 5614438 lt 0001 0757 058 073 -- 5615909 lt 0001 0757 066 071 -- 5615427 lt 0001 0757 065 071 -- 5609762 lt 0001 0759 063 073 -- POWER

Liver 12 506975 lt 0001 0716 002 125 011 NS NS NS NS NS NS NS NS NS NS NS NS 4937966 lt 0001 0746 002 098 012 POWER

Kidney 2 5302226 lt 0001 0687 022 027 -- NS NS NS NS NS -- NS NS NS NS NS -- 5322104 lt 0001 0679 022 027 -- LIN

Kidney 3 5335968 lt 0001 0834 058 091 -- 5342703 lt 0001 0833 058 097 -- 534219 lt 0001 0834 058 097 -- 5340045 lt 0001 0834 056 095 -- LIN

Kidney 4 5501067 lt 0001 0715 031 070 -- NS NS NS NS NS -- NS NS NS NS NS -- 5518207 lt 0001 0709 030 068 -- LIN

Kidney 5 5478196 lt 0001 0529 073 078 -- NS NS NS NS NS -- NS NS NS NS NS -- 5480081 lt 0001 0527 064 074 -- LIN

Kidney 6 5002596 lt 0001 0552 012 016 -- 5016143 lt 0001 0543 011 014 -- 5016373 lt 0001 0543 011 014 -- 5019909 lt 0001 0541 012 014 -- LIN

Kidney 7 5015953 lt 0001 0657 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5035096 lt 0001 0649 051 085 -- LIN

Kidney 8 5865547 lt 0001 0573 014 -- -- 5859632 lt 0001 0571 014 -- -- 5859527 lt 0001 0571 014 -- -- 5812902 lt 0001 0587 013 -- -- POWER

Kidney 9 5358631 lt 0001 0579 051 041 -- 5116407 lt 0001 0661 162 052 -- 5135473 lt 0001 0655 163 055 -- 5187502 lt 0001 0636 136 056 -- EXP

Kidney 11 5766481 lt 0001 0725 036 055 -- 5786496 lt 0001 0718 053 047 -- 5787016 lt 0001 0717 048 048 -- 5782471 lt 0001 0720 039 052 -- LIN

Kidney 12 8689066 lt 0001 0329 001 047 004 8700698 lt 0001 0315 001 034 003 87032 lt 0001 0315 001 036 003 8645181 lt 0001 0326 001 073 008 POWER

Femur 2 1805215 lt 0001 0863 024 026 -- NS NS NS NS NS -- NS NS NS NS NS -- 1825211 lt 0001 0859 024 026 -- LIN

Femur 3 1872204 lt 0001 0863 065 075 -- 1861918 lt 0001 0870 070 081 -- 1861445 lt 0001 0870 070 081 -- 186099 lt 0001 0870 068 079 -- POWER

Femur 4 1961178 lt 0001 0886 031 089 -- NS NS NS NS NS -- NS NS NS NS NS -- 1956032 lt 0001 0888 032 096 -- POWER

Femur 5 2211807 lt 0001 0856 067 073 -- NS NS NS NS NS -- NS NS NS NS NS -- 2225578 lt 0001 0854 065 072 -- LIN

Femur 6 2277994 lt 0001 0465 011 010 -- 2297051 lt 0001 0451 011 010 -- 2297112 lt 0001 0451 011 010 -- 229612 lt 0001 0451 011 011 -- LIN

Femur 7 2163481 lt 0001 0615 053 080 -- 2165913 lt 0001 0611 056 095 -- NS NS NS NS NS -- 2163737 lt 0001 0612 056 093 -- LIN

Femur 8 1939091 lt 0001 0830 020 -- -- 1951797 lt 0001 0828 020 -- -- 1951037 lt 0001 0828 020 -- -- 1855952 lt 0001 0850 018 -- -- POWER

Femur 9 1186208 lt 0001 0855 047 040 -- 112175 lt 0001 0884 050 043 -- 1119654 lt 0001 0885 050 043 -- 1111541 lt 0001 0888 048 041 -- POWER

Femur 11 1982084 lt 0001 0871 039 074 -- NS NS NS NS NS -- NS NS NS NS NS -- 2000238 lt 0001 0869 038 073 -- LIN

Femur 12 1371663 lt 0001 0865 001 095 001 1391501 lt 0001 0856 001 095 001 1391506 lt 0001 0856 001 095 001 1391826 lt 0001 0861 001 095 001 LIN

-- = The respective test material does not exist for this studyNS = No solution the software could not find a solution or the solution was unstable andor had unrealistic parameter estimatesNA = Not applicable the preferred model has the best fit or no solution was found for the preferred model

OSWER 92857-77Appendix D_Tables amp Figuresxls (Tbl D-1_Models)

APPENDIX D

TABLE D-2 DATA FOR WEIGHTED REGRESSION OF RBA vs IVBA

Sample RBA IVBA

Best Estimate

Standard Deviation Variance Best

Estimate Standard Deviation Variance

Galena-enriched Soil

California Gulch AV Slag

California Gulch Oregon Gulch Tailings

Midvale Slag

Butte Soil

Bingham Creek Channel Soil

Bingham Creek Residential

Palmerton Location 2

Murray Smelter Slag

Aspen Berm

California Gulch Phase I Residential Soil

Jasper County High Lead Smelter

Palmerton Location 4

Aspen Residential

NIST Paint (SRM 2589)

Murray Smelter Soil

Jasper County Low Lead Yard

Jasper County High Lead Mill

California Gulch FeMn PbO

0011

0199

0061

0141

0144

0266

0268

0602

0401

0740

0723

0609

0493

0749

0719

0508

0900

0823

1049

0009 82

0065 33

0047 78

0050 35

0049 34

0053 20

0068 25

0184 31

0132 33

0182 25

0212 29

0108 18

0136 28

0164 22

0165 23

0164 32

0178 20

0192 23

0299 28

812E-05

426E-03

224E-03

249E-03

239E-03

278E-03

458E-03

338E-02

173E-02

331E-02

450E-02

116E-02

185E-02

268E-02

272E-02

269E-02

318E-02

368E-02

893E-02

0045

0094

0112

0174

0223

0378

0470

0636

0643

0649

0651

0693

0697

0714

0725

0747

0790

0853

0872

0012 26

0016 17

0009 8

0009 5

0006 2

0007 2

0012 3

0004 1

0073 11

0016 2

0015 2

0055 8

0027 4

0020 3

0020 3

0068 9

0056 7

0002 0

0005 1

140E-04

264E-04

773E-05

893E-05

303E-05

501E-05

145E-04

129E-05

539E-03

245E-04

220E-04

304E-03

751E-04

383E-04

412E-04

464E-03

313E-03

297E-06

237E-05

OSWER 92857-77Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (TblD-2_Data)

APPENDIX D

FIGURE D-1 DOSE-RESPONSE CURVE FOR GALENA

Experiment 12 Blood AUC Test Material 1 (Galena-enriched soil)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Lead Acetate Galena

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-1_Saturation)

APPENDIX D

FIGURE D-2 EXAMPLES OF HETEROSCEDASTICITY

Experiment 9 Blood AUC Lead Acetate

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Experiment 7 Liver Test Material 2

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 Dose (ȝg Pbkg-day)

Tiss

ue C

once

ntra

tion

(ȝg

g w

et w

eigh

t)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-2_Heteroscedasticity)

APPENDIX D

FIGURE D-3 EXAMPLE OF POOR FIT DUE TO LOW VARIANCEIN SOME DOSE GROUPS

Option 1 Linear Fit Experiment 12 Liver Lead Acetate

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

Dose (ȝg Pbkg-day)

Lead

Con

cent

ratio

n in

Tis

sue

(ȝg

g)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-3_Poor Fit)

APPENDIX D

FIGURE D-4 VARIANCE MODELS All Phase II Lead Studies Data Quality Exclusion Rules Enforced

LIVER

y = 20999x - 26015 R2 = 07966

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

KIDNEY

y = 19557x - 18499 R2 = 07035

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

FEMUR

y = 1656x - 19713 R2 = 07022

-3

-2

-1

0

1

2

3

4

5

6

-05 00 05 10 15 20 25 30 35 40 45

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

BLOOD AUC

y = 15516x - 13226 R2 = 05046

0

1

2

3

4

5

6

7

8

9

20 25 30 35 40 45 50 55 60

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-4_Variance)

APPENDIX D

FIGURE D-5 EVALUATION OF RELATIVE PRECISION OF MEASUREMENT ENDPOINTS

000

005

010

015

020

025

030

035

00 02 04 06 08 10 12 14 16

RBA

Sta

ndar

d E

rror

of R

BA

Blood AUC Liver Kidney Femur

Blood AUC

Kidney

Liver

Femur

Endpoint Slope Intercept R2

Blood AUC 0177 -0002 0867 Liver 0227 0000 0916 Kidney 0219 0006 0914 Femur 0162 0008 0732

Comparison of Regression Lines

F 0638 Fcrit(005) 2227 p 0699

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-5_Precision)

APPENDIX D

FIGURE D-6 FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel A Linear Model (y = a + bx)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RBA

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00281 r2 09243 b 08782 Adj r2 09199

AIC -3046

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6A_Lin) Page 1 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel B Power Model (y = a + bx^c)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00033 R2 09307 b 09775 Adj R2 09220 c 12933 AIC -2992

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6B_Power) Page 2 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel C 2-Parameter Exponential Model (y = a + bexp(x))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -06339 R2 09355 b 06193 Adj R2 09317

AIC -3302

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6C_2Exp) Page 3 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel D 3-Parameter Exponential Model (y = a + bexp(cx))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -04756 R2 09359 b 04639 Adj R2 09279 c 12245 AIC -3111

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6D_3Exp) Page 4 of 4

APPENDIX D

FIGURE D-7 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RB

A

95 Prediction Interval

0878IVBA - 0028

OSWER 92857-77Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig D-7)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

DETAILED DOSE-RESPONSE DATA AND MODEL FITTING RESULTS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 1a Effects of Food

Test Material 1 Lead Acetate simultaneous with feeding Test Material 2 Lead Acetate 2 hours after feeding

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 1a Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180200

180 160

160

160

140

140

140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

120120

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

40 40

20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 154E+01 281E+00 b1 645E-01 597E-02 b2 372E-01 515E-02 b3 366E-01 504E-02

Covariance (c1c2) 00887 --Covariance (c1c3) 00872 --Degrees of Freedom 23 --

Statistic Estimate F 64226 p lt 0001

Adjusted R2 08795 AIC 246105

PbAc 0 hr PbAc +2 hr RBA 058 057 Lower bound 043 042 Upper bound 075 074 Standard Error 0092 0090

Exp1a_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 1a Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180180

160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

404040

202020

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 107E+01 155E+00 b 133E+02 104E+01 c1 123E-02 188E-03 c2 481E-03 884E-04 c3 488E-03 919E-04

Covariance (c1c2) 06771 --Covariance (c1c3) 06779 --Degrees of Freedom 22 --

Statistic Estimate F 202312 p lt 0001

Adjusted R2 09687 AIC 215723

PbAc 0 hr PbAc +2 hr RBA 039 040 Lower bound 030 030 Upper bound 049 050 Standard Error 0054 0056 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 1a Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180180

160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 40 40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 106E+01 153E+00 b 180E+02 189E+01 c1 975E+01 202E+01 c2 235E+02 570E+01 c3 231E+02 570E+01

Covariance (c1c2) 08053 --Covariance (c1c3) 08061 --Degrees of Freedom 22 --

Statistic Estimate F 211024 p lt 0001

Adjusted R2 09700 AIC 215293

PbAc 0 hr PbAc +2 hr RBA 042 042 Lower bound 033 033 Upper bound 056 057 Standard Error 0060 0062 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 1a Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180 180

160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 4040

20 2020

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 104E+01 158E+00

b1 694E+00 153E+00 b2 474E+00 123E+00 b3 475E+00 124E+00 c 540E-01 457E-02

Covariance (b1b2) 09528 --Covariance (b1b3) 09534 --Degrees of Freedom 22 --

Statistic Estimate F 199941 p lt 0001

Adjusted R2 09684 AIC 215846

PbAc 0 hr PbAc +2 hr RBA 049 050 Lower bound 034 034 Upper bound 062 063 Standard Error -- --

Exp1a_AUCxls (Graph_POWER)

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 130E+02 411E+01 b1 489E+00 118E+00 b2 370E+00 111E+00 b3 249E+00 794E-01

Covariance (c1c2) 00810 --Covariance (c1c3) 01091 --Degrees of Freedom 23 --

Statistic Estimate F 11055 p lt 0001

Adjusted R2 05371 AIC 402563

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound 035 023 Upper bound 144 097 Standard Error 0279 0192 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN)

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+02 291E+01 b1 431E+00 843E-01 b2 369E+00 786E-01 b3 248E+00 563E-01

Covariance (c1c2) 00807 --Covariance (c1c3) 01085 --Degrees of Freedom 22 --

Statistic Estimate F 16332 p lt 0001

Adjusted R2 06479 AIC 364272

PbAc 0 hr PbAc +2 hr RBA 086 058 Lower bound 051 034 Upper bound 140 094 Standard Error 0238 0163 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 1a Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 117E+02 517E+01 b 245E+03 445E+03 c1 250E-03 567E-03 c2 188E-03 439E-03 c3 120E-03 261E-03

Covariance (c1c2) 09805 --Covariance (c1c3) 09802 --Degrees of Freedom 22 --

Statistic Estimate F 8087 p lt 0001

Adjusted R2 05216 AIC 403989

PbAc 0 hr PbAc +2 hr RBA 075 048 Lower bound Upper bound Standard Error 0345 0216 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 1a Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 1a Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 128E+02 530E+01 b1 534E+00 763E+00 b2 406E+00 634E+00 b3 274E+00 437E+00 c 983E-01 276E-01

Covariance (b1b2) 09689 --Covariance (b1b3) 09684 --Degrees of Freedom 22 --

Statistic Estimate F 7934 p lt 0001

Adjusted R2 05162 AIC 404552

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound Upper bound Standard Error -- --

Exp1a_Liverxls (Graph_POWER)

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 1a Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 443E+01 179E+01 b1 450E+00 893E-01 b2 324E+00 981E-01 b3 326E+00 105E+00

Covariance (c1c2) 00197 --Covariance (c1c3) 00178 --Degrees of Freedom 23 --

Statistic Estimate F 14903 p lt 0001

Adjusted R2 06160 AIC 408462

PbAc 0 hr PbAc +2 hr RBA 072 073 Lower bound 033 031 Upper bound 129 132 Standard Error 0259 0271 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F 1175 RBA DIV0 DIV0b 000E+00 000E+00 p 03492 Lower boundc1 000E+00 000E+00 Adjusted R2 00262 Upper boundc2 000E+00 000E+00 AIC 623577 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 1a Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 1a Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 380E+01 179E+01 b 133E+03 908E+02 c1 169E+02 169E+02 c2 181E+02 299E+02 c3 138E+02 269E+02

Covariance (c1c2) 08873 --Covariance (c1c3) 08896 --Degrees of Freedom 22 --

Statistic Estimate F 12449 p lt 0001

Adjusted R2 06379 AIC 402853

PbAc 0 hr PbAc +2 hr RBA 094 122 Lower bound Upper bound Standard Error 0835 1405 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 1a Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 383E+01 182E+01 b1 165E+01 148E+01 b2 143E+01 158E+01 b3 148E+01 165E+01 c 727E-01 196E-01

Covariance (b1b2) 09430 --Covariance (b1b3) 09407 --Degrees of Freedom 22 --

Statistic Estimate F 11992 p lt 0001

Adjusted R2 06284 AIC 404685

PbAc 0 hr PbAc +2 hr RBA 082 086 Lower bound Upper bound Standard Error -- --

Exp1a_Kidneyxls (Graph_POWER)

5

10

15

20

25

30

APPENDIX E

Figure 4a - All DataPhase II Experiment 1a Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 158E+00 291E-01 b1 887E-02 740E-03 b2 312E-02 444E-03 b3 294E-02 426E-03

Covariance (c1c2) 01245 --Covariance (c1c3) 01250 --Degrees of Freedom 23 --

Statistic Estimate F 66771 p lt 0001

Adjusted R2 08836 AIC 116460

PbAc 0 hr PbAc +2 hr RBA 035 033 Lower bound 026 025 Upper bound 045 043 Standard Error 0055 0052

Exp1a_Femurxls (Graph_LIN)

5

10

15

20

25

APPENDIX E

Figure 4b - All DataPhase II Experiment 1a Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 317E-01 b 383E+01 207E+01 c1 299E-03 207E-03 c2 931E-04 592E-04 c3 880E-04 560E-04

Covariance (c1c2) 09665 --Covariance (c1c3) 09659 --Degrees of Freedom 22 --

Statistic Estimate F 53359 p lt 0001

Adjusted R2 08896 AIC 116514

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_EXP)

5

10

15

20

25

APPENDIX E

Figure 4c - All DataPhase II Experiment 1a Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 318E-01 b 671E+01 416E+01 c1 580E+02 453E+02 c2 186E+03 135E+03 c3 197E+03 143E+03

Covariance (c1c2) 09741 --Covariance (c1c3) 09736 --Degrees of Freedom 22 --

Statistic Estimate F 53403 p lt 0001

Adjusted R2 08896 AIC 116500

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_MM)

5

10

15

20

25

APPENDIX E

Figure 4d - All DataPhase II Experiment 1a Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 329E-01 b1 171E-01 808E-02 b2 647E-02 354E-02 b3 615E-02 339E-02 c 871E-01 943E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09598 --Degrees of Freedom 22 --

Statistic Estimate F 52175 p lt 0001

Adjusted R2 08873 AIC 116905

PbAc 0 hr PbAc +2 hr RBA 033 031 Lower bound 007 006 Upper bound 045 042 Standard Error -- --

Exp1a_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 2

Test Material 1 Bingham Creek Residential Test Material 2 Bingham Creek Channel Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

APPENDIX E

Figure 1a - All DataPhase II Experiment 2 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

4040

20 20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 197E+01 256E+00 b1 478E-01 561E-02 b2 180E-01 219E-02 b3 146E-01 176E-02

Covariance (c1c2) 01488 --Covariance (c1c3) 01354 --Degrees of Freedom 42 --

Statistic Estimate F 53890 p lt 0001

Adjusted R2 07791 AIC 412401

Test Material 1 Test Material 2 RBA 038 031 Lower bound 029 023 Upper bound 049 040 Standard Error 0059 0048

Exp2_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 2 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 100

80

60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

404040

202020

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 136E+01 284E+00 b 116E+02 183E+01 c1 836E-03 264E-03 c2 281E-03 842E-04 c3 250E-03 772E-04

Covariance (c1c2) 07931 --Covariance (c1c3) 07868 --Degrees of Freedom 41 --

Statistic Estimate F 54613 p lt 0001

Adjusted R2 08266 AIC 393655

Test Material 1 Test Material 2 RBA 034 030 Lower bound 023 020 Upper bound 050 045 Standard Error 0067 0061 g 005 estimate is uncertain

Exp2_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 2 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 129E+01 288E+00 b 164E+02 313E+01 c1 148E+02 560E+01 c2 446E+02 162E+02 c3 497E+02 185E+02

Covariance (c1c2) 08595 --Covariance (c1c3) 08572 --Degrees of Freedom 41 --

Statistic Estimate F 56405 p lt 0001

Adjusted R2 08312 AIC 391826

Test Material 1 Test Material 2 RBA 033 030 Lower bound 021 019 Upper bound 049 046 Standard Error 0065 0060 g 005 estimate is uncertain

Exp2_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 2 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 114E+01 284E+00

b1 390E+00 136E+00 b2 201E+00 818E-01 b3 188E+00 793E-01 c 606E-01 668E-02

Covariance (b1b2) 09568 --Covariance (b1b3) 09581 --Degrees of Freedom 41 --

Statistic Estimate F 62696 p lt 0001

Adjusted R2 08458 AIC 386116

Test Material 1 Test Material 2 RBA 034 030 Lower bound 017 014 Upper bound 046 041 Standard Error -- --

Exp2_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Test Material 2

Outlier Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 579E+01 118E+01

b1 207E+00 355E-01 b2 717E-01 136E-01 b3 510E-01 951E-02

Covariance (c1c2) 02250 --Covariance (c1c3) 02118 --Degrees of Freedom 42 --

Statistic Estimate F 20611 p lt 0001

Adjusted R2 05666 AIC 543299

Test Material 1 Test Material 2 RBA 035 025 Lower bound 023 016 Upper bound 051 036 Standard Error 0078 0055 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

900900

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 628E+01 937E+00

b1 201E+00 287E-01 b2 563E-01 934E-02 b3 490E-01 767E-02

Covariance (c1c2) 02120 --Covariance (c1c3) 02047 --Degrees of Freedom 41 --

Statistic Estimate F 29241 p lt 0001

Adjusted R2 06582 AIC 507050

Test Material 1 Test Material 2 RBA 028 024 Lower bound 020 017 Upper bound 039 034 Standard Error 0055 0046 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 6812 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03406 Upper boundc2 000E+00 000E+00 AIC 904060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 2 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 2 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 2 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 11200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 747E+01 160E+01 b1 440E-01 588E-01 b2 129E-01 195E-01 b3 768E-02 125E-01 c 130E+00 251E-01

Covariance (b1b2) 09848 --Covariance (b1b3) 09854 --Degrees of Freedom 41 --

Statistic Estimate F 16144 p lt 0001

Adjusted R2 05738 AIC 543050

Test Material 1 Test Material 2 RBA 039 026 Lower bound Upper bound Standard Error -- --

Exp2_Liverxls (Graph_POWER)

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 2 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 442E+01 871E+00 b1 236E+00 352E-01 b2 517E-01 826E-02 b3 632E-01 895E-02

Covariance (c1c2) 01831 --Covariance (c1c3) 01458 --Degrees of Freedom 42 --

Statistic Estimate F 33908 p lt 0001

Adjusted R2 06869 AIC 530223

Test Material 1 Test Material 2 RBA 022 027 Lower bound 015 019 Upper bound 031 037 Standard Error 0043 0051 g 005 estimate is uncertain

Exp2_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5920 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03043 Upper boundc2 000E+00 000E+00 AIC 892708 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 2 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 2 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 2 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 21200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 450E+01 112E+01

b1 220E+00 151E+00 b2 469E-01 410E-01 b3 573E-01 504E-01 c 102E+00 139E-01

Covariance (b1b2) 09660 --Covariance (b1b3) 09676 --Degrees of Freedom 41 --

Statistic Estimate F 24834 p lt 0001

Adjusted R2 06793 AIC 532210

Test Material 1 Test Material 2 RBA 022 027 Lower bound 050 063 Upper bound 032 038 Standard Error -- --

Exp2_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4a - All DataPhase II Experiment 2 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 725E-01 166E-01 b1 837E-02 742E-03 b2 197E-02 194E-03 b3 214E-02 196E-03

Covariance (c1c2) 01156 --Covariance (c1c3) 01070 --Degrees of Freedom 42 --

Statistic Estimate F 95226 p lt 0001

Adjusted R2 08627 AIC 180521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 019 021 Upper bound 029 031 Standard Error 0029 0031

Exp2_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4345 RBA DIV0 DIV0b 000E+00 000E+00 p 00051 Lower boundc1 000E+00 000E+00 Adjusted R2 02292 Upper boundc2 000E+00 000E+00 AIC 791096 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4b - All DataPhase II Experiment 2 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4c - All DataPhase II Experiment 2 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve 35

Control Lead Acetate

Control Test Material 130

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_MM)

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4d - All DataPhase II Experiment 2 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Lead Acetate

Control Test Material 1

Control Test Material 230 30

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

25

20

15

10

5

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 723E-01 198E-01 b1 843E-02 329E-02 b2 199E-02 963E-03 b3 216E-02 106E-02 c 999E-01 787E-02

Covariance (b1b2) 09581 --Covariance (b1b3) 09605 --Degrees of Freedom 41 --

Statistic Estimate F 69720 p lt 0001

Adjusted R2 08593 AIC 182521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 011 012 Upper bound 029 031 Standard Error -- --

Exp2_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 3

Test Material 1 Jasper County High Lead Smelter Test Material 2 Jasper County Low Lead Yard

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 3 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 135E+01 271E+00 b1 409E-01 570E-02 b2 215E-01 244E-02 b3 259E-01 277E-02

Covariance (c1c2) 00086 --Covariance (c1c3) 00740 --Degrees of Freedom 38 --

Statistic Estimate F 62590 p lt 0001

Adjusted R2 08184 AIC 428514

Test Material 1 Test Material 2 RBA 053 063 Lower bound 039 048 Upper bound 072 086 Standard Error 0094 0107 g 005 estimate is uncertain

Exp3_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 3 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 150

100

150

100

150

100

505050

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 827E+00 227E+00 b 163E+02 192E+01 c1 397E-03 875E-04 c2 256E-03 570E-04 c3 373E-03 876E-04

Covariance (c1c2) 06715 --Covariance (c1c3) 06719 --Degrees of Freedom 37 --

Statistic Estimate F 89559 p lt 0001

Adjusted R2 08963 AIC 377849

Test Material 1 Test Material 2 RBA 065 094 Lower bound 047 066 Upper bound 089 130 Standard Error 0116 0174 g 005 estimate is uncertain

Exp3_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 3 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 792E+00 227E+00 b 229E+02 348E+01 c1 319E+02 873E+01 c2 494E+02 137E+02 c3 340E+02 101E+02

Covariance (c1c2) 07827 --Covariance (c1c3) 07877 --Degrees of Freedom 37 --

Statistic Estimate F 92316 p lt 0001

Adjusted R2 08991 AIC 376057

Test Material 1 Test Material 2 RBA 065 094 Lower bound 046 067 Upper bound 091 138 Standard Error 0117 0176 g 005 estimate is uncertain

Exp3_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 3 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 746E+00 226E+00

b1 343E+00 105E+00 b2 256E+00 865E-01 b3 311E+00 105E+00 c 606E-01 557E-02

Covariance (b1b2) 09351 --Covariance (b1b3) 09366 --Degrees of Freedom 37 --

Statistic Estimate F 94960 p lt 0001

Adjusted R2 09016 AIC 374429

Test Material 1 Test Material 2 RBA 062 085 Lower bound 038 053 Upper bound 086 119 Standard Error -- --

Exp3_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Outlier

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 951E+00 283E+00 b1 228E+00 360E-01 b2 128E+00 176E-01 b3 273E+00 354E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00039 --Degrees of Freedom 38 --

Statistic Estimate F 50038 p lt 0001

Adjusted R2 07820 AIC 562298

Test Material 1 Test Material 2 RBA 056 120 Lower bound 040 085 Upper bound 081 173 Standard Error 0117 0245 g 005 estimate is uncertain

Exp3_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 959E+00 227E+00 b1 228E+00 290E-01 b2 128E+00 141E-01 b3 227E+00 247E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00041 --Degrees of Freedom 37 --

Statistic Estimate F 75057 p lt 0001

Adjusted R2 08474 AIC 519560

Test Material 1 Test Material 2 RBA 056 100 Lower bound 042 075 Upper bound 075 134 Standard Error 0094 0167

Exp3_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1218 RBA DIV0 DIV0b 000E+00 000E+00 p 03197 Lower boundc1 000E+00 000E+00 Adjusted R2 00208 Upper boundc2 000E+00 000E+00 AIC 873157 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 3 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 3 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 3 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 980E+00 281E+00 b1 123E+00 609E-01 b2 694E-01 351E-01 b3 134E+00 745E-01 c 113E+00 949E-02

Covariance (b1b2) 09157 --Covariance (b1b3) 09221 --Degrees of Freedom 37 --

Statistic Estimate F 38601 p lt 0001

Adjusted R2 07858 AIC 561470

Test Material 1 Test Material 2 RBA 060 108 Lower bound 032 032 Upper bound 100 162 Standard Error -- --

Exp3_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 3 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 104E+01 314E+00

b1 219E+00 302E-01 b2 126E+00 144E-01 b3 199E+00 219E-01

Covariance (c1c2) 00096 --Covariance (c1c3) 00050 --Degrees of Freedom 38 --

Statistic Estimate F 69473 p lt 0001

Adjusted R2 08336 AIC 533597

Test Material 1 Test Material 2 RBA 058 091 Lower bound 043 068 Upper bound 079 124 Standard Error 0103 0160 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 3 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 308E+03 288E+03 c1 770E-04 783E-04 c2 444E-04 451E-04 c3 746E-04 798E-04

Covariance (c1c2) 09824 --Covariance (c1c3) 09828 --Degrees of Freedom 37 --

Statistic Estimate F 52252 p lt 0001

Adjusted R2 08333 AIC 534270

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 3 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 545E+03 536E+03 c1 229E+03 245E+03 c2 398E+03 424E+03 c3 236E+03 264E+03

Covariance (c1c2) 09839 --Covariance (c1c3) 09844 --Degrees of Freedom 37 --

Statistic Estimate F 52312 p lt 0001

Adjusted R2 08335 AIC 534219

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 3 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 994E+00 316E+00 b1 348E+00 153E+00 b2 206E+00 950E-01 b3 334E+00 159E+00 c 910E-01 826E-02

Covariance (b1b2) 09216 --Covariance (b1b3) 09256 --Degrees of Freedom 37 --

Statistic Estimate F 52565 p lt 0001

Adjusted R2 08342 AIC 534005

Test Material 1 Test Material 2 RBA 056 095 Lower bound 031 049 Upper bound 088 144 Standard Error -- --

Exp3_Kidneyxls (Graph_POWER)

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 3 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Lead Acetate

Control Test Material 1

50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 183E+00 396E-01 b1 621E-02 698E-03 b2 403E-02 375E-03 b3 466E-02 455E-03

Covariance (c1c2) 01624 --Covariance (c1c3) 01457 --Degrees of Freedom 33 --

Statistic Estimate F 76883 p lt 0001

Adjusted R2 08635 AIC 187220

Test Material 1 Test Material 2 RBA 065 075 Lower bound 052 060 Upper bound 082 095 Standard Error 0087 0103

Exp3_Femurxls (Graph_LIN)

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 3 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 141E+00 467E-01 b 620E+01 308E+01 c1 117E-03 692E-04 c2 817E-04 506E-04 c3 952E-04 593E-04

Covariance (c1c2) 09723 --Covariance (c1c3) 09705 --Degrees of Freedom 32 --

Statistic Estimate F 61268 p lt 0001

Adjusted R2 08701 AIC 186192

Test Material 1 Test Material 2 RBA 070 081 Lower bound 482 747 Upper bound 228 225 Standard Error 0101 0123 g 005 estimate is uncertain

Exp3_Femurxls (Graph_EXP)

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 3 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 139E+00 472E-01 b 109E+02 603E+01 c1 148E+03 977E+02 c2 213E+03 146E+03 c3 182E+03 126E+03

Covariance (c1c2) 09775 --Covariance (c1c3) 09761 --Degrees of Freedom 32 --

Statistic Estimate F 61359 p lt 0001

Adjusted R2 08702 AIC 186145

Test Material 1 Test Material 2 RBA 070 081 Lower bound Upper bound Standard Error 0101 0122 g 005 estimate is uncertain

Exp3_Femurxls (Graph_MM)

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 3 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 132E+00 498E-01 b1 129E-01 545E-02 b2 926E-02 431E-02 b3 106E-01 484E-02 c 867E-01 744E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09575 --Degrees of Freedom 32 --

Statistic Estimate F 61446 p lt 0001

Adjusted R2 08704 AIC 186099

Test Material 1 Test Material 2 RBA 068 079 Lower bound 039 047 Upper bound 089 106 Standard Error -- --

Exp3_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 4

Test Material 1 Murray Smelter Slag Test Material 2 Jasper County High Lead Mill

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 4 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 143E+01 304E+00 b1 542E-01 780E-02 b2 186E-01 249E-02 b3 258E-01 304E-02

Covariance (c1c2) 00818 --Covariance (c1c3) 00672 --Degrees of Freedom 38 --

Statistic Estimate F 51413 p lt 0001

Adjusted R2 07867 AIC 455674

Test Material 1 Test Material 2 RBA 034 048 Lower bound 025 035 Upper bound 048 066 Standard Error 0065 0086 g 005 estimate is uncertain

Exp4_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 4 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 852E+00 232E+00 b 144E+02 147E+01 c1 636E-03 140E-03 c2 298E-03 651E-04 c3 533E-03 120E-03

Covariance (c1c2) 05953 --Covariance (c1c3) 05796 --Degrees of Freedom 37 --

Statistic Estimate F 89273 p lt 0001

Adjusted R2 08960 AIC 382941

Test Material 1 Test Material 2 RBA 047 084 Lower bound 033 058 Upper bound 067 121 Standard Error 0092 0171 g 005 estimate is uncertain

Exp4_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 4 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 813E+00 228E+00 b 190E+02 247E+01 c1 177E+02 484E+01 c2 380E+02 103E+02 c3 211E+02 615E+01

Covariance (c1c2) 07225 --Covariance (c1c3) 07236 --Degrees of Freedom 37 --

Statistic Estimate F 94291 p lt 0001

Adjusted R2 09010 AIC 379665

Test Material 1 Test Material 2 RBA 047 084 Lower bound 032 057 Upper bound 068 128 Standard Error 0094 0177 g 005 estimate is uncertain

Exp4_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 4 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 757E+00 220E+00

b1 688E+00 192E+00 b2 435E+00 141E+00 b3 587E+00 186E+00 c 504E-01 534E-02

Covariance (b1b2) 09315 --Covariance (b1b3) 09341 --Degrees of Freedom 37 --

Statistic Estimate F 103784 p lt 0001

Adjusted R2 09093 AIC 374263

Test Material 1 Test Material 2 RBA 040 073 Lower bound 023 043 Upper bound 059 106 Standard Error -- --

Exp4_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - All DataPhase II Experiment 4 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 571E+01 177E+01

b1 173E+00 426E-01 b2 889E-01 150E-01 b3 149E+00 295E-01

Covariance (c1c2) 01813 --Covariance (c1c3) 02399 --Degrees of Freedom 38 --

Statistic Estimate F 18693 p lt 0001

Adjusted R2 05642 AIC 558553

Test Material 1 Test Material 2 RBA 051 086 Lower bound 033 054 Upper bound 088 147 Standard Error 0140 0238 g 005 estimate is uncertain

Exp4_Liverxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5080 RBA DIV0 DIV0b 000E+00 000E+00 p 00023 Lower boundc1 000E+00 000E+00 Adjusted R2 02847 Upper boundc2 000E+00 000E+00 AIC 846060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 4 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 4 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 4 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+01 198E+01 b1 376E-01 369E-01 b2 109E-01 134E-01 b3 252E-01 290E-01 c 132E+00 186E-01

Covariance (b1b2) 09617 --Covariance (b1b3) 09615 --Degrees of Freedom 37 --

Statistic Estimate F 15495 p lt 0001

Adjusted R2 05858 AIC 555816

Test Material 1 Test Material 2 RBA 039 074 Lower bound Upper bound Standard Error -- --

Exp4_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 4 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 679E+01 162E+01

b1 280E+00 481E-01 b2 877E-01 134E-01 b3 197E+00 263E-01

Covariance (c1c2) 01300 --Covariance (c1c3) 01213 --Degrees of Freedom 38 --

Statistic Estimate F 35326 p lt 0001

Adjusted R2 07152 AIC 550107

Test Material 1 Test Material 2 RBA 031 070 Lower bound 022 050 Upper bound 046 102 Standard Error 0067 0143 g 005 estimate is uncertain

Exp4_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4572 RBA DIV0 DIV0b 000E+00 000E+00 p 00042 Lower boundc1 000E+00 000E+00 Adjusted R2 02584 Upper boundc2 000E+00 000E+00 AIC 885551 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 4 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 4 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 4 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 724E+01 186E+01 b1 209E+00 137E+00 b2 588E-01 486E-01 b3 138E+00 105E+00 c 106E+00 127E-01

Covariance (b1b2) 09527 --Covariance (b1b3) 09542 --Degrees of Freedom 37 --

Statistic Estimate F 25994 p lt 0001

Adjusted R2 07092 AIC 551821

Test Material 1 Test Material 2 RBA 030 068 Lower bound 069 Upper bound 050 Standard Error -- --

Exp4_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4a - All DataPhase II Experiment 4 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 535E-01 164E-01 b1 765E-02 101E-02 b2 235E-02 247E-03 b3 680E-02 560E-03

Covariance (c1c2) 00238 --Covariance (c1c3) 00207 --Degrees of Freedom 33 --

Statistic Estimate F 94431 p lt 0001

Adjusted R2 08862 AIC 196118

Test Material 1 Test Material 2 RBA 031 089 Lower bound 023 069 Upper bound 041 118 Standard Error 0051 0137 g 005 estimate is uncertain

Exp4_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1274 RBA DIV0 DIV0b 000E+00 000E+00 p 03008 Lower boundc1 000E+00 000E+00 Adjusted R2 00295 Upper boundc2 000E+00 000E+00 AIC 773426 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4b - All DataPhase II Experiment 4 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4c - All DataPhase II Experiment 4 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 1

Control Test Material 2

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4d - All DataPhase II Experiment 4 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Lead Acetate

Control Test Material 1

Control Test Material 260 60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 488E-01 166E-01 b1 129E-01 499E-02 b2 471E-02 226E-02 b3 124E-01 532E-02 c 892E-01 756E-02

Covariance (b1b2) 09218 --Covariance (b1b3) 09254 --Degrees of Freedom 32 --

Statistic Estimate F 72328 p lt 0001

Adjusted R2 08880 AIC 195603

Test Material 1 Test Material 2 RBA 032 096 Lower bound 013 056 Upper bound 045 134 Standard Error -- --

Exp4_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 5

Test Material 1 Aspen Berm Test Material 2 Aspen Residential

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 5 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 129E+01 219E+00 b1 425E-01 490E-02 b2 211E-01 199E-02 b3 232E-01 212E-02

Covariance (c1c2) 00903 --Covariance (c1c3) 00880 --Degrees of Freedom 38 --

Statistic Estimate F 87459 p lt 0001

Adjusted R2 08635 AIC 385030

Test Material 1 Test Material 2 RBA 050 055 Lower bound 039 043 Upper bound 064 070 Standard Error 0071 0077

Exp5_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 5 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 803E+00 172E+00 b 163E+02 169E+01 c1 382E-03 683E-04 c2 263E-03 497E-04 c3 276E-03 526E-04

Covariance (c1c2) 07323 --Covariance (c1c3) 07322 --Degrees of Freedom 37 --

Statistic Estimate F 143955 p lt 0001

Adjusted R2 09331 AIC 345170

Test Material 1 Test Material 2 RBA 069 072 Lower bound 054 056 Upper bound 087 091 Standard Error 0093 0098 g 005 estimate is uncertain

Exp5_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 5 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200 200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 781E+00 173E+00 b 239E+02 323E+01 c1 355E+02 797E+01 c2 524E+02 124E+02 c3 489E+02 118E+02

Covariance (c1c2) 08270 --Covariance (c1c3) 08275 --Degrees of Freedom 37 --

Statistic Estimate F 145720 p lt 0001

Adjusted R2 09339 AIC 344735

Test Material 1 Test Material 2 RBA 068 073 Lower bound 053 057 Upper bound 088 095 Standard Error 0093 0100 g 005 estimate is uncertain

Exp5_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 5 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 741E+00 176E+00

b1 270E+00 667E-01 b2 197E+00 550E-01 b3 210E+00 584E-01 c 649E-01 456E-02

Covariance (b1b2) 09387 --Covariance (b1b3) 09389 --Degrees of Freedom 37 --

Statistic Estimate F 144915 p lt 0001

Adjusted R2 09335 AIC 344932

Test Material 1 Test Material 2 RBA 061 068 Lower bound 044 049 Upper bound 078 086 Standard Error -- --

Exp5_AUCxls (Graph_POWER)

-2

-1

0

1

2

3

4

5

6

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

APPENDIX E

Figure 2a - All DataPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000

Outlier Control Test Material 2

Control Test Material 1

Control Lead Acetate 4500 4500

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

Control Test Material 1

5

4

3

2

1

0

-1

-2

5

4

3

2

1

0

-1

-2

-3 -3 -3

-4 -4 -4

0 05 1 15 2 25 3 0 05 1 15 2 25 3 SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

0 05 1 15 2 25 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 107E+02 509E+01 b1 158E+00 786E-01 b2 147E+00 519E-01 b3 179E+00 547E-01

Covariance (c1c2) 02781 --Covariance (c1c3) 01555 --Degrees of Freedom 36 --

Statistic Estimate F 5754 p 00025

Adjusted R2 02678 AIC 674409

Test Material 1 Test Material 2 RBA 093 113 Lower bound 038 048 Upper bound 514 678 Standard Error 0490 0616 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 621E+01 246E+01 b1 196E+00 429E-01 b2 171E+00 285E-01 b3 150E+00 292E-01

Covariance (c1c2) 02174 --Covariance (c1c3) 02847 --Degrees of Freedom 35 --

Statistic Estimate F 18566 p lt 0001

Adjusted R2 05810 AIC 526951

Test Material 1 Test Material 2 RBA 087 077 Lower bound 058 050 Upper bound 139 121 Standard Error 0214 0190 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3654 RBA DIV0 DIV0b 000E+00 000E+00 p 00137 Lower boundc1 000E+00 000E+00 Adjusted R2 02139 Upper boundc2 000E+00 000E+00 AIC 937766 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 5 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500050005000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

450045004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 5 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 50005000

Control Test Material 1

Control Test Material 2

Control Lead Acetate 4500 45004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_MM)

0

1

2

3

4

5

6

APPENDIX E

Figure 2d - All DataPhase II Experiment 5 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000 5000

Control Lead Acetate

Control Test Material 1

Control Test Material 24500 4500 4500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

-3 -3

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-3

-4 -4 -4 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

55

44

33

22

11

0 0

-1 -1 -1

-2 -2 -2

Parameter Estimate Standard Error a 120E+02 637E+01

b1 819E-01 173E+00 b2 698E-01 163E+00 b3 839E-01 193E+00 c 112E+00 367E-01

Covariance (b1b2) 09666 --Covariance (b1b3) 09647 --Degrees of Freedom 35 --

Statistic Estimate F 4240 p 00067

Adjusted R2 02494 AIC 675820

Test Material 1 Test Material 2 RBA 087 102 Lower bound Upper bound Standard Error -- --

Exp5_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

1800

APPENDIX E

Figure 3a - All DataPhase II Experiment 5 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 16001600

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 602E+01 263E+01

b1 184E+00 456E-01 b2 134E+00 250E-01 b3 143E+00 292E-01

Covariance (c1c2) 02137 --Covariance (c1c3) 02775 --Degrees of Freedom 36 --

Statistic Estimate F 15575 p lt 0001

Adjusted R2 05286 AIC 547820

Test Material 1 Test Material 2 RBA 073 078 Lower bound 046 049 Upper bound 126 133 Standard Error 0202 0214 g 005 estimate is uncertain

Exp5_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4815 RBA DIV0 DIV0b 000E+00 000E+00 p 00034 Lower boundc1 000E+00 000E+00 Adjusted R2 02812 Upper boundc2 000E+00 000E+00 AIC 863863 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 5 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180018001800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 160016001600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 5 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 18001800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600

1400

1200

1000

800

600

400

200

1600 1600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 5 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800 1800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600 1600 1600

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 899E+01 432E+01 b1 581E-01 947E-01 b2 336E-01 635E-01 b3 405E-01 734E-01 c 121E+00 285E-01

Covariance (b1b2) 09831 --Covariance (b1b3) 09834 --Degrees of Freedom 35 --

Statistic Estimate F 11844 p lt 0001

Adjusted R2 05266 AIC 548008

Test Material 1 Test Material 2 RBA 064 074 Lower bound Upper bound Standard Error -- --

Exp5_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 5 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

50 50

40

30

20

10

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 485E-01 213E-01 b1 619E-02 812E-03 b2 414E-02 415E-03 b3 451E-02 447E-03

Covariance (c1c2) 00463 --Covariance (c1c3) 00555 --Degrees of Freedom 36 --

Statistic Estimate F 78581 p lt 0001

Adjusted R2 08565 AIC 221181

Test Material 1 Test Material 2 RBA 067 073 Lower bound 051 056 Upper bound 089 097 Standard Error 0108 0117

Exp5_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1927 RBA DIV0 DIV0b 000E+00 000E+00 p 01278 Lower boundc1 000E+00 000E+00 Adjusted R2 00868 Upper boundc2 000E+00 000E+00 AIC 853823 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 5 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 5 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 5 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 528E-01 229E-01 b1 500E-02 214E-02 b2 321E-02 157E-02 b3 353E-02 169E-02 c 104E+00 794E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09328 --Degrees of Freedom 35 --

Statistic Estimate F 57870 p lt 0001

Adjusted R2 08536 AIC 222558

Test Material 1 Test Material 2 RBA 065 072 Lower bound 033 039 Upper bound 088 097 Standard Error -- --

Exp5_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 6

Test Material 1 Midvale Slag Test Material 2 Butte Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 6 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 122E+01 166E+00 b1 327E-01 347E-02 b2 931E-02 106E-02 b3 978E-02 115E-02

Covariance (c1c2) 01007 --Covariance (c1c3) 01127 --Degrees of Freedom 38 --

Statistic Estimate F 63445 p lt 0001

Adjusted R2 08204 AIC 333585

Test Material 1 Test Material 2 RBA 028 030 Lower bound 022 023 Upper bound 036 038 Standard Error 0042 0045

Exp6_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 6 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50 60 70

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 837E+00 161E+00 b 851E+01 989E+00 c1 101E-02 283E-03 c2 206E-03 466E-04 c3 193E-03 428E-04

Covariance (c1c2) 07145 --Covariance (c1c3) 07021 --Degrees of Freedom 37 --

Statistic Estimate F 81898 p lt 0001

Adjusted R2 08875 AIC 311830

Test Material 1 Test Material 2 RBA 021 019 Lower bound 015 014 Upper bound 031 029 Standard Error 0041 0039 g 005 estimate is uncertain

Exp6_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 6 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 805E+00 168E+00 b 122E+02 201E+01 c1 131E+02 496E+01 c2 626E+02 191E+02 c3 679E+02 201E+02

Covariance (c1c2) 08466 --Covariance (c1c3) 08359 --Degrees of Freedom 37 --

Statistic Estimate F 80706 p lt 0001

Adjusted R2 08861 AIC 312322

Test Material 1 Test Material 2 RBA 021 019 Lower bound 012 011 Upper bound 029 027 Standard Error 0042 0040 g 005 estimate is uncertain

Exp6_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 6 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 732E+00 188E+00

b1 238E+00 892E-01 b2 943E-01 410E-01 b3 906E-01 388E-01 c 647E-01 678E-02

Covariance (b1b2) 09646 --Covariance (b1b3) 09617 --Degrees of Freedom 37 --

Statistic Estimate F 72563 p lt 0001

Adjusted R2 08747 AIC 316066

Test Material 1 Test Material 2 RBA 024 023 Lower bound 012 012 Upper bound 032 030 Standard Error -- --

Exp6_AUCxls (Graph_POWER)

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 1400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

OutlierOutlier Control Lead Acetate

Outlier Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 213E+01 697E+00 b1 202E+00 328E-01 b2 260E-01 452E-02 b3 278E-01 587E-02

Covariance (c1c2) 01005 --Covariance (c1c3) 01298 --Degrees of Freedom 38 --

Statistic Estimate F 23514 p lt 0001

Adjusted R2 06223 AIC 468374

Test Material 1 Test Material 2 RBA 013 014 Lower bound 009 009 Upper bound 019 021 Standard Error 0029 0034 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN)

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate 900 900

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 233E+01 558E+00 b1 200E+00 269E-01 b2 254E-01 369E-02 b3 267E-01 477E-02

Covariance (c1c2) 00962 --Covariance (c1c3) 01248 --Degrees of Freedom 37 --

Statistic Estimate F 34108 p lt 0001

Adjusted R2 07129 AIC 430977

Test Material 1 Test Material 2 RBA 013 013 Lower bound 009 009 Upper bound 017 019 Standard Error 0024 0028 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 6 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 210E+01 824E+00 b 621E+03 655E+04 c1 333E-04 363E-03 c2 426E-05 460E-04 c3 455E-05 491E-04

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06121 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_EXP)

APPENDIX E

Figure 2c - All DataPhase II Experiment 6 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 209E+01 829E+00 b 121E+04 127E+05 c1 582E+03 629E+04 c2 455E+04 486E+05 c3 427E+04 457E+05

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06122 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 6 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 181E+01 176E+01 b1 270E+00 363E+00 b2 386E-01 687E-01 b3 405E-01 720E-01 c 943E-01 262E-01

Covariance (b1b2) 09893 --Covariance (b1b3) 09877 --Degrees of Freedom 37 --

Statistic Estimate F 17205 p lt 0001

Adjusted R2 06126 AIC 470299

Test Material 1 Test Material 2 RBA 013 013 Lower bound Upper bound Standard Error -- --

Exp6_Liverxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Outlier Control Test Material 1 Outlier

Control Test Material 2Outlier

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 115E+01 929E+00 b1 212E+00 383E-01 b2 264E-01 524E-02 b3 334E-01 887E-02

Covariance (c1c2) 00947 --Covariance (c1c3) 01423 --Degrees of Freedom 38 --

Statistic Estimate F 17831 p lt 0001

Adjusted R2 05519 AIC 500260

Test Material 1 Test Material 2 RBA 012 016 Lower bound 008 009 Upper bound 019 025 Standard Error 0032 0047 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Control Test Material 1

Control Test Material 2

Control Lead Acetate 700

600

500

400

300

200

100

700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 149E+01 731E+00 b1 210E+00 319E-01 b2 255E-01 432E-02 b3 310E-01 717E-02

Covariance (c1c2) 00853 --Covariance (c1c3) 01306 --Degrees of Freedom 37 --

Statistic Estimate F 25046 p lt 0001

Adjusted R2 06433 AIC 454018

Test Material 1 Test Material 2 RBA 012 015 Lower bound 008 009 Upper bound 018 022 Standard Error 0026 0038 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN_outliers)

-4

0

1

2

3

APPENDIX E

Figure 3b - All DataPhase II Experiment 6 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 55

4 44

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 936E+00 113E+01 b 121E+03 210E+03 c1 212E-03 439E-03 c2 242E-04 464E-04 c3 297E-04 574E-04

Covariance (c1c2) 09899 --Covariance (c1c3) 09860 --Degrees of Freedom 37 --

Statistic Estimate F 13189 p lt 0001

Adjusted R2 05432 AIC 501614

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 6 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 2

Control Test Material 1

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 928E+00 116E+01 b 222E+03 440E+03 c1 866E+02 204E+03 c2 754E+03 165E+04 c3 617E+03 136E+04

Covariance (c1c2) 09923 --Covariance (c1c3) 09893 --Degrees of Freedom 37 --

Statistic Estimate F 13183 p lt 0001

Adjusted R2 05431 AIC 501637

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 6 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 515E+00 247E+01 b1 377E+00 585E+00 b2 563E-01 114E+00 b3 658E-01 131E+00 c 891E-01 294E-01

Covariance (b1b2) 09901 --Covariance (b1b3) 09869 --Degrees of Freedom 37 --

Statistic Estimate F 13091 p lt 0001

Adjusted R2 05412 AIC 501991

Test Material 1 Test Material 2 RBA 012 014 Lower bound Upper bound Standard Error -- --

Exp6_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4a - All DataPhase II Experiment 6 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 2

Control Test Material 1

Control Lead Acetate

1818

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 16

14

12

10

8

6

4

16

14

12

10

8

6

4

22 2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

600 800 1000

Control Test Material 2

0 200 400 SQRT(W) Dose

-4

0 200 400 600 800 1000 SQRT(W) Dose

Control Test Material 1

-4 -4

-5 -5 -5

0 100 200 300 400 500 600 700 800 900 1000

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 369E-01 221E-01

b1 426E-02 827E-03 b2 463E-03 122E-03 b3 436E-03 168E-03

Covariance (c1c2) 00873 --Covariance (c1c3) 01409 --Degrees of Freedom 38 --

Statistic Estimate F 12878 p lt 0001

Adjusted R2 04650 AIC 227799

Test Material 1 Test Material 2 RBA 011 010 Lower bound 006 004 Upper bound 018 019 Standard Error 0034 0042 g 005 estimate is uncertain

Exp6_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 6 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 202020

Control Test Material 2

Control Test Material 1

Control Lead Acetate

181818

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

16

14

12

10

8

6

4

2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 238E-01 b 738E+01 510E+02 c1 611E-04 443E-03 c2 646E-05 455E-04 c3 598E-05 420E-04

Covariance (c1c2) 09990 --Covariance (c1c3) 09982 --Degrees of Freedom 37 --

Statistic Estimate F 9415 p lt 0001

Adjusted R2 04508 AIC 229705

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0041 0048 g 005 estimate is uncertain

Exp6_Femurxls (Graph_EXP)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4c - All DataPhase II Experiment 6 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 1

Control Test Material 2

Control Lead Acetate 18 18

16

14

12

10

8

6

4

2

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 239E-01 b 152E+02 113E+03 c1 337E+03 265E+04 c2 318E+04 243E+05 c3 344E+04 262E+05

Covariance (c1c2) 09991 --Covariance (c1c3) 09985 --Degrees of Freedom 37 --

Statistic Estimate F 9414 p lt 0001

Adjusted R2 04508 AIC 229711

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0042 0047 g 005 estimate is uncertain

Exp6_Femurxls (Graph_MM)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4d - All DataPhase II Experiment 6 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Lead Acetate

Control Test Material 1

Control Test Material 2

18 18

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 418E-01 329E-01 b1 285E-02 508E-02 b2 273E-03 624E-03 b3 275E-03 616E-03 c 108E+00 336E-01

Covariance (b1b2) 09875 --Covariance (b1b3) 09814 --Degrees of Freedom 37 --

Statistic Estimate F 9426 p lt 0001

Adjusted R2 04512 AIC 229612

Test Material 1 Test Material 2 RBA 011 011 Lower bound Upper bound Standard Error -- --

Exp6_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 7

Test Material 1 California Gulch Phase I Residential Soil Test Material 2 California Gulch FeMn PbO

Figure 1a Blood AUC - Linear Model (All Data) Figure 1a Blood AUC - Linear Model (Outlier Excluded) Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

APPENDIX E

Figure 1a - All DataPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140

Control Test Material 2

Outlier

Control Lead Acetate

Control Test Material 1

120120

100100

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 646E+00 159E+00 b1 439E-01 925E-02 b2 303E-01 449E-02 b3 397E-01 509E-02

Covariance (c1c2) 01719 --Covariance (c1c3) 01351 --Degrees of Freedom 41 --

Statistic Estimate F 33889 p lt 0001

Adjusted R2 06916 AIC 394354

Test Material 1 Test Material 2 RBA 069 090 Lower bound 047 063 Upper bound 108 142 Standard Error 0163 0209 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - Outlier ExcludedPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 674E+00 130E+00 b1 340E-01 688E-02 b2 300E-01 369E-02 b3 394E-01 418E-02

Covariance (c1c2) 01724 --Covariance (c1c3) 01355 --Degrees of Freedom 40 --

Statistic Estimate F 47669 p lt 0001

Adjusted R2 07650 AIC 341729

Test Material 1 Test Material 2 RBA 088 116 Lower bound 062 083 Upper bound 134 176 Standard Error 0192 0249 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5028 RBA DIV0 DIV0b 000E+00 000E+00 p 00022 Lower boundc1 000E+00 000E+00 Adjusted R2 02680 Upper boundc2 000E+00 000E+00 AIC 1170590 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1b - All DataPhase II Experiment 7 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1c - All DataPhase II Experiment 7 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140140

120 120120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 7 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140 140

120 120 120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

80

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 734E+00 195E+00

b1 270E-01 192E-01 b2 168E-01 140E-01 b3 219E-01 179E-01 c 111E+00 156E-01

Covariance (b1b2) 09447 --Covariance (b1b3) 09455 --Degrees of Freedom 40 --

Statistic Estimate F 25364 p lt 0001

Adjusted R2 06890 AIC 394283

Test Material 1 Test Material 2 RBA 065 083 Lower bound Upper bound Standard Error -- --

Exp7_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 2a - All DataPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 102E+01 208E+00 b1 229E+00 481E-01 b2 124E+00 201E-01 b3 163E+00 260E-01

Covariance (c1c2) 00199 --Covariance (c1c3) 00177 --Degrees of Freedom 41 --

Statistic Estimate F 32074 p lt 0001

Adjusted R2 06794 AIC 503462

Test Material 1 Test Material 2 RBA 054 071 Lower bound 035 046 Upper bound 089 116 Standard Error 0142 0186 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 103E+01 168E+00 b1 165E+00 289E-01 b2 124E+00 162E-01 b3 163E+00 211E-01

Covariance (c1c2) 00204 --Covariance (c1c3) 00181 --Degrees of Freedom 40 --

Statistic Estimate F 48222 p lt 0001

Adjusted R2 07671 AIC 451637

Test Material 1 Test Material 2 RBA 075 099 Lower bound 053 069 Upper bound 112 146 Standard Error 0163 0213 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 7 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800800800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 101E+01 213E+00 b 622E+03 644E+04 c1 371E-04 399E-03 c2 202E-04 218E-03 c3 266E-04 288E-03

Covariance (c1c2) 09997 --Covariance (c1c3) 09997 --Degrees of Freedom 40 --

Statistic Estimate F 23468 p lt 0001

Adjusted R2 06713 AIC 505440

Test Material 1 Test Material 2 RBA 054 072 Lower bound Upper bound Standard Error 0145 0196 g 005 estimate is uncertain

Exp7_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 7 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 800800

Control Lead Acetate

Control Test Material 1700 700

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 7 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800 800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

700 700

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 101E+01 214E+00

b1 248E+00 128E+00 b2 137E+00 806E-01 b3 179E+00 103E+00 c 979E-01 126E-01

Covariance (b1b2) 08779 --Covariance (b1b3) 08769 --Degrees of Freedom 40 --

Statistic Estimate F 23491 p lt 0001

Adjusted R2 06716 AIC 505398

Test Material 1 Test Material 2 RBA 054 072 Lower bound 001 008 Upper bound 108 146 Standard Error -- --

Exp7_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 3a - All DataPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 978E+00 253E+00 b1 201E+00 446E-01 b2 102E+00 177E-01 b3 173E+00 275E-01

Covariance (c1c2) 00375 --Covariance (c1c3) 00222 --Degrees of Freedom 41 --

Statistic Estimate F 29081 p lt 0001

Adjusted R2 06569 AIC 501595

Test Material 1 Test Material 2 RBA 051 086 Lower bound 032 056 Upper bound 085 145 Standard Error 0141 0234 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 199E+00 b1 138E+00 259E-01 b2 101E+00 139E-01 b3 173E+00 216E-01

Covariance (c1c2) 00390 --Covariance (c1c3) 00230 --Degrees of Freedom 40 --

Statistic Estimate F 45535 p lt 0001

Adjusted R2 07565 AIC 446484

Test Material 1 Test Material 2 RBA 073 125 Lower bound 050 088 Upper bound 112 191 Standard Error 0167 0280 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 2799 RBA DIV0 DIV0b 000E+00 000E+00 p 00386 Lower boundc1 000E+00 000E+00 Adjusted R2 01406 Upper boundc2 000E+00 000E+00 AIC 836197 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 7 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700700

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 7 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve 700700

Dose-Response Curve

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 7 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700 700

Control Lead Acetate

Control Test Material 1

Control Test Material 2600

500

400

300

200

100

600

500

400

300

200

100

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 35 4 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 990E+00 264E+00

b1 183E+00 989E-01 b2 914E-01 560E-01 b3 155E+00 955E-01 c 102E+00 128E-01

Covariance (b1b2) 08746 --Covariance (b1b3) 08793 --Degrees of Freedom 40 --

Statistic Estimate F 21305 p lt 0001

Adjusted R2 06486 AIC 503510

Test Material 1 Test Material 2 RBA 051 085 Lower bound Upper bound 112 183 Standard Error -- --

Exp7_Kidneyxls (Graph_POWER)

2

4

6

8

10

12

APPENDIX E

Figure 4a - All DataPhase II Experiment 7 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 845E-01 198E-01 b1 591E-02 146E-02 b2 311E-02 578E-03 b3 473E-02 742E-03

Covariance (c1c2) 01175 --Covariance (c1c3) 00828 --Degrees of Freedom 41 --

Statistic Estimate F 24456 p lt 0001

Adjusted R2 06153 AIC 216348

Test Material 1 Test Material 2 RBA 053 080 Lower bound 033 051 Upper bound 093 140 Standard Error 0153 0225 g 005 estimate is uncertain

Exp7_Femurxls (Graph_LIN)

2

4

6

8

10

12

APPENDIX E

Figure 4b - All DataPhase II Experiment 7 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 787E-01 214E-01 b 209E+01 214E+01 c1 308E-03 358E-03 c2 173E-03 209E-03 c3 291E-03 375E-03

Covariance (c1c2) 09636 --Covariance (c1c3) 09659 --Degrees of Freedom 40 --

Statistic Estimate F 18305 p lt 0001

Adjusted R2 06114 AIC 216591

Test Material 1 Test Material 2 RBA 056 095 Lower bound Upper bound Standard Error 0181 0324 g 005 estimate is uncertain

Exp7_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

2

4

6

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 7 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 1616

14 1414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Femurxls (Graph_MM)

2

4

6

8

10

12

APPENDIX E

Figure 4d - All DataPhase II Experiment 7 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 16 16

14 14 14

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E-01 224E-01 b1 103E-01 671E-02 b2 631E-02 486E-02 b3 973E-02 739E-02 c 859E-01 151E-01

Covariance (b1b2) 09128 --Covariance (b1b3) 09157 --Degrees of Freedom 40 --

Statistic Estimate F 18357 p lt 0001

Adjusted R2 06121 AIC 216374

Test Material 1 Test Material 2 RBA 056 093 Lower bound Upper bound Standard Error -- --

Exp7_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 8

Test Material 1 California Gulch AV Slag Test Material 2 Lead Acetate - IV (for ABA determination)

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

100

150

200

250

APPENDIX E

Figure 1a - All DataPhase II Experiment 8 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve 250

Control Test Material 1

Control Lead Acetate

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 859E+00 120E+00 b1 444E-01 745E-02 b2 117E-01 220E-02 b3 180E+00 141E-01

Covariance (c1c2) 01238 --Covariance (c1c3) 00351 --Degrees of Freedom 42 --

Statistic Estimate F 70263 p lt 0001

Adjusted R2 08220 AIC 377196

Test Material 1

RBA 026

Lower bound 017

Upper bound 039

Standard Error 0062

Lead Acetate ABA 025 Lower bound 017 Upper bound 033 Standard Error 0045

g 005 estimate is uncertain

Exp8_AUCxls (Graph_LIN)

0

1

2

3

4

APPENDIX E

Figure 1b - All DataPhase II Experiment 8 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

55

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate IV

Control Test Material 1

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 804E+00 929E-01 b 159E+02 176E+01 c1 320E-03 586E-04 c2 834E-04 159E-04 c3 308E-02 840E-03

Covariance (c1c2) 04920 --Covariance (c1c3) 05858 --Degrees of Freedom 41 --

Statistic Estimate F 99719 p lt 0001

Adjusted R2 08977 AIC 337913

Test Material 1

RBA 026

Lower bound 019

Upper bound 036

Standard Error 0049

Lead Acetate ABA 010 Lower bound 007 Upper bound 017 Standard Error 0023

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 8 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

50 50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 793E+00 930E-01 b 200E+02 332E+01 c1 367E+02 885E+01 c2 142E+03 347E+02 c3 318E+01 139E+01

Covariance (c1c2) 06808 --Covariance (c1c3) 07694 --Degrees of Freedom 41 --

Statistic Estimate F 101785 p lt 0001

Adjusted R2 08996 AIC 336939

Test Material 1

RBA 026

Lower bound 018

Upper bound 037

Standard Error 0050

Lead Acetate ABA 009 Lower bound 003 Upper bound 013 Standard Error 0026

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 8 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250 250

Control Lead Acetate

Control Test Material 1

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

5050

0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 689E+00 111E+00 b1 286E+00 101E+00 b2 116E+00 493E-01 b3 130E+01 452E+00 c 556E-01 815E-02

Covariance (b1b2) 08993 --Covariance (b1b3) 09228 --Degrees of Freedom 41 --

Statistic Estimate F 87734 p lt 0001

Adjusted R2 08852 AIC 344366

Test Material 1

RBA 020

Lower bound 007

Upper bound 034

Standard Error --

Lead Acetate ABA 007 Lower bound 004 Upper bound 011 Standard Error --

Exp8_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - All DataPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier

Dose-Response Curve Dose-Response Curve 3500

Outlier

Control Test Material 1

Outlier

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 156E+01 376E+00 b1 194E+00 576E-01 b2 355E-01 104E-01 b3 125E+01 291E+00

Covariance (c1c2) 00491 --Covariance (c1c3) 00059 --Degrees of Freedom 42 --

Statistic Estimate F 13353 p lt 0001

Adjusted R2 04516 AIC 629699

Test Material 1

RBA 018

Lower bound 008

Upper bound 040

Standard Error 0074

Lead Acetate ABA 015 Lower bound 007 Upper bound 029 Standard Error 0058

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 3500

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 110E+01 203E+00 b1 207E+00 445E-01 b2 391E-01 797E-02 b3 127E+01 226E+00

Covariance (c1c2) 00243 --Covariance (c1c3) 00028 --Degrees of Freedom 41 --

Statistic Estimate F 25206 p lt 0001

Adjusted R2 06227 AIC 537628

Test Material 1

RBA 019

Lower bound 011

Upper bound 032

Standard Error 0055

Lead Acetate ABA 016 Lower bound 010 Upper bound 026 Standard Error 0046

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F 3186 RBA ABA DIV0b 000E+00 000E+00 p 00228 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 01627 Upper bound Upper boundc2 000E+00 000E+00 AIC 983795 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and UncertaintyTest Material 1

DIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2b - All DataPhase II Experiment 8 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350035003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F DIV0 RBA ABA DIV0b 000E+00 000E+00 p DIV0 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper bound Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

ABA and Uncertainty

DIV0

Summary of Fitting Goodness of Fit RBA and UncertaintyTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2c - All DataPhase II Experiment 8 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 35003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 8 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 3500 3500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 149E+01 393E+00

b1 360E+00 367E+00 b2 877E-01 119E+00 b3 231E+01 232E+01 c 833E-01 263E-01

Covariance (b1b2) 09380 --Covariance (b1b3) 09287 --Degrees of Freedom 41 --

Statistic Estimate F 9890 p lt 0001

Adjusted R2 04414 AIC 630613

Test Material 1

RBA 018

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 011 Lower bound Upper bound Standard Error --

Exp8_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate IV

Outlier

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Control Lead Acetate

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3 -3

Parameter Estimate Standard Error a 166E+01 421E+00

b1 239E+00 576E-01 b2 342E-01 948E-02 b3 123E+01 207E+00

Covariance (c1c2) 00503 --Covariance (c1c3) 00067 --Degrees of Freedom 42 --

Statistic Estimate F 21139 p lt 0001

Adjusted R2 05731 AIC 586555

Test Material 1

RBA 014

Lower bound 007

Upper bound 027

Standard Error 0051

Lead Acetate ABA 019 Lower bound 011 Upper bound 031 Standard Error 0057

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400

1200

1000

800

600

400

200

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 167E+01 365E+00 b1 239E+00 505E-01 b2 341E-01 829E-02 b3 123E+01 182E+00

Covariance (c1c2) 00519 --Covariance (c1c3) 00065 --Degrees of Freedom 41 --

Statistic Estimate F 27487 p lt 0001

Adjusted R2 06436 AIC 540150

Test Material 1

RBA 014

Lower bound 008

Upper bound 025

Standard Error 0045

Lead Acetate ABA 019 Lower bound 012 Upper bound 029 Standard Error 0050

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 8 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 165E+01 423E+00 b 172E+03 160E+03 c1 144E-03 144E-03 c2 205E-04 204E-04 c3 100E-02 129E-02

Covariance (c1c2) 09322 --Covariance (c1c3) 09527 --Degrees of Freedom 41 --

Statistic Estimate F 15994 p lt 0001

Adjusted R2 05713 AIC 585963

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0052

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0064

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 8 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Test Material 1

Control Lead Acetate IV

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 164E+01 423E+00 b 281E+03 320E+03 c1 113E+03 137E+03 c2 792E+03 953E+03 c3 158E+02 246E+02

Covariance (c1c2) 09535 --Covariance (c1c3) 09679 --Degrees of Freedom 41 --

Statistic Estimate F 15996 p lt 0001

Adjusted R2 05714 AIC 585953

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0053

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0068

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 8 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 153E+01 423E+00

b1 975E+00 760E+00 b2 277E+00 294E+00 b3 593E+01 488E+01 c 616E-01 204E-01

Covariance (b1b2) 09292 --Covariance (b1b3) 09318 --Degrees of Freedom 41 --

Statistic Estimate F 16981 p lt 0001

Adjusted R2 05869 AIC 581290

Test Material 1

RBA 013

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 005 Lower bound Upper bound Standard Error --

Exp8_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 8 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate

50

40

30

20

10

50

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Lead Acetate IV

-4 -4

0 50 100 150 200 250 300 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 754E-01 121E-01

b1 649E-02 105E-02 b2 132E-02 245E-03 b3 453E-01 353E-02

Covariance (c1c2) 00708 --Covariance (c1c3) 00128 --Degrees of Freedom 42 --

Statistic Estimate F 74474 p lt 0001

Adjusted R2 08305 AIC 193909

Test Material 1

RBA 020

Lower bound 013

Upper bound 030

Standard Error 0048

Lead Acetate ABA 014 Lower bound 010 Upper bound 019 Standard Error 0026

g 005 estimate is uncertain

Exp8_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 8 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 606060

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 505050

40

30

20

10

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

20

Control Lead Acetate IV

0 5 10 15 SQRT(W) Dose

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 750E-01 122E-01 b 148E+02 203E+02 c1 447E-04 630E-04 c2 903E-05 127E-04 c3 347E-03 542E-03

Covariance (c1c2) 09853 --Covariance (c1c3) 09917 --Degrees of Freedom 41 --

Statistic Estimate F 55160 p lt 0001

Adjusted R2 08280 AIC 195180

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 4c - All DataPhase II Experiment 8 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 6060

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 5050

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 749E-01 122E-01 b 247E+02 332E+02 c1 372E+03 514E+03 c2 184E+04 254E+04 c3 472E+02 729E+02

Covariance (c1c2) 09848 --Covariance (c1c3) 09913 --Degrees of Freedom 41 --

Statistic Estimate F 55226 p lt 0001

Adjusted R2 08282 AIC 195104

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 4d - All DataPhase II Experiment 8 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60 60

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 672E-01 118E-01 b1 256E-01 115E-01 b2 815E-02 463E-02 b3 181E+00 796E-01 c 666E-01 107E-01

Covariance (b1b2) 09154 --Covariance (b1b3) 09329 --Degrees of Freedom 41 --

Statistic Estimate F 64812 p lt 0001

Adjusted R2 08501 AIC 185595

Test Material 1

RBA 018

Lower bound 001

Upper bound 031

Standard Error --

Lead Acetate ABA 005 Lower bound 003 Upper bound 010 Standard Error --

Exp8_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 9

Test Material 1 Palmerton Location 2 Test Material 2 Palmerton Location 4

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 9 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 961E+00 108E+00 b1 594E-01 690E-02 b2 371E-01 320E-02 b3 320E-01 290E-02

Covariance (c1c2) 00930 --Covariance (c1c3) 01000 --Degrees of Freedom 41 --

Statistic Estimate F 92835 p lt 0001

Adjusted R2 08623 AIC 328763

Test Material 1 Test Material 2 RBA 062 054 Lower bound 050 043 Upper bound 080 069 Standard Error 0086 0075

Exp9_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 9 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 751E+00 994E-01 b 955E+01 141E+01 c1 868E-03 198E-03 c2 709E-03 178E-03 c3 541E-03 131E-03

Covariance (c1c2) 08172 --Covariance (c1c3) 08147 --Degrees of Freedom 40 --

Statistic Estimate F 111320 p lt 0001

Adjusted R2 09093 AIC 312220

Test Material 1 Test Material 2 RBA 082 062 Lower bound 061 047 Upper bound 105 080 Standard Error 0119 0089 g 005 estimate is uncertain

Exp9_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 9 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 750E+00 101E+00 b 152E+02 298E+01 c1 177E+02 515E+01 c2 221E+02 700E+01 c3 284E+02 870E+01

Covariance (c1c2) 08860 --Covariance (c1c3) 08834 --Degrees of Freedom 40 --

Statistic Estimate F 109669 p lt 0001

Adjusted R2 09081 AIC 312679

Test Material 1 Test Material 2 RBA 080 062 Lower bound 062 048 Upper bound 110 084 Standard Error 0118 0090 g 005 estimate is uncertain

Exp9_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 9 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 749E+00 108E+00

b1 178E+00 467E-01 b2 141E+00 422E-01 b3 122E+00 368E-01 c 743E-01 586E-02

Covariance (b1b2) 09184 --Covariance (b1b3) 09173 --Degrees of Freedom 40 --

Statistic Estimate F 98378 p lt 0001

Adjusted R2 08985 AIC 316197

Test Material 1 Test Material 2 RBA 073 060 Lower bound 051 041 Upper bound 095 078 Standard Error -- --

Exp9_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 2a - All DataPhase II Experiment 9 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 107E+01 188E+00

b1 230E+00 398E-01 b2 139E+00 214E-01 b3 122E+00 175E-01

Covariance (c1c2) 00117 --Covariance (c1c3) 00189 --Degrees of Freedom 41 --

Statistic Estimate F 40132 p lt 0001

Adjusted R2 07274 AIC 484924

Test Material 1 Test Material 2 RBA 060 053 Lower bound 041 037 Upper bound 091 079 Standard Error 0139 0119 g 005 estimate is uncertain

Exp9_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 9 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 987E+00 172E+00 b 299E+02 729E+01 c1 901E-03 315E-03 c2 997E-03 396E-03 c3 583E-03 208E-03

Covariance (c1c2) 07276 --Covariance (c1c3) 07387 --Degrees of Freedom 40 --

Statistic Estimate F 39356 p lt 0001

Adjusted R2 07771 AIC 470653

Test Material 1 Test Material 2 RBA 111 065 Lower bound 056 038 Upper bound 186 109 Standard Error 0309 0165 g 005 estimate is uncertain

Exp9_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 9 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 988E+00 174E+00 b 466E+02 153E+02 c1 167E+02 750E+01 c2 156E+02 813E+01 c3 257E+02 119E+02

Covariance (c1c2) 08328 --Covariance (c1c3) 08354 --Degrees of Freedom 40 --

Statistic Estimate F 38613 p lt 0001

Adjusted R2 07737 AIC 471634

Test Material 1 Test Material 2 RBA 107 065 Lower bound 060 035 Upper bound 355 133 Standard Error 0309 0170 g 005 estimate is uncertain

Exp9_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 9 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 991E+00 180E+00 b1 594E+00 226E+00 b2 545E+00 253E+00 b3 420E+00 184E+00 c 732E-01 960E-02

Covariance (b1b2) 08634 --Covariance (b1b3) 08614 --Degrees of Freedom 40 --

Statistic Estimate F 35748 p lt 0001

Adjusted R2 07595 AIC 475710

Test Material 1 Test Material 2 RBA 089 062 Lower bound 029 025 Upper bound 152 108 Standard Error -- --

Exp9_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 3a - All DataPhase II Experiment 9 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 145E+01 355E+00

b1 233E+00 537E-01 b2 120E+00 249E-01 b3 961E-01 193E-01

Covariance (c1c2) 00182 --Covariance (c1c3) 00342 --Degrees of Freedom 41 --

Statistic Estimate F 2121 p lt 0001

Adjusted R2 0579 AIC 535863

Test Material 1 Test Material 2 RBA 051 041 Lower bound 030 025 Upper bound 091 072 Standard Error 0158 0124 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 9 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 127E+01 325E+00 b 238E+02 533E+01 c1 120E-02 475E-03 c2 195E-02 903E-03 c3 628E-03 247E-03

Covariance (c1c2) 05421 --Covariance (c1c3) 05740 --Degrees of Freedom 40 --

Statistic Estimate F 2248 p lt 0001

Adjusted R2 0661 AIC 511641

Test Material 1 Test Material 2 RBA 162 052 Lower bound 050 024 Upper bound 366 116 Standard Error 0672 0190 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 9 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 126E+01 329E+00 b 310E+02 928E+01 c1 994E+01 500E+01 c2 609E+01 395E+01 c3 182E+02 929E+01

Covariance (c1c2) 06978 --Covariance (c1c3) 06997 --Degrees of Freedom 40 --

Statistic Estimate F 2185 p lt 0001

Adjusted R2 0655 AIC 513547

Test Material 1 Test Material 2 RBA 163 055 Lower bound 059 017 Upper bound -663 189 Standard Error 0763 0215 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 9 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 125E+01 339E+00 b1 117E+01 596E+00 b2 138E+01 875E+00 b3 850E+00 509E+00 c 540E-01 131E-01

Covariance (b1b2) 08697 --Covariance (b1b3) 08638 --Degrees of Freedom 40 --

Statistic Estimate F 2025 p lt 0001

Adjusted R2 0636 AIC 518750

Test Material 1 Test Material 2 RBA 136 056 Lower bound Upper bound 422 194 Standard Error -- --

Exp9_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4a - All DataPhase II Experiment 9 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 8

7

6

5

4

3

2

1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 617E-01 833E-02 b1 710E-02 790E-03 b2 334E-02 315E-03 b3 287E-02 285E-03

Covariance (c1c2) 00554 --Covariance (c1c3) 00566 --Degrees of Freedom 41 --

Statistic Estimate F 87669 p lt 0001

Adjusted R2 08553 AIC 118621

Test Material 1 Test Material 2 RBA 047 040 Lower bound 037 032 Upper bound 060 052 Standard Error 0067 0058

Exp9_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 9 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

150 200

Control Test Material 2

0 50 100 SQRT(W) Dose

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 520E-01 802E-02 b 908E+00 203E+00 c1 112E-02 377E-03 c2 558E-03 187E-03 c3 480E-03 160E-03

Covariance (c1c2) 08717 --Covariance (c1c3) 08714 --Degrees of Freedom 40 --

Statistic Estimate F 84798 p lt 0001

Adjusted R2 08840 AIC 112175

Test Material 1 Test Material 2 RBA 050 043 Lower bound 035 030 Upper bound 070 060 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_EXP)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 9 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 1010

9 99

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 516E-01 803E-02 b 145E+01 390E+00 c1 136E+02 541E+01 c2 274E+02 109E+02 c3 320E+02 126E+02

Covariance (c1c2) 09096 --Covariance (c1c3) 09088 --Degrees of Freedom 40 --

Statistic Estimate F 85458 p lt 0001

Adjusted R2 08848 AIC 111965

Test Material 1 Test Material 2 RBA 050 043 Lower bound 034 029 Upper bound 072 062 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_MM)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4d - All DataPhase II Experiment 9 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 10 10

9 9 9

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 502E-01 802E-02 b1 209E-01 576E-02 b2 122E-01 388E-02 b3 108E-01 351E-02 c 740E-01 647E-02

Covariance (b1b2) 09159 --Covariance (b1b3) 09151 --Degrees of Freedom 40 --

Statistic Estimate F 88101 p lt 0001

Adjusted R2 08879 AIC 111154

Test Material 1 Test Material 2 RBA 048 041 Lower bound 032 027 Upper bound 064 055 Standard Error -- --

Exp9_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 11

Test Material 1 Murray Smelter Soil Test Material 2 NIST Paint

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 11 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250200200

180180

200160160

140140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ua

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

120

100

80

60

150

100

40 50

20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 970E+00 148E+00 b1 412E-01 459E-02 b2 203E-01 190E-02 b3 246E-01 220E-02

Covariance (c1c2) 00667 --Covariance (c1c3) 00600 --Degrees of Freedom 45 --

Statistic Estimate F 96525 p lt 0001

Adjusted R2 08565 AIC 436433

Test Material 1 Test Material 2 RBA 049 060 Lower bound 039 048 Upper bound 063 076 Standard Error 0069 0083

Exp11_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 11 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200200200

180180180

160160160

140140140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

120

100

80

60

120

100

80

60

120

100

80

60

404040

20 2020

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 721E+00 118E+00 b 160E+02 175E+01 c1 354E-03 621E-04 c2 249E-03 496E-04 c3 304E-03 615E-04

Covariance (c1c2) 07274 --Covariance (c1c3) 07186 --Degrees of Freedom 44 --

Statistic Estimate F 143605 p lt 0001

Adjusted R2 09224 AIC 390414

Test Material 1 Test Material 2 RBA 070 086 Lower bound 054 066 Upper bound 089 109 Standard Error 0098 0123 g 005 estimate is uncertain

Exp11_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 11 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200200

180 180

160

180

160 160

140 140 140

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 40 40

20 20 20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 716E+00 120E+00 b 244E+02 362E+01 c1 411E+02 921E+01 c2 591E+02 150E+02 c3 476E+02 124E+02

Covariance (c1c2) 08303 --Covariance (c1c3) 08277 --Degrees of Freedom 44 --

Statistic Estimate F 141020 p lt 0001

Adjusted R2 09211 AIC 391331

Test Material 1 Test Material 2 RBA 070 086 Lower bound 055 068 Upper bound 093 117 Standard Error 0099 0126 g 005 estimate is uncertain

Exp11_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 11 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200 200

180 180 180

160 160 160

140 140 140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 4040

20 2020

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 704E+00 134E+00

b1 171E+00 452E-01 b2 127E+00 406E-01 b3 149E+00 474E-01 c 712E-01 518E-02

Covariance (b1b2) 09262 --Covariance (b1b3) 09264 --Degrees of Freedom 44 --

Statistic Estimate F 115506 p lt 0001

Adjusted R2 09051 AIC 402393

Test Material 1 Test Material 2 RBA 066 083 Lower bound 042 054 Upper bound 085 107 Standard Error -- --

Exp11_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 2a - All DataPhase II Experiment 11 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 137E+01 230E+00

b1 131E+00 180E-01 b2 759E-01 100E-01 b3 962E-01 141E-01

Covariance (c1c2) 00165 --Covariance (c1c3) 00209 --Degrees of Freedom 44 --

Statistic Estimate F 50849 p lt 0001

Adjusted R2 07570 AIC 561444

Test Material 1 Test Material 2 RBA 058 073 Lower bound 042 052 Upper bound 080 103 Standard Error 0109 0145 g 005 estimate is uncertain

Exp11_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 11 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 233E+00 b 111E+03 946E+02 c1 129E-03 121E-03 c2 853E-04 865E-04 c3 921E-04 871E-04

Covariance (c1c2) 09770 --Covariance (c1c3) 09728 --Degrees of Freedom 43 --

Statistic Estimate F 50761 p lt 0001

Adjusted R2 07567 AIC 561591

Test Material 1 Test Material 2 RBA 066 071 Lower bound Upper bound Standard Error 0147 0156 g 005 estimate is uncertain

Exp11_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 11 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 234E+00 b 207E+03 204E+03 c1 144E+03 155E+03 c2 221E+03 254E+03 c3 202E+03 219E+03

Covariance (c1c2) 09824 --Covariance (c1c3) 09793 --Degrees of Freedom 43 --

Statistic Estimate F 50798 p lt 0001

Adjusted R2 07568 AIC 561543

Test Material 1 Test Material 2 RBA 065 071 Lower bound Upper bound Standard Error 0146 0157 g 005 estimate is uncertain

Exp11_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 11 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1600 1600

Control Lead Acetate

Control Test Material 11400

1200

1000

800

600

400

200

1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+01 234E+00 b1 205E+00 953E-01 b2 134E+00 773E-01 b3 154E+00 793E-01 c 905E-01 976E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09175 --Degrees of Freedom 43 --

Statistic Estimate F 51275 p lt 0001

Adjusted R2 07586 AIC 560976

Test Material 1 Test Material 2 RBA 063 073 Lower bound 006 028 Upper bound 091 117 Standard Error -- --

Exp11_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 11 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 203E+01 413E+00

b1 168E+00 248E-01 b2 612E-01 905E-02 b3 918E-01 144E-01

Covariance (c1c2) 00267 --Covariance (c1c3) 00454 --Degrees of Freedom 44 --

Statistic Estimate F 43248 p lt 0001

Adjusted R2 07253 AIC 576648

Test Material 1 Test Material 2 RBA 036 055 Lower bound 025 038 Upper bound 052 078 Standard Error 0075 0115 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 11 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 189E+01 424E+00 b 549E+02 204E+02 c1 383E-03 188E-03 c2 203E-03 117E-03 c3 180E-03 867E-04

Covariance (c1c2) 08761 --Covariance (c1c3) 08456 --Degrees of Freedom 43 --

Statistic Estimate F 31501 p lt 0001

Adjusted R2 07177 AIC 578650

Test Material 1 Test Material 2 RBA 053 047 Lower bound 005 022 Upper bound 093 104 Standard Error 0148 0127 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 11 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 191E+01 426E+00 b 111E+03 656E+02 c1 534E+02 390E+02 c2 112E+03 929E+02 c3 111E+03 791E+02

Covariance (c1c2) 09475 --Covariance (c1c3) 09350 --Degrees of Freedom 43 --

Statistic Estimate F 31472 p lt 0001

Adjusted R2 07175 AIC 578702

Test Material 1 Test Material 2 RBA 048 048 Lower bound Upper bound Standard Error 0128 0126 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 11 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 195E+01 430E+00 b1 261E+00 140E+00 b2 112E+00 779E-01 b3 146E+00 867E-01 c 907E-01 111E-01

Covariance (b1b2) 09422 --Covariance (b1b3) 09294 --Degrees of Freedom 43 --

Statistic Estimate F 31801 p lt 0001

Adjusted R2 07196 AIC 578247

Test Material 1 Test Material 2 RBA 039 052 Lower bound Upper bound 058 096 Standard Error -- --

Exp11_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4a - All DataPhase II Experiment 11 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate 4040

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 698E-01 132E-01 b1 528E-02 546E-03 b2 205E-02 192E-03 b3 390E-02 339E-03

Covariance (c1c2) 00688 --Covariance (c1c3) 00673 --Degrees of Freedom 44 --

Statistic Estimate F 108800 p lt 0001

Adjusted R2 08708 AIC 198208

Test Material 1 Test Material 2 RBA 039 074 Lower bound 031 059 Upper bound 049 093 Standard Error 0052 0096

Exp11_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3663 RBA DIV0 DIV0b 000E+00 000E+00 p 00117 Lower boundc1 000E+00 000E+00 Adjusted R2 01816 Upper boundc2 000E+00 000E+00 AIC 856334 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4b - All DataPhase II Experiment 11 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate

4040

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

45

APPENDIX E

Figure 4c - All DataPhase II Experiment 11 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240

35

30

40 40

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_MM)

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4d - All DataPhase II Experiment 11 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240 40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 35

30

25

20

15

10

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

35

30

25

20

15

10

5

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 721E-01 144E-01 b1 456E-02 171E-02 b2 167E-02 795E-03 b3 327E-02 143E-02 c 103E+00 740E-02

Covariance (b1b2) 09444 --Covariance (b1b3) 09443 --Degrees of Freedom 43 --

Statistic Estimate F 80328 p lt 0001

Adjusted R2 08686 AIC 200024

Test Material 1 Test Material 2 RBA 038 073 Lower bound 018 045 Upper bound 048 091 Standard Error -- --

Exp11_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 12

Test Material 1 Galena-enriched Soil Test Material 2 Palmerton Location 2 (Reproducibility Study)

Test Material 3 California Gulch Oregon Gulch Tailings

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outliers Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

160

APPENDIX E

Figure 1a - All DataPhase II Experiment 12 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate 120120

100

80

60

40

20

0

100

80

60

40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lAU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

20

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate

40 60 80 100 SQRT(W) Dose

Control

Test Material 3

0 20

Control

Test Material 2

-4

0 50 100 150 200 250 300 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 855E+00 963E-01

b1 476E-01 369E-02 b2 310E-03 291E-03 b3 372E-01 324E-02 b4 434E-02 132E-02

Covariance (c1c2) 01535 --Covariance (c1c3) 00703 --Covariance (c1c4) 00746 --Degrees of Freedom 47 --

Statistic Estimate F 124227

p lt 0001

Adjusted R2 09062

AIC 375135

Test Material 1 Test Material 2 Test Material 3 RBA 001 078 009 Lower bound 000 064 004 Upper bound 002 094 014 Standard Error 0006 0088 0028

Exp12_AUCxls (Graph_LIN)

APPENDIX E

Figure 1b - All DataPhase II Experiment 12 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

AU

C (u

gdL

-day

s)

Stan

dard

ized

Wei

ghte

d R

esid

ual

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 762E+00 962E-01 b 169E+02 482E+01 c1 402E-03 159E-03 c2 293E-05 200E-05 c3 286E-03 107E-03

Covariance (c1c2) 05770 --Covariance (c1c3) 09418 --Degrees of Freedom 46 --

Statistic Estimate F 104665

p lt 0001

Adjusted R2 09104

AIC 370380

Test Material 1 Test Material 2 Test Material 3 RBA 001 071 007 Lower bound 000 055 004 Upper bound 002 099 013 Standard Error 0004 0094 0020 g 005 estimate is uncertain

Exp12_AUCxls (Graph_EXP)

APPENDIX E

Figure 1c - All DataPhase II Experiment 12 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Residual Plot Residual Plot 5 5

4

3

2

1

0

-1

-2

-3

Control

Test Material 2 4

3

2

1

0

-1

-2

-3

Control

Test Material 3

-4

-5 -4

-5 0 20 40 60 80 100 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 764E+00 971E-01 b 298E+02 106E+02 c1 438E+02 208E+02 c2 604E+04 445E+04 c3 612E+02 278E+02

Covariance (c1c2) 06443 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 104126

p lt 0001

Adjusted R2 09100

AIC 370760

Test Material 1 Test Material 2 Test Material 3 RBA 001 072 007 Lower bound 000 046 003 Upper bound -001 095 016 Standard Error 0004 0094 0021 g 005 estimate is uncertain

Exp12_AUCxls (Graph_MM)

-4

-3

-2

-1

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 12 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual PlotResidual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

Control

Lead Acetate

5

4

3

2

1

0

-1

-2

-3

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

-5

-4

-5 0 5 10 15 20

SQRT(W) Dose 0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+00 110E+00 b1 101E+00 355E-01 b2 124E-02 109E-02 b3 778E-01 275E-01 c 855E-01 523E-02

Covariance (b1b2) 07381 --Covariance (b1b3) 09551 --Degrees of Freedom 46 --

Statistic Estimate F 98107

p lt 0001

Adjusted R2 09049

AIC 374839

Test Material 1 Test Material 2 Test Material 3 RBA 001 074 007 Lower bound 057 Upper bound 001 095 012 Standard Error -- -- --

Exp12_AUCxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 2a - All DataPhase II Experiment 12 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

00

600

500

400

300

200

100

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot Residual Plot Residual Plot 5 5

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3 4 4

3

2

1

0

-1

-2

-3

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4 -4

-5 -5 0 2 4 6 8 10

SQRT(W) Dose 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 938E+00 221E+00 b1 690E-01 149E-01 b2 126E-02 784E-03 b3 863E-01 145E-01 b4 751E-02 301E-02

Covariance (c1c2) 02961 --Covariance (c1c3) 01132 --Covariance (c1c4) 01251 --Degrees of Freedom 47 --

Statistic Estimate F 33199

p lt 0001

Adjusted R2 07163

AIC 506975

Test Material 1 Test Material 2 Test Material 3 RBA 002 125 011 Lower bound 000 082 004 Upper bound 004 203 021 Standard Error 0011 0322 0047 g 005 estimate is uncertain

Exp12_Liverxls (Graph_LIN)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom

020809573

930704

000E+00000E+00000E+00 -00841

0

000E+00000E+00

0000000000

DIV0Test Material 1

RBA and UncertaintyEstimateEstimate

Goodness of FitSummary of Fitting

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2b - All DataPhase II Experiment 12 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_EXP)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom 0

Goodness of FitSummary of Fitting

000E+00000E+00

0000000000

DIV0DIV0

DIV0

Estimate000E+00000E+00000E+00 DIV0

Test Material 1RBA and Uncertainty

EstimateDIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2c - All DataPhase II Experiment 12 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_MM)

Reference Material (Lead Acetate)

APPENDIX E

Figure 2d - All DataPhase II Experiment 12 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

700

600

500

400

300

200

100

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

RBA and Uncertainty

Control

Test Material 3

5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 110E+01 194E+00 b1 167E-01 121E-01 b2 103E-03 138E-03 b3 164E-01 125E-01 c 135E+00 152E-01

Covariance (b1b2) 08593 --Covariance (b1b3) 09467 --Degrees of Freedom 46 --

Statistic Estimate F 31031

p lt 0001

Adjusted R2 07465

AIC 493797

Test Material 1 Test Material 2 Test Material 3 RBA 002 098 012 Lower bound Upper bound Standard Error -- -- --

Exp12_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 30003000

Control

Test Material 3

Outlier

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot Residual Plot 55

Control

Lead Acetate

Control

Test Material 2

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4-4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1-1

-2-2

-3-3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 771E+00 483E+00 b1 124E+00 435E-01 b2 956E-03 130E-02 b3 580E-01 264E-01 b4 549E-02 539E-02

Covariance (c1c2) 00560 --Covariance (c1c3) 00379 --Covariance (c1c4) 00304 --Degrees of Freedom 47 --

Statistic Estimate F 7238

p lt 0001

Adjusted R2 03285

AIC 868907

Test Material 1 Test Material 2 Test Material 3 RBA 001 047 004 Lower bound -001 011 -003 Upper bound 003 130 016 Standard Error 0011 0264 0046 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

APPENDIX E

Figure 3a - Outliers ExcludedPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350350

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

300

250

200

150

100

50

00

300

250

200

150

100

50

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 768E+00 172E+00

b1 107E+00 160E-01 b2 972E-03 537E-03 b3 581E-01 112E-01 b4 551E-02 232E-02

Covariance (c1c2) 01129 --Covariance (c1c3) 00686 --Covariance (c1c4) 00542 --Degrees of Freedom 45 --

Statistic Estimate F 37309

p lt 0001

Adjusted R2 07477

AIC 458069

Test Material 1 Test Material 2 Test Material 3 RBA 001 054 005 Lower bound 000 035 002 Upper bound 002 080 009 Standard Error 0005 0128 0023 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN_outliers)

APPENDIX E

Figure 3b - All DataPhase II Experiment 12 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 772E+00 499E+00 b 489E+02 101E+03 c1 353E-03 963E-03 c2 196E-05 503E-05 c3 119E-03 263E-03

Covariance (c1c2) 08332 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 5696

p lt 0001

Adjusted R2 03152

AIC 870070

Test Material 1 Test Material 2 Test Material 3 RBA 001 034 003 Lower bound Upper bound Standard Error 0009 0285 0040 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 12 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Reference Material (Lead Acetate)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 772E+00 499E+00 b 108E+03 346E+03 c1 669E+02 265E+03 c2 113E+05 407E+05 c3 186E+03 631E+03

Covariance (c1c2) 09197 --Covariance (c1c3) 09839 --Degrees of Freedom 46 --

Statistic Estimate F 5687

p lt 0001

Adjusted R2 03148

AIC 870320

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10

RBA and Uncertainty Test Material 1 Test Material 2 Test Material 3

RBA 001 036 003 Lower bound Upper bound Standard Error 0009 0315 0044 g 005 estimate is uncertain

20 30 40 50

SQRT(W) Dose

Exp12_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 12 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Residual Plot

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

0

500

1000

1500

2000

2500

3000 Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control

Test Material 3

Parameter Estimate Standard Error a 877E+00 486E+00

b1 298E-01 594E-01 b2 136E-03 451E-03 b3 199E-01 356E-01 c 126E+00 371E-01

Covariance (b1b2) 08626 --Covariance (b1b3) 09574 --Degrees of Freedom 46 --

Statistic Estimate F 5929

p lt 0001

Adjusted R2 03258

AIC 864518

Test Material 1 Test Material 2 Test Material 3 RBA 001 073 008 Lower bound Upper bound Standard Error -- -- --

Exp12_Kidneyxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

2

4

6

8

10

12

14

APPENDIX E

Figure 4a - All DataPhase II Experiment 12 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1414

Control

Lead Acetate Control

Test Material 1

Control

Test Material 3

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0

12

10

8

6

4

2

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot 5

4Control

Lead Acetate Control

Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4

-5 0 50 100 150 200

SQRT(W) Dose 0 50 100 150 200

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 569E-01 105E-01 b1 318E-02 424E-03 b2 301E-04 312E-04 b3 301E-02 425E-03 b4 358E-04 900E-04

Covariance (c1c2) 01724 --Covariance (c1c3) 00760 --Covariance (c1c4) 01361 --Degrees of Freedom 47 --

Statistic Estimate F 82424

p lt 0001

Adjusted R2 08646

AIC 137166

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound -001 069 -004 Upper bound 003 130 006 Standard Error 0010 0177 0028 g 005 estimate is uncertain

Exp12_Femurxls (Graph_LIN)

APPENDIX E

Figure 4b - All DataPhase II Experiment 12 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 500 1000 1500

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 655E+01 273E+02 c1 507E-04 221E-03 c2 487E-06 219E-05 c3 482E-04 209E-03

Covariance (c1c2) 09760 --Covariance (c1c3) 09990 --Degrees of Freedom 46 --

Statistic Estimate F 61801

p lt 0001

Adjusted R2 08563

AIC 139150

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0185 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_EXP)

APPENDIX E

Figure 4c - All DataPhase II Experiment 12 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

5

4

3

2

1

0

-1

-2

-3

-4

-5

Residual Plot

Control

Test Material 2

0 50 100 150 200 SQRT(W) Dose

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 131E+02 571E+02 c1 394E+03 180E+04 c2 410E+05 193E+06 c3 415E+03 189E+04

Covariance (c1c2) 09781 --Covariance (c1c3) 09991 --Degrees of Freedom 46 --

Statistic Estimate F 61857

p lt 0001

Adjusted R2 08565

AIC 139151

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0184 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_MM)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

APPENDIX E

Figure 4d - All DataPhase II Experiment 12 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Control

Test Material 1

Dose-Response Curve 14

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12 12

10 10

8 8

6 6

4 4

2 2Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0

Control

Test Material 3

0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 567E-01 118E-01 b1 325E-02 213E-02 b2 314E-04 482E-04 b3 308E-02 201E-02 c 995E-01 127E-01

Covariance (b1b2) 07455 --Covariance (b1b3) 09584 --Degrees of Freedom 46 --

Statistic Estimate F 63930

p lt 0001

Adjusted R2 08605

AIC 139183

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound 006 Upper bound 004 Standard Error -- -- --

Exp12_Femurxls (Graph_POWER)

APPENDIX F

DETAILED LEAD SPECIATION DATA FOR TEST MATERIALS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX F

METAL CONTENT OF TEST MATERIALS

Experiment Test Material Concentration (ppm)

Al As Au Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Na Ni Pb Sb Se Tl V Zn

2 Bingham Creek Residential 10600 512 41 143 071 13600 42 75 166 691 16100 - 4340 7020 466 362 150 1590 10 U lt17 lt17 208 903

Bingham Creek Channel Soil 10100 1490 172 152 073 8500 87 79 179 1720 22500 - 4150 5970 376 314 151 6330 187 lt17 lt17 220 -

3 Jasper County High Lead Smelter 8850 251 13 284 170 45800 337 193 238 94 40200 064 1490 7860 784 399 448 10800 490 10U 14U 225 10000

Jasper County Low Lead Yard 4370 107 06 94 100 81800 1880 64 152 144 18000 130 927 1390 240 403 301 4050 10 U 10U 180 148 50000

4 Murray Smelter Slag 9370 710 183 2140 086 89600 309 454 340 2100 170000 100 2430 11200 2640 836 167 11700 557 4390 1260 736 49500

Jasper County High Lead Mill 9380 164 188 211 140 19900 1390 343 646 96 26600 1210 1400 2280 1270 339 1100 6940 10 U 10U 14U 230 17200

5 Aspen Berm 5070 669 923 1640 130 37200 419 171 77 145 33700 077 1090 14300 2220 249 298 14200 520 200 180 115 6580

Aspen Residential 8440 167 189 1030 082 17300 474 111 104 52 23000 023 2140 6890 934 114 219 3870 114 038 027 160 4110

6 Midvale Slag 10500 619 11U 637 058 93200 245 330 1420 1330 202000 074 4250 6180 1640 7910 31U 8170 719 3970 810 101U 33300

Butte Soil 7540 226 405 134 056 15700 422 92 69 838 48500 220 3560 2950 12800 530 80 8530 1060 027 180 270 12100

7

California Gulch Phase I Residential Soil 8670 203 430 605 060 20100 599 20 91 657 68120 126 1500 9521 7090 6560 56 7510 180 190 lt05 337 13738

California Gulch FeMn PbO 11900 110 167 266 100 3930 385 69 75 165 27500 490 1770 2520 1190 279 75 4320 600 080 370 179 2650

8 California Gulch AV Slag 20800 1050 212 2430 120 117000 128 538 431 2080 207000 011 7390 6360 6910 4080 71 10600 572 6130 180 372 67300

9 Palmerton Location 2 7750 110 95 6850 140 1160 1950 188 303 462 25900 170 515 725 6320 667 150 3230 600 1180 190 531 6500

Palmerton Location 4 7850 1340 51 1090 200 2480 3190 174 266 350 26700 110 512 684 9230 2100 268 2150 740 690 085 498 19100

11 Murray Smelter Soil 6520 310 111 584 048b 69000 238 115 164 856 38700 052 2040 15000 863 5320b 104 3200 200 680 480 283 10400

NIST Paint 5850 48 063U 1320 047b 11800 40 83 208 12 8890 092 1360 2900 272 819b 580b 8350 87 U 061U 087U 116 1880

12 Galena-enriched Soil 6340 49 063U 112 049b 2650 08 31 102 11 10000 006b 1460 2790 293 3120b 380b 11200 870 061U 087U 1260b 107

California Gulch Oregon Gulch Tailings 248 1290 417 14 200 8290 40 101 80 350 391000 024 451 118 126 34 282 1270 744 053 086 477 441

All samples were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

OSWER 92857-77 Appendix F_TALxls (TAL)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min Max Total Lib Total Lib

Density Fraction Cerussite 2 2 4 2 5 10 10 028 028 66 0776 Fe-Pb Oxide 30 30 15 2 75 151 151 1793 1793 4 0052 Fe-Pb Silicate 14 14 10 8 20 70 70 552 552 35 0052 Mn-Pb Oxide 21 21 22 2 110 106 106 1813 1813 51 0159 Pb-As Oxide 3 3 4 2 8 15 15 052 052 6 05 Pb Phosphate 43 43 13 1 110 216 216 2170 2170 51 037 Fe-Pb Sulfate 86 86 10 1 120 432 432 3591 3591 37 0134

TOTAL 199 199 13 1000 1000 10000 10000

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 382 382 82 82 5-9 221 221 122 122 10-19 191 191 130 130 20-49 156 156 303 303 50-99 35 35 188 188 100-149 15 15 176 176 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib 18 46 12

181 19

504 219

18 46 12

181 19

504 219

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Mn-Pb Oxide

Pb-As Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 57 56 4 1Anglesite 30 116 114 626 623 63 0684 1 1 2 2Cerussite 2 02 02 005 005 66 0776 25 25 17 4Fe-Pb Oxide 60 51 51 1088 1088 40 0053 1 1 5 5FeSbO 5 02 02 013 013 4 4 15 10Fe-Pb Silicate 20 08 08 156 156 35 0057 1 1 50 50Galena 50 02 02 130 130 75 0866 5 5 21 5Mn-Pb Oxide 50 10 10 267 267 51 0159 2 2 105 100Lead Organic 110 04 04 545 545 13 0037 3 3 4 1Pb-As Oxide 8 06 06 029 029 60 0500 1 1 10 10Lead Barite 10 02 02 026 026 45 0031

42 42 12 1Lead Phosphate 100 86 86 1301 1301 51 0370 349 349 6 1Fe-Pb Sulfate 110 711 711 5815 5815 37 0134

491 490 8TOTAL 1000 998 10000 9997

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 662 660 139 138 5-9 136 136 175 175 10-19 98 98 184 184 20-49 61 61 200 200 50-99 31 31 205 205 100-149 12 12 96 96 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib

284 283 03 03 24 24 00 00 03 03 89 89 23 23 03 03 09 09 00 00

258 258 304 304

1000 999

OSWER 92857-77 Appendix F_Tablesxls (2_Ch)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Lead Organic

Pb-As Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Ch)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 1 1 12 12 2 2 48 35

Anglesite Calcite

12 025 025 60 050 050

011 087

011 087

63 28

0684 0050

12 11 31 8Cerussite 90 30 28 339 326 66 0776 2 2 35 10 24 24 45 10

Clay Fe-Pb Oxide

60 050 050 150 60 60

064 1004

064 1004

31 40

0005 0037

22 22 83 4Fe-Pb Silicate 175 55 55 1680 1680 37 0100 5 5 47 12Mn-Pb Oxide 100 13 13 218 218 51 0112 56 0 2 1Native Lead 9 140 00 107 000 113 1000 6 1 6 1Lead Oxide 10 15 03 031 002 40 0037

117 117 7 1 62 62 94 15 90 75 5 1

Lead Phosphate Slag Fe-Pb Sulfate

90 293 293 300 155 155 10 226 188

725 5358 375

725 5358 320

51 37 37

0310 0012 0100

399 322 27TOTAL 1000 807 10000 9795

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5

Total Freq Lib Freq Total RLM 444 281 172

Lib RLM 38

5-9 185 160 150 57 10-19 80 75 78 64 20-49 83 83 140 140 50-99 100-149

90 90 319 88 88 96

319 96

150-199 200-249

20 20 38 05 05 03

38 03

gt250 05 05 04 04

TOTAL 100 81 100 76

Relative Lead Mass () Total Lib 09 09 02 02 321 307 002 002 27 27 115 115 23 23

222 00 009 001 211 211 43 43 26 22

1000 760

OSWER 92857-77 Appendix F_Tablesxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Oxide

Native Lead

Mn-Pb Oxide

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadTotal Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 3 3 3 2 95 95 15 1 1 1 15 15 18 18 36 8 9 9 33 5 2 1 53 25 10 10 25 8 1 1 8 8 2 2 2 1 32 32 11 1 9 9 20 1

Anglesite Cerussite Clay Fe-Pb Oxide Fe-Pb Silicate Galena Mn-Pb Oxide Pb-As Oxide Lead Silicate Lead Phosphate Fe-Pb Sulfate

6 16 16 130 522 522 15 05 05

100 99 99 100 49 49 80 11 05 55 55 55 8 05 05 2 11 11

80 176 176 100 49 49

031 4337 046

1953 911 321 773 024 009

1042 553

031 4337 046

1953 911 076 773 024 009

1042 553

63 66 31 4

37 75 51 71 8

51 37

0684 0776 0005 0037

01 0866 0112 0243 0167 031 01

182 181 18TOTAL 1000 995 10000 9756

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5 5-9 10-19 20-49 50-99 100-149

Total Freq Lib Freq Total RLM 286 286 50 203 203 85 209 209 171 198 198 302 77 71 236 27 27 156

Lib RLM 50 85

171 302 178 156

150-199 200-249

00 00 00 00 00 00

00 00

gt250 00 00 00 00

TOTAL 100 99 100 94

Relative Lead Mass ()Total Lib

048 048 811 811 0003 0003 11 11 12 12 76 18 16 16 015 015 004 004 60 60 075 075

1000 942

OSWER 92857-77 Appendix F_Tablesxls (3_LL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Lead Phosphate

Lead Silicate

Pb-As Oxide

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Anglesite

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_LL)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

10 00 11 10

004 004 00 00 15 15 92 26 08 08 07 05 57 51 39 33

687 546 70 70 03 03 003 003

1000 768

Mineral

Anglesite 3 0 12 10 15 02 00 004 000 63 0684 Cerussite 4 3 8 3 15 03 02 004 004 66 0776 Fe-Pb Oxide 3 3 18 8 35 02 02 007 007 4 0031 Fe-As Oxide 3 3 17 4 35 02 02 006 006 Fe-Pb Silicate 9 9 28 8 80 07 07 032 032 4 022 Galena 98 7 2 1 15 72 05 027 008 75 0866 Mn-Pb Oxide 7 7 31 8 110 05 05 028 028 51 0112 Native Lead 3 2 3 2 4 02 01 001 001 113 1 Pb-As Oxide 39 31 6 1 60 29 23 030 027 71 05 Pb(M)O 8 3 18 2 110 06 02 019 016 8 05 Lead Oxide 143 79 8 1 100 105 58 148 118 95 093 Slag 1037 1037 73 5 310 761 761 9671 9671 365 00038 Fe-Pb Sulfate 2 2 55 10 100 01 01 014 014 37 01 Zn-Pb Silicate 4 3 16 10 30 03 02 008 007 51 0014

TOTAL 1363 1189 58 1000 872 10000 9938

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 145 41 156 54 5-9 126 112 137 79 10-19 147 139 229 173 20-49 62 62 171 153 50-99 203 203 162 162 100-149 238 238 128 128 150-199 42 42 08 08 200-249 32 32 08 08 gt250 04 04 01 01

TOTAL 100 87 100 77

OSWER 92857-77 Appendix F_Tablesxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-As Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Native Lead

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Zn-Pb Silicate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

16 16 001 001 01 01 570 570 002 002 16 16 81 81 34 00 87 87 22 00 65 52 053 053 74 74 14 14 14 14

1000 931

Mineral

Anglesite 1 1 25 25 25 036 036 036 036 63 0684 Lead Barite 1 1 3 3 3 036 036 004 004 45 0045 Calcite 1 1 25 25 25 036 036 036 036 28 005 Cerussite 90 90 8 1 70 320 320 1074 1074 66 0776 Clay 3 3 24 8 40 11 11 104 104 31 0005 Fe-Pb Oxide 33 33 22 3 110 117 117 1044 1044 4 0037 Fe-Pb Silicate 41 41 36 1 210 146 146 2116 2116 37 01 Galena 6 0 6 1 30 21 00 051 000 75 0866 Mn-Pb Oxide 39 39 27 3 125 139 139 1477 1477 51 0112 Native Lead 3 0 4 1 10 11 00 018 000 113 1 Lead Oxide 3 1 17 5 40 107 036 071 057 95 093 Lead Silicate 1 1 10 10 10 036 036 014 014 8 045 Lead Phosphate 15 15 21 2 100 53 53 453 453 51 031 Slag 24 24 92 15 210 85 85 3145 3145 365 0012 Fe-Pb Sulfate 20 20 13 3 60 71 71 358 358 37 01

TOTAL 281 270 25 1000 961 10000 9916

This mineral is now considered to be equivalent to Fe-Pb Oxide Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 228 203 83 72 5-9 206 199 129 116 10-19 221 217 243 227 20-49 189 185 337 309 50-99 85 85 128 128 100-149 57 57 65 65 150-199 07 07 02 02 200-249 07 07 13 13 gt250 00 00 00 00

TOTAL 100 96 100 93

OSWER 92857-77 Appendix F_Tablesxls (4_HL)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Silicate

Lead Oxide

Native Lead

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Lead Barite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_HL)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01 66 66 01 01

617 596 91 79 120 101 45 45 00 00 13 13 47 24

1000 925

Mineral Total Lib Avg Min Max Total Lib

Clay 4 4 55 10 Anglesite 34 34 5 1 Lead Barite 3 3 10 2 Cerussite 71 68 20 1 Fe-Pb Oxide 80 69 35 2 Galena 8 6 27 10 Mn-Pb Oxide 9 9 56 10 Lead Organic 2 2 70 40 Lead Phosphate 7 7 45 10 Fe-Pb Sulfate 61 39 15 4

TOTAL 279 241 24

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

120 14 14 330 330 26 002 90 122 122 263 263 63 0684 25 11 11 045 045 45 005

110 254 244 2080 2011 66 0776 210 287 247 4143 3609 4 0095 50 29 22 323 270 75 086

150 32 32 758 758 51 02 100 07 07 210 210 13 0018 110 25 25 473 473 51 009 90 219 140 1375 687 37 016

1000 864 10000 8657

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 265 254 25 23 190 158 59 56 215 176 144 126 172 143 297 263 82 57 253 234 61 61 190 190 07 07 18 18 07 07 14 14 00 00 00 00

100 86 100 92

OSWER 92857-77 Appendix F_Tablesxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

421

Density Fraction

5

Max Total Lib Total Lib

07 07 027 027 63 0684 125 120 120 2457 2457 66 0776 100 474 474 3818 3818 4 0095 110 24 03 521 331 75 086 80 48 48 973 973 51 02 80 03 03 241 241 13 0018 60 24 24 449 449 51 009 60 299 299 1515 1515 37 016

1000 979 10000 9810

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 385 385 45 45 351 340 93 75 124 117 92 72 82 79 227 202 38 38 86 86 21 21 457 457 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 94

Relative Lead Mass ()Total Lib

06 06 642 642 74 74 171 109 51 51 00 00 11 11 46 46

1000 938

Anglesite Cerussite Fe-Pb Oxide Galena Mn-Pb Oxide Lead Organic Lead Phosphate Fe-Pb Sulfate

TOTAL

2 2 535 35 23138 138 97 1 25

14 14 231 1 807 7 2187 87 6

291 285 11

558031

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (5_Res)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250 Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Res)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Cerussite Fe-Pb Oxide Galena Native Lead Pb-As Oxide Lead Oxide Slag Sulfosalts Fe-Pb Sulfate

TOTAL

7 7 22 10 4 4 26 12 2 2 90 80

67 6 4 1 119 41 16 1 61 29 12 1

1721 1721 131 10 1 1 50 50 2 2 15 15

1984 1813 115

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 04 04 007 007 66 0776 45 02 02 004 004 4 015

100 01 01 008 008 75 0866 40 34 03 012 004 113 1

100 60 21 082 061 71 05 55 31 15 031 026 9 083

600 867 867 9852 9852 365 0004 50 01 01 002 002 6 025 15 01 01 001 001 37 014

1000 914 10000 9965

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 65 01 84 02 10 05 35 22 32 18 177 87 44 41 337 292 203 203 177 177 286 286 94 94 185 185 40 40 129 129 38 38 47 47 18 18

100 91 100 77

Relative Lead Mass () Total Lib 38 38 03 03 57 57

154 50 326 242 259 216 160 160 04 04 01 01

1000 770

OSWER 92857-77 Appendix F_Tablesxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Galena

Native Lead

Pb-As Oxide

Lead Oxide

Slag

Sulfosalts

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01

362 356 03 03 70 56 125 124 202 181 00 00 36 01

201 186

1000 907

Mineral Total Lib Avg Min Max Total Lib

Clay 3 3 58 30 Anglesite 138 134 12 1 Cerussite 1 1 10 10 Fe-Pb Oxide 37 27 61 4 Galena 37 35 10 1 Mn-Pb Oxide 161 150 44 3 Lead Barite 1 1 5 5 Lead Phosphate 12 1 54 5 Fe-Pb Sulfate 245 226 38 2

TOTAL 635 578 34

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

100 05 05 082 082 32 0039 100 217 211 751 737 63 0684 10 02 02 005 005 66 0776

180 58 43 1048 828 4 015 55 58 55 172 170 75 0866

200 254 236 3277 2929 51 0108 5 02 02 002 002 45 0058

200 19 02 303 006 51 0208 250 386 356 4361 4055 37 0111

1000 910 10000 8813

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 230 222 34 33 148 132 98 95 140 124 114 107 230 217 265 258 137 113 250 221 90 80 170 151 16 14 29 29 08 05 33 15 02 02 06 06

100 91 100 91

OSWER 92857-77 Appendix F_Tablesxls (6_Butte)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Butte)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Total Lib

102 80 197 187 58 58 222 222 301 286 01 00 01 01 59 59 11 00 01 01 20 00 19 19 01 01 06 06

1000 920

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib Anglesite 54 28 9 1 45 81 42 202 158 63 0684 Cerussite 53 33 14 1 125 80 50 328 311 66 0776 Fe-Pb Sulfate 70 65 31 1 120 105 98 959 956 37 014 Mn-Pb Oxide 83 83 43 1 250 125 125 1577 1577 5 024 Lead Phosphate 150 115 19 1 150 226 173 1257 1196 51 04 Pb-As Oxide 3 0 3 1 5 05 00 004 000 71 024 Lead Barite 6 1 18 2 100 09 02 048 044 45 0058 Fe-Pb Oxide 176 166 52 1 300 265 250 4045 4040 4 0031 PbO-Cerussite 15 0 3 1 10 23 00 018 000 66 0776 Lead Organic 9 9 78 20 110 14 14 308 308 13 0023 Galena 19 0 3 1 10 29 00 027 000 75 0866 Lead Silicate 4 4 30 10 50 06 06 053 053 6 05 Lead Vanidate 1 1 10 10 10 02 02 004 004 64 032 Slag 22 22 121 25 250 33 33 1171 1171 365 0012

TOTAL 665 527 34 1000 792 10000 9818

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 244 83 51 17 5-9 90 50 53 20 10-19 177 173 119 112 20-49 220 220 223 223 50-99 146 144 224 217 100-149 92 92 274 274 150-199 12 12 30 30 200-249 11 11 06 06 gt250 09 09 21 21

TOTAL 100 79 100 92

OSWER 92857-77 Appendix F_Tablesxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Pb-As Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

PbO-Cerussite

Slag

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Lead Barite 7 1 5 2 Clay 1 1 50 50 Fe-Pb Oxide 186 186 20 0 Mn-Pb Oxide 71 71 45 2 Lead Organic 2 2 103 80 Lead Silicate 1 1 15 15 Lead Vanidate 2 2 6 3 Lead Phosphate 66 64 8 1 Fe-Pb Sulfate 48 48 10 3

TOTAL 384 376 21

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 18 03 040 010 45 005 50 03 03 061 061 31 0005

130 484 484 4485 4485 4 0031 125 185 185 3914 3914 51 024 125 05 05 249 249 13 00232 15 03 03 018 018 6 05 8 05 05 013 013 64 032 60 172 167 616 609 51 031 100 125 125 603 603 37 01

1000 979 10000 9962

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 255 240 40 38 193 190 48 47 240 237 109 108 172 172 234 234 104 104 417 417 36 36 153 153 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 997

Relative Lead Mass ()Total Lib 01 00 00 00 84 84 721 721 01 01 08 08 04 04

147 145 34 34

1000 997

OSWER 92857-77 Appendix F_Tablesxls (7_FeMn)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

Clay

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_FeMn)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Anglesite 3 3 37 30 Cerussite 3 3 11 8 Galena 6 1 16 1 Native Lead 4 1 6 2 Pb-As Oxide 253 34 8 1 Lead Oxide 139 18 8 1 Slag 1206 1206 126 5 Fe-Pb Sulfate 5 1 37 10

TOTAL 1619 1267 96

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 02 02 007 007 63 0684 15 02 02 002 002 66 0776 80 04 01 006 005 75 0866 15 02 01 002 001 1134 1 125 156 21 130 090 6 05 125 86 11 073 059 95 0930 450 745 745 9768 9768 365 00035 55 03 01 012 004 37 0091

1000 783 10000 9936

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 191 01 113 01 85 69 47 06 82 74 68 44 50 46 235 209 86 86 242 242 192 192 224 224 101 101 17 17 128 128 27 27 86 86 27 27

100 78 100 80

Relative Lead Mass () Total Lib 24 24 09 09 31 27 14 09 309 214 510 415 99 99 03 01

1000 796

OSWER 92857-77 Appendix F_Tablesxls (8_AV)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Galena

Pb-As Oxide

Native Lead

Fe-Pb Sulfate

Slag

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (8_AV)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 1 1 10 10 Anglesite 2 2 4 3 Lead Barite 11 11 8 1 Fe-Pb oxide 15 15 8 3 Mn-Pb Oxide 68 68 17 2 Lead Phosphate 16 16 19 1 Fe-Pb Sulfate 1 1 8 8

TOTAL 114 114 11

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 09 09 06 06 31 0005 4 18 18 04 04 63 0684 41 96 96 50 50 45 0018 20 132 132 74 74 4 0015

100 596 596 688 688 51 0055 45 140 140 174 174 51 008 8 09 09 05 05 37 01

1000 1000 1000 1000

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 263 263 108 108 228 228 54 54 254 254 167 167 184 184 276 276 61 61 324 324 09 09 71 71 00 00 00 00 00 00 00 00 00 00 00 00

100 100 100 100

Relative Lead Mass ()Total Lib 00 60 14 15

661 244 06

00 60 14 15

661 244 06

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 3 3 Anglesite 8 0 Lead Barite 1 1 Fe-Pb Oxide 14 14 Mn-Pb Oxide 65 65 Pb-As Oxide 17 0 Lead Silicate 1 1 Lead Vanidate 5 5 Lead Phosphate 1 1 Zn-Pb Silicate 2 2

TOTAL 117 92

24 8 1 1 12 12 16 8 31 4 1 1 4 4 15 5 15 15 26 12

15

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 26 26 290 290 31 0005 1 68 00 032 000 63 0684 12 09 09 048 048 45 0018 40 120 120 902 902 4 0015 110 556 556 8082 8082 51 0055 1 145 00 068 000 71 05 4 09 09 016 016 6 05 35 43 43 298 298 64 032 15 09 09 060 060 51 008 40 17 17 207 207 55 005

1000 786 1000 990

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 248 34 127 18 145 145 50 50 214 214 88 88 248 248 344 344 128 128 323 323 17 17 68 68 00 00 00 00 00 00 00 00 00 00 00 00

100 79 100 89

Relative Lead Mass ()Total Lib 01 01 40 00 01 01 16 16 658 658 70 00 14 14

177 177 07 07 16 16

1000 891

OSWER 92857-77 Appendix F_Tablesxls (9_P4)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Pb-As Oxide

Lead Silicate

Lead Vanidate

Lead Phosphate

Zn-Pb Silicate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P4)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead

358112

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib 3 02 02 002 002 65 0005 40 16 14 066 038 63 0684 8 09 09 022 022 4 0031

30 129 02 062 021 75 0866 55 103 37 159 122 71 0527 15 14 09 027 018 7 03 25 23 19 061 056 95 093

310 700 700 9576 9576 365 00037 35 02 02 024 024 37 014

1000 796 10000 9878

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 227 33 265 52 103 98 106 88 293 290 176 169 171 169 334 275 59 59 78 78 84 84 18 18 28 28 08 08 26 26 10 10 09 09 05 05

100 80 100 70

Relative Lead Mass ()Total Lib 00 00

140 82 01 01

200 66 294 224 28 18

266 242 64 64 06 06

1000 704

As(M)O Cerussite Fe-Pb Oxide Galena Pb-As Oxide Pb(M)O Lead Oxide Slag Fe-Pb Sulfate

TOTAL

1 1 37 6 144 4 855 1 244 16 56 4 710 8 9299 299 471 1 35

427 340 34

2535

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

As(M)O

Cerussite

Fe-Pb Oxide

Galena

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Mineral Total Lib Avg Min

Anglesite 3 3 7 4 Cerussite 183 183 9 1 Lead Oxide 88 88 9 1

TOTAL 274 274 9

Size Total Freq Lib Freq lt5 755 755 5-9 44 44 10-19 58 58 20-49 80 80 50-99 58 58 100-149 04 04 150-199 00 00 200-249 00 00 gt250 00 00

TOTAL 100 100

Density FractionMax Total Lib Total Lib Total Lib 12 11 11 087 087 63 0684 06 06

110 668 668 6780 6780 66 0776 553 553 80 321 321 3132 3132 95 093 441 441

1000 1000 10000 10000 1000 1000

Particle Size Distribution

Total RLM Lib RLM 150 150 31 31 64 64 278 278 439 439 37 37 00 00 00 00 00 00

100 100

OSWER 92857-77 Appendix F_Tablesxls (11_NIST)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (11_NIST)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 224 224

TOTAL 224 224

Avg 17

17

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 80 1000 1000 10000 10000 75 0866

1000 1000 10000 10000

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 1000

1000 1000

Total Freq Lib Freq 478 22 45 411 45 00 00 00 00

478 22 45

411 45 00 00 00 00

Total RLM 49 07 33

759 153 00 00 00 00

Lib RLM 49 07 33

759 153 00 00 00 00

100 100 100 100

OSWER 92857-77 Appendix F_Tablesxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Speciation and Particle Size Data

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 217 4

TOTAL 217 4

Avg 2

2

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 25 1000 18 10000 514 75 0866

1000 18 10000 514

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 51

1000 51

Total Freq Lib Freq 853 09 468 12 83 00 215 00 60 09 267 40 05 00 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Total RLM Lib RLM

100 2 100 5

OSWER 92857-77 Appendix F_Tablesxls (12_Or)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Or)

This page intentionally left blank to facilitate double-sided printing

  • ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS USING IN VIVO AND IN VITRO METHODS
  • EXECUTIVE SUMMARY
  • TABLE OF CONTENTS
  • 10 INTRODUCTION
  • 20 IN VIVO STUDIES
  • 30 IN VITRO STUDIES
  • 40 REFERENCES
  • TABLES
  • FIGURES
  • APPENDIX A
  • APPENDIX B
  • APPENDIX B ATTACHMENT 1
  • APPENDIX C
  • APPENDIX D
  • APPENDIX E
  • APPENDIX F

REVIEWERS

A draft of this report was provided to three independent experts for external peer review and comment This satisfies the Agencyrsquos requirements for peer review These reviewers were

Paul Mushak PB Associates Durham NC Michael Rabinowitz Marine Biological Laboratory Woods Hole MA Rosalind Schoof Integral Consulting Inc Mercer Island WA

The Agency has responded to the peer review comments as appropriate The comments and Agency responses are contained in a responsiveness summary that has been placed in the Administrative Record

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

EXECUTIVE SUMMARY

10 INTRODUCTION

Reliable analysis of the potential hazard to children from ingestion of lead in environmental media depends on accurate information on a number of key parameters including the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability ABA) or in relative terms (relative bioavailability RBA) For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg were absorbed into the body the ABA would be 050 (50) Likewise if 100 μg of lead contained in soil were ingested and 30 μg were absorbed into the body the ABA for soil would be 030 (30) If the lead dissolved in water was used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

When reliable data are available on the absolute or relative bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site Based on available information in the literature on lead absorption in humans the US Environmental Protection Agency (US EPA) estimates that relative bioavailability of lead in soil compared to water and food is about 60 Thus when the measured RBA in soil or dust at a site is found to be less than 60 it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions Conversely if the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

This report summarizes the results of a series of studies performed by scientists in US EPA Region 8 to measure the RBA of lead in a variety of soil and soil-like test materials using both in vivo and in vitro techniques

20 IN VIVO STUDIES

Basic Approach for Measuring RBA In Vivo

The in vivo method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principle that equal absorbed doses of lead will produce equal increases in lead concentration in the tissues of exposed animals Stated another way RBA is the ratio of oral doses that produce equal increases in tissue burden of lead

Based on this the technique for estimating lead RBA in a test material is to administer a series of oral doses of reference material (lead acetate) and test material (site soil) to groups of experimental animals and to measure the increase in lead concentration in one or more tissues in the animals For each tissue the RBA is calculated by fitting an appropriate dose-response model to the data and then solving the equations to find the ratio of doses that produce equal responses The final estimate of RBA for the test material then combines the RBA estimates across the different tissues

OSWER 92857-77 ES-1

Animal Exposure and Sample Collection

All animals used in this program were intact male swine approximately 5 to 6 weeks of age In general exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous injection

Lead concentrations were measured in four different tissues blood liver kidney and bone For blood samples were collected from each animal at multiple times during the course of the study (eg days 0 1 2 3 4 6 9 12 and 15) and the blood concentration integrated over time (commonly referred to as ldquoarea under the curverdquo or AUC) was used as the measure of blood lead response For liver kidney and bone the measure of response was the concentration of lead in these tissues on day 15

Calculation of RBA

Based on testing several different types of dose-response models to the data it was concluded that most dose-response curves for liver kidney and bone lead were well described by a linear model and that most blood lead AUC data sets were well described by an exponential model

Liver Kidney Bone

Ctissue = a + b sdot Dose

Blood AUC

AUC = a + b sdot [1minus exp(minusc sdot Dose)]

where Ctissue is the concentration of lead in a given tissue a b and c are the terms of the mathematic equation used to describe the shape of the curve and Dose is the total daily administered dose of lead (μgkg-day)

Based on these models RBA is calculated from the best model fits as follows

btest material =RBAliver kidney bone breference material

btest material =RBAblood AUC breference material

Results and Discussion

RBA Values for Various Test Materials

Table ES-1 lists the 19 different materials tested in this program and shows the RBA values estimated using each of the four alternative endpoints (blood AUC liver kidney bone)

OSWER 92857-77 ES-2

Based on an analysis that indicated that each endpoint has approximately equal reliability the point estimate for each test material is the mean of the four endpoint-specific values

Inspection of these RBA point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data in order help to improve risk assessments for lead exposure

Correlation of RBA with Mineral Phase

Available data are not yet sufficient to establish reliable quantitative estimates of RBA for each of the different mineral phases of lead that are observed to occur in the test materials However multivariate regression analysis between point estimate RBA values and mineral phase content of the different test materials allows a tentative rank ordering of the phases into three semi-quantitative tiers (low medium or high RBA) as follows

Low Bioavailability Medium Bioavailability High Bioavailability

Fe(M) Sulfate Anglesite Galena Pb(M) Oxide Fe(M) Oxide

Lead Phosphate Lead Oxide

Cerussite Mn(M) Oxide

(M) = Metal

30 IN VITRO STUDIES

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA)

Description of the Method

The IVBA extraction procedure is begun by placing 10 g of test substrate into a bottle and adding 100 mL of extraction fluid (04 M glycine pH 15) This pH is selected because it is similar to the pH in the stomach of a fasting human Each bottle is placed into a water bath adjusted to 37degC and samples are extracted by rotating the samples end-over-end for 1 hour After 1 hour the bottles are removed dried and placed upright on the bench top to allow the soil

OSWER 92857-77 ES-3

to settle to the bottom A sample of supernatant fluid is removed directly from the extraction bottle into a disposable syringe and is filtered to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead

Results

Table ES-2 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program As seen IVBA values span a considerable range (min of 45 max of 87) with a mean of about 55 This variability among test materials indicates that the rate and extent of solubilization of lead from the solid test material into the extraction fluid do depend on the attributes of the test material and that IVBA may be a useful indication of absorption in vivo (see below)

Comparison of In Vivo and In Vitro Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples Figure ES-1 shows the best fit weighted linear regression correlation between the in vivo lead RBA estimates and the in vitro lead bioaccessibility estimates for each of the 19 test materials investigated during this program The equation of the line is

RBA = 0878middotIVBA -0028 (r2 = 0924)

These results indicate that the in vivo RBA of lead in soil-like materials can be estimated by measuring the IVBA and using the equation above to calculate the expected in vivo RBA Actual RBA values may be either higher or lower than the expected value as indicated by the 95 prediction interval shown in Figure ES-1

At present it appears that this equation is likely to be widely applicable having been found to hold true for a wide range of different soil types and lead phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample that contains an unusual andor untested lead phase is evaluated by the in vitro bioaccessibility protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

40 CONCLUSIONS

The data from the investigations performed under this program support the following main conclusions

1 Juvenile swine are believed to be a useful model for the evaluation of lead absorption in children and provide a reliable system for measuring the RBA of lead in a variety of soil and soil-like materials

OSWER 92857-77 ES-4

2 Each of the four different endpoints employed in these studies (blood AUC liver kidney bone) to estimate RBA in vivo yield reasonable data and the best estimate of the RBA value for any particular sample is the average across all four endpoint-specific RBA values

3 There are clear differences in the in vivo RBA of lead between different types of test material ranging from near zero to close to 100 Thus knowledge of the RBA value for different types of materials at a site can be very important in improving lead risk assessments at a site

4 Available data support the view that certain types of lead minerals are well-absorbed (eg cerussite manganese lead oxide) while other forms are poorly absorbed (eg galena anglesite) However the data are not yet sufficient to allow reliable quantitative calculation or prediction of the RBA for a test material based on knowledge of the lead mineral content alone

5 In vitro measurements of bioaccessibility performed using the protocol described in this report correlate well with in vivo measurements of RBA at least for 19 materials tested under this program At present the results appear to be broadly applicable although further testing of a variety of different lead forms is required to determine if there are exceptions to the apparent correlation

OSWER 92857-77 ES-5

TABLE ES-1 SUMMARY OF ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence BoundUB = 95 Upper Confidence Bound

TABLE ES-2 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

FIGURE ES-1 RELATION BETWEEN RBA AND IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

TABLE OF CONTENTS

10 INTRODUCTION 1 11 Overview 1 12 Using Bioavailability Data to Improve Exposure Calculations for Lead 2 13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals 3 14 Overview of Methods for Estimating Lead RBA In Vitro 3

20 IN VIVO STUDIES4 21 Basic Approach for Measuring RBA In Vivo 4 22 Animal Exposure and Sample Collection 4 23 Preparation of Biological Samples for Analysis 5 24 Data Reduction 5 25 Results and Discussion 6

251 Effect of Dosing on Animal Health and Weight 6 252 Time Course of Blood Lead Response 6 253 Dose-Response Patterns 7 254 Estimation of ABA for Lead Acetate 7 255 Estimation of RBA for Lead in Test Materials 8 256 Effect of Food 9 257 Correlation of RBA with Mineral Phase 10 258 Quality Assurance 12

30 IN VITRO STUDIES14 31 Introduction 14 32 In Vitro Method 14

321 Sample Preparation 14 322 Apparatus 14 323 Selection of IVBA Test Conditions 15 324 Summary of Final Leaching Protocol 16 325 Analysis of Extraction Fluid for Lead 17 326 Quality ControlQuality Assurance 17

33 Results and Discussion 18 331 IVBA Values 18 332 Comparison with In Vivo Results 19

40 REFERENCES 21

OSWER 92857-77 i

LIST OF TABLES

TABLE TITLE

2-1 Typical Feed Composition 2-2 Typical In Vivo Study Design 2-3 Description of Phase II Test Materials 2-4 Relative Lead Mass of Mineral Phases Observed in Test Materials 2-5 Matrix Associations for Test Materials 2-6 Particle Size Distributions for Test Materials 2-7 Estimated RBA Values for Test Materials 2-8 Grouped Lead Phases 2-9 Curve Fitting Parameters for Oral Lead Acetate Dose-Response Curves 2-10 Reproducibility of RBA Measurements 3-1 In Vitro Bioaccessibility Values

LIST OF FIGURES

FIGURE TITLE

2-1 Average Rate of Body Weight Gain in Test Animals 2-2 Example Time Course of Blood Lead Response 2-3 Dose Response Curve for Blood Lead AUC 2-4 Dose Response Curve for Liver Lead Concentration 2-5 Dose Response Curve for Kidney Lead Concentration 2-6 Dose Response Curve for Femur Lead Concentration 2-7 Estimated Group-Specific RBA Values 2-8 Correlation of Duplicate Analyses 2-9 Results for CDC Blood Lead Check Samples 2-10 Interlaboratory Comparison of Blood Lead Results 3-1 In Vitro Bioaccessibility Extraction Apparatus 3-2 Effect of Temperature Time and pH on IVBA 3-3 Precision of In Vitro Bioaccessibility Measurements 3-4 Reproducibility of In Vitro Bioaccessibility Measurements 3-5 RBA vs IVBA 3-6 Prediction Interval for RBA Based on Measured IVBA

OSWER 92857-77 ii

C

LIST OF APPENDICES

APPENDIX TITLE

A Evaluation of Juvenile Swine as a Model for Gastrointestinal Absorption in Young Children

B Detailed Description of Animal Exposure

Detailed Methods of Sample Collection and Analysis

D Detailed Methods for Data Reduction and Statistical Analysis

E Detailed Dose-Response Data and Model Fitting Results

F Detailed Lead Speciation Data for Test Materials

OSWER 92857-77 iii

ACRONYMS AND ABBREVIATIONS

degC Degrees Celsius μg Microgram μm Micrometer ABA Absolute bioavailability AFo Oral absorption fraction AIC Akaikersquos Information Criterion AUC Area under the curve cc Cubic centimeter CDC Centers for Disease Control and Prevention dL Deciliter g Gram GLP Good Laboratory Practices HCl Hydrochloric acid HDPE High density polyethylene ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry ICP-MS Inductively Coupled Plasma-Mass Spectrometry IV Intravenous IVBA In vitro bioaccessibility kg Kilogram L Liter M Molar (M) Metal MDL Method detection limit mg Milligram mL Milliliter mm Millimeter NIST National Institute of Standards and Testing Pb Lead PbAc Lead acetate ppm Parts per million RBA Relative bioavailability RLM Relative lead mass

OSWER 92857-77 iv

ACRONYMS AND ABBREVIATIONS (CONTINUED)

rpm Revolutions per minute SOP Standard operating procedure SRM Standard Reference Material TAL Target Analyte List TCLP Toxicity Characteristic Leaching Procedure US EPA US Environmental Protection Agency

OSWER 92857-77 v

This page intentionally left blank to facilitate double-sided printing

ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS

USING IN VIVO AND IN VITRO METHODS

10 INTRODUCTION

11 Overview

Reliable analysis of the potential hazard to children from ingestion of lead in the environment depends on accurate information on a number of key parameters including 1) lead concentration in environmental media (eg soil dust water food air paint) 2) childhood intake rates of each medium and 3) the rate and extent of lead absorption from each medium (ldquobioavailabilityrdquo) Knowledge of lead bioavailability is important because the amount of lead which actually enters the body from an ingested medium depends on the physical-chemical properties of the lead and of the medium For example lead in soil may exist at least in part as poorly water-soluble minerals and may also exist inside particles of inert matrix such as rock or slag of variable size shape and association These chemical and physical properties may tend to influence (usually decrease) the absorption (bioavailability) of lead when ingested Thus equal ingested doses of different forms of lead in different media may not be of equal health concern

Bioavailability of lead in a particular medium may be expressed either in absolute terms (absolute bioavailability) or in relative terms (relative bioavailability)

Absolute Bioavailability (ABA) is the ratio of the amount of lead absorbed compared to the amount ingested

Absorbed DoseABA = Ingested Dose

This ratio is also referred to as the oral absorption fraction (AFo)

Relative Bioavailability (RBA) is the ratio of the absolute bioavailability of lead present in some test material compared to the absolute bioavailability of lead in some appropriate reference material

ABAtest materialRBA = ABAreference material

Usually the form of lead used as reference material is a soluble compound such as lead acetate that is expected to completely dissolve when ingested

For example if 100 micrograms (μg) of lead dissolved in drinking water were ingested and a total of 50 μg entered the body the ABA would be 50100 or 050 (50) Likewise if

OSWER 92857-77 1

100 μg of lead contained in soil were ingested and 30 μg entered the body the ABA for soil would be 30100 or 030 (30) If the lead dissolved in water were used as the frame of reference for describing the relative amount of lead absorbed from soil the RBA would be 030050 or 060 (60)

For additional discussion about the concept and application of bioavailability see Gibaldi and Perrier (1982) Goodman et al (1990) Mushak (1991) andor Klaassen et al (1996)

12 Using Bioavailability Data to Improve Exposure Calculations for Lead

When reliable data are available on the bioavailability of lead in soil dust or other soil-like waste material at a site this information can be used to improve the accuracy of exposure and risk calculations at that site For example the basic equation for estimating the site-specific ABA of a test soil is as follows

ABAsoil = ABAsoluble sdot RBAsoil

where

ABAsoil = Absolute bioavailability of lead in soil ingested by a child

ABAsoluble = Absolute bioavailability in children of some dissolved or fully soluble form of lead

RBAsoil = Relative bioavailability of lead in soil

Based on available information in the literature on lead absorption in humans the US EPA estimates that the absolute bioavailability of lead from water and the diet is usually about 50 in children (US EPA 1994) Thus when a reliable site-specific RBA value for soil is available it may be used to estimate a site-specific absolute bioavailability in that soil as follows

ABAsoil = 50 sdot RBAsoil

In the absence of site-specific data the absolute absorption of lead from soil dust and other similar media is estimated by US EPA to be about 30 (US EPA 1994) Thus the default RBA used by US EPA for lead in soil and dust compared to lead in water is 3050 or 60 When the measured RBA in soil or dust at a site is found to be less than 60 compared to some fully soluble form of lead it may be concluded that exposures to and hazards from lead in these media at that site are probably lower than typical default assumptions If the measured RBA is higher than 60 absorption of and hazards from lead in these media may be higher than usually assumed

OSWER 92857-77 2

13 Overview of US EPArsquos Program to Study Lead Bioavailability in Animals

Scientists in US EPA Region 8 have been engaged in a multi-year investigation of lead absorption from a variety of different environmental media especially soils and solid wastes associated with mining milling and smelting sites All studies in this program employed juvenile swine as the animal model Juvenile swine were selected for use in these studies because they are considered to be a good physiological model for gastrointestinal absorption in children (see Appendix A)

Initial studies in the program (referred to as ldquoPhase Irdquo) were performed by Dr Robert Poppenga and Dr Brad Thacker at Michigan State University (Weis et al 1995) The Phase I study designs and protocols were refined and standardized by Dr Stan Casteel and his colleagues at the University of Missouri Columbia and this group has performed a large number of studies (collectively referred to as ldquoPhase IIrdquo) designed to further characterize the swine model and to quantify lead absorption from a variety of different test materials Section 2 of this report summarizes the Phase II work performed at the University of Missouri

14 Overview of Methods for Estimating Lead RBA In Vitro

Measurement of lead RBA in animals has a number of potential benefits but is also rather slow and costly and may not be a feasible option in all cases It is mainly for these reasons that a number of scientists have been working to develop in vitro procedures that may provide faster and less costly alternatives for estimating the RBA of lead in soil or soil-like samples (Miller and Schricker 1982 Imber 1993 Ruby et al 1993 1996 Medlin 1997 Rodriguez et al 1999) These methods are based on the concept that the rate andor extent of lead solubilization in the gastrointestinal fluid are likely to be important determinants of lead bioavailability in vivo and most in vitro tests are aimed at measuring the rate or extent of lead solubilization from soil into an extraction solvent that resembles gastric fluid To help avoid confusion in nomenclature the fraction of lead which solubilizes in an in vitro system is referred to as bioaccessibility while the fraction that is absorbed in vivo is referred to as bioavailability

More recently development and testing of a simplified in vitro method for estimating lead bioaccessibility has been performed by Dr John Drexler at the University of Colorado Section 3 of this report describes this in vitro method and presents the results

OSWER 92857-77 3

20 IN VIVO STUDIES

21 Basic Approach for Measuring RBA In Vivo

The basic approach for measuring lead absorption in vivo is to administer an oral dose of lead to test animals and measure the increase in lead level in one or more body compartments (blood soft tissue bone) In order to calculate the RBA value of a test material the increase in lead in a body compartment is measured both for that test material and a reference material (lead acetate) Equal absorbed doses of lead (as Pb+2) are expected to produce approximately equal increases in concentration in tissues regardless of the source or nature of the ingested lead so the RBA of a test material is calculated as the ratio of doses (test material and reference material) that produce equal increases in lead concentration in the body compartment Note that this approach is general and yields reliable results for both non-linear and linear responses

22 Animal Exposure and Sample Collection

All in vivo studies carried out during this program were performed as nearly as possible within the spirit and guidelines of Good Laboratory Practices (GLP 40 CFR 792) Standard Operating Procedures (SOPs) for all of the methods are documented in a project notebook that is available through the administrative record

Experimental Animals

All animals used in this program were intact male swine approximately 5 to 6 weeks of age All animals were monitored to ensure they were in good health throughout the study

Diet

In order to minimize lead exposure from the diet animals were fed a special low-lead diet purchased from Zeigler Brothers Inc (Gardners PA) The amount of feed provided was equal to 5 of the average body weight of animals on study The feed was nutritionally complete and met all requirements of the National Institutes of HealthmdashNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 Periodic analysis of feed samples during this program indicated the mean lead level was less than 50 μgkg corresponding to a daily intake of less than 25 μgkgshyday

Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 μgL corresponding to a daily intake of less than 02 μgkg-day

OSWER 92857-77 4

Exposure

Appendix B provides the details of animal exposure including the design (number of dose groups number of animals dosing material and dose levels) for all of the Phase II studies A typical study design is summarized in Table 2-2 In general groups of animals were exposed to a series of doses of either lead acetate or test material For convenience in this report lead acetate is abbreviated as ldquoPbAcrdquo Exposure occurred twice a day for 15 days Most groups were exposed by oral administration with one group usually exposed to lead acetate by intravenous (IV) injection via an indwelling venous catheter

23 Preparation of Biological Samples for Analysis

Samples of blood were collected from each animal at multiple times during the course of a study (eg days 0 1 2 3 4 6 9 12 and 15) On day 15 the animals were sacrificed and samples of liver kidney and bone (femur) were collected

Appendix C presents details of biological sample collection preparation and analysis In brief samples of blood were diluted in ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDC) for analysis of blood samples for lead (CDC 2001) Samples of soft tissue (kidney liver) were digested in hot acid while samples of bone were ashed and then dissolved in acid

Prepared samples were analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer All results from the analytical laboratory were reported in units of μg PbL of prepared sample The detection limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 μgL)

24 Data Reduction

The basic data reduction task required to calculate an RBA for a test material is to fit mathematical equations to the dose-response data for both the test material and the reference material and then solve the equations to find the ratio of doses that would be expected to yield equal responses After testing a variety of different equations it was found that nearly all blood lead AUC data sets could be well-fit using an exponential equation while most data sets for liver kidney and bone lead could be well-fit using a linear equation

Linear Response = a + b sdot Dose (1)

Exponential Response = a + b sdot [1minus exp(minusc sdot Dose)] (2)

where a b and c are the parameters of the models and Dose is the total daily administered dose of lead (μgkg-day)

OSWER 92857-77 5

Appendix D presents a detailed description of the curve-fitting methods and rationale along with the methods used to quantify uncertainty in the RBA estimates for each test material Detailed dose-response data and curve-fitting results are presented in Appendix E

25 Results and Discussion

251 Effect of Dosing on Animal Health and Weight

Lead exposure levels employed in this program are substantially below those which cause clinical symptoms in swine and no evidence of treatment-related toxicity was observed in any dose group All animals exposed to lead by the oral route remained in good health throughout each study and the only clinical signs observed were characteristic of normal swine However animals implanted with indwelling venous catheters (used for intravenous injections) were subject to infection and a few animals became quite ill This was a problem mainly at the start of the program and tended to diminish as experience was gained on the best surgical and prophylactic techniques for catheter implantation When an animal became ill if good health could not be restored by administration of antibiotics the animal was promptly removed from the study

All animals were weighed every three days during the course of each study The rate of weight gain (kgday) averaged across all Phase II studies is illustrated in Figure 2-1 As shown animals typically gained about 03 to 05 kgday and the rate of weight gain was generally comparable in all groups

252 Time Course of Blood Lead Response

The time course of the blood lead response to oral or intravenous exposure may be thought of on two different time scales the short-term ldquospikerdquo that occurs immediately following an exposure and the longer-term trend toward ldquosteady-staterdquo blood lead following repeated exposures

Initial studies performed during Phase I of this program revealed that a single oral dose of lead acetate causes blood lead levels rise to a peak about two hours post-ingestion and then decrease over the course of 12 to 24 hours to a near steady-state value (Weis et al 1993) Although knowledge of these rapid kinetics is important in fully understanding the toxicokinetics of lead investigations in Phase II of this program focused mainly on quantifying the slower rise in ldquosteady-staterdquo blood lead following repeated exposures To achieve this goal all blood lead samples were collected 17 hours after lead exposure at a time when the rate of change in blood lead due to the preceding dose is minimal

Figure 2-2 presents an example graph of the time course of ldquosteady-staterdquo blood lead levels following repeated oral and intravenous exposure to lead acetate As seen blood lead levels begin below the detection limit (usually about 1 μgdL) and stay very low in control animals throughout the course of the study In animals exposed to lead acetate blood lead values begin to rise within 1 to 2 days and tend to flatten out to a near steady-state in about 7 to 10 days

OSWER 92857-77 6

253 Dose-Response Patterns

Figures 2-3 to 2-6 present the dose response patterns observed for blood liver kidney and bone (femur) following repeated oral or intravenous exposure to lead acetate For blood the endpoint is the area under the blood lead vs time curve (AUC) For femur kidney and liver the endpoint is the concentration in the tissue at the time of sacrifice The data for intravenous exposure are based on a single study1 while the patterns for oral exposure are based on the combined results across all studies performed during Phase II

As seen there is substantial variability in response between individuals (both within and between studies) and this variability tends to increase as dose (and response) increases This pattern of increasing variance in response is referred to as heteroscedasticity and is accounted for in the model-fitting procedure through the use of weighted least squares regression (see Appendix D) Despite the variability in response the regression analyses indicate that the dose response pattern is typically non-linear for blood lead AUC following both oral and intravenous exposure but is approximately linear in both cases for liver kidney and bone lead (see Table D1) This pattern of dose-response relationships suggests that at least over the dose range tested in this program absorption of lead from the gastrointestinal tract of swine is linear and that the non-linearity observed in blood lead AUC response is due to some sort of saturable binding in the blood

254 Estimation of ABA for Lead Acetate

Inspection of Figures 2-3 to 2-6 reveals that each of the measured responses to ingested lead acetate is smaller than the response for intravenously injected lead acetate These data were used to calculate the absolute bioavailability of ingested lead acetate using the data reduction approach described in Section 24 The results are summarized below

Measurement Endpoint Estimated ABA of PbAc

Blood AUC 010 plusmn 002

Liver 016 plusmn 005

Kidney 019 plusmn 005

Femur 014 plusmn 003

Although the four different measurement endpoints do not agree precisely it seems clear that the absolute bioavailability of lead acetate in juvenile swine is about 15 plusmn 4 Although data are limited results from balance studies in infants and young children (age 2 weeks to 8 years) suggest that lead absorption is probably about 42 to 53 (Alexander et al 1974 Ziegler et al 1978) If so lead absorption in juvenile swine is apparently lower than for young

Most studies in Phase II utilized only one intravenous dose level (100 μgkg-day) and hence do not provide dose-response data Study 8 included three intravenous exposure levels (25 50 and 100 μgkg-day) the data from this study are shown in Figures 2-3 to 2-6

OSWER 92857-77 7

1

humans Although the reason for this apparent difference is not known it is important to note that even if swine do absorb less lead than children under similar dosing conditions this does not invalidate the swine as an animal model for estimating relative bioavailability of lead in different test materials

255 Estimation of RBA for Lead in Test Materials

Characterization of Test Materials

Table 2-3 describes the Phase II test materials for which RBA was measured in this program and provides the analytical results for lead Data on other Target Analyte List (TAL) metals if available are provided in Appendix F As seen 17 different samples from eight different sites were investigated along with one sample of paint flakes mixed with clean soil and one sample of finely-ground native galena mixed with clean soil Prior to analysis and dosing all samples were dried (lt40degC) and sieved and only materials which passed through a 60-mesh screen (corresponding to particles smaller than about 250 μm) were used This range of particle sizes was selected because the US EPA considers particles less than about 250 μm to be the most likely to adhere to the hands and be ingested by hand-to-mouth contact especially in young children (US EPA 2000)

Each sample of test material that was evaluated in the swine bioassay program was thoroughly characterized with regard to mineral phase particle size distribution and matrix association using electron microprobe analysis Detailed results for each test material are presented in Appendix F and the results are summarized in Tables 2-4 to 2-6

Table 2-4 lists the different lead phases observed in the test materials and gives the relative lead mass (RLM) for each phase in each test material The RLM is the estimated percentage of the total lead in a sample that is present in a particular phase Of the 22 different phases detected in one or more samples 9 are very minor with RLM values no higher than 2 in any sample However 13 of the phases occur at concentrations that could contribute significantly to the overall bioavailability of the sample (RLM gt10) It should be noted that a particle is classified as ldquoslagrdquo only if the particle is glassy or vitreous in nature Inclusions or other non-vitreous grains of lead-bearing material are classified according to their mineral content and are not classified as slag particles (even if they are observed in bulk samples that are referred to as ldquoslagrdquo)

Table 2-5 summarizes information on the degree to which lead-bearing grains in each sample are partially or entirely liberated (ie exposed to gastric fluids when ingested) or included (ie fully enclosed or encased in mineral or vitreous matrices) Data are presented both on a particle frequency basis and on the basis of relative lead mass As seen the majority of lead-bearing particles in most samples are partially or entirely liberated although the tailings sample from Oregon Gulch is a clear exception

Table 2-6 summarizes data on the distribution (frequency) of particle sizes (measured as the longest dimension) in each sample For convenience the data presented are for liberated particles only (Appendix F contains the data for all particles) As seen most samples contain a

OSWER 92857-77 8

range of particle sizes often with the majority of the particles being less than 50 μm (Remember that all samples were sieved to isolate particles less than 250 μm before analysis)

RBA Results for Test Materials

Detailed model fitting results and RBA calculations for each test material are presented in Appendix E and are summarized in Table 2-7

As shown in Table 2-7 there are four independent estimates of RBA (based on blood AUC liver kidney and bone) for each test material Conceptually each of these four values is an independent estimate of the RBA for the test material so the estimates from all four endpoints need to be combined to yield a final point estimate for each test material As discussed in Appendix D (Section 47) an analysis of the relative statistical reliability of each endpoint (as reflected in the average coefficient of variation in RBA values derived from each endpoint) suggests that the four endpoint-specific RBA values are all approximately equally reliable Based on this the point estimate for a test material is the simple average across the four endpoint-specific RBA values The resulting point estimate values are presented in the far right portion of Table 2-7 Uncertainty bounds around the point estimates were derived as described in Appendix D (Section 47)

Inspection of these point estimates for the different test materials reveals that there is a wide range of values across different samples both within and across sites For example at the California Gulch site in Colorado RBA estimates for different types of material range from about 6 (Oregon Gulch tailings) to about 105 (FeMn lead oxide sample) This wide variability highlights the importance of obtaining and applying reliable RBA data to site-specific samples in order help to improve risk assessments for lead exposure

256 Effect of Food

Studies in humans indicate that lead absorption is reduced by the presence of food in the stomach (Garber and Wei 1974 US EPA 1996) The mechanism by which the presence of food leads to decreased absorption is not certain but may be related to competition between lead and calcium for active andor passive uptake sites in the gastrointestinal epithelium (Diamond 2000) Because of the potential inhibitory effects of food all of the studies performed during this program were designed to estimate the RBA of lead associated with a fasting state each dose being administered to animals no less than six hours after the last feeding In order to investigate how the presence of food in the stomach might influence absorption a study was performed to measure the absorption of lead acetate given two hours before feeding and compare that to the absorption of lead acetate given either at the time of feeding or two hours after feeding The results expressed using the absorption two hours before feeding as the frame of reference are summarized below

OSWER 92857-77 9

Measurement Endpoint

Ratio of PbAc Absorption Given With Food

Compared to PbAc Given Without Food

Ratio of PbAc Absorption Given 2 Hours After Feeding

Compared to PbAc Given Without Food

Blood Lead AUC 039 plusmn 005 040 plusmn 006

Liver Lead 086 plusmn 024 058 plusmn 016

Kidney Lead 072 plusmn 026 073 plusmn 027

Bone Lead 035 plusmn 005 033 plusmn 005

Point Estimate 058 plusmn 028 051 plusmn 022

These findings indicate that uptake of lead is reduced by close to half (RBA point estimates are 51 and 58) when the lead is administered to animals along with food compared to when it is administered on an empty stomach This effect appears to endure for at least two hours after feeding which is consistent with the results of a gastric emptying time study in juvenile swine that indicated that food is held in the stomach for up to four hours after eating (Casteel et al 1998)

This study which utilized lead acetate only does not provide information about the effect of food on the absorption of lead ingested in a solid form such as soil However it is suspected that the magnitude of the decrease in absorption caused by food is likely to be at least as large as that observed for lead acetate and perhaps even larger This is because food may influence not only the absorption of soluble lead ions but might also tend to decrease the rate and extent of lead solubilization from soil by tending to increase the pH of gastric fluids

257 Correlation of RBA with Mineral Phase

In principle each unique combination of phase size and matrix association constitutes a unique mineralogical form of lead and each unique form could be associated with a unique RBA that is the inherent value for that ldquotyperdquo of lead If so then the concentrated-weighted average RBA value for a sample containing a mixture of different types of lead is given by

n s m

RBAsample =sumsumsumCi j k sdotRBA i j k (3) i=1 j=1 k =1

where

RBAsample = Observed RBA of lead in a sample Cijk = Fraction of total lead in phase i of size j and matrix association k RBAijk = RBA of lead in phase i of size j and matrix association k n = Number of different lead phase categories s = Number of different size categories m = Number of different matrix association categories

OSWER 92857-77 10

If the number of different lead phases which can exist in the environment is on the order of 20 the number of size categories is on the order of five and the number of matrix association categories is two (included and liberated) then the total number of different ldquotypesrdquo of lead is on the order of 200 Because measured RBA data are available from this study for only 19 different samples it is clearly impossible (with the present data set) to estimate type-specific RBA values for each combination of phase size and matrix association Therefore in order to simplify the analysis process it was assumed that the measured RBA value for a sample was dominated by the liberated mineral phases present and the effect of included materials or of particle size were not considered That is the data were analyzed according to the following model

n

RBAsample =sumCi liberated sdot RBAi liberated (4) i=1

Because 22 different phases were identified and only 19 different samples were analyzed it was necessary to reduce the number of phases to a smaller number so that regression analysis could be performed Therefore the different phases were grouped into ten categories as shown in Table 2-8 These groups were based on professional judgment regarding the expected degree of similarity between members of a group along with information on the relative abundance of each phase (see Table 2-4)

The total lead mass in each group was calculated by summing the relative lead mass for each individual component in the group As noted above only the lead mass in partially or entirely liberated particles was included in the sum

Group-specific RBA values were estimated by fitting the grouped data to the model (equation 4) using minimization of squared errors Two different options were employed In the first option each parameter (group-specific RBA) was fully constrained to be between zero and one inclusive In the second option each parameter was partially constrained to be greater than or equal to zero Because Group 10 contains only phases which are present in relatively low levels an arbitrary coefficient of 05 was assumed for this group and the coefficient was not treated as a fitting parameter

The resulting estimates of the group-specific RBA values are shown in Figure 2-7 As seen there is a wide range of group-specific RBA values with equal results being obtained by both methods of constraint It is important to stress that these group-specific RBA estimates are derived from a very limited data set (nine independent parameter estimates based on only 19 different measurements) so the group-specific RBA estimates are inherently uncertain In addition both the measured sample RBA values and the relative lead mass in each phase are subject to additional uncertainty Therefore the group-specific RBA estimates should not be considered to be highly precise and calculation of a quantitative sample-specific RBA value from these estimates is not appropriate Rather it is more appropriate to consider the results of this study as sufficient to support only semi-quantitative rank-order classification of phase-specific RBA values as follows

OSWER 92857-77 11

Low Bioavailability (RBA lt025)

Medium Bioavailability (RBA = 025-075)

High Bioavailability (RBA gt075)

Fe(M) Sulfate Anglesite Galena Fe(M) Oxide Pb(M) Oxide

Lead Oxide Lead Phosphate

Cerussite Mn(M) Oxide

(M) = Metal

As noted above the estimates apply only to particles that are liberated not those that are included

258 Quality Assurance

A number of steps were taken throughout each of the studies in this program to assess and document the quality of the data that were collected These steps are summarized below

Duplicates

A randomly selected set of about 5 of all blood and tissue samples generated during each study were submitted to the laboratory in a blind fashion for duplicate analysis Figure 2-8 plots the results for blood (Panel A) and for liver kidney and bone (Panel B) As seen there was good intra-laboratory reproducibility between duplicate samples for both blood and tissues with both linear regression lines having a slope near 10 an intercept near zero and an R2 value near 100

Standards

The CDC provides blood lead ldquocheck samplesrdquo that may be used for use in quality assurance programs for blood lead studies Three types of check samples (nominal concentrations of 17 μgdL 48 μgdL and 149 μgdL) were used in these studies Each day that blood samples were collected from experimental animals several check samples of different concentrations were also prepared and submitted for analysis in random order and in a blind fashion The results (averaged across all studies) are plotted in Figure 2-9 As seen the analytical results obtained for the check samples were generally in good agreement with the expected value at all three concentrations with an overall mean of 14 μgL for the low standards (nominal concentration of 17 μgL) 43 μgL for the middle standard (nominal concentration of 48 μgL) and 145 μgL for the high standards (nominal concentration of 149 μgL)

Interlaboratory Comparison

In each study an interlaboratory comparison of blood lead analytical results was performed by sending a set of about 15 to 20 randomly selected whole blood samples to CDC for blind independent preparation and analysis The results are plotted in Figure 2-10 As seen the results of analyses by US EPArsquos laboratory are generally similar to those of CDC with a mean inter-sample difference (US EPA minus CDC) of 007 μgdL The slope of the best-fit straight line through the data is 084 indicating that the concentration values estimated by the US EPA

OSWER 92857-77 12

laboratories tended to be about 15 lower than those estimated by CDC The reason for this apparent discrepancy between the US EPA laboratory and the CDC laboratory is not clear but might be related to differences in sample preparation techniques Regardless of the reason the differences are sufficiently small that they are likely to have no significant effect on calculated RBA values In particular it is important to realize that if both the lead acetate and test material dose-response curves are biased by the same factor then the biases cancel in the calculation of the ratio

Reproducibility of RBA Estimates

As with any study involving animals there may be substantial variability between animals within each dose group and there may also be variability in observed responses to exposure across different studies Because each study involved administration of a standard series of doses of lead acetate the data for lead acetate can be used to assess the stability and reproducibility of the swine model Table 2-9 lists the best-fit parameters for the best-fit curves for oral lead acetate dose responses for blood AUC liver kidney and bone in each study and for all studies combined As seen the variability (expressed as the between-study coefficient of variation) is generally on the order of 25 to 50 for the b and c parameters with somewhat higher variability in the intercept parameter (a) This degree of between-study variability is not unexpected for a study in animals and emphasizes the need for generating the dose-response curve for the reference material within each study The source of the between-study variation is likely to be mainly a consequence of variation in animals between different groups (different dams different ages different weights) although a possible contribution from other variables (time of year laboratory personnel etc) cannot be excluded

Because RBA calculations are based on the within-study ratio of responses between a test material and reference material the variability in response between studies may be at least partly cancelled in the calculation of the RBA The most direct way to test this hypothesis is to compare RBA estimates for the same material that has been tested in two different studies To date only two test materials have been tested more than once The results are shown in Table 2-10 and are summarized below

For the Palmerton Location 2 sample (tested twice in Phase II) agreement is moderately good between the two studies for the blood AUC and kidney endpoints and for the point estimate although there is relatively low agreement for the liver and bone endpoints For the Residential Soil Composite from the California Gulch Superfund site (tested once by the University of Michigan during Phase I and again by the University of Missouri during Phase II) agreement is good for all four endpoints with between-study differences of less than 20 These differences are generally similar to the within-study confidence bounds which are typically in the 10 to 20 range Taken together these studies support the view that the in vivo RBA assay has acceptable inter-study and inter-laboratory reproducibility

OSWER 92857-77 13

30 IN VITRO STUDIES

31 Introduction

Measurement of lead RBA in animals using the approach described above has a number of potential benefits but is also rather slow and costly and may not be feasible in all cases It is mainly for this reason that a number of scientists have been working to develop alternative in vitro procedures that may provide a faster and less costly alternative for estimating the RBA of lead in soil or soil-like samples These methods are based on the concept that the rate andor extent of lead solubilization in gastrointestinal fluid is likely to be an important determinant of lead bioavailability in vivo and most in vitro tests are aimed at measurement of the rate or extent of lead solubilization in an extraction solvent that resembles gastric fluid The fraction of lead which solubilizes in an in vitro system is referred to as in vitro bioaccessibility (IVBA) which may then be used as an indicator of in vivo RBA

Background on the development and validation of in vitro methods for estimating lead bioaccessibility can be found in Imber (1993) Ruby et al (1993 1996) and Medlin (1997)

32 In Vitro Method

The method described in this report represents a simplification from most preceding approaches The method was designed to be fast easy and reproducible and some test conditions were adjusted to yield results that best correlated with in vivo measurements of lead bioavailability The detailed standard operating procedure (SOP) is presented below additional information on this procedure may be obtained from httpwwwcoloradoedugeolscilegs

321 Sample Preparation

All test materials tested in the bioaccessibility protocol were identical to the test materials administered to swine in the in vivo studies described above As noted previously soils were prepared by drying (lt40degC) and sieving to lt250 μm The lt250-μm size fraction was used because this particle size is representative of that which adheres to childrenrsquos hands Samples were thoroughly mixed prior to use to ensure homogenization All samples were archived after the study completion and retained for further analysis for a period of six months

322 Apparatus

The main piece of equipment used for this procedure is the extraction device shown in Figure 3-1 An electric motor (the same motor as is used in the Toxicity Characteristic Leaching Procedure or TCLP) drives a flywheel which in turn drives a Plexiglass block situated inside a temperature-controlled water bath The Plexiglass block contains ten 5-centimeter holes with stainless steel screw clamps each of which is designed to hold a 125-mL wide-mouth high density polyethylene (HDPE) bottle The water bath was filled such that the extraction bottles were completely immersed Temperature in the water bath was maintained at 37plusmn2 degC using an immersion circulator heater The 125-mL HDPE bottles had air-tight screw-cap seals and care

OSWER 92857-77 14

was taken to ensure that the bottles did not leak during the extraction procedure All equipment was properly cleaned acid washed and rinsed with deionized water prior to use

323 Selection of IVBA Test Conditions

The dissolution of lead from a test material into the extraction fluid depends on a number of variables including extraction fluid composition temperature time agitation solidfluid ratio and pH These parameters were evaluated to determine the optimum values for maximizing sensitivity stability and the correlation between in vitro and in vivo values

All reagents were free of lead and the final fluid was tested to confirm that lead concentrations were less than one-fourth the project required detection limit (PRDL) of 10 μgL (ie less than 2 μgL lead in the final fluid) Cleanliness of all materials used to prepare andor store the extraction fluid and buffer is essential all glassware and equipment used to prepare standards and reagents were properly cleaned acid washed and triple-rinsed with deionized water prior to use

Extraction Fluid The extraction fluid selected for this procedure was 04 M glycine (free base reagent grade glycine in deionized water) adjusted to a pH of 150plusmn005 at 37degC using trace metal grade concentrated hydrochloric acid (HCl) Most previous in vitro test systems have employed a more complex fluid intended to simulate gastric fluid For example Medlin (1997) used a fluid that contained pepsin and a mixture of citric malic lactic acetic and hydrochloric acids When the bioaccessibility of a series of test substances were compared using 04 M glycine buffer (pH 15) with and without the inclusion of these enzymes and metabolic acids no significant difference was observed (p=0196) This indicates that the simplified buffer employed in the procedure is appropriate even though it lacks some constituents known to be present in gastric fluid

Temperature In order to evaluate the effect of the extraction temperature seventeen substrates were analyzed (generally in triplicate) at both 37degC and 20degC The results are shown in Figure 3-2 (Panel A) In some cases temperature had little effect but in three cases the amount of lead solubilized was more than 20 greater at 37degC than at 20degC and in two cases it was more than 20 less Because the results appeared to depend on temperature in at least some cases a temperature of 37degC was selected because this is approximately the temperature of gastric fluid in vivo

Extraction Time The time that ingested material is present in the stomach (ie stomach-emptying time) is about one hour for a child particularly when a fasted state is assumed (see Appendix A) To investigate the effect of extraction time on lead solubilization 11 substrates were extracted for periods of 1 2 or 4 hours The results are shown in Figure 3-2 (Panel B) As seen in most cases the amount of lead solubilized was approximately constant over time with only one substrate (test material 6) showing a variation that exceeded the method precision Therefore an extraction time of one hour was selected for the final method In a subsequent test (data not shown) it was found that allowing the bottles to stand at room temperature for up to 4 hours after rotation at 37degC caused no significant variation (lt10) in lead concentration

OSWER 92857-77 15

pH Human gastric pH values tend to range from about 1 to 4 during fasting (see Appendix A) Previous studies have used stomach phase pH values between 10 and 25 for their in vitro experiments (Ruby et al 1993 CBR 1993 Gasser et al 1996 Buckley 1997 Medlin 1997 Rodriguez et al 1999 Mercier et al 2000) To evaluate the effect of pH on lead bioaccessibility 24 substrates were analyzed at pH values of 15 25 or 35 As shown in Figure 3-2 (Panel C) the amount of lead solubilized is strongly pH-dependent with the highest extraction at pH 15 For the subset of test materials for which in vivo RBA had been estimated at that time (N = 13) the empiric correlation between IVBA and in vivo RBA was slightly better at pH 15 (rho = 0919) than at pH 25 (rho = 0881) Thus a pH of 15 was selected for use in the final protocol

Agitation If the test material is allowed to accumulate at the bottom of the extraction apparatus the effective surface area of contact between the extraction fluid and the test material may be reduced and this may influence the extent of lead solubilization Depending on which theory of dissolution is relevant (Nernst and Brunner 1904 or Dankwerts 1951) agitation will greatly affect either the diffusion layer thickness or the rate of production of fresh surface Previous workers have noted problems associated with both stirring and argon bubbling methods (Medlin and Drexler 1995 Drexler 1997) Although no systematic comparison of agitation methods was performed an end-over-end method of agitation was chosen to best simulate the complex peristaltic motion of the gastrointestinal system

SolidFluid Ratio and Mass of Test Material A solid to fluid ratio of 1100 (mass per unit volume) was chosen to reduce the effects of metal dissolution that were noted by Sorenson et al (1971) when lower ratios (15 and 125) were used Tests using Standard Reference Materials showed no significant variation (within plusmn 1 of control means) in the fraction of lead extracted with soil masses as low as 02 gram (g) per 100 mL However use of low masses of test material could introduce variability due to small scale heterogeneity in the sample andor to weighing errors Therefore the final method employs 10 g of test material in 100 mL of extraction fluid

In special cases the mass of test material may need to be less than 10 g to avoid the potential for saturation of the extraction solution Tests performed using lead acetate lead oxide and lead carbonate indicate that if the bulk concentration of a test material containing these relatively soluble forms of lead exceeds approximately 50000 ppm the extraction fluid becomes saturated at 37degC and upon cooling to room temperature and below lead chloride crystals will precipitate To prevent this from occurring the concentration of lead in the test material should not exceed 50000 ppm or the mass of the test material should be reduced to 050plusmn001g

324 Summary of Final Leaching Protocol

The extraction procedure began by placing 100plusmn005 g of sieved test material and 100plusmn05 mL of the buffered extraction fluid (04 M glycine pH 15) into a 125-mL wide-mouth HDPE bottle Care was taken to ensure that static electricity did not cause soil particles to adhere to the lip or outside threads of the bottle if necessary an antistatic brush was used to eliminate static electricity prior to adding the test substrate The bottle was tightly sealed and then shaken or inverted to ensure that there was no leakage and that no soil was caked on the bottom of the bottle

OSWER 92857-77 16

Each bottle was placed into the modified TCLP extractor (water temperature 37plusmn2degC) Samples were extracted by rotating the samples end-over-end at 30 plusmn 2 rpm for 1 hour After 1 hour the bottles were removed dried and placed upright on the bench top to allow the soil to settle to the bottom A 15-mL sample of supernatant fluid is removed directly from the extraction bottle into a disposable 20-cc syringe After withdrawal of the sample into the syringe a Luer-Lok attachment fitted with a 045-μm cellulose acetate disk filter (25 mm diameter) is attached and the 15 mL aliquot of fluid is filtered through the attachment to remove any particulate matter This filtered sample of extraction fluid is then analyzed for lead as described below If the total time elapsed for the extraction process exceeds 90 minutes the test must be repeated

As noted above in some cases (mainly slags) the test material can increase the pH of the extraction buffer and this could influence the results of the bioaccessibility measurement To guard against this the pH of the fluid was measured at the end of the extraction step (just after a sample was withdrawn for filtration and analysis) If the pH was not within 05 pH units of the starting pH (15) the sample was re-analyzed If the second test also resulted in an increase in pH of greater than 05 units it was apparent that the test material was buffering the solution In these cases the test was repeated using manual pH adjustment during the extraction process stopping the extraction at 5 10 15 and 30 minutes and manually adjusting the pH down to pH 15 at each interval by drop-wise addition of HCl

325 Analysis of Extraction Fluid for Lead

The filtered samples of extraction fluid were stored in a refrigerator at 4degC until they were analyzed (within 1 week of extraction) Once received by the laboratory all media were maintained under standard chain-of-custody The samples were analyzed for lead by ICP-AES or ICP-MS (US EPA Method 6010 or 6020 US EPA 1986) The method detection limit (MDL) in extraction fluid was calculated to be around 19 μgL for Method 6010 and typically 01-03 μgL for Method 6020

326 Quality ControlQuality Assurance

Quality assurance for the extraction procedure consisted of the following quality control samples

Reagent Blank mdash extraction fluid analyzed once per batch

Bottle Blank mdash extraction fluid only (no test soil) run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Blank Spike mdash extraction fluid spiked at 10 mgL lead and run through the complete procedure at a frequency of 1 in 20 samples (minimum of 1 per batch)

Matrix Spikes mdash a subsample of each material used for duplicate analyses was used as a matrix spike The spike was prepared at 10 mgL lead and run through the extraction procedure at a frequency of 1 in 10 samples (minimum of 1 per batch)

OSWER 92857-77 17

Duplicate Sample mdash duplicate sample extractions were performed on 1 in 10 samples (minimum of 1 per batch)

Control Soil mdash National Institute of Standards and Testing (NIST) Standard Reference Material (SRM) 2711 (Montana Soil) was used as a control soil The SRM was analyzed at a frequency of 1 in 20 samples (minimum 1 per batch)

Control limits for these quality control samples were as follows

Analysis Frequency Control Limits

Reagent blank once per batch lt25 μgL lead

Bottle blank 5 lt50 μgL lead

Blank spike (10 mgL) 5 85-115 recovery

Matrix spike (10 mgL) 10 75-125 recovery

Duplicate sample 10 plusmn20 RPD

Control soil (NIST 2711) 5 plusmn10 RPD

RPD = Relative percent difference Minimum of once per batch

To evaluate the precision of the in vitro bioaccessibility extraction protocol approximately 67 replicate analyses of both NIST SRM 2710 and 2711 were conducted over a period of several months Results are shown in Figure 3-3 As seen both standards yield highly reproducible results with a mean coefficient of variation of about 6

33 Results and Discussion

331 IVBA Values

Table 3-1 summarizes the in vitro bioaccessibility results for the set of 19 different test materials evaluated under the Phase II program Each value is the mean and standard deviation of three independent measurements performed at the University of Colorado at Boulder

Figure 3-4 shows the results of an inter-laboratory comparison of results for these test materials The participating laboratories included ACZ Laboratories Inc University of Colorado at Boulder US Bureau of Reclamation Environmental Research Chemistry Laboratory and National Exposure Research Laboratory As seen in the figure within-laboratory variability (as shown by the error bars) is quite small (average le2) and there is very good agreement between laboratories (average difference of 2 to 3 range of difference from 1 to 9)

OSWER 92857-77 18

332 Comparison with In Vivo Results

In order for an in vitro bioaccessibility test system to be useful in predicting the in vivo RBA of a test material it is necessary to establish empirically that a strong correlation exists between the in vivo and the in vitro results across many different samples A scatter plot of the in vivo RBA and in vitro bioaccessibility data from this program is shown in Figure 3-5 The Spearman rank order correlation coefficient between the paired RBA and IVBA point estimates is 0896 (p lt0001) and the Pearson product moment correlation coefficient is 0917 (p lt0001) indicating that there is a statistically significant positive correlation between IVBA and RBA

Several different mathematical models were tested to describe the relation between RBA and IVBA including linear power and exponential All fitting was done using weighted least square regression as detailed in Appendix D The results are summarized below

Model R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting slightly better than the linear model However as discussed in Appendix D the difference in quality of fit between linear and exponential models is not judged to be meaningful and the linear model is selected as the preferred model at present As more data become available in the future the relationship between IVBA and RBA will be reassessed and the best-fit model form will be reconsidered and revised if needed

Because there is measurement error not only in RBA but also in IVBA linear fitting was also performed taking the error in both RBA and IVBA into account There was nearly no difference in fit so the results of the weighted linear regression were selected for simplicity This decision may be revisited as more data become available Based on this decision the currently preferred model is

RBA = 0878middotIVBA ndash 0028

It is important to recognize that use of this equation to calculate RBA from a given IVBA measurement will yield the ldquotypicalrdquo RBA value expected for a test material with that IVBA and the true RBA may be somewhat different (either higher or lower) The best fit line and the 95 prediction interval for this data set are shown in Figure 3-6

Applicability of the IVBA-RBA Model

At present it appears that the equation relating IVBA to RBA should be widely applicable having been found to hold true for a wide range of different soil types and lead

OSWER 92857-77 19

phases from a variety of different sites However most of the samples tested have been collected from mining and milling sites and it is plausible that some forms of lead that do not occur at this type of site might not follow the observed correlation Thus whenever a sample containing an unusual andor untested lead phase is evaluated by the IVBA protocol this should be identified as a potential source of uncertainty In the future as additional samples with a variety of new and different lead forms are tested by both in vivo and in vitro methods the applicability of the method will be more clearly defined

OSWER 92857-77 20

40 REFERENCES

Alexander FW BE Clayton and HT Delves 1974 Mineral and trace-metal balances in children receiving normal and synthetic diets QJ Med 4389-111

Buckley BT 1997 Estimates of bioavailability of metals in soil with synthetic biofluids Is this a replacement for animal studies In IBC Conference on Bioavailability 1998 Scottsdale AZ

Casteel SW LD Brown J Lattimer and ME Dunsmore 1998 Fasting and feeding effects on gastric emptying time in juvenile swine Contemporary Topics in Laboratory Animal Science 37106-108

CBR 1993 Report Development of a physiologically relevant extraction procedure CB Research International Sidney BC Canada

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National Center for Environmental Health Centers for Disease Control and Prevention Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

Dankwerts PV 1951 Significance of liquid-film coefficients in gas absorption Ind Eng Chem 431460

Diamond GL 2000 Transport of metals in the gastrointestinal system and kidneys In Molecular Biology and Toxicology of Metals RK Zalups and J Koropatnick (eds) Taylor amp Francis London pp 300-344

Drexler JW 1997 Validation of an in vitro method A tandem approach to estimating the bioavailability of lead and arsenic to humans IBC Conference on Bioavailability Scottsdale AZ

Garber BT and E Wei 1974 Influence of dietary factors on the gastrointestinal absorption of lead Toxicol App Pharmacol 27685-691

Gasser UG WJ Walker RS Borch and RG Burau 1996 Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation Env Sci Tech 30761-769

Gibaldi M and D Perrier 1982 Pharmacokinetics (2nd edition) Marcel Dekker Inc NY NY pp 294-297

Goodman AG TW Rall AS Nies and P Taylor 1990 The Pharmacological Basis of Therapeutics (8th ed) Pergamon Press Inc Elmsford NY pp 5-21

OSWER 92857-77 21

Imber BD 1993 Development of a physiologically relevant extraction procedure Prepared for BC Ministry of Environment Lands and Parks Environmental Protection Division Victoria BC CB Research International Corporation Sidney BC

Klaassen CD MO Amdur and J Doull (eds) 1996 Cassarett and Doullrsquos Toxicology The Basic Science of Poisons McGraw-Hill Inc NY NY pp 190

Medlin EA 1997 An in vitro method for estimating the relative bioavailability of lead in humans Masters thesis Department of Geological Sciences University of Colorado Boulder

Medlin E and JW Drexler 1995 Development of an in vitro technique for the determination of bioavailability from metal-bearing solids International Conference on the Biogeochemistry of Trace Elements Paris France

Mercier G J Duchesne and A Carles-Gibergues 2000 A new in vitro test to simulate gastric absorption of copper lead tin and zinc from polluted soils Env Tech 23121-133

Miller DD and BR Schricker 1982 In vitro estimation of food iron bioavailability In Nutritional Bioavailability of Iron ACS Symp Ser 20310-25 1982

Mushak P 1991 Gastro-intestinal absorption of lead in children and adults Overview of biological and biophysico-chemical aspects In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 387-104

Nernst W and E Brunner 1904 Theorie der reaktionsgeschwindigkeit in heterogenen systemen Z Phys Chem 4752

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rodriguez RR NT Basta SW Casteel and LW Pace 1999 An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media Environ Sci Technol 33642-649

Ruby MV A Davis TE Link R Schoof RL Chaney GB Freeman and P Bergstrom 1993 Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead Environ Sci Technol 27(13)2870ndash2877

Ruby MV A Davis R Schoof S Eberle and C M Sellstone 1996 Estimation of lead and arsenic bioavailability using a physiologically based extraction test Environ Sci Technol 30(2)422ndash430

Sorenson RC DD Oelsligle and D Knodsen 1971 Extraction of zinc iron and manganese from soils with 01N hydrochloric acid as affected by soil properties solutionsoil ratio and length of extraction period Soil Sci 111352-359

OSWER 92857-77 22

US EPA 1986 Test methods for evaluating solid waste Volume 1A and 1B Laboratory manual physicalchemical methods SW-846 Third edition United States Environmental Protection Agency Office of Solid Waste and Emergency Response

US EPA 1994 Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children United States Environmental Protection Agency Office of Emergency and Remedial Response Publication Number 92857-15-1 EPA540R-93081

US EPA 1996 Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil United States Environmental Protection Agency Technical Review Workgroup for Lead December 1996

US EPA 2000 Short Sheet TRW Recommendations for Sampling and Analysis of Soil at Lead (Pb) Sites OSWER 92857-38 United States Environmental Protection Agency Office of Solid Waste and Emergency Response

Weis CP GM Henningsen RH Poppenga and BJ Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

Weis CP RH Poppenga BJ Thacker GM Henningsen and A Curtis 1995 Design of pharmacokinetic and bioavailability studies of lead in an immature swine model In Lead in Paint Soil and Dust Health Risks Exposure Studies Control Measures Measurement Methods and Quality Assurance ASTM STP 1226 M E Beard and S D A Iske (eds) American Society for Testing and Materials Philadelphia 1995

Ziegler EE BB Edwards RL Jensen KR Mahaffey and SJ Fomon 1978 Absorption and retention of lead by infants Pediatr Res 1229-34

OSWER 92857-77 23

This page intentionally left blank to facilitate double-sided printing

TABLES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

TABLE 2-1 TYPICAL FEED COMPOSITION

Nutrient Name Amount

Protein 201021

Arginine 12070

Lysine 14690

Methionine 08370

Met+Cys 05876

Tryptophan 02770

Histidine 05580

Leucine 18160

Isoleucine 11310

Phenylalanine 11050

Phe+Tyr 20500

Threonine 08200

Valine 11910

Fat 44440

Saturated Fat 05590

Unsaturated Fat 37410

Linoleic 1826 19350

Linoleic 1833 00430

Crude Fiber 38035

Ash 43347

Calcium 08675

Phos Total 07736

Available Phosphorous 07005

Sodium 02448

Potassium 03733

Nutrient Name Amount

Chlorine 01911

Magnesium 00533

Sulfur 00339

Manganese 204719 ppm

Zinc 1180608 ppm

Iron 1353710 ppm

Copper 81062 ppm

Cobalt 00110 ppm

Iodine 02075 ppm

Selenium 03196 ppm

Nitrogen Free Extract 602340

Vitamin A 51892 kIUkg

Vitamin D3 06486 kIUkg

Vitamin E 872080 IUkg

Vitamin K 09089 ppm

Thiamine 91681 ppm

Riboflavin 102290 ppm

Niacin 301147 ppm

Pantothenic Acid 191250 ppm

Choline 10198600 ppm

Pyridoxine 82302 ppm

Folacin 20476 ppm

Biotin 02038 ppm

Vitamin B12 234416 ppm

Feed obtained from and nutritional values provided by Zeigler Bros Inc

Tablesxls (2-1_Feed)

TABLE 2-2 TYPICAL IN VIVO STUDY DESIGN

Dose Dose Exposure Target Dose Number of Group Material Route ȝg Pbkg-day Animals

1 None Oral -- 2-5 2 Lead Acetate Oral 25 5 3 75 5 4 225 5 5 Test Material 1 Oral 75 5 6 225 5 7 625 5 8 Test Material 2 Oral 75 5 9 225 5 10 625 5 11 Lead Acetate Intravenous 100 5-8

Tablesxls (2-2_Design)

TABLE 2-3 DESCRIPTION OF PHASE II TEST MATERIALS

Experiment Sample Designation Site Sample Description Lead

Concentration (ppm) 1

2

Bingham Creek Residential Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing less than 2500 ppm lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

1590

Bingham Creek Channel Soil Kennecott NPL Site Salt Lake City Utah

Soil composite of samples containing 3000 ppm or greater of lead collected from a residential area (Jordan View Estates) located along Bingham Creek in the community of West Jordan Utah

6330

3

Jasper County High Lead Smelter Jasper County Missouri Superfund Site Soil composite collected from an on-site location 10800

Jasper County Low Lead Yard Jasper County Missouri Superfund Site Soil composite collected from an on-site location 4050

4

Murray Smelter Slag Murray Smelter Superfund Site Murray City Utah

Composite of samples collected from areas where exposed slag existed on site 11700

Jasper County High Lead Mill Jasper County Missouri Superfund Site Soil composite collected from an on-site location 6940

5

Aspen Berm Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from the Racquet Club property (including a parking lot and a vacant lot) 14200

Aspen Residential Smuggler Mountain NPL Site Aspen Colorado

Composite of samples collected from residential properties within the study area 3870

6

Midvale Slag Midvale Slag NPL Site Midvale Utah Composite of samples collected from a water-quenched slag pile in Midvale Slag Operable Unit 2 8170

Butte Soil Silver Bow CreekButte Area NPL Site Butte Montana

Soil composite collected from waste rock dumps in Butte Priority Soils Operable Unit (BPSOU) 8530

7

California Gulch Phase I Residential Soil

California Gulch NPL Site Leadville Colorado

Soil composite collected from residential properties within Leadville 7510

California Gulch FeMn PbO California Gulch NPL Site Leadville Colorado

Soil composite collected from near the Lake Fork Trailer Park located southwest of Leadville near the Arkansas River 4320

8 California Gulch AV Slag California Gulch NPL Site Leadville Colorado

Sample collected from a water-quenched slag pile on the property of the former Arkansas Valley (AV) Smelter located just west of Leadville

10600

9 Palmerton Location 2 New Jersey Zinc NPL Site

Palmerton Pennsylvania Soil composite collected from on-site 3230

Palmerton Location 4 New Jersey Zinc NPL Site Palmerton Pennsylvania Soil composite collected from on-site 2150

Murray Smelter Soil Murray Smelter Superfund Site Murray City Utah Soil composite collected from on-site 3200

11

NIST Paint --

A mixture of approximately 58 NIST Standard Reference Material (SRM) 2589 and 942 low lead soil (lt 50 ppm) collected in Leadville Colorado NIST SRM 2589 composed of paint collected from the interior surfaces of houses in the US contains a nominal lead concentration of 10 (100000 ppm) the material is powdered with more than 99 of the material being less than 100 um in size

8350

12

Galena-enriched Soil --

A mixture of approximately 12 galena and 988 low lead soil (lt 50 ppm) that was collected in Leadville Colorado The added galena consisted of a mineralogical (ie native) crystal of pure galena that was ground and sieved to obtain fine particles smaller than about 65 um

11200

California Gulch Oregon Gulch TailingsCalifornia Gulch NPL Site Leadville Colorado

A composite of tailings samples collected from the Oregon Gulch tailings impoundment 1270

1 Samples were analyzed for lead by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

Tablesxls (2-3_TMs)

TABLE 2-4 RELATIVE LEAD MASS OF MINERAL PHASES OBSERVED IN TEST MATERIALS

Experiment 2 3 4 5 6 7 8 9 11 12

Phase Bingham

Creek Residential

Bingham Creek

Channel Soil

Jasper County

High Lead Smelter

Jasper County Low Lead Yard

Murray Smelter

Slag

Jasper County

High Lead Mill

Aspen Berm

Aspen Residential

Midvale Slag Butte Soil

Cal Gulch Phase I

Residential Soil

Cal Gulch FeMn PbO

Cal Gulch AV Slag

Palmerton Location 2

Palmerton Location 4

Murray Smelter Soil NIST Paint

Galena-enriched

Soil

Cal Gulch Oregon Gulch

Tailings

Anglesite 28 1 05 10 2 7 1 36 10 2 6 4 1

As(M)O 0003

Calcite 02 01

Cerussite 2 03 32 81 11 57 62 64 4 03 20 1 14 55

Clay 0018 0003 0017 01 01 001 003 013

Fe-Pb Oxide 6 3 14 2 2 10 9 7 03 7 6 8 51 2 2 013

Fe-Pb Sulfate 22 30 3 1 03 1 5 5 01 20 6 3 03 1 06

Galena 9 8 9 3 12 17 6 12 2 3 20 100 100

Lead Barite 004 001 006 0007 015 014 1 01

Lead Organic 03 003 003 011 011 1

Lead Oxide 009 69 7 27 44

Lead Phosphate 50 26 21 6 7 1 1 36 30 15 24 1

Lead Silicate 004 05 19 08 14

Lead Vanidate 01 04 18

Mn-Pb Oxide 18 2 2 2 08 9 4 5 202 22 72 66 66

Native Lead 22 07 2 15

Pb(M)O 4 26 7 3

Pb-As Oxide 2 1 015 6 33 01 31 29

PbO-Cerussite 1

Slag 4 7 1 16 1 10 6

Sulfosalts 04

Zn-Pb Silicate 003 2

(M) = Metal

Tbl 2-4_Lead Phasesxls (Table 2-4)

TABLE 2-5 MATRIX ASSOCIATIONS FOR TEST MATERIALS

Experiment Test Material Particle Frequency Relative Lead Mass

Liberated Included Liberated Included

2 Bingham Creek Residential 100 0 100 0

Bingham Creek Channel Soil 100 0 100 0

3 Jasper County High Lead Smelter 81 19 76 24

Jasper County Low Lead Yard 100 0 94 6

4 Murray Smelter Slag 87 13 77 23

Jasper County High Lead Mill 96 4 93 7

5 Aspen Berm 86 14 93 8

Aspen Residential 98 2 94 6

6 Midvale Slag 91 9 77 23

Butte Soil 91 9 91 9

7 California Gulch Phase I Residential Soil 79 21 65 35

California Gulch FeMn PbO 98 2 100 0

8 California Gulch AV Slag 78 22 80 20

9 Palmerton Location 2 100 0 100 0

Palmerton Location 4 79 21 89 11

11 Murray Smelter Soil 80 20 70 30

NIST Paint 100 0 100 0

12 Galena-enriched Soil 100 0 100 0

California Gulch Oregon Gulch Tailings 2 98 5 95

Tablesxls (2-5_Matrix)

TABLE 2-6 PARTICLE SIZE DISTRIBUTIONS FOR TEST MATERIALS

Experiment Test Material Particle Size (ȝm)

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

2 Bingham Creek Residential 38 22 19 16 4 2 0 0 0

Bingham Creek Channel Soil 66 136 10 61 3 1 0 0 0

3 Jasper County High Lead Smelter 44 19 8 8 9 9 2 1 1

Jasper County Low Lead Yard 29 20 21 20 8 3 0 0 0

4 Murray Smelter Slag 14 13 15 6 20 24 4 3 0

Jasper County High Lead Mill 23 21 22 19 9 6 1 1 0

5 Aspen Berm 27 19 22 17 8 6 1 1 0

Aspen Residential 38 35 12 8 4 2 0 0 0

6 Midvale Slag 6 1 3 4 20 29 18 13 5

Butte Soil 23 15 14 23 14 9 2 1 0

7 California Gulch Phase I Residential Soil 24 9 18 22 15 9 1 1 1

California Gulch FeMn PbO 26 19 24 17 10 4 0 0 0

8 California Gulch AV Slag 19 8 8 5 9 19 10 13 9

9 Palmerton Location 2 26 23 25 18 6 1 0 0 0

Palmerton Location 4 25 15 21 25 13 2 0 0 0

11 Murray Smelter Soil 23 10 29 17 6 8 3 3 1

NIST Paint 76 4 6 8 6 0 0 0 0

12 Galena-enriched Soil 48 2 4 41 4 0 0 0 0

California Gulch Oregon Gulch Tailings 85 8 6 0 0 0 0 0 0

Tablesxls (2-6_Size)

TABLE 2-7 ESTIMATED RBA VALUES FOR TEST MATERIALS

Experiment Test Material Blood AUC Liver Kidney Femur Point Estimate

RBA LB UB RBA LB UB RBA LB UB RBA LB UB RBA LB UB

2 Bingham Creek Residential 034 023 050 028 020 039 022 015 031 024 019 029 027 017 040

Bingham Creek Channel Soil 030 020 045 024 017 034 027 019 037 026 021 031 027 019 036

3 Jasper County High Lead Smelter 065 047 089 056 042 075 058 043 079 065 052 082 061 043 079

Jasper County Low Lead Yard 094 066 130 100 075 134 091 068 124 075 060 095 090 063 120

4 Murray Smelter Slag 047 033 067 051 033 088 031 022 046 031 023 041 040 023 064

Jasper County High Lead Mill 084 058 121 086 054 147 070 050 102 089 069 118 082 051 114

5 Aspen Berm 069 054 087 087 058 139 073 046 126 067 051 089 074 048 108

Aspen Residential 072 056 091 077 050 121 078 049 133 073 056 097 075 050 104

6 Midvale Slag 021 015 031 013 009 017 012 008 018 011 006 018 014 007 024

Butte Soil 019 014 029 013 009 019 015 009 022 010 004 019 014 006 023

7

California Gulch Phase I Residential Soil 088 062 134 075 053 112 073 050 112 053 033 093 072 038 107

California Gulch FeMn PbO 116 083 176 099 069 146 125 088 191 080 051 140 105 057 156

8 California Gulch AV Slag 026 019 036 019 011 032 014 008 025 020 013 030 020 009 031

9 Palmerton Location 2 082 061 105 060 041 091 051 030 091 047 037 060 060 034 093

Palmerton Location 4 062 047 080 053 037 079 041 025 072 040 032 052 049 029 072

11 Murray Smelter Soil 070 054 089 058 042 080 036 025 052 039 031 049 051 029 079

NIST Paint 086 066 109 073 052 103 055 038 078 074 059 093 072 044 098

12 Galena-enriched Soil 001 000 002 002 000 004 001 000 002 001 -001 003 001 000 003

California Gulch Oregon Gulch Tailings 007 004 013 011 004 021 005 002 009 001 -004 006 006 -001 015

LB = 5 Lower Confidence Bound UB = 95 Upper Confidence Bound

Tablesxls (2-7_RBA)

TABLE 2-8 GROUPED LEAD PHASES

Group Group Name Phase Constituents 1 Galena Galena (PbS)

2 Cerussite Cerussite

3 Mn(M) Oxide Mn-Pb Oxide

4 Lead Oxide Lead Oxide

5 Fe(M) Oxide Fe-Pb Oxide (including Fe-Pb Silicate)

Zn-Pb Silicate

6 Lead Phosphate Lead Phosphate

7 Anglesite Anglesite

8 Pb(M) Oxide As(M)O

Lead Silicate

Lead Vanidate

Pb(M)O

Pb-As Oxide

9 Fe(M) Sulfate Fe-Pb Sulfate

Sulfosalts

10 Minor Constituents Calcite

Clay

Lead Barite

Lead Organic

Native Lead

PbO-Cerussite

Slag

(M) = Metal

Tablesxls (2-8_Phases)

TABLE 2-9 CURVE FITTING PARAMETERS FOR ORAL LEAD ACETATE DOSE-RESPONSE CURVES

Experiment Blood AUC Liver Lead Kidney Lead Bone Lead

a b c a b a b a b 2 3 4 5 6 7 8 9 11 12

136 83 85 80 84

a

80 75 72 76

--

116 163 144 163 85

a

159 96 160 169

--

00084 00040 00064 00038 00101

a

00032 00087 00035 00040

--

63 20 10 23 57 17 62 20 23 20 10 17 11 21 11 23 14 13 9 07

44 24 10 22 68 28 60 18 15 21 10 14 17 24 14 23 20 17 8 11

07 0084 18 0062 05 0076 05 0062 04 0043 08 0059 08 0065 06 0071 07 0053 06 0032

Mean Standard Deviation Coefficient of Variation

86 19

23

140 32

23

00058 00026 46

27 18 24 05

88 27

27 20 22 05

84 26

07 0061 04 0015

55 25

Basic Equations Blood AUC = a + b(1-exp(-cDose))

a = baseline blood lead value in unexposed animals b = maximum increase in steady-state blood lead cause by exposure c = shape parameter that determines how steeply the response increases as dose increases

Tissue concentration (bone liver kidney) = a + bDose a = baseline blood lead value in unexposed animals b = slope of the increase in tissue content per unit increase in dose

Coefficient of Variation = Standard Deviation Mean

a Experiment 7 Blood AUC No stable solution was obtained using the exponential model

Tablesxls (2-9_Fits)

TABLE 2-10 REPRODUCIBILITY OF RBA MEASUREMENTS

RBA Palmerton Location 2

California Gulch Phase I Residential Soil

Estimate Test 1 (Phase 2 Study 9)

Test 2 (Phase 2 Study 12)

Test 1 (Phase 1 Study 2)

Test 2 (Phase 2 Study 7)

Blood AUC

Liver

Kidney

Bone

082 plusmn 012

060 plusmn 014

051 plusmn 016

047 plusmn 007

071 plusmn 009

125 plusmn 032

054 plusmn 013

095 plusmn 018

069

058

062

050

088 plusmn 019

075 plusmn 016

073 plusmn 017

053 plusmn 015

Point Estimate 060 plusmn 018 086 plusmn 033 060 072 plusmn 021

Calculated using ordinary least squares

Tablesxls (2-10_Reprod)

TABLE 3-1 IN VITRO BIOACCESSIBILITY VALUES

Experiment Test Material Sample In Vitro Bioaccessibility ()

(Mean plusmn Standard Deviation) 2

2

1

2

Bingham Creek Residential

Bingham Creek Channel Soil

470 plusmn 12

378 plusmn 07

3

3

1

2

Jasper County High Lead Smelter

Jasper County Low Lead Yard

693 plusmn 55

790 plusmn 56

4

4

1

2

Murray Smelter Slag

Jasper County High Lead Mill

643 plusmn 73

853 plusmn 02

5

5

1

2

Aspen Berm

Aspen Residential

649 plusmn 16

714 plusmn 20

6

6

1

2

Midvale Slag

Butte Soil

174 plusmn 09

223 plusmn 06

7

7

1

2

California Gulch Phase I Residential Soil

California Gulch FeMn PbO

651 plusmn 15

872 plusmn 05

8 1 California Gulch AV Slag 94 plusmn 16

9

9

1

2

Palmerton Location 2

Palmerton Location 4

636 plusmn 04

697 plusmn 27

11

11

1

2

Murray Smelter Soil

NIST Paint

747 plusmn 68

725 plusmn 20

12

12

1

3

Galena-enriched Soil

California Gulch Oregon Gulch Tailings

45 plusmn 12

112 plusmn 09

Tbl 3-1 ES-2_IVBA Dataxls (Table 3-1)

This page intentionally left blank to facilitate double-sided printing

FIGURES

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

FIGURE 2-1 AVERAGE RATE OF BODY WEIGHT GAIN IN TEST ANIMALS

00

01

02

03

04

05

06

07

Control PbAc 25 PbAc 75 PbAc 225 Test Material IV 100

Ave

rage

Rat

e of

Wei

ght G

ain

(kg

day)

Figuresxls (2-1_BW)

FIGURE 2-2 EXAMPLE TIME COURSE OF BLOOD LEAD RESPONSE

0

2

4

6

8

10

-6 -4 -2 0 2 4 6 8 10 12 14 16 Study Day

Bloo

d Le

ad (ȝ

gdL

) Control PbAc (75) PbAc (225) Test Material (75) Test Material (225) Test Material (675)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls

FIGURE 2-3 DOSE RESPONSE CURVE FOR BLOOD LEAD AUC

Panel A Lead Acetate - IV

0

50

100

150

200

250

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Panel B Lead Acetate - Oral

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Blo

od L

ead

AU

C (ȝ

gdL

-day

)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-3_AUC)

FIGURE 2-4 DOSE RESPONSE CURVE FOR LIVER LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Live

r Lea

d (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-4_Liver)

FIGURE 2-5 DOSE RESPONSE CURVE FOR KIDNEY LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Panel B Lead Acetate - Oral

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

idne

y Le

ad (ȝ

gkg

wet

wei

ght)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-5_ idney)

FIGURE 2-6 DOSE RESPONSE CURVE FOR FEMUR LEAD CONCENTRATION

Panel A Lead Acetate - IV

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Panel B Lead Acetate - Oral

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 Lead Dose (ȝg Pbkg-day)

Fe

ur L

ead

(ȝg

g as

h w

eigh

t)

Fig 2-2 to 2-6 Dose Resp (outliers excl)xls (Fig 2-6_Fe ur)

FIGURE 2-7 ESTIMATED GROUP-SPECIFIC RBA VALUES

00

02

04

06

08

10

12

Pb(

M) O

xide

Fe(M

) Sul

fate

Gal

ena

Ang

lesi

te

Fe(M

) Oxi

de

Lead

Pho

spha

te

Lead

Oxi

de

Mn(

M) O

xide

Cer

ussi

te

Group

Estim

ated

Gro

up-S

peci

fic R

BA

Fully constrained Partially constrained

LOW MEDIUM HIGH

Fig 2-7_Phase RBAsxls (Fig 2-7)

FIGURE 2-8 CORRELATION OF DUPLICATE ANALYSES

Panel A Blood Lead

Observed y = 09645x + 00687

R2 = 0981

0

5

10

15

20

25

30

0 5 10 15 20 25 30 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Panel B Tissue Lead

Observed y = 09526x + 18423

R2 = 09472

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 Duplicate Value (ȝgdL)

Orig

inal

Val

ue (ȝ

gdL

)

Line of Identity

Figuresxls (2-8_Dups)

FIGURE 2-9 RESULTS FOR CDC BLOOD LEAD CHECK SAMPLES

0

2

4

6

8

10

12

14

16

18

-5 0 5 10 15 Study Day

Mea

n Bl

ood

Lead

(ȝg

dL)

Low Std Med Std High Std

Figuresxls (2-9_CDC)

FIGURE 2-10 INTERLABORATORY COMPARISON OF BLOOD LEAD RESULTS

y = 08361x + 07385 R2 = 08606

0

5

10

15

20

25

30

0 5 10 15 20 25 30 CDCP Blood Lead Results (ȝgdL)

USE

PA B

lood

Lea

d R

esul

ts (ȝ

gdL

) Line of Identity

Figuresxls (2-10_Interlab)

FIGURE 3-1 IN VITRO BIOACCESSIBILITY EXTRACTION APPARATUS

Figuresxls (3-1_Apparatus)

FIGURE 3-2 EFFECT OF TEMPERATURE TIME AND pH ON IVBA

Fig 3-2_Effects on IVBAxls (Fig 3-2_Effects)

Panel C Effect of pH

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Test Material

IVB

A (

)

pH = 15 pH = 25 pH = 35

Panel A Effect of Temperature

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Test Material

IVB

A (

)

37 C 20 C

Panel B Effect of Extraction Time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 Test Material

IVB

A (

)

1 hour 2 hours 4 hours

FIGURE 3-3 PRECISION OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

100

90

80

70

60 ()

20

30

40

50

In V

itro

RBA

MS 2710 Mean = 755

Std Dev = 47 CV = 0062

N = 68

MS 2711 Mean = 844

Std Dev = 47 CV = 0055

N = 66

10

0

Figuresxls (3-3_Precision)

FIGURE 3-4 REPRODUCIBILITY OF IN VITRO BIOACCESSIBILITY MEASUREMENTS

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Test Material

Mea

n R

BA

(per

cent

)

ACZ CUB ERCL NERL

Test Materials 1 = Aspen Berm 8 = Jasper County High Lead Smelter 14 = Midvale Slag 2 = Aspen Residential 9 = Jasper County Low Lead Yard 15 = Murray Smelter Slag 3 = Bingham Creek Channel Soil 10 = California Gulch AV Slag 16 = Murray Smelter Soil 4 = Bingham Creek Residential 11 = California Gulch FeMn PbO 17 = Palmerton Location 2 5 = Butte Soil 12 = California Gulch Oregon Gulch Tailings 18 = Palmerton Location 4 6 = Galena-enriched Soil 13 = California Gulch Phase I Residential Soil 19 = NIST Paint 7 = Jasper County High Lead Mill

Laboratories ACZ = ACZ Laboratories Inc

CUB = University of Colorado at BoulderERCL = Environmental Research Chemistry Laboratory US Bureau of Reclamation

NERL = National Exposure Research Laboratory

Fig 3-4_Reproducibilityxls (Fig 3-4)

FIGURE 3-5 RBA vs IVBA

00

01

02

03

04

05

06

07

08

09

10

11

12

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

Fig 3-5_IVBA-RBAxls (Fig 3-5)

FIGURE 3-6 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RBA

95 Prediction Interval

0878IVBA - 0028

Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig 3-6)

APPENDIX A

EVALUATION OF JUVENILE SWINE AS A MODEL FOR GASTROINTESTINAL ABSORPTION

IN YOUNG CHILDREN

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX A EVALUATION OF JUVENILE SWINE AS A MODEL

FOR GASTROINTESTINAL ABSORPTION IN YOUNG CHILDREN

10 INTRODUCTION

Ideally the reliability of an animal model as a predictor for toxicokinetic responses in humans would be based on a direct comparison of results in humans and the animal species under consideration However because intentional dosing of children with lead is not feasible a direct comparison of lead absorption results in swine with that for children is not possible Nevertheless the relevance of the swine as an animal model for lead absorption can be evaluated by comparing a number of physiological attributes of the gastrointestinal system that are likely to be important in influencing the degree to which lead in ingested soil material is released from its soil or mineral matrix to form soluble compounds that can be absorbed into the body Factors that may affect dissolution include gastric acidity and gastric holding time which determine the exposure of the ingested material to the acidic environment of the stomach where dissolution initially occurs Morphological and physiological factors in the small intestine where absorption of lead is thought to occur may also affect RBA however these are likely to be less important for those soil materials for which solubility is the limiting factor for RBA

Weis and LaVelle (1991) and Casteel et al (1996) determined that gastric function in juvenile swine is sufficiently similar to that of human children so that juvenile swine could serve as a model for predicting RBA of soil-borne lead in children This view is supported by several reviews on the comparative anatomy and physiology of the human and pig gastrointestinal systems (Dodds 1982 Miller and Ullrey 1987 Moughan et al 1992 Pond and Houpt 1978) and in particular the following pertinent observations

20 GASTROINTESTINAL TRACT MORPHOLOGY AND HISTOLOGY

The anatomy of the neonatal digestive system in the pig and human are very similar (Moughan et al 1992) The body-weight adjusted ratios of intestinal length to stomach volume in the child and piglet are comparable as shown below

Species Stomach Volume (cm3kg)

Small Intestine Length (cmkg)

Large Intestine length (cmkg)

Small intestine lengthstomach

volume

Large intestine lengthstomach

volume Human 96 956 194 996 493

Swine 289 2292 596 793 385 Source Moughan et al 1992 Birth body weights of 34 (human) and 13 (pig) kg were assumed

The histology of the small intestine colon and rectum in the piglet is similar to that of the human (Moughan et al 1992) Small anatomical differences between humans and swine would

OSWER 92857-77 A-1

not be expected to markedly affect digestion in the neonate (Moughan et al 1992) The piglet is considered to be a useful model of the anatomical development of the human neonatal digestive tract (Moughan et al 1992 Miller and Ullrey 1987)

30 GASTRIC HOLDING TIMES

Gastric emptying time in humans is highly variable (USEPA 2001) The rate of emptying of stomach contents varies depending on the type of food the volume of the meal and its caloric content High caloric substances such as fat empty more slowly than carbohydrates The most important factor effecting liquid gastric emptying is the caloric content of the liquid meal Upright positioning and ambulation have been described to speed gastric emptying Other factors that are believed to affect gastric emptying include the osmolality acidity and chain length of fatty acids in the meal Differences in emptying may also exist between males and females These factors tend to make direct comparisons of data from different reports difficult Nevertheless the available data do not suggest any substantial differences in gastric holding times between children and juvenile swine

In the 4-week old pig gastric emptying following a meal was rapid with 30 to 40 passing into the duodenum within 15 minutes and the remaining portion of gastric contents following about one hour later (Pond and Houpt 1978) Gastric pH did not affect gastric emptying time in juvenile swine (Pond and Houpt 1978) In an unpublished study by Casteel (personal communication) gastric emptying in juvenile swine was shown to be influenced by feeding intervals both pre- and post-dosing The investigators reported rapid clearance of the bolus (complete within 2 hours) after an overnight fast however feeding 4 hours prior to dosing slowed completion of gastric emptying to 4 hours Feeding at two hours post-dosing accelerated the movement of the residual gastric contents although most of the bolus had already cleared the stomach

In humans gastric emptying time in neonates and premature infants is typically about 87 minutes but can be as long as 6 to 8 hours with adult values (typically about 65 minutes) being reached at 6 to 8 months of age (FDA 1998 Balis 2000)

40 GASTRIC ACIDITY

Direct comparisons of gastric acidity as a function of age in humans and swine are not available However available information on gastric acid secretion does not suggest there are any major differences that would affect extrapolation of RBA values measured in juvenile swine to humans Agunod et al (1969) reported that gastric acid output (corrected for body weight) reached normal adult levels in swine at 2 to 3 months post partum In humans gastric pH is neutral at birth but drops to 1 to 3 within hours of birth Gastric acid secretion then declines on days 10 to 30 and does not approach adult values until approximately 3 months of age (FDA 1998) Nagita et al (1996) reported that the intragastric pH of infants was lt4 for only half of the day whereas baseline pH in normal adults is lt2 The development of maximal acid secretion in the pig also has some similarities to that of humans (Xu and Cranwell 1990) In both the pig and human maximal acid secretion correlates with age and body weight with pentagastrin

OSWER 92857-77 A-2

histamine and histalog used as secretagogues (Xu and Cranwell 1990) A limitation of the available pig data is that all of the studies measure the maturation of gastric acid output rather than intragastric pH which Nagita et al (1996) asserts is a preferable measure of gastric maturity Temporal studies of the intragastric pH of juvenile swine are not available

50 REFERENCES

Agunod M N Yamaguchi R Lopez A L Luhby and G B J Glass 1969 Correlative study of hydrochloric acid pepsin and intrinsic factor secretion in newborns and infants Am J Dig Dis 14400-414

Balis F 2000 Module 4 Drug therapy in special populations In Principles of Clinical Pharmacology Published on-line by NIH httpwwwccnihgovcccprinciples

Casteel S W R P Cowart C P Weis G M Henningsen E Hoffman W J Brattin M F Starost J T Payne S L Stockham S V Becker and J R Turk 1996 A swine model for determining the bioavailability of lead from contaminated media In Advances in Swine in Biomedical Research Tumbleson and Schook eds Vol 2 Plenum Press New York Pp 637-46

Cranwell P D 1985 The development of acid and pepsin secretory capacity in the pig the effect of age and weaning 1 Studies in anaesthetized pigs Br J Nutr 54 305-20

Dodds J W 1982 The pig model for biomedical research Fed Proc 41 247-56

FDA 1998 Guidance for Industry General considerations for pediatric pharmacokinetic studies for drugs and biological products US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Published on-line by the Food and Drug Administration November 1998 httpwwwfdagovcberguidelineshtm

Henning S J 1987 Functional development of the gastrointestinal tract In Physiology of the Gastrointestinal Tract Johnson LR ed Raven Press New York Pp 285-300

Miller E R and D E Ullrey 1987 The pig as a model for human nutrition Ann Rev Nutr 7 361-82

Moughan P J M J Birtles P D Cranwell W C Smith and M Pedraza 1992 The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants World Rev Nutr Diet 19926740-113 PMID 1557912

Nagita A K Amemoto A Yoden S Aoki M Sakaguchi K Ashida and M Mino 1996 Diurnal variation in intragastric pH in children with and without peptic ulcers Ped Res 40(4) 528-32

Pond W G and K A Houpt 1978 The Biology of the Pig Ithaca NY Comstock 371 pp

OSWER 92857-77 A-3

Sangild P T P D Cranwell and L Hilsted 1992 Ontogeny of gastric function in the pig Acid secretion and the synthesis and secretion of gastrin Bio Neonate 62 363-72

USEPA 2001 Exploration of perinatal pharmacokinetic issues Final report by Versar to USEPA Risk Assessment Forum Office of Research and Development Washington DC 20460 EPA630R-01004

Waldum H L B K Straume P G Burhol and L B Dahl 1980 Serum group I pepsinogens in children Acta Paediatr Scand 69(2)215-8 PMID 7368925

Weis CP and LaVelle JM 1991 Characteristics to consider when choosing an animal model for the study of lead bioavailability In Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Sci Technol Let 3113B119

WHO 1986 Principles for evaluating health risks from chemicals during infancy and early childhood The need for a special approach Environmental Health Criteria 59 Geneva Switzerland World Health Organization

Xu R J and P D Cranwell 1990 Development of gastric acid secretion in pigs from birth to 36 days of age the response to pentagastrin J Dev Physiol 13 315-26

Xu C D P Wang and J Y Xu 1996 Gastric motility study on non ulcer dyspepsia among children Chin Natl J New Gastroenterol 2(Suppl 1) 129

OSWER 92857-77 A-4

APPENDIX B

DETAILED DESCRIPTION OF ANIMAL EXPOSURE

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B DETAILED DESCRIPTION OF ANIMAL EXPOSURE

10 EXPERIMENTAL ANIMALS

All animals used in this program were young intact males of the Pig Improvement Corporation (PIC) genetically defined Line 26 and were purchased from Chinn Farms Clarence MO The number of animals purchased for each study was typically 6 to 8 more than required by the protocol These animals were usually purchased at age 4 to 5 weeks (weaning occurs at age 3 weeks) and they were then held under quarantine for one week to observe their health before beginning exposure to test materials Any animals that appeared to be in poor health during this quarantine period were excluded To minimize weight variations between animals and groups extra animals that were most different in body weight on day -4 (either heavier or lighter) were also excluded from the study The remaining animals were assigned to dose groups at random When exposure began (day zero) the animals were about 5 to 6 weeks old and weighed an average of about 8 to 11 kg

All animals were housed in individual lead-free stainless steel cages Each animal was examined by a certified veterinary clinician (swine specialist) prior to being placed on study and all animals were examined daily by an attending veterinarian while on study Blood samples were collected for clinical chemistry and hematological analysis on days -4 7 and 15 to assist in clinical health assessments Any animal that became ill and could not be promptly restored to good health by appropriate treatment was promptly removed from the study

20 DIET

Animals provided by the supplier were weaned onto standard pig chow purchased from MFA Inc Columbia MO In order to minimize lead exposure from the diet the animals were gradually transitioned from the MFA feed to a special low-lead feed (guaranteed less than 02 ppm lead purchased from Zeigler Brothers Inc Gardners PA) over the time interval from day -7 to -3 and this feed was then maintained for the duration of the study The feed was nutritionally complete and met all requirements of the National Institutes of HealthBNational Research Council (NRC 1988) The typical nutritional components and chemical analysis of the feed are presented in Table 2-1 of the main text Periodic analysis of feed samples during this program indicated the mean lead level was less than the detection limit (005 ppm)

Each day every animal was given an amount of feed equal to 5 of the mean body weight of all animals on study Feed was administered in two equal portions of 25 of the mean body weight at each feeding Feed was provided at 1100 AM and 500 PM daily Drinking water was provided ad libitum via self-activated watering nozzles within each cage Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration was less than 2 ȝgL

OSWER 92857-77 B-1

30 DOSING

The dose levels used in these studies were selected to be as low as possible in an effort to make measurements at the low end of the dose-response curve where saturation of biological systems is minimal Based on experience from previous investigations doses of lead acetate in the range of 25 to 675 ȝg Pbkg-day were found to give clear and measurable increases in lead levels in all endpoints measured (blood liver kidney bone) so doses in this range (usually 25 to 225 ȝg Pbkg-day) were employed in most studies The doses of test materials were usually set at the same level as lead acetate except that one higher dose was often included in case the test materials were found to yield very low responses Depending on the concentration of lead in the test material and the target dose level for lead soil intake rates by the swine were in the range of 500 to 2500 mgday

Animals were exposed to lead acetate or a test material for 15 days with the dose for each day being administered in two equal portions given at 900 AM and 300 PM (two hours before feeding) These exposure times were selected so that lead ingestion would occur at a time when the stomach was largely or entirely empty of food This is because the presence of food in the stomach is known to reduce lead absorption (eg Chamberlain et al 1978 Rabinowitz et al 1980 Heard and Chamberlain 1982 Blake et al 1983 James et al 1985) Dose calculations were based on measured group mean body weights and were adjusted every three days to account for animal growth

For animals exposed by the oral route dose material was placed in the center of a small portion (about 5 grams) of moistened feed This ldquodoughballrdquo was administered to the animals by hand Most animals consumed the dose promptly but occasionally some animals delayed ingestion of the dose for up to two hours (the time the daily feed portion was provided) Random and intermittent delays of this sort are not considered to be a significant source of error Occasionally some animals did not consume some or all of the dose (usually because the dose dropped from their mouth while chewing) All missed doses were recorded and the time-weighted average dose calculation for each animal was adjusted downward accordingly

For animals exposed by intravenous injection doses were given via a vascular access port (VAP) attached to an indwelling venous catheter that had been surgically implanted according to standard operating procedures by a board-certified veterinary surgeon through the external jugular vein to the cranial vena cava about 3 to 5 days before exposure began

40 REFERENCES

Blake K H C G O Barbezat and M Mann 1983 Effect of dietary constituents on the gastrointestinal absorption of 203Pb in man Environ Res 30182-187

Chamberlain A C M J Heard P Little D Newton A C Wells and R D Wiffen 1978 Investigations into lead from motor vehicles Harwell UK United Kingdom Atomic Energy Authority Report No AERE-9198

OSWER 92857-77 B-2

Heard H J and A C Chamberlain 1982 Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans Human Toxicol 1411-415

James H M M E Hilburn and J A Blair 1985 Effects of metals and meal times on uptake of lead from the gastrointestinal tract in humans Human Toxicol 4401-407

NRC 1988 Nutrient requirements of swine A report of the Committee on Animal Nutrition National Research Council National Academy Press

Rabinowitz M B J D Kopple and G W Wetherill 1980 Effect of food intake and fasting on gastrointestinal lead absorption in humans Am J Clin Nutrit 331784-1788

OSWER 92857-77 B-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX B ATTACHMENT 1

DETAILED STUDY DESIGNS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX B - ATTACHMENT 1

EXPERIMENT 1A STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

3 20

1 Control 0

2 22 23 24 27

2 PbAc 25

1 26 29 32 35

3 PbAc 75

9 14 17 31 34

4 PbAc (-2 hr) 225

7 12 19 30 33

5 PbAc (0 hr) 225

5 18 21 25 36

6 PbAc (+2 hr) 225

4 15 16

7A PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (1a) Page 1 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 2 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

206 226

1 Control 0

215 220 222 229 251

2 PbAc 25

209 228 244 248 258

3 PbAc 75

204 216 247 252 260

4 PbAc 225

201 207 221 238 259

5 Bingham Creek Residential

75

236 237 240 242 249

6 Bingham Creek Residential

225

224 234 235 243 257

7 Bingham Creek Residential

450

202 217 219 253 254

8 Bingham Creek Channel Soil

75

203 225 227 232 250

9 Bingham Creek Channel Soil

225

205 210 213 218 255

10 Bingham Creek Channel Soil

675

208 214 230 231 239 241 246 256

11 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (2) Page 2 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 3 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

304 339

1 Control 0

309 312 324 337 340

2 PbAc 75

313 315 342 354 356

3 PbAc 225

305 311 318 321 331

4 Jasper County High Lead Smelter

75

316 317 330 352 353

5 Jasper County High Lead Smelter

225

319 341 344 345 348

6 Jasper County High Lead Smelter

625

325 329 338 343 351

7 Jasper County Low Lead Yard

75

302 326 328 332 346

8 Jasper County Low Lead Yard

225

306 333 334 335 349

9 Jasper County Low Lead Yard

625

307 320 322 347 350

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (3) Page 3 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 4 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

417 430

1 Control 0

409 419 429 443 444

2 PbAc 75

408 410 426 449 455

3 PbAc 225

402 407 411 423 450

4 Murray Smelter Slag

75

420 431 432 440 446

5 Murray Smelter Slag

225

412 418 427 437 442

6 Murray Smelter Slag

625

404 406 416 428 454

7 Jasper County High Lead Mill

75

401 433 434 435 441

8 Jasper County High Lead Mill

225

403 405 413 448 453

9 Jasper County High Lead Mill

625

415 421 424 425 438 439 445 451

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (4) Page 4 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 5 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

530 536

1 Control 0

514 518 519 520 524

2 PbAc 75

501 513 529 534 547

3 PbAc 225

503 523 532 549 555

4 Aspen Berm 75

509 512 539 540 550

5 Aspen Berm 225

510 516 525 537 542

6 Aspen Berm 675

502 507 517 522 528

7 Aspen Residential 75

505 506 521 553 554

8 Aspen Residential 225

526 535 541 545 548

9 Aspen Residential 675

504 508 515 538 543 544 546 551

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (5) Page 5 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 6 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

614 638

1 Control 0

613 624 630 639 641

2 PbAc 75

616 644 651 653 654

3 PbAc 225

619 623 626 631 647

4 Midvale Slag 75

602 605 628 640 650

5 Midvale Slag 225

603 615 629 633 645

6 Midvale Slag 675

610 611 617 637 643

7 Butte Soil 75

601 609 618 621 635

8 Butte Soil 225

620 627 634 646 655

9 Butte Soil 675

604 606 607 612 625 632 642 648

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (6) Page 6 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 7 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

706 714 718 735 743

1 Control 0

703 709 748 750 755

2 PbAc 25

711 715 716 747 752

3 PbAc 75

704 712 736 740 753

4 California Gulch Phase I Residential Soil

25

702 708 728 739 756

5 California Gulch Phase I Residential Soil

75

717 723 725 732 737

6 California Gulch Phase I Residential Soil

225

707 713 730 738 741

7 California Gulch FeMn PbO

25

733 742 746 749 751

8 California Gulch FeMn PbO

75

719 721 729 744 745

9 California Gulch FeMn PbO

225

722 724 727 734 754

10 PbAc (IV) 100

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (7) Page 7 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 8 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

808 810 836

1 PbAc (IV) 0

805 807 812 827 834

2 PbAc (IV)

25

813 815 825 845 853

3 PbAc (IV)

50

801 816 820 843 852

4 PbAc (IV)

100

809 830 841 848 855

5 Control

0

817 818 819 838 846

6 PbAc

25

804 840 842 844 849

7 PbAc

75

857 826 828 831 851

8 California Gulch AV Slag

25

806 814 823 847 854

9 California Gulch AV Slag

75

811 822 824 837 856

10 California Gulch AV Slag

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (8) Page 8 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 9 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

907 912 919 930 942 943 953

1 PbAc (IV) 100

901 902 920 925 928

2 Control 0

905 909 927 931 940

3 PbAc 25

923 933 948 950 956

4 PbAc 75

911 929 934 947 954

5 Palmerton Location 2

25

903 910 938 951 955

6 Palmerton Location 2

75

906 908 916 918 922

7 Palmerton Location 2

225

913 914 932 937 946

8 Palmerton Location 4

25

924 926 944 949 957

9 Palmerton Location 4

75

917 921 939 941 945

10 Palmerton Location 4

225

All materials administered orally unless designated IV (intravenously)

OSWER 92857-77 Appendix B_Tablesxls (9) Page 9 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 11 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1109 1124 1135 1139 1151

1 Control 0

1103 1104 1116 1117 1118

2 PbAc 25

1105 1123 1129 1130 1144

3 PbAc 75

1121 1136 1138 1146 1150

4 PbAc 225

1106 1112 1133 1142 1149

5 Murray Smelter Soil

75

1102 1122 1128 1143 1154

6 Murray Smelter Soil

225

1126 1137 1140 1141 1155

7 Murray Smelter Soil

675

1110 1115 1134 1148 1153

8 NIST Paint 75

1101 1108 1111 1132 1152

9 NIST Paint 225

1113 1119 1120 1125 1147

10 NIST Paint 675

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (11) Page 10 of 11

APPENDIX B - ATTACHMENT 1

EXPERIMENT 12 STUDY DESIGN

Pig Number Group Material Administered Dose (ȝg Pbkg-day)

1205 1228 1236

1 Control 0

1208 1213 1215 1217 1248

2 PbAc 25

1227 1240 1243 1244 1255

3 PbAc 75

1222 1225 1226 1241 1249

4 PbAc 225

1201 1233 1250 1251 1253

5 Galena-enriched Soil 75

1203 1209 1214 1231 1247

6 Galena-enriched Soil 225

1218 1229 1235 1237 1254

7 Galena-enriched Soil 675

1207 1223 1230 1245 1252

8 Palmerton Location 2 (reproducibility)

25

1202 1210 1212 1220 1232

9 Palmerton Location 2 (reproducibility)

75

1211 1216 1221 1239 1246

10 Palmerton Location 2 (reproducibility)

225

1204 1224 1238 1242

11 California Gulch Oregon Gulch Tailings

225

All materials administered orally

OSWER 92857-77 Appendix B_Tablesxls (12) Page 11 of 11

This page intentionally left blank to facilitate double-sided printing

APPENDIX C

DETAILED METHODS OF SAMPLE COLLECTION AND ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX C DETAILED METHOD OF SAMPLE COLLECTION AND ANALYSIS

10 COLLECTION OF BIOLOGICAL SAMPLES

Blood

Samples of blood were collected from each animal three or four days before exposure began on the first day of exposure (day 0) and on multiple days thereafter (usually days 1 2 3 5 7 9 12 and 15) All blood samples were collected by vena-puncture of the anterior vena cava and samples were immediately placed in purple-top Vacutainerreg tubes containing EDTA (ethylenediaminetetra-acetic acid) as anticoagulant Blood samples were collected each sampling day beginning at 800 AM approximately one hour before the first of the two daily exposures to lead on the sampling day and 17 hours after the last lead exposure the previous day This blood collection time was selected because the rate of change in blood lead resulting from the preceding exposures is expected to be relatively small after this interval (LaVelle et al 1991 Weis et al 1993) so the exact timing of sample collection relative to last dosing is not likely to be critical

Liver Kidney and Bone

Following collection of the final blood sample at 800 AM on day 15 all animals were humanely euthanized and samples of liver kidney and bone (the right femur) were removed and stored in plastic bags for lead analysis

Samples of all biological samples collected were archived in order to allow for reanalysis and verification of lead levels if needed and possibly for future analysis for other metals (eg arsenic cadmium) All animals were also subjected to detailed examination at necropsy by a certified veterinary pathologist in order to assess overall animal health

20 PREPARATION OF BIOLOGICAL SAMPLES FOR ANALYSIS

Blood

One mL of whole blood was removed from the purple-top Vacutainer and added to 90 mL of ldquomatrix modifierrdquo a solution recommended by the Centers for Disease Control and Prevention (CDCP) for analysis of blood samples for lead (CDC 2001) The composition of matrix modifier is 02 (vv) ultrapure nitric acid 05 (vv) Triton X-100 and 02 (wv) dibasic ammonium phosphate in deionized and ultrafiltered water Samples of the matrix modifier were routinely analyzed for lead to ensure the absence of lead contamination

OSWER 92857-77 C-1

Liver and Kidney

One gram of soft tissue (liver or kidney) was placed in a screw-cap Teflon container with 2 mL of Optima grade concentrated (70) nitric acid and heated in an oven to 90degC overnight After cooling the digestate was transferred to a clean 10 mL volumetric flask and diluted to volume with deionized and ultrafiltered water

Bone

The right femur of each animal was removed defleshed and dried at 100degC overnight The dried bones were then broken in half placed in a muffle furnace and dry-ashed at 450degC for 48 hours Following dry ashing the bone was ground to a fine powder using a mortar and pestle and 200 mg was removed and dissolved in 100 mL of 11 (vv) Optima grade concentrated nitric acidwater After the powdered bone was dissolved and mixed 10 mL of the acid solution was removed and diluted to 100 mL by addition of 01 (wv) lanthanum oxide (La2O3) in deionized and ultrafiltered water

30 LEAD ANALYSIS

Samples of biological tissue (blood liver kidney bone) and other materials (eg food water reagents and solutions) were arranged in a random sequence and provided to USEPArsquos analytical laboratory in a blind fashion (identified to the laboratory only by a chain of custody tag number) Each sample was analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer Internal quality assurance samples were run every tenth sample and the instrument was recalibrated every 15th sample A blank duplicate and spiked sample were run every 20th sample In addition a series of quality assurance (QA) samples were prepared and submitted to the laboratory in bland fashion including a variety of duplicates blanks and standards

All results from the analytical laboratory were reported in units of ȝg PbL of prepared sample The quantitation limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2 to 5 ȝgL) The standard deviation was usually about 03 ȝgL so the quantitation limit was usually about 09 to 10 ȝgL (ppb) However because different dilution factors were used for different sample types the detection limit varies from sample type to sample type For prepared blood samples (diluted 110) this corresponds to a quantitation limit of 10 ȝgL (1 ȝgdL) For soft tissues (liver and kidney also diluted 110) this corresponds to a quantitation limit of 10 ȝgkg (ppb) wet weight and for bone (final dilution of 1500) the corresponding quantitation limit is 05 ȝgg (ppm) ashed weight

40 REFERENCES

CDC 2001 Laboratory Procedure Manual Analyte Cadmium and Lead Matrix Blood Method Atomic Absorption Spectroscopy Method No 1090A02-OD Revised August 22 2001 Atlanta GANutritional Biochemistry Branch Division of Laboratory Sciences National

OSWER 92857-77 C-2

Center for Environmental Health Center for Disease Control Available online at httpwwwcdcgovNCHSdatanhanesfrequencylab06_met_lead_and_cadmiumpdf

LaVelle J M R H Poppenga B J Thacker J P Giesy C Weis R Othoudt and C Vandervoot 1991 Bioavailability of lead in mining waste An oral intubation study in young swine In The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead Science and Technology Letters 3105-111

Weis C P G M Henningsen R H Poppenga and B J Thacker 1993 Pharmacokinetics of lead in blood of immature swine following acute oral and intravenous exposure The Toxicologist 13(1)175

OSWER 92857-77 C-3

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

DETAILED METHODS FOR DATA REDUCTION AND STATISTICAL ANALYSIS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX D DETAILED METHODS FOR DATA REDUCTION

AND STATISTICAL ANALYSIS

10 INTRODUCTION

The method used to estimate the RBA of lead in a particular test material compared to lead in a reference material (lead acetate) is based on the principal that equal absorbed doses of lead will produce equal biological responses By definition

Absorbed Doseref Administered Doseref ABAref

Absorbed Dosetest Administered Dosetest ABAtest

where ref and test indicate the reference and test material respectively When the responses are equal then

Administered Doseref ABAref Administered Dosetest ABAtest

Thus

ABAtest Administered DoserefRBA ABAref Administered Dosetest

That is given the dose-response curve for some particular endpoint (eg the concentration of lead in blood or tissue) for both the reference material and the test material RBA may be calculated as the ratio of administered doses that produce equal biological responses

Note that in this approach the mathematical form of the dose-response model must be the same for both reference material and test material This is because the shape of the dose-response curve is a function only of the pharmacokinetic response of the biological organism to an absorbed dose of lead and the response per unit dose absorbed dose does not depend on whether the absorbed lead was derived from reference material or test material Another way to envision this is to recognize that if the unit of exposure were absorbed dose (rather than administered dose) the dose-response curves for reference material and test material would be identical Note that in this approach RBA is a sample-specific constant and does not depend on administered dose

Based on this the general procedure for estimating the value of RBA from measured dose-response data for reference and test materials is as follows

1 Plot the biological responses of individual animals exposed to a series of oral doses of reference material Select an exposure-response model which can fit smoothly

OSWER 92857-77 D-1

through the observed data points The model may be either linear or non-linear depending on the response endpoint being used

2 Plot the biological responses of individual animals exposed to a series of doses of test material Fit the same exposure-response model as was used for the reference material Note that the intercept term must be the same for both curves but that other coefficients may be different

3 To find the ratio of doses that produce equal responses set the two exposure response curves equal to each other and solve for the ratio of doses expressed in terms of the model parameters

For example assume that the increase in lead in femur (PbF) is observed to be a linear function of administered dose Assume that the best-fit exposure-response models derived from the experimental data for animals exposed to reference material and test material are as follows

PbFref 2 6 Doseref

PbFtest 2 3 Dosetest

Setting the two equations equal yields

2 6 Doseref 2 3 Dosetest

Solving yields

Doseref 3 05Dosetest 6

That is the ratio of administered doses that produce equal responses is 05 so the RBA is 05 (50)

An important assumption used in this approach is that administration of increasing doses of test material will cause increased biological responses However this may not occur in the case of a test material in which the form of lead has very low solubility For example the solubility of lead sulfide (galena) in water is less than 1 ȝgL Thus if a dose of lead sulfide results in saturation of the gastric fluid administration of more lead sulfide will not increase the concentration of bioavailable lead and hence little or no increase in response would be expected An example of this is shown in Figure D-1 In this case RBA cannot be defined as the ratio of doses that produce equal responses since many different doses of lead sulfide all produce the same response However this is not a substantial difficulty since the amount of lead that becomes bioavailable will be small (and hence the response will be close to control) and simple inspection of the data will demonstrate that the test material is not likely to be of health concern

OSWER 92857-77 D-2

20 MEASUREMENT ENDPOINTS

21 Description of Measurement Endpoints

Four independent measurement endpoints were evaluated in each study based on the concentration of lead observed in blood liver kidney and bone (femur) For liver kidney and bone the measurement endpoint was simply the concentration in the tissue at the time of sacrifice (day 15) For blood the measurement endpoint used to quantify response was the area under the curve (AUC) for blood lead vs time (days 0-15) The area under the blood lead vs time curve for each animal was calculated by finding the area under the curve for each time step (ie the interval between successive blood collection days) using the trapezoidal rule

AUC(di to d j ) 05 (ri rj ) (d j di )

where

d = day number where i and j are successive blood sampling events

r = response (blood lead value) on day i (ri) or day j (rj)

The areas of the trapezoids for each time step were then summed to yield the final AUC for each animal

22 Responses Below Quantitation Limit

In some cases most or all of the responses in a group of animals were below the quantitation limit for the endpoint being measured For example this was normally the case for blood lead values in unexposed animals (both on day -4 and day 0 and in control animals) and also occurred during the early days in the study for animals given test materials with low bioavailability In these cases all animals which yielded responses below the quantitation limit were evaluated as if they had responded at one-half the quantitation limit This approach was used because an assumed value of one-half the detection limit minimizes the potential bias in the assumption

23 Assessment of Blood Lead Outliers

Occasionally blood lead values were obtained that were clearly different than expected A value was considered to be an outlier if it was clearly different from other values within the same dose group on the same day andor if the value was clearly different from the time trend established by preceding and following time points in the same animal A total of 21 such cases occurred out of a total of 4284 blood lead data points (05) These values were excluded in the calculation of AUC and the missing value was replaced by a value interpolated from the preceding and following values from the same animal

OSWER 92857-77 D-3

30 DERIVATION OF STATISTICAL DOSE-RESPONSE MODELS

The techniques used to derive statistical models of the dose-response data and to estimate RBA are based on the methods recommended by Finney (1978) All model fitting was performed using JMPtrade version 322 a commercial software package developed by SASreg Details are provided below

31 Use of Simultaneous Regression

As noted by Finney (1978) when the data to be analyzed consist of two dose-response curves (the reference material and the test material) it is obvious that both curves must have the same intercept since there is no difference between the curves when the dose is zero This requirement is achieved by combining the two dose response equations into one and solving for the parameters simultaneously For example if the dose response model is linear the approach is as follows

Separate Models

P r (i) a br xr (i)

P t (i) a bt xt (i)

Combined Model

P(i) a br xr (i) bt xt (i)

where ȝ(i) indicates the expected mean response of animals exposed at dose x(i) and the subscripts r and t refer to reference and test material respectively The coefficients of this combined model are derived using multivariate regression with the understanding that the combined data set is restricted to cases in which one (or both) of xr and xt are zero (Finney 1978) The same approach may be extended for use when there are three data sets (reference material test material 1 test material 2) that are all derived from a single study and must therefore all have the same intercept

32 Use of Weighted Regression

Regression analysis based on ordinary least squares assumes that the variance of the responses is independent of the dose andor the response (Draper and Smith 1998) In these studies this assumption is generally not satisfied Figure D-2 provides two example data sets that show a clear increase in the variability of the responses as a function of increasing dose This is referred to as heteroscedasticity Most other data sets from this study display a similar tendency toward increasing variance in response as a function of increasing dose

OSWER 92857-77 D-4

One method for dealing with heteroscedasticity is through the use of weighted least squares regression (Draper and Smith 1998) In this approach each observation in a group of animals is assigned a weight that is inversely proportional to the variance of the response in that group

1 wi V 2 i

where

wi = weight assigned to all data points in dose group iı2

i = variance of responses in animals in dose group i

When the distributions of responses at each dose level are normal weighted regression is equivalent to the maximum likelihood method There are several options available for estimating the value of ı2

i

Option 1 Utilize the observed variance (s2 i) in the responses of animals in dose group i

Option 2 Establish a variance model of the form ı2 i = Įȝi

ȡ where ȝi is the predicted mean response for dose group i Simultaneously fit the data to derive values of Į and ȡ along with the other coefficients of the dose-response model using the data from a particular study This approach is identical to the non-constant variance approach used by USEPArsquos BMDS (USEPA 1995 2000a)

Option 3A Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the predicted mean response for that dose group

Option 3B Establish an ldquoexternalrdquo variance model based on an analysis of the relationship between variance and mean response using observations combined from all studies and dose groups Use that model to predict the expected variance in dose group i as a function of the observed mean response level for that dose group

In this study all four options were investigated for possible use The advantages and disadvantages of each are discussed below

Option 1 (use of group-specific sample variances) is the simplest approach and does not require any assumptions or extrapolations If the number of animals in each dose group was large enough to provide reliable estimates of the true variance for the dose group this would be the preferred method However sample variance in a dose group is a random variable and because the sample variance is based on only five observations (five animals per dose group) it can vary widely (especially when true variance is large) Therefore weights assigned using this approach may occasionally be substantially higher or lower than the data actually warrant For

OSWER 92857-77 D-5

example this approach yielded poor results in cases where two adjacent groups (usually the control and the low dose group) had very low variance In this situation the weights for those groups were so high that the model fit was constrained to pass through them with very little deviation and other dose groups exerted very little influence Figure D-3 shows an example of this Because this outcome was judged to be inappropriate Option 1 was not used

Option 2 (using a non-constant variance model derived from the within-study data only) utilizes the entire data set from a single study to estimate expected variance as a function of dose and so is less vulnerable to random variations in group-specific sample variances than Method 1 Despite this advantage however this approach requires that two additional parameters (Į and ȡ) be derived along with the other model parameters This tends to over-parameterize the model and when this option was tested (using the Solver tool in Microsoftreg Excel) the fits were often not stable (ie different results were obtained with different starting guesses) On this basis Option 2 was not employed

Option 3 (both Options 3A and 3B) requires development of an external variance model based on the consolidated data from all studies Figure D-4 shows the log-variance in response plotted as a function of the log-mean response in the group1 One panel is presented for each of the four different endpoints As seen log-variance increases as an approximately linear function of log-mean response for all four endpoints

ln(s2 i ) k1 k2 ln(yi )

Values of k1 and k2 are derived from the data for each endpoint using ordinary least squares minimization and the resulting values are shown in the figures Note that this variance model is of the same basic form as used in Option 2

s2 i exp(k1) ( yi )

k 2

In Option 3A the weights for each response are assigned based on the predicted mean response at each dose level within that model For example assuming a linear model

Px (i) a b1 x1(i) b2 x2 (i)

2V i expgtk1 k2 ln(Px (i))

In Option 3B the same approach is used except that the observed mean response rather than the predicted mean response is used to estimate ı2

i

2V i expgtk1 k2 ln(Px (i))

1 In this analysis some dose groups were excluded if the estimate of variance andor mean response was judged to be unreliable based on the following two criteria a) the number of animals in the dose group was 2 or b) the fraction of responses below the detection limit was more than 20 For the blood lead AUC endpoint (where the raw data consist of multiple blood lead values as a function of time) this corresponds to an AUC less than about 15 ȝgdL-days

OSWER 92857-77 D-6

In testing both options it was found that Options 3A and 3B gave similar results in most cases However Option 3A (in which weights are not pre-assigned but are optimized during the fitting procedure) tended to be very sensitive to starting guesses often failing to find solutions even when the starting guesses were good and sometimes yielding different results depending on the starting guesses In addition this approach uses the expected mean response rather than the observed mean response to estimate the variance which tends to diminish the role of the measured data in defining the best fit curve In contrast Option 3B was less prone to unstable solutions and is based more directly on the data

Based on a consideration of the advantages and disadvantages of each approach Option 3B was selected for use in this project This is mainly because it is has relatively less vulnerability than Option A to random variations in observed variances in a dose group (which results is assignment of weights that are either too high or too low) and also because it is could be implemented with relatively few difficulties It should be noted however that Option 3B is somewhat vulnerable to poor fits when one particular dose group in a data set lies well below the expected smooth fit through the other dose groups In this case the variance assigned to the group (based on the observed mean response) is lower than typical for that dose level (and hence the weights assigned to the data are higher than usual) tending to force the line through that data set at the expense of the other data sets

33 Choice of Model Forms

As noted above the main objective of the curve-fitting effort is to find a mathematical model that fits both the reference and test group dose-response data sets smoothly Note that there is no requirement that the model have a mechanistic basis or that the coefficients have a biological meaning As discussed by Finney (1978) it is generally not appropriate to choose the form of the dose-response model based on only one experiment but to make the choice based on the weight of observations across many different studies Because simple inspection of the data suggest that over the range of doses tested in these studies some dose-response curves (mainly those for liver kidney and bone) appear to be approximately linear while others (mainly those for blood lead AUC) appear to be nonlinear (tending to plateau as dose increases) the linear model and three alternative non-linear models were evaluated

1) Linear y a br xr bt xt

btRBA br

2) Exponential y a b 1 exp cr xr b 1 exp ct xt

RBA ct

cr

OSWER 92857-77 D-7

3) Michaelis-Menton y a b umlsect

cx

r

x

cx

t

x cedilmiddot

copy r r t t sup1

RBA cr

ct

4) Power y a br xr c bt xt

c

1 c

RBA umlsect bt cedil

middot

copy br sup1

Appendix E presents the detailed results for every data set fit to each of the four different models investigated Goodness-of-fit was assessed using the F test statistic and the adjusted coefficient of multiple determination (Adj R2) calculated as follows (Draper and Smith 1998)

F MSE fit

MSEerror

Adj R 2 1 MSEerror

MSEtotal

where

MSE fit brvbarwi P i

p y 12

MSEerror brvbarwi P

ni

yp

i 2

brvbar iy

n y 12

MSEtotal w i

and

brvbarwi yi ybrvbarwi

p = number of parameters in model

n = number of observations (animals)

F is distributed as an F distribution with (p-1) and (n-p) degrees of freedom Models with p values larger than 005 were not considered to be acceptable Of the models that were acceptable

OSWER 92857-77 D-8

(p lt 005) the preferred model was identified based on Akaikersquos Information Criterion (AIC) (USEPA 2000a and 2000b) which is calculated as

AIC 2 L 2 p

where

L = Log-likelihood function

p = number of parameters in the model

At the kth dose the sample log-likelihood function is

k ln2 k 2 brvbargtyk j f xkL N k SV 2 1 Nk

2

2 2V k j 1

(Nelson 1982) The overall log-likelihood is the sum across all dose groups (g)

g

L brvbar L k k 1

so that

L g N k ln2SV 2

g 1

Nk gty f 2

xbrvbar 2 k brvbar 2V 2 brvbar k j kk 1 k 1 k j 1

The detailed results are presented in Appendix E and the findings are summarized in Table D-1 Inspection of this table reveals the following main conclusions

x For liver kidney and bone the linear model generally gave the best fit although this varied somewhat by endpoint (710 for kidney 610 for bone 410 for liver) In cases where the linear model was not the best fit the RBA value given by the linear model was usually close to that given by whatever other model did provide the best fit with an average absolute difference of 12 (6 if one data set [study 9] was excluded) On this basis the linear model was selected for application to all dose-response data sets for liver kidney and bone

x For the blood lead AUC endpoint the linear model usually gave the worst fit and on this basis it was rejected as a candidate for the AUC endpoint In general each of the three nonlinear models (exponential Michaelis-Menton and power) all tended to give similar results in terms of RBA value (the standard deviation in RBA for a particular test material averaged across the three models was usually less than 3) and differences in the AIC were usually small On this basis it was concluded that any of these three models would be acceptable The power model was not selected because it does not tend toward a plateau while data from early blood lead pilot

OSWER 92857-77 D-9

studies (using higher doses than commonly used in the Phase II studies) suggest that the blood lead endpoint does tend to do so Of the remaining two models (exponential and Michaelis-Menton) the exponential model was selected mainly because it yielded the best fit more often than the Michaelis-Menton model (4 out of 10 vs 2 out of 10) and because the exponential model had been used in previous analyses of the data Thus the exponential model was selected for application to all dose-response data sets for the blood AUC endpoint except in one special case noted below in section 45

34 Assessment of Endpoint Outliers

In biological assays it is not uncommon to note the occurrence of individual measured responses that appear atypical compared to the responses from other animals in the same dose group For the purposes of this program endpoint responses that yielded standardized weighted residuals greater than 35 or less than -35 were considered to be potential outliers (Canavos 1984) When such data points were encountered in a data set the RBA was calculated both with and without the potential outlier(s) excluded and the result with the outlier excluded was used as the preferred estimate

35 Treatment of Problematic Data Sets

Although the data reduction approach described above works well in most cases a few data sets yielded atypical results In particular fitting the blood lead data set from Experiment 7 proved difficult In this study the blood lead AUC data set did not yield a solution in JMP for the exponential model even though solutions could be obtained in Excel using minimization of weighted squared errors However the solutions tended to be unstable This difficulty in modeling the data appears to be due to the fact that the data have relatively less curvature than most blood lead AUC data sets Because of this lack of curvature it is not possible to estimate the exponential plateau value (b) with confidence which in turns makes it difficult to estimate the other parameters of the exponential model

Several alternative solutions were evaluated including a) using the model fits from one of the other nonlinear models b) using the fit for the linear model and c) fitting the data to the exponential model using a defined value for the plateau based on results from other data sets The results (ie the RBA values based on the blood lead AUC endpoint) were generally similar for all three of these approaches

OSWER 92857-77 D-10

Model RBA of TM1 RBA of TM2

Power 065 083 Linear 069 090 Michaelis-Menton 069 plusmn 001 090 plusmn 001 Exponential fit 070 plusmn 002 093 plusmn004 Exponential fit (parameter b = 1264) 075 104 Exponential fit (parameter b = 1691) 074 101

Solution was unstable values represent the mean and standard deviation of five different fitting results Parameter b set to the mean of the estimates obtained for all other blood AUC data sets using the exponential model Parameter b set to the maximum of the estimates obtained for all other blood AUC data sets using the exponential model All estimates are based on all data (outliers not excluded)

Based on these results it was concluded that the results from the linear fit were representative of the range of values derived by other alternatives so the JMP fit for the linear model was used for this data set

36 Characterization of Uncertainty Bounds

Each RBA value is calculated as the ratio of a model coefficient for the reference data set and for the test data set

RBAlinear endpoints bbt

r

RBAblood AUC ct

cr

However there is uncertainty in the estimates of the model coefficients in both the numerator and denominator and hence there is uncertainty in the ratio As described by Finney (1978) the fiduciary limits (uncertainly range) about the ratio R of two model coefficients may be calculated using Fiellerrsquos Theorem

R g covarr t r

t W

var bLBUB r r

1 g

W var 2 R covar R 2 var g umlumlsect var

covarr 2t

cedilcedilmiddot

t t r t r copy varr sup1

OSWER 92857-77 D-11

t 2

gb2 varr

r

where

R = ratio ( bt br for linear model ct cr for exponential model)

varr = variance in the coefficient for the reference material

covarrt = covariance in the coefficients for the reference and test materials

br = coefficient for the reference material (cr in the case of the exponential model)

t = t statistic for alpha (005) and (n-p) degrees of freedom

When g is small (lt005) the variance of the ratio is approximated as (Finney 1978)

var 2 R covarr t R2 varrtvarR 2br

37 Combination of RBA Estimates Across Endpoints

As discussed above each study of RBA utilized four different endpoints to estimate absorption of lead including blood AUC liver kidney and bone Consequently each study yielded four independent estimates of RBA for each test material Thus the final RBA estimate for a test material involves combining the four end-point specific RBA values into a single value (point estimate) and estimating the uncertainty around that point estimate The methods used to achieve these goals are described below

Derivation of the Point Estimate

The basic strategy for deriving a point estimate of RBA for a test material is to calculate a confidence-weighted average of the four endpoint-specific RBA values If all four endpoints are considered to be equally reliable the weighting factors are all equal (ie the point estimate is the simple average) If reliability is considered to differ from endpoint to endpoint then weights are assigned in proportion to the reliability

brvbarRBAi wi RBApoint estimate brvbarwi

Because each endpoint-specific RBA value is calculated as the ratio of the parameters of the dose-response curves fitted to the experimental data for reference material and test material the reliability of an endpoint-specific RBA is inherently related to the quality of the data that define the dose-response curve for that endpoint For endpoints that tend to have low within-group variability and generate data that fit the dose-response model well the uncertainty around

OSWER 92857-77 D-12

the model parameters will tend to be small and hence the uncertainty around the RBA value will also tend to be small Conversely if the underlying dose-response data for an endpoint are highly variable and the dose-response model does not fit the data well there will tend to be high uncertainty in the model parameters and hence in the RBA estimate Thus a good indicator of relative reliability between the four different endpoints is the relative magnitude of the uncertainty (standard error) around RBA estimates based on each endpoint

Figure D-5 plots the standard error in each RBA estimate as a function of the RBA value for each of the four different endpoints As seen uncertainty in RBA increases as a function of the estimated value of RBA in all four cases This is expected because of the heteroscedastisity in the underlying dose-response data Although RBA values based on blood AUC and femur tend to yield estimates with slightly lower standard errors than RBA values based on liver or kidney the magnitude of the standard errors tends to be generally similar for all four endpoints and the difference between the four regression lines is not statistically significant (p = 0699) Based on this each endpoint-specific RBA value was judged to have approximately equal validity and the point estimate was calculated as the simple average across all four endpoint-specific RBA values

Estimation of Uncertainty Bounds Around the Point Estimate

The uncertainty bounds around each point estimate were estimated using Monte Carlo simulation For each test material values for RBA were drawn from the uncertainty distributions for each endpoint with equal frequency Each endpoint-specific uncertainty distribution was assumed to be normal with the mean equal to the best estimate of RBA and the standard deviation estimated from Fiellerrsquos Theorem (see Section 46 above) The uncertainty in the point estimate was characterized as the range from the 5th to the 95th percentile of the average across endpoints

OSWER 92857-77 D-13

40 RELATION BETWEEN RBA AND IVBA

41 Choice of Model Form

As discussed in Section 332 of the main text one of the important objectives of this program was to characterize the degree to which measures of in vitro bioaccessibility (IVBA) correlate with and can be used to predict in vivo measurements of RBA This objective was approached by plotting the point estimate of in vivo RBA vs the corresponding IVBA value for each of the 19 different test materials and fitting several different mathematical models to the data Because the measurement error in RBA is heteroscedastic (tending to increase as RBA increases) all of the model fitting was performed by minimizing the sum of the weighted squared errors between observed and predicted RBA as described above (Section 42) The weighting factor assigned to each RBA point estimate was the inverse of the variance derived from Monte Carlo simulation as described in Section 47 and shown in Table D-2 Goodness of fit was assessed using the AIC as described in Section 43 The fitting results are shown in Figure D-6 (Panels A to D) and are summarized below

Model a b c R2 AIC

Linear RBA = a + bmiddotIVBA

Power RBA = a + bmiddotIVBAc

2-Parameter Exponential RBA = a + bmiddotexp(IVBA)

3-Parameter Exponential RBA = a + bmiddotexp(cmiddotIVBA)

-0028

-0003

-0634

-0476

0878

0978

0619

0464

--

1293

1225

--

0924

0931

0936

0936

-3046

-2992

-3302

-3111

As seen all of the models fit the data reasonably well with the two exponential models fitting somewhat better than the linear model However the improved fit of the exponential models is due mainly to the fact that the two data points that occur in the central part of the x-range (IVBA = 0378 and 0470) lie below the best fit linear line and these two data points tend to pull the central part of the curve down slightly when a non-linear model is used If these two data points were absent or if a third data point were present that were above the linear fit the quality of the fits would be approximately equal for linear and non-linear models Based on the judgment that two data points are not sufficient evidence to conclude that a non-linear fit is preferable to a linear model the linear model is selected as the interim recommended model As more data become available in the future the relationship between IVBA and RBA will be reassessed and the model will be revised if needed

Figure D-7 shows a graph of the best fit linear model through the data along with the 95 prediction interval calculated using SASreg As noted above the best fit equation is

RBA = 0878middotIVBA ndash 0028

OSWER 92857-77 D-14

42 Adjusting for Measurement Error in Both IVBA and RBA

In most cases linear and non-linear regression techniques assume that there are no measurement errors in the independent variable (IVBA) However as noted in Section 3 of the main text IVBA is derived by experimental measurement and hence there is some degree of measurement error in each IVBA value In this situation use of weighted linear regression (which accounts only for the measurement errors in RBA) may yield a fit that is biased with the magnitude of the error depending on the relative magnitude of the measurement errors in IVBA compared to RBA In order to investigate whether this was an important adjustment the data were fit by minimizing the chi-square merit function for a linear model (Cheng and Van Ness 1999)

amp 2 brvbar (RBAi a b IVBAi )2

Syi 2 b2 Sxi

2 where

a = Intercept of the linear equation

b = Slope of the linear equation

Sy2 i = Variance of RBA estimate i

Sx2 i = Variance of IVBA estimate i

As above the value of Sy2 i was derived from the Monte Carlo simulation used to derive

the point estimate for each RBA value and the value of Sx2 i was the variance of the three

independent measurements of IVBA (see Table D-2) Based on this approach the best fit equation is

RBA = 0884middotIVBA ndash 0028

As seen this fit is very similar to the weighted linear regression fit above with the same intercept and a slightly greater slope This relatively small effect of adjusting for measurement error in IVBA is expected because measurement errors in IVBA tend to be substantially smaller (average coefficient of variation = 6) than those in RBA (average coefficient of variation = 33) (see Table D-2) Because the difference in results is so small for this data set the fit based on weighted linear regression is selected as the preferred model at this time because of its relative simplicity This decision may be re-evaluated in the future as additional data become available

OSWER 92857-77 D-15

50 REFERENCES

Canavos C G 1984 Applied Probability and Statistical Methods Little Brown and Co Boston

Cheng C-L and J W Van Ness 1999 Statistical Regression with Measurement Error Oxford University Press New York

Draper N R and H Smith 1998 Applied Regression Analysis (3rd Edition) John Wiley amp Sons New York

Finney D J 1978 Statistical Method in Biological Assay (3rd Edition) Charles Griffin and Co London

Nelson W 1982 Applied Life Data Analysis John Wiley amp Sons New York

USEPA 1995 The Use of the Benchmark Dose Approach in Health Risk Assessment US Environmental Protection Agency Office of Research and Development Risk Assessment Forum EPA630R-94007 February 1995

USEPA 2000a Help Manual for Benchmark Dose Software Version 120 US Environmental Protection Agency Office of Research and Development EPA 600R-00014F February 2000

USEPA 2000b Benchmark Dose Technical Guidance Document External Review Draft US Environmental Protection Agency Risk Assessment Forum EPA630R-00001 October 2000

OSWER 92857-77 D-16

This page intentionally left blank to facilitate double-sided printing

APPENDIX D

TABLE D-1 MODEL COMPARISONS

Endpoint Experiment LINEAR EXPONENTIAL MICHAELIS-MENTON POWER Lowest

AICAIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3 AIC p Adj R2 RBA1 RBA2 RBA3

Blood AUC 2 4124014 lt 0001 0779 038 031 -- 3936549 lt 0001 0827 034 030 -- 3918262 lt 0001 0831 033 030 -- 3861163 lt 0001 0846 034 030 -- POWER

Blood AUC 3 4285143 lt 0001 0818 053 063 -- 3778492 lt 0001 0896 065 094 -- 3760574 lt 0001 0899 065 094 -- 3744287 lt 0001 0902 062 085 -- POWER

Blood AUC 4 4556739 lt 0001 0787 034 048 -- 3829415 lt 0001 0896 047 084 -- 3796654 lt 0001 0901 047 084 -- 3742627 lt 0001 0909 040 073 -- POWER

Blood AUC 5 38503 lt 0001 0864 050 055 -- 3451702 lt 0001 0933 069 072 -- 3447351 lt 0001 0934 068 073 -- 3449323 lt 0001 0934 061 068 -- MM

Blood AUC 6 3335853 lt 0001 0820 028 030 -- 3118304 lt 0001 0888 021 019 -- 3123221 lt 0001 0886 021 019 -- 316066 lt 0001 0875 024 023 -- EXP

Blood AUC 7 3943537 lt 0001 0692 069 090 -- NS NS NS NS NS -- NS NS NS NS NS -- 3942826 lt 0001 0689 065 083 -- POWER

Blood AUC 8 3771965 lt 0001 0822 026 -- -- 3379125 lt 0001 0898 026 -- -- 3369394 lt 0001 0900 026 -- -- 3443656 lt 0001 0885 020 -- -- MM

Blood AUC 9 3287634 lt 0001 0862 062 054 -- 3122198 lt 0001 0909 082 062 -- 3126794 lt 0001 0908 080 062 -- 3161967 lt 0001 0899 073 060 -- EXP

Blood AUC 11 4364331 lt 0001 0857 049 060 -- 3904143 lt 0001 0922 070 086 -- 3913314 lt 0001 0921 070 086 -- 4023932 lt 0001 0905 066 083 -- EXP

Blood AUC 12 3751354 lt 0001 0906 001 078 009 3703802 lt 0001 0910 001 071 007 3707599 lt 0001 0910 001 072 007 3748385 lt 0001 0905 001 074 007 EXP

Liver 2 5432988 lt 0001 0567 035 025 -- NS NS NS NS NS -- NS NS NS NS NS -- 5430502 lt 0001 0574 039 026 -- POWER

Liver 3 5622981 lt 0001 0782 056 120 -- NS NS NS NS NS -- NS NS NS NS NS -- 5614696 lt 0001 0786 060 108 -- POWER

Liver 4 5585529 lt 0001 0564 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5558161 lt 0001 0586 039 074 -- POWER

Liver 5 6744086 0003 0268 093 113 -- NS NS NS NS NS -- NS NS NS NS NS -- 6758198 0007 0249 087 102 -- LIN

Liver 6 4683743 lt 0001 0622 013 014 -- 4703592 lt 0001 0612 013 014 -- 4703592 lt 0001 0612 013 014 -- 4702987 lt 0001 0613 013 013 -- LIN

Liver 7 5034618 lt 0001 0679 054 071 -- 50544 lt 0001 0671 054 072 -- NS NS NS NS NS -- 5053976 lt 0001 0672 054 072 -- LIN

Liver 8 6296988 lt 0001 0452 018 -- -- NS NS NS NS -- -- NS NS NS NS -- -- 6306132 lt 0001 0441 018 -- -- LIN

Liver 9 4849237 lt 0001 0727 060 053 -- 4706533 lt 0001 0777 111 065 -- 4716336 lt 0001 0774 107 065 -- 4757101 lt 0001 0760 089 062 -- EXP

Liver 11 5614438 lt 0001 0757 058 073 -- 5615909 lt 0001 0757 066 071 -- 5615427 lt 0001 0757 065 071 -- 5609762 lt 0001 0759 063 073 -- POWER

Liver 12 506975 lt 0001 0716 002 125 011 NS NS NS NS NS NS NS NS NS NS NS NS 4937966 lt 0001 0746 002 098 012 POWER

Kidney 2 5302226 lt 0001 0687 022 027 -- NS NS NS NS NS -- NS NS NS NS NS -- 5322104 lt 0001 0679 022 027 -- LIN

Kidney 3 5335968 lt 0001 0834 058 091 -- 5342703 lt 0001 0833 058 097 -- 534219 lt 0001 0834 058 097 -- 5340045 lt 0001 0834 056 095 -- LIN

Kidney 4 5501067 lt 0001 0715 031 070 -- NS NS NS NS NS -- NS NS NS NS NS -- 5518207 lt 0001 0709 030 068 -- LIN

Kidney 5 5478196 lt 0001 0529 073 078 -- NS NS NS NS NS -- NS NS NS NS NS -- 5480081 lt 0001 0527 064 074 -- LIN

Kidney 6 5002596 lt 0001 0552 012 016 -- 5016143 lt 0001 0543 011 014 -- 5016373 lt 0001 0543 011 014 -- 5019909 lt 0001 0541 012 014 -- LIN

Kidney 7 5015953 lt 0001 0657 051 086 -- NS NS NS NS NS -- NS NS NS NS NS -- 5035096 lt 0001 0649 051 085 -- LIN

Kidney 8 5865547 lt 0001 0573 014 -- -- 5859632 lt 0001 0571 014 -- -- 5859527 lt 0001 0571 014 -- -- 5812902 lt 0001 0587 013 -- -- POWER

Kidney 9 5358631 lt 0001 0579 051 041 -- 5116407 lt 0001 0661 162 052 -- 5135473 lt 0001 0655 163 055 -- 5187502 lt 0001 0636 136 056 -- EXP

Kidney 11 5766481 lt 0001 0725 036 055 -- 5786496 lt 0001 0718 053 047 -- 5787016 lt 0001 0717 048 048 -- 5782471 lt 0001 0720 039 052 -- LIN

Kidney 12 8689066 lt 0001 0329 001 047 004 8700698 lt 0001 0315 001 034 003 87032 lt 0001 0315 001 036 003 8645181 lt 0001 0326 001 073 008 POWER

Femur 2 1805215 lt 0001 0863 024 026 -- NS NS NS NS NS -- NS NS NS NS NS -- 1825211 lt 0001 0859 024 026 -- LIN

Femur 3 1872204 lt 0001 0863 065 075 -- 1861918 lt 0001 0870 070 081 -- 1861445 lt 0001 0870 070 081 -- 186099 lt 0001 0870 068 079 -- POWER

Femur 4 1961178 lt 0001 0886 031 089 -- NS NS NS NS NS -- NS NS NS NS NS -- 1956032 lt 0001 0888 032 096 -- POWER

Femur 5 2211807 lt 0001 0856 067 073 -- NS NS NS NS NS -- NS NS NS NS NS -- 2225578 lt 0001 0854 065 072 -- LIN

Femur 6 2277994 lt 0001 0465 011 010 -- 2297051 lt 0001 0451 011 010 -- 2297112 lt 0001 0451 011 010 -- 229612 lt 0001 0451 011 011 -- LIN

Femur 7 2163481 lt 0001 0615 053 080 -- 2165913 lt 0001 0611 056 095 -- NS NS NS NS NS -- 2163737 lt 0001 0612 056 093 -- LIN

Femur 8 1939091 lt 0001 0830 020 -- -- 1951797 lt 0001 0828 020 -- -- 1951037 lt 0001 0828 020 -- -- 1855952 lt 0001 0850 018 -- -- POWER

Femur 9 1186208 lt 0001 0855 047 040 -- 112175 lt 0001 0884 050 043 -- 1119654 lt 0001 0885 050 043 -- 1111541 lt 0001 0888 048 041 -- POWER

Femur 11 1982084 lt 0001 0871 039 074 -- NS NS NS NS NS -- NS NS NS NS NS -- 2000238 lt 0001 0869 038 073 -- LIN

Femur 12 1371663 lt 0001 0865 001 095 001 1391501 lt 0001 0856 001 095 001 1391506 lt 0001 0856 001 095 001 1391826 lt 0001 0861 001 095 001 LIN

-- = The respective test material does not exist for this studyNS = No solution the software could not find a solution or the solution was unstable andor had unrealistic parameter estimatesNA = Not applicable the preferred model has the best fit or no solution was found for the preferred model

OSWER 92857-77Appendix D_Tables amp Figuresxls (Tbl D-1_Models)

APPENDIX D

TABLE D-2 DATA FOR WEIGHTED REGRESSION OF RBA vs IVBA

Sample RBA IVBA

Best Estimate

Standard Deviation Variance Best

Estimate Standard Deviation Variance

Galena-enriched Soil

California Gulch AV Slag

California Gulch Oregon Gulch Tailings

Midvale Slag

Butte Soil

Bingham Creek Channel Soil

Bingham Creek Residential

Palmerton Location 2

Murray Smelter Slag

Aspen Berm

California Gulch Phase I Residential Soil

Jasper County High Lead Smelter

Palmerton Location 4

Aspen Residential

NIST Paint (SRM 2589)

Murray Smelter Soil

Jasper County Low Lead Yard

Jasper County High Lead Mill

California Gulch FeMn PbO

0011

0199

0061

0141

0144

0266

0268

0602

0401

0740

0723

0609

0493

0749

0719

0508

0900

0823

1049

0009 82

0065 33

0047 78

0050 35

0049 34

0053 20

0068 25

0184 31

0132 33

0182 25

0212 29

0108 18

0136 28

0164 22

0165 23

0164 32

0178 20

0192 23

0299 28

812E-05

426E-03

224E-03

249E-03

239E-03

278E-03

458E-03

338E-02

173E-02

331E-02

450E-02

116E-02

185E-02

268E-02

272E-02

269E-02

318E-02

368E-02

893E-02

0045

0094

0112

0174

0223

0378

0470

0636

0643

0649

0651

0693

0697

0714

0725

0747

0790

0853

0872

0012 26

0016 17

0009 8

0009 5

0006 2

0007 2

0012 3

0004 1

0073 11

0016 2

0015 2

0055 8

0027 4

0020 3

0020 3

0068 9

0056 7

0002 0

0005 1

140E-04

264E-04

773E-05

893E-05

303E-05

501E-05

145E-04

129E-05

539E-03

245E-04

220E-04

304E-03

751E-04

383E-04

412E-04

464E-03

313E-03

297E-06

237E-05

OSWER 92857-77Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (TblD-2_Data)

APPENDIX D

FIGURE D-1 DOSE-RESPONSE CURVE FOR GALENA

Experiment 12 Blood AUC Test Material 1 (Galena-enriched soil)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Lead Acetate Galena

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-1_Saturation)

APPENDIX D

FIGURE D-2 EXAMPLES OF HETEROSCEDASTICITY

Experiment 9 Blood AUC Lead Acetate

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 Dose (ȝg Pbkg-day)

AUC

(ȝg

dL-d

ay)

Experiment 7 Liver Test Material 2

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 Dose (ȝg Pbkg-day)

Tiss

ue C

once

ntra

tion

(ȝg

g w

et w

eigh

t)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-2_Heteroscedasticity)

APPENDIX D

FIGURE D-3 EXAMPLE OF POOR FIT DUE TO LOW VARIANCEIN SOME DOSE GROUPS

Option 1 Linear Fit Experiment 12 Liver Lead Acetate

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

Dose (ȝg Pbkg-day)

Lead

Con

cent

ratio

n in

Tis

sue

(ȝg

g)

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-3_Poor Fit)

APPENDIX D

FIGURE D-4 VARIANCE MODELS All Phase II Lead Studies Data Quality Exclusion Rules Enforced

LIVER

y = 20999x - 26015 R2 = 07966

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

KIDNEY

y = 19557x - 18499 R2 = 07035

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

FEMUR

y = 1656x - 19713 R2 = 07022

-3

-2

-1

0

1

2

3

4

5

6

-05 00 05 10 15 20 25 30 35 40 45

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

BLOOD AUC

y = 15516x - 13226 R2 = 05046

0

1

2

3

4

5

6

7

8

9

20 25 30 35 40 45 50 55 60

ln(Group Mean Response)

ln(G

roup

Var

ianc

e)

Control Lead Acetate Test Material

p-value lt 001

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-4_Variance)

APPENDIX D

FIGURE D-5 EVALUATION OF RELATIVE PRECISION OF MEASUREMENT ENDPOINTS

000

005

010

015

020

025

030

035

00 02 04 06 08 10 12 14 16

RBA

Sta

ndar

d E

rror

of R

BA

Blood AUC Liver Kidney Femur

Blood AUC

Kidney

Liver

Femur

Endpoint Slope Intercept R2

Blood AUC 0177 -0002 0867 Liver 0227 0000 0916 Kidney 0219 0006 0914 Femur 0162 0008 0732

Comparison of Regression Lines

F 0638 Fcrit(005) 2227 p 0699

OSWER 92857-77Appendix D_Tables amp Figuresxls (Fig D-5_Precision)

APPENDIX D

FIGURE D-6 FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel A Linear Model (y = a + bx)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RBA

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00281 r2 09243 b 08782 Adj r2 09199

AIC -3046

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6A_Lin) Page 1 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel B Power Model (y = a + bx^c)

Model Fit

00

02

04

06

08

10

12

0 02 04 06 08 1 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -00033 R2 09307 b 09775 Adj R2 09220 c 12933 AIC -2992

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6B_Power) Page 2 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel C 2-Parameter Exponential Model (y = a + bexp(x))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -06339 R2 09355 b 06193 Adj R2 09317

AIC -3302

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6C_2Exp) Page 3 of 4

APPENDIX D

FIGURE D-6 Continued FIT OF DIFFERENT MODELS TO IVBA-RBA DATAPanel D 3-Parameter Exponential Model (y = a + bexp(cx))

Model Fit

00

02

04

06

08

10

12

00 02 04 06 08 10 12 IVBA

RB

A

Residual Plot

-04

-03

-02

-01

0

01

02

03

04

00 02 04 06 08 10 IVBA

Res

idua

l (O

bser

ved

- Pre

dict

ed)

Parameter Estimates Fit Statistics a -04756 R2 09359 b 04639 Adj R2 09279 c 12245 AIC -3111

OSWER 92857-77 Fig D-6_IVBA-RBA model fits_WEIGHTED4xls (FigD-6D_3Exp) Page 4 of 4

APPENDIX D

FIGURE D-7 PREDICTION INTERVAL FOR RBA BASED ON MEASURED IVBA

00

02

04

06

08

10

12

14

00 01 02 03 04 05 06 07 08 09 10

IVBA

RB

A

95 Prediction Interval

0878IVBA - 0028

OSWER 92857-77Fig 3-6 D-7_Prediction Intervals_NEW2xls (Fig D-7)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

DETAILED DOSE-RESPONSE DATA AND MODEL FITTING RESULTS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 1a Effects of Food

Test Material 1 Lead Acetate simultaneous with feeding Test Material 2 Lead Acetate 2 hours after feeding

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 1a Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180200

180 160

160

160

140

140

140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

120120

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

40 40

20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 154E+01 281E+00 b1 645E-01 597E-02 b2 372E-01 515E-02 b3 366E-01 504E-02

Covariance (c1c2) 00887 --Covariance (c1c3) 00872 --Degrees of Freedom 23 --

Statistic Estimate F 64226 p lt 0001

Adjusted R2 08795 AIC 246105

PbAc 0 hr PbAc +2 hr RBA 058 057 Lower bound 043 042 Upper bound 075 074 Standard Error 0092 0090

Exp1a_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 1a Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180180180

160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

404040

202020

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 107E+01 155E+00 b 133E+02 104E+01 c1 123E-02 188E-03 c2 481E-03 884E-04 c3 488E-03 919E-04

Covariance (c1c2) 06771 --Covariance (c1c3) 06779 --Degrees of Freedom 22 --

Statistic Estimate F 202312 p lt 0001

Adjusted R2 09687 AIC 215723

PbAc 0 hr PbAc +2 hr RBA 039 040 Lower bound 030 030 Upper bound 049 050 Standard Error 0054 0056 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 1a Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180180

160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 40 40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 106E+01 153E+00 b 180E+02 189E+01 c1 975E+01 202E+01 c2 235E+02 570E+01 c3 231E+02 570E+01

Covariance (c1c2) 08053 --Covariance (c1c3) 08061 --Degrees of Freedom 22 --

Statistic Estimate F 211024 p lt 0001

Adjusted R2 09700 AIC 215293

PbAc 0 hr PbAc +2 hr RBA 042 042 Lower bound 033 033 Upper bound 056 057 Standard Error 0060 0062 g 005 estimate is uncertain

Exp1a_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 1a Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180 180 180

160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

100

80

60

40 4040

20 2020

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 104E+01 158E+00

b1 694E+00 153E+00 b2 474E+00 123E+00 b3 475E+00 124E+00 c 540E-01 457E-02

Covariance (b1b2) 09528 --Covariance (b1b3) 09534 --Degrees of Freedom 22 --

Statistic Estimate F 199941 p lt 0001

Adjusted R2 09684 AIC 215846

PbAc 0 hr PbAc +2 hr RBA 049 050 Lower bound 034 034 Upper bound 062 063 Standard Error -- --

Exp1a_AUCxls (Graph_POWER)

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 130E+02 411E+01 b1 489E+00 118E+00 b2 370E+00 111E+00 b3 249E+00 794E-01

Covariance (c1c2) 00810 --Covariance (c1c3) 01091 --Degrees of Freedom 23 --

Statistic Estimate F 11055 p lt 0001

Adjusted R2 05371 AIC 402563

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound 035 023 Upper bound 144 097 Standard Error 0279 0192 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN)

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 1a Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+02 291E+01 b1 431E+00 843E-01 b2 369E+00 786E-01 b3 248E+00 563E-01

Covariance (c1c2) 00807 --Covariance (c1c3) 01085 --Degrees of Freedom 22 --

Statistic Estimate F 16332 p lt 0001

Adjusted R2 06479 AIC 364272

PbAc 0 hr PbAc +2 hr RBA 086 058 Lower bound 051 034 Upper bound 140 094 Standard Error 0238 0163 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 1a Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 117E+02 517E+01 b 245E+03 445E+03 c1 250E-03 567E-03 c2 188E-03 439E-03 c3 120E-03 261E-03

Covariance (c1c2) 09805 --Covariance (c1c3) 09802 --Degrees of Freedom 22 --

Statistic Estimate F 8087 p lt 0001

Adjusted R2 05216 AIC 403989

PbAc 0 hr PbAc +2 hr RBA 075 048 Lower bound Upper bound Standard Error 0345 0216 g 005 estimate is uncertain

Exp1a_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 1a Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 1a Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 128E+02 530E+01 b1 534E+00 763E+00 b2 406E+00 634E+00 b3 274E+00 437E+00 c 983E-01 276E-01

Covariance (b1b2) 09689 --Covariance (b1b3) 09684 --Degrees of Freedom 22 --

Statistic Estimate F 7934 p lt 0001

Adjusted R2 05162 AIC 404552

PbAc 0 hr PbAc +2 hr RBA 076 051 Lower bound Upper bound Standard Error -- --

Exp1a_Liverxls (Graph_POWER)

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 1a Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 443E+01 179E+01 b1 450E+00 893E-01 b2 324E+00 981E-01 b3 326E+00 105E+00

Covariance (c1c2) 00197 --Covariance (c1c3) 00178 --Degrees of Freedom 23 --

Statistic Estimate F 14903 p lt 0001

Adjusted R2 06160 AIC 408462

PbAc 0 hr PbAc +2 hr RBA 072 073 Lower bound 033 031 Upper bound 129 132 Standard Error 0259 0271 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate PbAc 0 hr PbAc +2 hra 000E+00 000E+00 F 1175 RBA DIV0 DIV0b 000E+00 000E+00 p 03492 Lower boundc1 000E+00 000E+00 Adjusted R2 00262 Upper boundc2 000E+00 000E+00 AIC 623577 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 1a Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp1a_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 1a Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 380E+01 179E+01 b 133E+03 908E+02 c1 169E+02 169E+02 c2 181E+02 299E+02 c3 138E+02 269E+02

Covariance (c1c2) 08873 --Covariance (c1c3) 08896 --Degrees of Freedom 22 --

Statistic Estimate F 12449 p lt 0001

Adjusted R2 06379 AIC 402853

PbAc 0 hr PbAc +2 hr RBA 094 122 Lower bound Upper bound Standard Error 0835 1405 g 005 estimate is uncertain

Exp1a_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 1a Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-01 01 03 05 07 09 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 383E+01 182E+01 b1 165E+01 148E+01 b2 143E+01 158E+01 b3 148E+01 165E+01 c 727E-01 196E-01

Covariance (b1b2) 09430 --Covariance (b1b3) 09407 --Degrees of Freedom 22 --

Statistic Estimate F 11992 p lt 0001

Adjusted R2 06284 AIC 404685

PbAc 0 hr PbAc +2 hr RBA 082 086 Lower bound Upper bound Standard Error -- --

Exp1a_Kidneyxls (Graph_POWER)

5

10

15

20

25

30

APPENDIX E

Figure 4a - All DataPhase II Experiment 1a Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 158E+00 291E-01 b1 887E-02 740E-03 b2 312E-02 444E-03 b3 294E-02 426E-03

Covariance (c1c2) 01245 --Covariance (c1c3) 01250 --Degrees of Freedom 23 --

Statistic Estimate F 66771 p lt 0001

Adjusted R2 08836 AIC 116460

PbAc 0 hr PbAc +2 hr RBA 035 033 Lower bound 026 025 Upper bound 045 043 Standard Error 0055 0052

Exp1a_Femurxls (Graph_LIN)

5

10

15

20

25

APPENDIX E

Figure 4b - All DataPhase II Experiment 1a Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 317E-01 b 383E+01 207E+01 c1 299E-03 207E-03 c2 931E-04 592E-04 c3 880E-04 560E-04

Covariance (c1c2) 09665 --Covariance (c1c3) 09659 --Degrees of Freedom 22 --

Statistic Estimate F 53359 p lt 0001

Adjusted R2 08896 AIC 116514

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_EXP)

5

10

15

20

25

APPENDIX E

Figure 4c - All DataPhase II Experiment 1a Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 318E-01 b 671E+01 416E+01 c1 580E+02 453E+02 c2 186E+03 135E+03 c3 197E+03 143E+03

Covariance (c1c2) 09741 --Covariance (c1c3) 09736 --Degrees of Freedom 22 --

Statistic Estimate F 53403 p lt 0001

Adjusted R2 08896 AIC 116500

PbAc 0 hr PbAc +2 hr RBA 031 029 Lower bound Upper bound Standard Error 0056 0053 g 005 estimate is uncertain

Exp1a_Femurxls (Graph_MM)

5

10

15

20

25

APPENDIX E

Figure 4d - All DataPhase II Experiment 1a Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Lead Acetate 2 hours before feed (Reference) Lead Acetate Simultaneous with feed (PbAc 0 hr) Lead Acetate 2 hours after feed (PbAc +2 hr)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 25 25

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due) 20

15

10

5

Tiss

ue C

onc

(ug

g as

hed

resi

due)

20

15

10

5

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 137E+00 329E-01 b1 171E-01 808E-02 b2 647E-02 354E-02 b3 615E-02 339E-02 c 871E-01 943E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09598 --Degrees of Freedom 22 --

Statistic Estimate F 52175 p lt 0001

Adjusted R2 08873 AIC 116905

PbAc 0 hr PbAc +2 hr RBA 033 031 Lower bound 007 006 Upper bound 045 042 Standard Error -- --

Exp1a_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 2

Test Material 1 Bingham Creek Residential Test Material 2 Bingham Creek Channel Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

APPENDIX E

Figure 1a - All DataPhase II Experiment 2 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

100

80

60

100

80

60

4040

20 20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 197E+01 256E+00 b1 478E-01 561E-02 b2 180E-01 219E-02 b3 146E-01 176E-02

Covariance (c1c2) 01488 --Covariance (c1c3) 01354 --Degrees of Freedom 42 --

Statistic Estimate F 53890 p lt 0001

Adjusted R2 07791 AIC 412401

Test Material 1 Test Material 2 RBA 038 031 Lower bound 029 023 Upper bound 049 040 Standard Error 0059 0048

Exp2_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 2 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160160160

140140140

120120120

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 100

80

60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

100

80

60

404040

202020

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 136E+01 284E+00 b 116E+02 183E+01 c1 836E-03 264E-03 c2 281E-03 842E-04 c3 250E-03 772E-04

Covariance (c1c2) 07931 --Covariance (c1c3) 07868 --Degrees of Freedom 41 --

Statistic Estimate F 54613 p lt 0001

Adjusted R2 08266 AIC 393655

Test Material 1 Test Material 2 RBA 034 030 Lower bound 023 020 Upper bound 050 045 Standard Error 0067 0061 g 005 estimate is uncertain

Exp2_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 2 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160160

140 140140

120 120 120

Control Test Material 1

Control Test Material 2

Control Lead Acetate

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 129E+01 288E+00 b 164E+02 313E+01 c1 148E+02 560E+01 c2 446E+02 162E+02 c3 497E+02 185E+02

Covariance (c1c2) 08595 --Covariance (c1c3) 08572 --Degrees of Freedom 41 --

Statistic Estimate F 56405 p lt 0001

Adjusted R2 08312 AIC 391826

Test Material 1 Test Material 2 RBA 033 030 Lower bound 021 019 Upper bound 049 046 Standard Error 0065 0060 g 005 estimate is uncertain

Exp2_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 2 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160 160 160

140 140 140

120 120 120

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 114E+01 284E+00

b1 390E+00 136E+00 b2 201E+00 818E-01 b3 188E+00 793E-01 c 606E-01 668E-02

Covariance (b1b2) 09568 --Covariance (b1b3) 09581 --Degrees of Freedom 41 --

Statistic Estimate F 62696 p lt 0001

Adjusted R2 08458 AIC 386116

Test Material 1 Test Material 2 RBA 034 030 Lower bound 017 014 Upper bound 046 041 Standard Error -- --

Exp2_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Test Material 2

Outlier Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 579E+01 118E+01

b1 207E+00 355E-01 b2 717E-01 136E-01 b3 510E-01 951E-02

Covariance (c1c2) 02250 --Covariance (c1c3) 02118 --Degrees of Freedom 42 --

Statistic Estimate F 20611 p lt 0001

Adjusted R2 05666 AIC 543299

Test Material 1 Test Material 2 RBA 035 025 Lower bound 023 016 Upper bound 051 036 Standard Error 0078 0055 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 2 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

900900

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 628E+01 937E+00

b1 201E+00 287E-01 b2 563E-01 934E-02 b3 490E-01 767E-02

Covariance (c1c2) 02120 --Covariance (c1c3) 02047 --Degrees of Freedom 41 --

Statistic Estimate F 29241 p lt 0001

Adjusted R2 06582 AIC 507050

Test Material 1 Test Material 2 RBA 028 024 Lower bound 020 017 Upper bound 039 034 Standard Error 0055 0046 g 005 estimate is uncertain

Exp2_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 6812 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03406 Upper boundc2 000E+00 000E+00 AIC 904060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 2 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 2 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 2 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 11200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 747E+01 160E+01 b1 440E-01 588E-01 b2 129E-01 195E-01 b3 768E-02 125E-01 c 130E+00 251E-01

Covariance (b1b2) 09848 --Covariance (b1b3) 09854 --Degrees of Freedom 41 --

Statistic Estimate F 16144 p lt 0001

Adjusted R2 05738 AIC 543050

Test Material 1 Test Material 2 RBA 039 026 Lower bound Upper bound Standard Error -- --

Exp2_Liverxls (Graph_POWER)

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 2 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 442E+01 871E+00 b1 236E+00 352E-01 b2 517E-01 826E-02 b3 632E-01 895E-02

Covariance (c1c2) 01831 --Covariance (c1c3) 01458 --Degrees of Freedom 42 --

Statistic Estimate F 33908 p lt 0001

Adjusted R2 06869 AIC 530223

Test Material 1 Test Material 2 RBA 022 027 Lower bound 015 019 Upper bound 031 037 Standard Error 0043 0051 g 005 estimate is uncertain

Exp2_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5920 RBA DIV0 DIV0b 000E+00 000E+00 p lt 0001 Lower boundc1 000E+00 000E+00 Adjusted R2 03043 Upper boundc2 000E+00 000E+00 AIC 892708 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 2 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 2 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 2 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 21200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 450E+01 112E+01

b1 220E+00 151E+00 b2 469E-01 410E-01 b3 573E-01 504E-01 c 102E+00 139E-01

Covariance (b1b2) 09660 --Covariance (b1b3) 09676 --Degrees of Freedom 41 --

Statistic Estimate F 24834 p lt 0001

Adjusted R2 06793 AIC 532210

Test Material 1 Test Material 2 RBA 022 027 Lower bound 050 063 Upper bound 032 038 Standard Error -- --

Exp2_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4a - All DataPhase II Experiment 2 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 725E-01 166E-01 b1 837E-02 742E-03 b2 197E-02 194E-03 b3 214E-02 196E-03

Covariance (c1c2) 01156 --Covariance (c1c3) 01070 --Degrees of Freedom 42 --

Statistic Estimate F 95226 p lt 0001

Adjusted R2 08627 AIC 180521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 019 021 Upper bound 029 031 Standard Error 0029 0031

Exp2_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4345 RBA DIV0 DIV0b 000E+00 000E+00 p 00051 Lower boundc1 000E+00 000E+00 Adjusted R2 02292 Upper boundc2 000E+00 000E+00 AIC 791096 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4b - All DataPhase II Experiment 2 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Test Material 2

Control Test Material 1

Control Lead Acetate 3030

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

25

20

15

10

5

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

APPENDIX E

Figure 4c - All DataPhase II Experiment 2 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve 35

Control Lead Acetate

Control Test Material 130

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp2_Femurxls (Graph_MM)

0

1

2

3

4

5

5

10

15

20

25

30

35

APPENDIX E

Figure 4d - All DataPhase II Experiment 2 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Bingham Creek Residential) Test Material 2 (Bingham Creek Channel Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 35 35

Control Lead Acetate

Control Test Material 1

Control Test Material 230 30

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

25

20

15

10

5

25

20

15

10

5

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 723E-01 198E-01 b1 843E-02 329E-02 b2 199E-02 963E-03 b3 216E-02 106E-02 c 999E-01 787E-02

Covariance (b1b2) 09581 --Covariance (b1b3) 09605 --Degrees of Freedom 41 --

Statistic Estimate F 69720 p lt 0001

Adjusted R2 08593 AIC 182521

Test Material 1 Test Material 2 RBA 024 026 Lower bound 011 012 Upper bound 029 031 Standard Error -- --

Exp2_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 3

Test Material 1 Jasper County High Lead Smelter Test Material 2 Jasper County Low Lead Yard

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 3 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 135E+01 271E+00 b1 409E-01 570E-02 b2 215E-01 244E-02 b3 259E-01 277E-02

Covariance (c1c2) 00086 --Covariance (c1c3) 00740 --Degrees of Freedom 38 --

Statistic Estimate F 62590 p lt 0001

Adjusted R2 08184 AIC 428514

Test Material 1 Test Material 2 RBA 053 063 Lower bound 039 048 Upper bound 072 086 Standard Error 0094 0107 g 005 estimate is uncertain

Exp3_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 3 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays) 150

100

150

100

150

100

505050

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 827E+00 227E+00 b 163E+02 192E+01 c1 397E-03 875E-04 c2 256E-03 570E-04 c3 373E-03 876E-04

Covariance (c1c2) 06715 --Covariance (c1c3) 06719 --Degrees of Freedom 37 --

Statistic Estimate F 89559 p lt 0001

Adjusted R2 08963 AIC 377849

Test Material 1 Test Material 2 RBA 065 094 Lower bound 047 066 Upper bound 089 130 Standard Error 0116 0174 g 005 estimate is uncertain

Exp3_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 3 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 792E+00 227E+00 b 229E+02 348E+01 c1 319E+02 873E+01 c2 494E+02 137E+02 c3 340E+02 101E+02

Covariance (c1c2) 07827 --Covariance (c1c3) 07877 --Degrees of Freedom 37 --

Statistic Estimate F 92316 p lt 0001

Adjusted R2 08991 AIC 376057

Test Material 1 Test Material 2 RBA 065 094 Lower bound 046 067 Upper bound 091 138 Standard Error 0117 0176 g 005 estimate is uncertain

Exp3_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 3 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 746E+00 226E+00

b1 343E+00 105E+00 b2 256E+00 865E-01 b3 311E+00 105E+00 c 606E-01 557E-02

Covariance (b1b2) 09351 --Covariance (b1b3) 09366 --Degrees of Freedom 37 --

Statistic Estimate F 94960 p lt 0001

Adjusted R2 09016 AIC 374429

Test Material 1 Test Material 2 RBA 062 085 Lower bound 038 053 Upper bound 086 119 Standard Error -- --

Exp3_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - All DataPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Outlier

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 951E+00 283E+00 b1 228E+00 360E-01 b2 128E+00 176E-01 b3 273E+00 354E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00039 --Degrees of Freedom 38 --

Statistic Estimate F 50038 p lt 0001

Adjusted R2 07820 AIC 562298

Test Material 1 Test Material 2 RBA 056 120 Lower bound 040 085 Upper bound 081 173 Standard Error 0117 0245 g 005 estimate is uncertain

Exp3_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 3 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 959E+00 227E+00 b1 228E+00 290E-01 b2 128E+00 141E-01 b3 227E+00 247E-01

Covariance (c1c2) 00105 --Covariance (c1c3) 00041 --Degrees of Freedom 37 --

Statistic Estimate F 75057 p lt 0001

Adjusted R2 08474 AIC 519560

Test Material 1 Test Material 2 RBA 056 100 Lower bound 042 075 Upper bound 075 134 Standard Error 0094 0167

Exp3_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1218 RBA DIV0 DIV0b 000E+00 000E+00 p 03197 Lower boundc1 000E+00 000E+00 Adjusted R2 00208 Upper boundc2 000E+00 000E+00 AIC 873157 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 3 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 3 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp3_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 3 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 980E+00 281E+00 b1 123E+00 609E-01 b2 694E-01 351E-01 b3 134E+00 745E-01 c 113E+00 949E-02

Covariance (b1b2) 09157 --Covariance (b1b3) 09221 --Degrees of Freedom 37 --

Statistic Estimate F 38601 p lt 0001

Adjusted R2 07858 AIC 561470

Test Material 1 Test Material 2 RBA 060 108 Lower bound 032 032 Upper bound 100 162 Standard Error -- --

Exp3_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 3 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 2500

2000

1500

1000

500

2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 104E+01 314E+00

b1 219E+00 302E-01 b2 126E+00 144E-01 b3 199E+00 219E-01

Covariance (c1c2) 00096 --Covariance (c1c3) 00050 --Degrees of Freedom 38 --

Statistic Estimate F 69473 p lt 0001

Adjusted R2 08336 AIC 533597

Test Material 1 Test Material 2 RBA 058 091 Lower bound 043 068 Upper bound 079 124 Standard Error 0103 0160 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 3 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 300030003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 308E+03 288E+03 c1 770E-04 783E-04 c2 444E-04 451E-04 c3 746E-04 798E-04

Covariance (c1c2) 09824 --Covariance (c1c3) 09828 --Degrees of Freedom 37 --

Statistic Estimate F 52252 p lt 0001

Adjusted R2 08333 AIC 534270

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 3 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 30003000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 316E+00 b 545E+03 536E+03 c1 229E+03 245E+03 c2 398E+03 424E+03 c3 236E+03 264E+03

Covariance (c1c2) 09839 --Covariance (c1c3) 09844 --Degrees of Freedom 37 --

Statistic Estimate F 52312 p lt 0001

Adjusted R2 08335 AIC 534219

Test Material 1 Test Material 2 RBA 058 097 Lower bound Upper bound Standard Error 0110 0194 g 005 estimate is uncertain

Exp3_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 3 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3000 3000 3000

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 2500

2000

1500

1000

500

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 994E+00 316E+00 b1 348E+00 153E+00 b2 206E+00 950E-01 b3 334E+00 159E+00 c 910E-01 826E-02

Covariance (b1b2) 09216 --Covariance (b1b3) 09256 --Degrees of Freedom 37 --

Statistic Estimate F 52565 p lt 0001

Adjusted R2 08342 AIC 534005

Test Material 1 Test Material 2 RBA 056 095 Lower bound 031 049 Upper bound 088 144 Standard Error -- --

Exp3_Kidneyxls (Graph_POWER)

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 3 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Lead Acetate

Control Test Material 1

50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 183E+00 396E-01 b1 621E-02 698E-03 b2 403E-02 375E-03 b3 466E-02 455E-03

Covariance (c1c2) 01624 --Covariance (c1c3) 01457 --Degrees of Freedom 33 --

Statistic Estimate F 76883 p lt 0001

Adjusted R2 08635 AIC 187220

Test Material 1 Test Material 2 RBA 065 075 Lower bound 052 060 Upper bound 082 095 Standard Error 0087 0103

Exp3_Femurxls (Graph_LIN)

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 3 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 141E+00 467E-01 b 620E+01 308E+01 c1 117E-03 692E-04 c2 817E-04 506E-04 c3 952E-04 593E-04

Covariance (c1c2) 09723 --Covariance (c1c3) 09705 --Degrees of Freedom 32 --

Statistic Estimate F 61268 p lt 0001

Adjusted R2 08701 AIC 186192

Test Material 1 Test Material 2 RBA 070 081 Lower bound 482 747 Upper bound 228 225 Standard Error 0101 0123 g 005 estimate is uncertain

Exp3_Femurxls (Graph_EXP)

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 3 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 139E+00 472E-01 b 109E+02 603E+01 c1 148E+03 977E+02 c2 213E+03 146E+03 c3 182E+03 126E+03

Covariance (c1c2) 09775 --Covariance (c1c3) 09761 --Degrees of Freedom 32 --

Statistic Estimate F 61359 p lt 0001

Adjusted R2 08702 AIC 186145

Test Material 1 Test Material 2 RBA 070 081 Lower bound Upper bound Standard Error 0101 0122 g 005 estimate is uncertain

Exp3_Femurxls (Graph_MM)

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 3 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Jasper County High Lead Smelter) Test Material 2 (Jasper County Low Lead Yard)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 132E+00 498E-01 b1 129E-01 545E-02 b2 926E-02 431E-02 b3 106E-01 484E-02 c 867E-01 744E-02

Covariance (b1b2) 09601 --Covariance (b1b3) 09575 --Degrees of Freedom 32 --

Statistic Estimate F 61446 p lt 0001

Adjusted R2 08704 AIC 186099

Test Material 1 Test Material 2 RBA 068 079 Lower bound 039 047 Upper bound 089 106 Standard Error -- --

Exp3_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 4

Test Material 1 Murray Smelter Slag Test Material 2 Jasper County High Lead Mill

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 4 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 143E+01 304E+00 b1 542E-01 780E-02 b2 186E-01 249E-02 b3 258E-01 304E-02

Covariance (c1c2) 00818 --Covariance (c1c3) 00672 --Degrees of Freedom 38 --

Statistic Estimate F 51413 p lt 0001

Adjusted R2 07867 AIC 455674

Test Material 1 Test Material 2 RBA 034 048 Lower bound 025 035 Upper bound 048 066 Standard Error 0065 0086 g 005 estimate is uncertain

Exp4_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 4 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 852E+00 232E+00 b 144E+02 147E+01 c1 636E-03 140E-03 c2 298E-03 651E-04 c3 533E-03 120E-03

Covariance (c1c2) 05953 --Covariance (c1c3) 05796 --Degrees of Freedom 37 --

Statistic Estimate F 89273 p lt 0001

Adjusted R2 08960 AIC 382941

Test Material 1 Test Material 2 RBA 047 084 Lower bound 033 058 Upper bound 067 121 Standard Error 0092 0171 g 005 estimate is uncertain

Exp4_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 4 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 813E+00 228E+00 b 190E+02 247E+01 c1 177E+02 484E+01 c2 380E+02 103E+02 c3 211E+02 615E+01

Covariance (c1c2) 07225 --Covariance (c1c3) 07236 --Degrees of Freedom 37 --

Statistic Estimate F 94291 p lt 0001

Adjusted R2 09010 AIC 379665

Test Material 1 Test Material 2 RBA 047 084 Lower bound 032 057 Upper bound 068 128 Standard Error 0094 0177 g 005 estimate is uncertain

Exp4_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 4 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 757E+00 220E+00

b1 688E+00 192E+00 b2 435E+00 141E+00 b3 587E+00 186E+00 c 504E-01 534E-02

Covariance (b1b2) 09315 --Covariance (b1b3) 09341 --Degrees of Freedom 37 --

Statistic Estimate F 103784 p lt 0001

Adjusted R2 09093 AIC 374263

Test Material 1 Test Material 2 RBA 040 073 Lower bound 023 043 Upper bound 059 106 Standard Error -- --

Exp4_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - All DataPhase II Experiment 4 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 571E+01 177E+01

b1 173E+00 426E-01 b2 889E-01 150E-01 b3 149E+00 295E-01

Covariance (c1c2) 01813 --Covariance (c1c3) 02399 --Degrees of Freedom 38 --

Statistic Estimate F 18693 p lt 0001

Adjusted R2 05642 AIC 558553

Test Material 1 Test Material 2 RBA 051 086 Lower bound 033 054 Upper bound 088 147 Standard Error 0140 0238 g 005 estimate is uncertain

Exp4_Liverxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5080 RBA DIV0 DIV0b 000E+00 000E+00 p 00023 Lower boundc1 000E+00 000E+00 Adjusted R2 02847 Upper boundc2 000E+00 000E+00 AIC 846060 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 4 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 4 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 4 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+01 198E+01 b1 376E-01 369E-01 b2 109E-01 134E-01 b3 252E-01 290E-01 c 132E+00 186E-01

Covariance (b1b2) 09617 --Covariance (b1b3) 09615 --Degrees of Freedom 37 --

Statistic Estimate F 15495 p lt 0001

Adjusted R2 05858 AIC 555816

Test Material 1 Test Material 2 RBA 039 074 Lower bound Upper bound Standard Error -- --

Exp4_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 3a - All DataPhase II Experiment 4 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 679E+01 162E+01

b1 280E+00 481E-01 b2 877E-01 134E-01 b3 197E+00 263E-01

Covariance (c1c2) 01300 --Covariance (c1c3) 01213 --Degrees of Freedom 38 --

Statistic Estimate F 35326 p lt 0001

Adjusted R2 07152 AIC 550107

Test Material 1 Test Material 2 RBA 031 070 Lower bound 022 050 Upper bound 046 102 Standard Error 0067 0143 g 005 estimate is uncertain

Exp4_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4572 RBA DIV0 DIV0b 000E+00 000E+00 p 00042 Lower boundc1 000E+00 000E+00 Adjusted R2 02584 Upper boundc2 000E+00 000E+00 AIC 885551 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 4 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250025002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 4 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 25002500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 4 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2000

1500

1000

500

2000

1500

1000

500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 724E+01 186E+01 b1 209E+00 137E+00 b2 588E-01 486E-01 b3 138E+00 105E+00 c 106E+00 127E-01

Covariance (b1b2) 09527 --Covariance (b1b3) 09542 --Degrees of Freedom 37 --

Statistic Estimate F 25994 p lt 0001

Adjusted R2 07092 AIC 551821

Test Material 1 Test Material 2 RBA 030 068 Lower bound 069 Upper bound 050 Standard Error -- --

Exp4_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4a - All DataPhase II Experiment 4 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 535E-01 164E-01 b1 765E-02 101E-02 b2 235E-02 247E-03 b3 680E-02 560E-03

Covariance (c1c2) 00238 --Covariance (c1c3) 00207 --Degrees of Freedom 33 --

Statistic Estimate F 94431 p lt 0001

Adjusted R2 08862 AIC 196118

Test Material 1 Test Material 2 RBA 031 089 Lower bound 023 069 Upper bound 041 118 Standard Error 0051 0137 g 005 estimate is uncertain

Exp4_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1274 RBA DIV0 DIV0b 000E+00 000E+00 p 03008 Lower boundc1 000E+00 000E+00 Adjusted R2 00295 Upper boundc2 000E+00 000E+00 AIC 773426 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4b - All DataPhase II Experiment 4 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 2

Control Test Material 1

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

70

APPENDIX E

Figure 4c - All DataPhase II Experiment 4 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Test Material 1

Control Test Material 2

Control Lead Acetate 6060

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp4_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

70

APPENDIX E

Figure 4d - All DataPhase II Experiment 4 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Slag) Test Material 2 (Jasper County High Lead Mill)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 70 70

Control Lead Acetate

Control Test Material 1

Control Test Material 260 60

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

50

40

30

20

10

50

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 488E-01 166E-01 b1 129E-01 499E-02 b2 471E-02 226E-02 b3 124E-01 532E-02 c 892E-01 756E-02

Covariance (b1b2) 09218 --Covariance (b1b3) 09254 --Degrees of Freedom 32 --

Statistic Estimate F 72328 p lt 0001

Adjusted R2 08880 AIC 195603

Test Material 1 Test Material 2 RBA 032 096 Lower bound 013 056 Upper bound 045 134 Standard Error -- --

Exp4_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 5

Test Material 1 Aspen Berm Test Material 2 Aspen Residential

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

50

100

150

APPENDIX E

Figure 1a - All DataPhase II Experiment 5 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

150

100

50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 129E+01 219E+00 b1 425E-01 490E-02 b2 211E-01 199E-02 b3 232E-01 212E-02

Covariance (c1c2) 00903 --Covariance (c1c3) 00880 --Degrees of Freedom 38 --

Statistic Estimate F 87459 p lt 0001

Adjusted R2 08635 AIC 385030

Test Material 1 Test Material 2 RBA 050 055 Lower bound 039 043 Upper bound 064 070 Standard Error 0071 0077

Exp5_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 5 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250250250

200200200

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

150

100

505050

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 803E+00 172E+00 b 163E+02 169E+01 c1 382E-03 683E-04 c2 263E-03 497E-04 c3 276E-03 526E-04

Covariance (c1c2) 07323 --Covariance (c1c3) 07322 --Degrees of Freedom 37 --

Statistic Estimate F 143955 p lt 0001

Adjusted R2 09331 AIC 345170

Test Material 1 Test Material 2 RBA 069 072 Lower bound 054 056 Upper bound 087 091 Standard Error 0093 0098 g 005 estimate is uncertain

Exp5_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 5 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250250

200 200 200

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 50 50

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 781E+00 173E+00 b 239E+02 323E+01 c1 355E+02 797E+01 c2 524E+02 124E+02 c3 489E+02 118E+02

Covariance (c1c2) 08270 --Covariance (c1c3) 08275 --Degrees of Freedom 37 --

Statistic Estimate F 145720 p lt 0001

Adjusted R2 09339 AIC 344735

Test Material 1 Test Material 2 RBA 068 073 Lower bound 053 057 Upper bound 088 095 Standard Error 0093 0100 g 005 estimate is uncertain

Exp5_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 5 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250 250 250

200 200 200

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

150

100

50 5050

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 741E+00 176E+00

b1 270E+00 667E-01 b2 197E+00 550E-01 b3 210E+00 584E-01 c 649E-01 456E-02

Covariance (b1b2) 09387 --Covariance (b1b3) 09389 --Degrees of Freedom 37 --

Statistic Estimate F 144915 p lt 0001

Adjusted R2 09335 AIC 344932

Test Material 1 Test Material 2 RBA 061 068 Lower bound 044 049 Upper bound 078 086 Standard Error -- --

Exp5_AUCxls (Graph_POWER)

-2

-1

0

1

2

3

4

5

6

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

APPENDIX E

Figure 2a - All DataPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000

Outlier Control Test Material 2

Control Test Material 1

Control Lead Acetate 4500 4500

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

Control Test Material 1

5

4

3

2

1

0

-1

-2

5

4

3

2

1

0

-1

-2

-3 -3 -3

-4 -4 -4

0 05 1 15 2 25 3 0 05 1 15 2 25 3 SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

0 05 1 15 2 25 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 107E+02 509E+01 b1 158E+00 786E-01 b2 147E+00 519E-01 b3 179E+00 547E-01

Covariance (c1c2) 02781 --Covariance (c1c3) 01555 --Degrees of Freedom 36 --

Statistic Estimate F 5754 p 00025

Adjusted R2 02678 AIC 674409

Test Material 1 Test Material 2 RBA 093 113 Lower bound 038 048 Upper bound 514 678 Standard Error 0490 0616 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 5 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 2500 2500

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

2000

1500

1000

500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 621E+01 246E+01 b1 196E+00 429E-01 b2 171E+00 285E-01 b3 150E+00 292E-01

Covariance (c1c2) 02174 --Covariance (c1c3) 02847 --Degrees of Freedom 35 --

Statistic Estimate F 18566 p lt 0001

Adjusted R2 05810 AIC 526951

Test Material 1 Test Material 2 RBA 087 077 Lower bound 058 050 Upper bound 139 121 Standard Error 0214 0190 g 005 estimate is uncertain

Exp5_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3654 RBA DIV0 DIV0b 000E+00 000E+00 p 00137 Lower boundc1 000E+00 000E+00 Adjusted R2 02139 Upper boundc2 000E+00 000E+00 AIC 937766 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2b - All DataPhase II Experiment 5 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500050005000

Control Test Material 2

Control Test Material 1

Control Lead Acetate

450045004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-4

-3

-2

-1

0

1

2

3

4

5

6

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 5 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 50005000

Control Test Material 1

Control Test Material 2

Control Lead Acetate 4500 45004500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Liverxls (Graph_MM)

0

1

2

3

4

5

6

APPENDIX E

Figure 2d - All DataPhase II Experiment 5 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 5000 5000 5000

Control Lead Acetate

Control Test Material 1

Control Test Material 24500 4500 4500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 66

Control Lead Acetate

Control Test Material 2

-3 -3

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-3

-4 -4 -4 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

55

44

33

22

11

0 0

-1 -1 -1

-2 -2 -2

Parameter Estimate Standard Error a 120E+02 637E+01

b1 819E-01 173E+00 b2 698E-01 163E+00 b3 839E-01 193E+00 c 112E+00 367E-01

Covariance (b1b2) 09666 --Covariance (b1b3) 09647 --Degrees of Freedom 35 --

Statistic Estimate F 4240 p 00067

Adjusted R2 02494 AIC 675820

Test Material 1 Test Material 2 RBA 087 102 Lower bound Upper bound Standard Error -- --

Exp5_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

1800

APPENDIX E

Figure 3a - All DataPhase II Experiment 5 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 16001600

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 602E+01 263E+01

b1 184E+00 456E-01 b2 134E+00 250E-01 b3 143E+00 292E-01

Covariance (c1c2) 02137 --Covariance (c1c3) 02775 --Degrees of Freedom 36 --

Statistic Estimate F 15575 p lt 0001

Adjusted R2 05286 AIC 547820

Test Material 1 Test Material 2 RBA 073 078 Lower bound 046 049 Upper bound 126 133 Standard Error 0202 0214 g 005 estimate is uncertain

Exp5_Kidneyxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 4815 RBA DIV0 DIV0b 000E+00 000E+00 p 00034 Lower boundc1 000E+00 000E+00 Adjusted R2 02812 Upper boundc2 000E+00 000E+00 AIC 863863 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 5 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 180018001800

Control Test Material 2

Control Test Material 1

Control Lead Acetate 160016001600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 5 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 18001800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600

1400

1200

1000

800

600

400

200

1600 1600

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 5 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1800 1800 1800

Control Lead Acetate

Control Test Material 1

Control Test Material 21600 1600 1600

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 899E+01 432E+01 b1 581E-01 947E-01 b2 336E-01 635E-01 b3 405E-01 734E-01 c 121E+00 285E-01

Covariance (b1b2) 09831 --Covariance (b1b3) 09834 --Degrees of Freedom 35 --

Statistic Estimate F 11844 p lt 0001

Adjusted R2 05266 AIC 548008

Test Material 1 Test Material 2 RBA 064 074 Lower bound Upper bound Standard Error -- --

Exp5_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 5 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

50 50

40

30

20

10

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 485E-01 213E-01 b1 619E-02 812E-03 b2 414E-02 415E-03 b3 451E-02 447E-03

Covariance (c1c2) 00463 --Covariance (c1c3) 00555 --Degrees of Freedom 36 --

Statistic Estimate F 78581 p lt 0001

Adjusted R2 08565 AIC 221181

Test Material 1 Test Material 2 RBA 067 073 Lower bound 051 056 Upper bound 089 097 Standard Error 0108 0117

Exp5_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 1927 RBA DIV0 DIV0b 000E+00 000E+00 p 01278 Lower boundc1 000E+00 000E+00 Adjusted R2 00868 Upper boundc2 000E+00 000E+00 AIC 853823 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4b - All DataPhase II Experiment 5 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Test Material 2

Control Test Material 1

Control Lead Acetate

5050

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

10

20

30

40

50

60

APPENDIX E

Figure 4c - All DataPhase II Experiment 5 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp5_Femurxls (Graph_MM)

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4d - All DataPhase II Experiment 5 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Aspen Berm) Test Material 2 (Aspen Residential)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate

Control Test Material 1

Control Test Material 2

50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 528E-01 229E-01 b1 500E-02 214E-02 b2 321E-02 157E-02 b3 353E-02 169E-02 c 104E+00 794E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09328 --Degrees of Freedom 35 --

Statistic Estimate F 57870 p lt 0001

Adjusted R2 08536 AIC 222558

Test Material 1 Test Material 2 RBA 065 072 Lower bound 033 039 Upper bound 088 097 Standard Error -- --

Exp5_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 6

Test Material 1 Midvale Slag Test Material 2 Butte Soil

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 6 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 122E+01 166E+00 b1 327E-01 347E-02 b2 931E-02 106E-02 b3 978E-02 115E-02

Covariance (c1c2) 01007 --Covariance (c1c3) 01127 --Degrees of Freedom 38 --

Statistic Estimate F 63445 p lt 0001

Adjusted R2 08204 AIC 333585

Test Material 1 Test Material 2 RBA 028 030 Lower bound 022 023 Upper bound 036 038 Standard Error 0042 0045

Exp6_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 6 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 10 20 30 40 50 60 70

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 837E+00 161E+00 b 851E+01 989E+00 c1 101E-02 283E-03 c2 206E-03 466E-04 c3 193E-03 428E-04

Covariance (c1c2) 07145 --Covariance (c1c3) 07021 --Degrees of Freedom 37 --

Statistic Estimate F 81898 p lt 0001

Adjusted R2 08875 AIC 311830

Test Material 1 Test Material 2 RBA 021 019 Lower bound 015 014 Upper bound 031 029 Standard Error 0041 0039 g 005 estimate is uncertain

Exp6_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 6 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 805E+00 168E+00 b 122E+02 201E+01 c1 131E+02 496E+01 c2 626E+02 191E+02 c3 679E+02 201E+02

Covariance (c1c2) 08466 --Covariance (c1c3) 08359 --Degrees of Freedom 37 --

Statistic Estimate F 80706 p lt 0001

Adjusted R2 08861 AIC 312322

Test Material 1 Test Material 2 RBA 021 019 Lower bound 012 011 Upper bound 029 027 Standard Error 0042 0040 g 005 estimate is uncertain

Exp6_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 6 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 10 20 30 40 50 60 70 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 732E+00 188E+00

b1 238E+00 892E-01 b2 943E-01 410E-01 b3 906E-01 388E-01 c 647E-01 678E-02

Covariance (b1b2) 09646 --Covariance (b1b3) 09617 --Degrees of Freedom 37 --

Statistic Estimate F 72563 p lt 0001

Adjusted R2 08747 AIC 316066

Test Material 1 Test Material 2 RBA 024 023 Lower bound 012 012 Upper bound 032 030 Standard Error -- --

Exp6_AUCxls (Graph_POWER)

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 2a - All DataPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 1400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

OutlierOutlier Control Lead Acetate

Outlier Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 213E+01 697E+00 b1 202E+00 328E-01 b2 260E-01 452E-02 b3 278E-01 587E-02

Covariance (c1c2) 01005 --Covariance (c1c3) 01298 --Degrees of Freedom 38 --

Statistic Estimate F 23514 p lt 0001

Adjusted R2 06223 AIC 468374

Test Material 1 Test Material 2 RBA 013 014 Lower bound 009 009 Upper bound 019 021 Standard Error 0029 0034 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN)

100

200

300

400

500

600

700

800

900

1000

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 6 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1000 1000

Control Test Material 2

Control Test Material 1

Control Lead Acetate 900 900

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

800

700

600

500

400

300

200

100

800

700

600

500

400

300

200

100

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 233E+01 558E+00 b1 200E+00 269E-01 b2 254E-01 369E-02 b3 267E-01 477E-02

Covariance (c1c2) 00962 --Covariance (c1c3) 01248 --Degrees of Freedom 37 --

Statistic Estimate F 34108 p lt 0001

Adjusted R2 07129 AIC 430977

Test Material 1 Test Material 2 RBA 013 013 Lower bound 009 009 Upper bound 017 019 Standard Error 0024 0028 g 005 estimate is uncertain

Exp6_Liverxls (Graph_LIN_outliers)

APPENDIX E

Figure 2b - All DataPhase II Experiment 6 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 210E+01 824E+00 b 621E+03 655E+04 c1 333E-04 363E-03 c2 426E-05 460E-04 c3 455E-05 491E-04

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06121 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_EXP)

APPENDIX E

Figure 2c - All DataPhase II Experiment 6 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve 14001400

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 209E+01 829E+00 b 121E+04 127E+05 c1 582E+03 629E+04 c2 455E+04 486E+05 c3 427E+04 457E+05

Covariance (c1c2) 09998 --Covariance (c1c3) 09997 --Degrees of Freedom 37 --

Statistic Estimate F 17178 p lt 0001

Adjusted R2 06122 AIC 470359

Test Material 1 Test Material 2 RBA 013 014 Lower bound Upper bound Standard Error 0031 0039 g 005 estimate is uncertain

Exp6_Liverxls (Graph_MM)

APPENDIX E

Figure 2d - All DataPhase II Experiment 6 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1 1 3 5 7 9 11 13 15 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 181E+01 176E+01 b1 270E+00 363E+00 b2 386E-01 687E-01 b3 405E-01 720E-01 c 943E-01 262E-01

Covariance (b1b2) 09893 --Covariance (b1b3) 09877 --Degrees of Freedom 37 --

Statistic Estimate F 17205 p lt 0001

Adjusted R2 06126 AIC 470299

Test Material 1 Test Material 2 RBA 013 013 Lower bound Upper bound Standard Error -- --

Exp6_Liverxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Outlier Control Test Material 1 Outlier

Control Test Material 2Outlier

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 115E+01 929E+00 b1 212E+00 383E-01 b2 264E-01 524E-02 b3 334E-01 887E-02

Covariance (c1c2) 00947 --Covariance (c1c3) 01423 --Degrees of Freedom 38 --

Statistic Estimate F 17831 p lt 0001

Adjusted R2 05519 AIC 500260

Test Material 1 Test Material 2 RBA 012 016 Lower bound 008 009 Upper bound 019 025 Standard Error 0032 0047 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 6 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Control Test Material 1

Control Test Material 2

Control Lead Acetate 700

600

500

400

300

200

100

700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

44

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 149E+01 731E+00 b1 210E+00 319E-01 b2 255E-01 432E-02 b3 310E-01 717E-02

Covariance (c1c2) 00853 --Covariance (c1c3) 01306 --Degrees of Freedom 37 --

Statistic Estimate F 25046 p lt 0001

Adjusted R2 06433 AIC 454018

Test Material 1 Test Material 2 RBA 012 015 Lower bound 008 009 Upper bound 018 022 Standard Error 0026 0038 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_LIN_outliers)

-4

0

1

2

3

APPENDIX E

Figure 3b - All DataPhase II Experiment 6 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 55

4 44

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 936E+00 113E+01 b 121E+03 210E+03 c1 212E-03 439E-03 c2 242E-04 464E-04 c3 297E-04 574E-04

Covariance (c1c2) 09899 --Covariance (c1c3) 09860 --Degrees of Freedom 37 --

Statistic Estimate F 13189 p lt 0001

Adjusted R2 05432 AIC 501614

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 6 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 2

Control Test Material 1

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 928E+00 116E+01 b 222E+03 440E+03 c1 866E+02 204E+03 c2 754E+03 165E+04 c3 617E+03 136E+04

Covariance (c1c2) 09923 --Covariance (c1c3) 09893 --Degrees of Freedom 37 --

Statistic Estimate F 13183 p lt 0001

Adjusted R2 05431 AIC 501637

Test Material 1 Test Material 2 RBA 011 014 Lower bound Upper bound Standard Error 0037 0051 g 005 estimate is uncertain

Exp6_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 6 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

55

44

Control Test Material 1

Control Test Material 2

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-4 -4

-5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 515E+00 247E+01 b1 377E+00 585E+00 b2 563E-01 114E+00 b3 658E-01 131E+00 c 891E-01 294E-01

Covariance (b1b2) 09901 --Covariance (b1b3) 09869 --Degrees of Freedom 37 --

Statistic Estimate F 13091 p lt 0001

Adjusted R2 05412 AIC 501991

Test Material 1 Test Material 2 RBA 012 014 Lower bound Upper bound Standard Error -- --

Exp6_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4a - All DataPhase II Experiment 6 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 2

Control Test Material 1

Control Lead Acetate

1818

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 16

14

12

10

8

6

4

16

14

12

10

8

6

4

22 2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

600 800 1000

Control Test Material 2

0 200 400 SQRT(W) Dose

-4

0 200 400 600 800 1000 SQRT(W) Dose

Control Test Material 1

-4 -4

-5 -5 -5

0 100 200 300 400 500 600 700 800 900 1000

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 369E-01 221E-01

b1 426E-02 827E-03 b2 463E-03 122E-03 b3 436E-03 168E-03

Covariance (c1c2) 00873 --Covariance (c1c3) 01409 --Degrees of Freedom 38 --

Statistic Estimate F 12878 p lt 0001

Adjusted R2 04650 AIC 227799

Test Material 1 Test Material 2 RBA 011 010 Lower bound 006 004 Upper bound 018 019 Standard Error 0034 0042 g 005 estimate is uncertain

Exp6_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 6 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 202020

Control Test Material 2

Control Test Material 1

Control Lead Acetate

181818

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

16

14

12

10

8

6

4

2

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 238E-01 b 738E+01 510E+02 c1 611E-04 443E-03 c2 646E-05 455E-04 c3 598E-05 420E-04

Covariance (c1c2) 09990 --Covariance (c1c3) 09982 --Degrees of Freedom 37 --

Statistic Estimate F 9415 p lt 0001

Adjusted R2 04508 AIC 229705

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0041 0048 g 005 estimate is uncertain

Exp6_Femurxls (Graph_EXP)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4c - All DataPhase II Experiment 6 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Test Material 1

Control Test Material 2

Control Lead Acetate 18 18

16

14

12

10

8

6

4

2

16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 362E-01 239E-01 b 152E+02 113E+03 c1 337E+03 265E+04 c2 318E+04 243E+05 c3 344E+04 262E+05

Covariance (c1c2) 09991 --Covariance (c1c3) 09985 --Degrees of Freedom 37 --

Statistic Estimate F 9414 p lt 0001

Adjusted R2 04508 AIC 229711

Test Material 1 Test Material 2 RBA 011 010 Lower bound Upper bound Standard Error 0042 0047 g 005 estimate is uncertain

Exp6_Femurxls (Graph_MM)

0

1

2

3

4

5

2

4

6

8

10

12

14

16

18

20

APPENDIX E

Figure 4d - All DataPhase II Experiment 6 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Midvale Slag) Test Material 2 (Butte Soil)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 20 20

Control Lead Acetate

Control Test Material 1

Control Test Material 2

18 18

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 16

14

12

10

8

6

4

2

0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 418E-01 329E-01 b1 285E-02 508E-02 b2 273E-03 624E-03 b3 275E-03 616E-03 c 108E+00 336E-01

Covariance (b1b2) 09875 --Covariance (b1b3) 09814 --Degrees of Freedom 37 --

Statistic Estimate F 9426 p lt 0001

Adjusted R2 04512 AIC 229612

Test Material 1 Test Material 2 RBA 011 011 Lower bound Upper bound Standard Error -- --

Exp6_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 7

Test Material 1 California Gulch Phase I Residential Soil Test Material 2 California Gulch FeMn PbO

Figure 1a Blood AUC - Linear Model (All Data) Figure 1a Blood AUC - Linear Model (Outlier Excluded) Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

APPENDIX E

Figure 1a - All DataPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140

Control Test Material 2

Outlier

Control Lead Acetate

Control Test Material 1

120120

100100

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 646E+00 159E+00 b1 439E-01 925E-02 b2 303E-01 449E-02 b3 397E-01 509E-02

Covariance (c1c2) 01719 --Covariance (c1c3) 01351 --Degrees of Freedom 41 --

Statistic Estimate F 33889 p lt 0001

Adjusted R2 06916 AIC 394354

Test Material 1 Test Material 2 RBA 069 090 Lower bound 047 063 Upper bound 108 142 Standard Error 0163 0209 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - Outlier ExcludedPhase II Experiment 7 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 674E+00 130E+00 b1 340E-01 688E-02 b2 300E-01 369E-02 b3 394E-01 418E-02

Covariance (c1c2) 01724 --Covariance (c1c3) 01355 --Degrees of Freedom 40 --

Statistic Estimate F 47669 p lt 0001

Adjusted R2 07650 AIC 341729

Test Material 1 Test Material 2 RBA 088 116 Lower bound 062 083 Upper bound 134 176 Standard Error 0192 0249 g 005 estimate is uncertain

Exp7_AUCxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 5028 RBA DIV0 DIV0b 000E+00 000E+00 p 00022 Lower boundc1 000E+00 000E+00 Adjusted R2 02680 Upper boundc2 000E+00 000E+00 AIC 1170590 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1b - All DataPhase II Experiment 7 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140140

120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 1c - All DataPhase II Experiment 7 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140140

120 120120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

AU

C (u

gdL

-day

s)

80

60

40

80

60

40

80

60

40

20 20 20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 7 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140 140 140

120 120 120

100 100 100

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

80

60

40

20

80

60

40

20

80

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 734E+00 195E+00

b1 270E-01 192E-01 b2 168E-01 140E-01 b3 219E-01 179E-01 c 111E+00 156E-01

Covariance (b1b2) 09447 --Covariance (b1b3) 09455 --Degrees of Freedom 40 --

Statistic Estimate F 25364 p lt 0001

Adjusted R2 06890 AIC 394283

Test Material 1 Test Material 2 RBA 065 083 Lower bound Upper bound Standard Error -- --

Exp7_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

800

APPENDIX E

Figure 2a - All DataPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 700

600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 102E+01 208E+00 b1 229E+00 481E-01 b2 124E+00 201E-01 b3 163E+00 260E-01

Covariance (c1c2) 00199 --Covariance (c1c3) 00177 --Degrees of Freedom 41 --

Statistic Estimate F 32074 p lt 0001

Adjusted R2 06794 AIC 503462

Test Material 1 Test Material 2 RBA 054 071 Lower bound 035 046 Upper bound 089 116 Standard Error 0142 0186 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 7 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 103E+01 168E+00 b1 165E+00 289E-01 b2 124E+00 162E-01 b3 163E+00 211E-01

Covariance (c1c2) 00204 --Covariance (c1c3) 00181 --Degrees of Freedom 40 --

Statistic Estimate F 48222 p lt 0001

Adjusted R2 07671 AIC 451637

Test Material 1 Test Material 2 RBA 075 099 Lower bound 053 069 Upper bound 112 146 Standard Error 0163 0213 g 005 estimate is uncertain

Exp7_Liverxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 7 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800800800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 700

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 101E+01 213E+00 b 622E+03 644E+04 c1 371E-04 399E-03 c2 202E-04 218E-03 c3 266E-04 288E-03

Covariance (c1c2) 09997 --Covariance (c1c3) 09997 --Degrees of Freedom 40 --

Statistic Estimate F 23468 p lt 0001

Adjusted R2 06713 AIC 505440

Test Material 1 Test Material 2 RBA 054 072 Lower bound Upper bound Standard Error 0145 0196 g 005 estimate is uncertain

Exp7_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 2c - All DataPhase II Experiment 7 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 800800

Control Lead Acetate

Control Test Material 1700 700

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 7 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 800 800 800

Control Lead Acetate

Control Test Material 1

Control Test Material 2700

600

500

400

300

200

100

700 700

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

600

500

400

300

200

100

600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 0 05 1 15 2 25 3

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 101E+01 214E+00

b1 248E+00 128E+00 b2 137E+00 806E-01 b3 179E+00 103E+00 c 979E-01 126E-01

Covariance (b1b2) 08779 --Covariance (b1b3) 08769 --Degrees of Freedom 40 --

Statistic Estimate F 23491 p lt 0001

Adjusted R2 06716 AIC 505398

Test Material 1 Test Material 2 RBA 054 072 Lower bound 001 008 Upper bound 108 146 Standard Error -- --

Exp7_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 3a - All DataPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700

Outlier Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 978E+00 253E+00 b1 201E+00 446E-01 b2 102E+00 177E-01 b3 173E+00 275E-01

Covariance (c1c2) 00375 --Covariance (c1c3) 00222 --Degrees of Freedom 41 --

Statistic Estimate F 29081 p lt 0001

Adjusted R2 06569 AIC 501595

Test Material 1 Test Material 2 RBA 051 086 Lower bound 032 056 Upper bound 085 145 Standard Error 0141 0234 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 7 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 600 600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 100E+01 199E+00 b1 138E+00 259E-01 b2 101E+00 139E-01 b3 173E+00 216E-01

Covariance (c1c2) 00390 --Covariance (c1c3) 00230 --Degrees of Freedom 40 --

Statistic Estimate F 45535 p lt 0001

Adjusted R2 07565 AIC 446484

Test Material 1 Test Material 2 RBA 073 125 Lower bound 050 088 Upper bound 112 191 Standard Error 0167 0280 g 005 estimate is uncertain

Exp7_Kidneyxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 2799 RBA DIV0 DIV0b 000E+00 000E+00 p 00386 Lower boundc1 000E+00 000E+00 Adjusted R2 01406 Upper boundc2 000E+00 000E+00 AIC 836197 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3b - All DataPhase II Experiment 7 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700700

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 05 1 15 2 25 3 35 4SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

APPENDIX E

Figure 3c - All DataPhase II Experiment 7 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve 700700

Dose-Response Curve

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control Lead Acetate

Control Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 600

500

400

300

200

100

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 7 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700 700 700

Control Lead Acetate

Control Test Material 1

Control Test Material 2600

500

400

300

200

100

600

500

400

300

200

100

600

500

400

300

200

100

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

-4 -4

0 05 1 15 2 25 3 35 4 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 990E+00 264E+00

b1 183E+00 989E-01 b2 914E-01 560E-01 b3 155E+00 955E-01 c 102E+00 128E-01

Covariance (b1b2) 08746 --Covariance (b1b3) 08793 --Degrees of Freedom 40 --

Statistic Estimate F 21305 p lt 0001

Adjusted R2 06486 AIC 503510

Test Material 1 Test Material 2 RBA 051 085 Lower bound Upper bound 112 183 Standard Error -- --

Exp7_Kidneyxls (Graph_POWER)

2

4

6

8

10

12

APPENDIX E

Figure 4a - All DataPhase II Experiment 7 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 845E-01 198E-01 b1 591E-02 146E-02 b2 311E-02 578E-03 b3 473E-02 742E-03

Covariance (c1c2) 01175 --Covariance (c1c3) 00828 --Degrees of Freedom 41 --

Statistic Estimate F 24456 p lt 0001

Adjusted R2 06153 AIC 216348

Test Material 1 Test Material 2 RBA 053 080 Lower bound 033 051 Upper bound 093 140 Standard Error 0153 0225 g 005 estimate is uncertain

Exp7_Femurxls (Graph_LIN)

2

4

6

8

10

12

APPENDIX E

Figure 4b - All DataPhase II Experiment 7 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 161616

141414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 787E-01 214E-01 b 209E+01 214E+01 c1 308E-03 358E-03 c2 173E-03 209E-03 c3 291E-03 375E-03

Covariance (c1c2) 09636 --Covariance (c1c3) 09659 --Degrees of Freedom 40 --

Statistic Estimate F 18305 p lt 0001

Adjusted R2 06114 AIC 216591

Test Material 1 Test Material 2 RBA 056 095 Lower bound Upper bound Standard Error 0181 0324 g 005 estimate is uncertain

Exp7_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

2

4

6

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 7 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 1616

14 1414

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp7_Femurxls (Graph_MM)

2

4

6

8

10

12

APPENDIX E

Figure 4d - All DataPhase II Experiment 7 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (California Gulch Phase I Residential Soil) Test Material 2 (California Gulch FeMn PbO)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 16 16 16

14 14 14

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2 Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

Control Test Material 2

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E-01 224E-01 b1 103E-01 671E-02 b2 631E-02 486E-02 b3 973E-02 739E-02 c 859E-01 151E-01

Covariance (b1b2) 09128 --Covariance (b1b3) 09157 --Degrees of Freedom 40 --

Statistic Estimate F 18357 p lt 0001

Adjusted R2 06121 AIC 216374

Test Material 1 Test Material 2 RBA 056 093 Lower bound Upper bound Standard Error -- --

Exp7_Femurxls (Graph_POWER)

APPENDIX E

EXPERIMENT 8

Test Material 1 California Gulch AV Slag Test Material 2 Lead Acetate - IV (for ABA determination)

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model (All Data) Figure 2a Liver - Linear Model (Outlier Excluded) Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outlier Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

100

150

200

250

APPENDIX E

Figure 1a - All DataPhase II Experiment 8 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve 250

Control Test Material 1

Control Lead Acetate

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 859E+00 120E+00 b1 444E-01 745E-02 b2 117E-01 220E-02 b3 180E+00 141E-01

Covariance (c1c2) 01238 --Covariance (c1c3) 00351 --Degrees of Freedom 42 --

Statistic Estimate F 70263 p lt 0001

Adjusted R2 08220 AIC 377196

Test Material 1

RBA 026

Lower bound 017

Upper bound 039

Standard Error 0062

Lead Acetate ABA 025 Lower bound 017 Upper bound 033 Standard Error 0045

g 005 estimate is uncertain

Exp8_AUCxls (Graph_LIN)

0

1

2

3

4

APPENDIX E

Figure 1b - All DataPhase II Experiment 8 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

150

100

150

100

5050

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

55

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate IV

Control Test Material 1

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 804E+00 929E-01 b 159E+02 176E+01 c1 320E-03 586E-04 c2 834E-04 159E-04 c3 308E-02 840E-03

Covariance (c1c2) 04920 --Covariance (c1c3) 05858 --Degrees of Freedom 41 --

Statistic Estimate F 99719 p lt 0001

Adjusted R2 08977 AIC 337913

Test Material 1

RBA 026

Lower bound 019

Upper bound 036

Standard Error 0049

Lead Acetate ABA 010 Lower bound 007 Upper bound 017 Standard Error 0023

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 8 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250250

Control Test Material 1

Control Lead Acetate

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

50 50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 793E+00 930E-01 b 200E+02 332E+01 c1 367E+02 885E+01 c2 142E+03 347E+02 c3 318E+01 139E+01

Covariance (c1c2) 06808 --Covariance (c1c3) 07694 --Degrees of Freedom 41 --

Statistic Estimate F 101785 p lt 0001

Adjusted R2 08996 AIC 336939

Test Material 1

RBA 026

Lower bound 018

Upper bound 037

Standard Error 0050

Lead Acetate ABA 009 Lower bound 003 Upper bound 013 Standard Error 0026

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 8 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

50

100

150

200

250

0 50 100 150 200 250 300

Dose (ug Pbkg-d)

Control Lead Acetate IV

AU

C (u

gdL

-day

s)

Dose-Response Curve Dose-Response Curve 250 250

Control Lead Acetate

Control Test Material 1

200 200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)150

100

150

100

5050

0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

5

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

Control Lead Acetate IV

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 689E+00 111E+00 b1 286E+00 101E+00 b2 116E+00 493E-01 b3 130E+01 452E+00 c 556E-01 815E-02

Covariance (b1b2) 08993 --Covariance (b1b3) 09228 --Degrees of Freedom 41 --

Statistic Estimate F 87734 p lt 0001

Adjusted R2 08852 AIC 344366

Test Material 1

RBA 020

Lower bound 007

Upper bound 034

Standard Error --

Lead Acetate ABA 007 Lower bound 004 Upper bound 011 Standard Error --

Exp8_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - All DataPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier

Dose-Response Curve Dose-Response Curve 3500

Outlier

Control Test Material 1

Outlier

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 156E+01 376E+00 b1 194E+00 576E-01 b2 355E-01 104E-01 b3 125E+01 291E+00

Covariance (c1c2) 00491 --Covariance (c1c3) 00059 --Degrees of Freedom 42 --

Statistic Estimate F 13353 p lt 0001

Adjusted R2 04516 AIC 629699

Test Material 1

RBA 018

Lower bound 008

Upper bound 040

Standard Error 0074

Lead Acetate ABA 015 Lower bound 007 Upper bound 029 Standard Error 0058

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

3500

APPENDIX E

Figure 2a - Outlier ExcludedPhase II Experiment 8 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 Dose (ug Pbkg-d)

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 3500

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

Control Lead Acetate IV

Control Test Material 1

44

3

2

1

0

-1

-2

-3 Stan

dard

ized

Wei

ghte

d R

esid

ual

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 110E+01 203E+00 b1 207E+00 445E-01 b2 391E-01 797E-02 b3 127E+01 226E+00

Covariance (c1c2) 00243 --Covariance (c1c3) 00028 --Degrees of Freedom 41 --

Statistic Estimate F 25206 p lt 0001

Adjusted R2 06227 AIC 537628

Test Material 1

RBA 019

Lower bound 011

Upper bound 032

Standard Error 0055

Lead Acetate ABA 016 Lower bound 010 Upper bound 026 Standard Error 0046

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Liverxls (Graph_LIN_outliers)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F 3186 RBA ABA DIV0b 000E+00 000E+00 p 00228 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 01627 Upper bound Upper boundc2 000E+00 000E+00 AIC 983795 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and UncertaintyTest Material 1

DIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2b - All DataPhase II Experiment 8 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350035003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Lead Acetatea 000E+00 000E+00 F DIV0 RBA ABA DIV0b 000E+00 000E+00 p DIV0 Lower bound Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper bound Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Error Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

ABA and Uncertainty

DIV0

Summary of Fitting Goodness of Fit RBA and UncertaintyTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 01 02 03 04 05SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate IV

APPENDIX E

Figure 2c - All DataPhase II Experiment 8 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 35003500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 3000

2500

2000

1500

1000

500

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp8_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 8 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 3500 3500 3500

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 149E+01 393E+00

b1 360E+00 367E+00 b2 877E-01 119E+00 b3 231E+01 232E+01 c 833E-01 263E-01

Covariance (b1b2) 09380 --Covariance (b1b3) 09287 --Degrees of Freedom 41 --

Statistic Estimate F 9890 p lt 0001

Adjusted R2 04414 AIC 630613

Test Material 1

RBA 018

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 011 Lower bound Upper bound Standard Error --

Exp8_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - All DataPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate IV

Outlier

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ua

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Control Lead Acetate

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3 -3

Parameter Estimate Standard Error a 166E+01 421E+00

b1 239E+00 576E-01 b2 342E-01 948E-02 b3 123E+01 207E+00

Covariance (c1c2) 00503 --Covariance (c1c3) 00067 --Degrees of Freedom 42 --

Statistic Estimate F 21139 p lt 0001

Adjusted R2 05731 AIC 586555

Test Material 1

RBA 014

Lower bound 007

Upper bound 027

Standard Error 0051

Lead Acetate ABA 019 Lower bound 011 Upper bound 031 Standard Error 0057

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

APPENDIX E

Figure 3a - Outlier ExcludedPhase II Experiment 8 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1600

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t) 1400

1200

1000

800

600

400

200

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 167E+01 365E+00 b1 239E+00 505E-01 b2 341E-01 829E-02 b3 123E+01 182E+00

Covariance (c1c2) 00519 --Covariance (c1c3) 00065 --Degrees of Freedom 41 --

Statistic Estimate F 27487 p lt 0001

Adjusted R2 06436 AIC 540150

Test Material 1

RBA 014

Lower bound 008

Upper bound 025

Standard Error 0045

Lead Acetate ABA 019 Lower bound 012 Upper bound 029 Standard Error 0050

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_LIN_outliers)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 8 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140014001400

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 2 4 6 8 10 0 01 02 03 04 05

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

Control Lead Acetate IV

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 165E+01 423E+00 b 172E+03 160E+03 c1 144E-03 144E-03 c2 205E-04 204E-04 c3 100E-02 129E-02

Covariance (c1c2) 09322 --Covariance (c1c3) 09527 --Degrees of Freedom 41 --

Statistic Estimate F 15994 p lt 0001

Adjusted R2 05713 AIC 585963

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0052

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0064

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 8 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 14001400

Control Test Material 1

Control Lead Acetate IV

Control Lead Acetate 1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 164E+01 423E+00 b 281E+03 320E+03 c1 113E+03 137E+03 c2 792E+03 953E+03 c3 158E+02 246E+02

Covariance (c1c2) 09535 --Covariance (c1c3) 09679 --Degrees of Freedom 41 --

Statistic Estimate F 15996 p lt 0001

Adjusted R2 05714 AIC 585953

Test Material 1

RBA 014

Lower bound

Upper bound

Standard Error 0053

Lead Acetate ABA 014 Lower bound Upper bound Standard Error 0068

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 8 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1400 1400 1400

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Lead Acetate

-4

0 2 4 6 8 10 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

04 05

Control Lead Acetate IV

0 01 02 03 SQRT(W) Dose

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 153E+01 423E+00

b1 975E+00 760E+00 b2 277E+00 294E+00 b3 593E+01 488E+01 c 616E-01 204E-01

Covariance (b1b2) 09292 --Covariance (b1b3) 09318 --Degrees of Freedom 41 --

Statistic Estimate F 16981 p lt 0001

Adjusted R2 05869 AIC 581290

Test Material 1

RBA 013

Lower bound

Upper bound

Standard Error --

Lead Acetate ABA 005 Lower bound Upper bound Standard Error --

Exp8_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

10

20

30

40

50

60

APPENDIX E

Figure 4a - All DataPhase II Experiment 8 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate

50

40

30

20

10

50

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Lead Acetate IV

-4 -4

0 50 100 150 200 250 300 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 754E-01 121E-01

b1 649E-02 105E-02 b2 132E-02 245E-03 b3 453E-01 353E-02

Covariance (c1c2) 00708 --Covariance (c1c3) 00128 --Degrees of Freedom 42 --

Statistic Estimate F 74474 p lt 0001

Adjusted R2 08305 AIC 193909

Test Material 1

RBA 020

Lower bound 013

Upper bound 030

Standard Error 0048

Lead Acetate ABA 014 Lower bound 010 Upper bound 019 Standard Error 0026

g 005 estimate is uncertain

Exp8_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 8 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 606060

Control Lead Acetate IV

Control Test Material 1

Control Lead Acetate 505050

40

30

20

10

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

20

Control Lead Acetate IV

0 5 10 15 SQRT(W) Dose

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 750E-01 122E-01 b 148E+02 203E+02 c1 447E-04 630E-04 c2 903E-05 127E-04 c3 347E-03 542E-03

Covariance (c1c2) 09853 --Covariance (c1c3) 09917 --Degrees of Freedom 41 --

Statistic Estimate F 55160 p lt 0001

Adjusted R2 08280 AIC 195180

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 4c - All DataPhase II Experiment 8 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 6060

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 5050

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 749E-01 122E-01 b 247E+02 332E+02 c1 372E+03 514E+03 c2 184E+04 254E+04 c3 472E+02 729E+02

Covariance (c1c2) 09848 --Covariance (c1c3) 09913 --Degrees of Freedom 41 --

Statistic Estimate F 55226 p lt 0001

Adjusted R2 08282 AIC 195104

Test Material 1

RBA 020

Lower bound

Upper bound

Standard Error 0049

Lead Acetate ABA 013 Lower bound Upper bound Standard Error 0032

g 005 estimate is uncertain g 005 estimate is uncertain

Exp8_Femurxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 4d - All DataPhase II Experiment 8 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate - Oral) Test Material 1 (California Gulch AV Slag) Lead Acetate - IV

Dose-Response Curve Dose-Response Curve Dose-Response Curve 60 60 60

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

50 50 50

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

40

30

20

10

40

30

20

10

40

30

20

10

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Lead Acetate IV

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty ABA and Uncertainty Parameter Estimate Standard Error

a 672E-01 118E-01 b1 256E-01 115E-01 b2 815E-02 463E-02 b3 181E+00 796E-01 c 666E-01 107E-01

Covariance (b1b2) 09154 --Covariance (b1b3) 09329 --Degrees of Freedom 41 --

Statistic Estimate F 64812 p lt 0001

Adjusted R2 08501 AIC 185595

Test Material 1

RBA 018

Lower bound 001

Upper bound 031

Standard Error --

Lead Acetate ABA 005 Lower bound 003 Upper bound 010 Standard Error --

Exp8_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 9

Test Material 1 Palmerton Location 2 Test Material 2 Palmerton Location 4

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

APPENDIX E

Figure 1a - All DataPhase II Experiment 9 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

Control Test Material 2

Control Test Material 1

Control Lead Acetate

8080

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 961E+00 108E+00 b1 594E-01 690E-02 b2 371E-01 320E-02 b3 320E-01 290E-02

Covariance (c1c2) 00930 --Covariance (c1c3) 01000 --Degrees of Freedom 41 --

Statistic Estimate F 92835 p lt 0001

Adjusted R2 08623 AIC 328763

Test Material 1 Test Material 2 RBA 062 054 Lower bound 050 043 Upper bound 080 069 Standard Error 0086 0075

Exp9_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 9 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120120120

100100100

808080

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 751E+00 994E-01 b 955E+01 141E+01 c1 868E-03 198E-03 c2 709E-03 178E-03 c3 541E-03 131E-03

Covariance (c1c2) 08172 --Covariance (c1c3) 08147 --Degrees of Freedom 40 --

Statistic Estimate F 111320 p lt 0001

Adjusted R2 09093 AIC 312220

Test Material 1 Test Material 2 RBA 082 062 Lower bound 061 047 Upper bound 105 080 Standard Error 0119 0089 g 005 estimate is uncertain

Exp9_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 9 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120120

100 100100

80 80 80

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 750E+00 101E+00 b 152E+02 298E+01 c1 177E+02 515E+01 c2 221E+02 700E+01 c3 284E+02 870E+01

Covariance (c1c2) 08860 --Covariance (c1c3) 08834 --Degrees of Freedom 40 --

Statistic Estimate F 109669 p lt 0001

Adjusted R2 09081 AIC 312679

Test Material 1 Test Material 2 RBA 080 062 Lower bound 062 048 Upper bound 110 084 Standard Error 0118 0090 g 005 estimate is uncertain

Exp9_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 9 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 120 120 120

100 100 100

80 80 80

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

60

40

20

60

40

20

60

40

20

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 0 5 10 15 20 25

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1-1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 749E+00 108E+00

b1 178E+00 467E-01 b2 141E+00 422E-01 b3 122E+00 368E-01 c 743E-01 586E-02

Covariance (b1b2) 09184 --Covariance (b1b3) 09173 --Degrees of Freedom 40 --

Statistic Estimate F 98378 p lt 0001

Adjusted R2 08985 AIC 316197

Test Material 1 Test Material 2 RBA 073 060 Lower bound 051 041 Upper bound 095 078 Standard Error -- --

Exp9_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 2a - All DataPhase II Experiment 9 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 107E+01 188E+00

b1 230E+00 398E-01 b2 139E+00 214E-01 b3 122E+00 175E-01

Covariance (c1c2) 00117 --Covariance (c1c3) 00189 --Degrees of Freedom 41 --

Statistic Estimate F 40132 p lt 0001

Adjusted R2 07274 AIC 484924

Test Material 1 Test Material 2 RBA 060 053 Lower bound 041 037 Upper bound 091 079 Standard Error 0139 0119 g 005 estimate is uncertain

Exp9_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 9 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 987E+00 172E+00 b 299E+02 729E+01 c1 901E-03 315E-03 c2 997E-03 396E-03 c3 583E-03 208E-03

Covariance (c1c2) 07276 --Covariance (c1c3) 07387 --Degrees of Freedom 40 --

Statistic Estimate F 39356 p lt 0001

Adjusted R2 07771 AIC 470653

Test Material 1 Test Material 2 RBA 111 065 Lower bound 056 038 Upper bound 186 109 Standard Error 0309 0165 g 005 estimate is uncertain

Exp9_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 9 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 988E+00 174E+00 b 466E+02 153E+02 c1 167E+02 750E+01 c2 156E+02 813E+01 c3 257E+02 119E+02

Covariance (c1c2) 08328 --Covariance (c1c3) 08354 --Degrees of Freedom 40 --

Statistic Estimate F 38613 p lt 0001

Adjusted R2 07737 AIC 471634

Test Material 1 Test Material 2 RBA 107 065 Lower bound 060 035 Upper bound 355 133 Standard Error 0309 0170 g 005 estimate is uncertain

Exp9_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 9 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 991E+00 180E+00 b1 594E+00 226E+00 b2 545E+00 253E+00 b3 420E+00 184E+00 c 732E-01 960E-02

Covariance (b1b2) 08634 --Covariance (b1b3) 08614 --Degrees of Freedom 40 --

Statistic Estimate F 35748 p lt 0001

Adjusted R2 07595 AIC 475710

Test Material 1 Test Material 2 RBA 089 062 Lower bound 029 025 Upper bound 152 108 Standard Error -- --

Exp9_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

400

APPENDIX E

Figure 3a - All DataPhase II Experiment 9 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 145E+01 355E+00

b1 233E+00 537E-01 b2 120E+00 249E-01 b3 961E-01 193E-01

Covariance (c1c2) 00182 --Covariance (c1c3) 00342 --Degrees of Freedom 41 --

Statistic Estimate F 2121 p lt 0001

Adjusted R2 0579 AIC 535863

Test Material 1 Test Material 2 RBA 051 041 Lower bound 030 025 Upper bound 091 072 Standard Error 0158 0124 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 9 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500500500

450450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 127E+01 325E+00 b 238E+02 533E+01 c1 120E-02 475E-03 c2 195E-02 903E-03 c3 628E-03 247E-03

Covariance (c1c2) 05421 --Covariance (c1c3) 05740 --Degrees of Freedom 40 --

Statistic Estimate F 2248 p lt 0001

Adjusted R2 0661 AIC 511641

Test Material 1 Test Material 2 RBA 162 052 Lower bound 050 024 Upper bound 366 116 Standard Error 0672 0190 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 9 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500500

450 450450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 126E+01 329E+00 b 310E+02 928E+01 c1 994E+01 500E+01 c2 609E+01 395E+01 c3 182E+02 929E+01

Covariance (c1c2) 06978 --Covariance (c1c3) 06997 --Degrees of Freedom 40 --

Statistic Estimate F 2185 p lt 0001

Adjusted R2 0655 AIC 513547

Test Material 1 Test Material 2 RBA 163 055 Lower bound 059 017 Upper bound -663 189 Standard Error 0763 0215 g 005 estimate is uncertain

Exp9_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 9 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 500 500 500

450 450 450

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 0 1 2 3 4 5

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 125E+01 339E+00 b1 117E+01 596E+00 b2 138E+01 875E+00 b3 850E+00 509E+00 c 540E-01 131E-01

Covariance (b1b2) 08697 --Covariance (b1b3) 08638 --Degrees of Freedom 40 --

Statistic Estimate F 2025 p lt 0001

Adjusted R2 0636 AIC 518750

Test Material 1 Test Material 2 RBA 136 056 Lower bound Upper bound 422 194 Standard Error -- --

Exp9_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4a - All DataPhase II Experiment 9 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 8

7

6

5

4

3

2

1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 617E-01 833E-02 b1 710E-02 790E-03 b2 334E-02 315E-03 b3 287E-02 285E-03

Covariance (c1c2) 00554 --Covariance (c1c3) 00566 --Degrees of Freedom 41 --

Statistic Estimate F 87669 p lt 0001

Adjusted R2 08553 AIC 118621

Test Material 1 Test Material 2 RBA 047 040 Lower bound 037 032 Upper bound 060 052 Standard Error 0067 0058

Exp9_Femurxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 4b - All DataPhase II Experiment 9 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 101010

999

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

150 200

Control Test Material 2

0 50 100 SQRT(W) Dose

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 520E-01 802E-02 b 908E+00 203E+00 c1 112E-02 377E-03 c2 558E-03 187E-03 c3 480E-03 160E-03

Covariance (c1c2) 08717 --Covariance (c1c3) 08714 --Degrees of Freedom 40 --

Statistic Estimate F 84798 p lt 0001

Adjusted R2 08840 AIC 112175

Test Material 1 Test Material 2 RBA 050 043 Lower bound 035 030 Upper bound 070 060 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_EXP)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4c - All DataPhase II Experiment 9 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 1010

9 99

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 516E-01 803E-02 b 145E+01 390E+00 c1 136E+02 541E+01 c2 274E+02 109E+02 c3 320E+02 126E+02

Covariance (c1c2) 09096 --Covariance (c1c3) 09088 --Degrees of Freedom 40 --

Statistic Estimate F 85458 p lt 0001

Adjusted R2 08848 AIC 111965

Test Material 1 Test Material 2 RBA 050 043 Lower bound 034 029 Upper bound 072 062 Standard Error 0084 0072 g 005 estimate is uncertain

Exp9_Femurxls (Graph_MM)

0

1

2

3

4

5

1

2

3

4

5

6

7

8

APPENDIX E

Figure 4d - All DataPhase II Experiment 9 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Palmerton Location 2) Test Material 2 (Palmerton Location 4)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 10 10 10

9 9 9

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 8

7

6

5

4

3

2

1

0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 502E-01 802E-02 b1 209E-01 576E-02 b2 122E-01 388E-02 b3 108E-01 351E-02 c 740E-01 647E-02

Covariance (b1b2) 09159 --Covariance (b1b3) 09151 --Degrees of Freedom 40 --

Statistic Estimate F 88101 p lt 0001

Adjusted R2 08879 AIC 111154

Test Material 1 Test Material 2 RBA 048 041 Lower bound 032 027 Upper bound 064 055 Standard Error -- --

Exp9_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 11

Test Material 1 Murray Smelter Soil Test Material 2 NIST Paint

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

APPENDIX E

Figure 1a - All DataPhase II Experiment 11 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 250200200

180180

200160160

140140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ua

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

Stan

dard

ized

Wei

ghte

d R

esid

ual

AUC

(ug

dL-d

ays)

120

100

80

60

150

100

40 50

20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 970E+00 148E+00 b1 412E-01 459E-02 b2 203E-01 190E-02 b3 246E-01 220E-02

Covariance (c1c2) 00667 --Covariance (c1c3) 00600 --Degrees of Freedom 45 --

Statistic Estimate F 96525 p lt 0001

Adjusted R2 08565 AIC 436433

Test Material 1 Test Material 2 RBA 049 060 Lower bound 039 048 Upper bound 063 076 Standard Error 0069 0083

Exp11_AUCxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 1b - All DataPhase II Experiment 11 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200200200

180180180

160160160

140140140

Control Test Material 2

Control Test Material 1

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

120

100

80

60

120

100

80

60

120

100

80

60

404040

20 2020

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Test Material 1

-4

-5 -5 -5 0 5 10 15 20 25 30 35 40

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 721E+00 118E+00 b 160E+02 175E+01 c1 354E-03 621E-04 c2 249E-03 496E-04 c3 304E-03 615E-04

Covariance (c1c2) 07274 --Covariance (c1c3) 07186 --Degrees of Freedom 44 --

Statistic Estimate F 143605 p lt 0001

Adjusted R2 09224 AIC 390414

Test Material 1 Test Material 2 RBA 070 086 Lower bound 054 066 Upper bound 089 109 Standard Error 0098 0123 g 005 estimate is uncertain

Exp11_AUCxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 1c - All DataPhase II Experiment 11 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200200

180 180

160

180

160 160

140 140 140

Control Test Material 1

Control Test Material 2

Control Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 40 40

20 20 20

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 716E+00 120E+00 b 244E+02 362E+01 c1 411E+02 921E+01 c2 591E+02 150E+02 c3 476E+02 124E+02

Covariance (c1c2) 08303 --Covariance (c1c3) 08277 --Degrees of Freedom 44 --

Statistic Estimate F 141020 p lt 0001

Adjusted R2 09211 AIC 391331

Test Material 1 Test Material 2 RBA 070 086 Lower bound 055 068 Upper bound 093 117 Standard Error 0099 0126 g 005 estimate is uncertain

Exp11_AUCxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 11 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 200 200 200

180 180 180

160 160 160

140 140 140

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l A

UC

(ug

dL-d

ays)120

100

80

60

120

100

80

60

120

100

80

60

40 4040

20 2020

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

-4

0 5 10 15 20 25 30 35 40 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1 -1 -1

-2 -2 -2

-3 -3 -3

Parameter Estimate Standard Error a 704E+00 134E+00

b1 171E+00 452E-01 b2 127E+00 406E-01 b3 149E+00 474E-01 c 712E-01 518E-02

Covariance (b1b2) 09262 --Covariance (b1b3) 09264 --Degrees of Freedom 44 --

Statistic Estimate F 115506 p lt 0001

Adjusted R2 09051 AIC 402393

Test Material 1 Test Material 2 RBA 066 083 Lower bound 042 054 Upper bound 085 107 Standard Error -- --

Exp11_AUCxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 2a - All DataPhase II Experiment 11 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 137E+01 230E+00

b1 131E+00 180E-01 b2 759E-01 100E-01 b3 962E-01 141E-01

Covariance (c1c2) 00165 --Covariance (c1c3) 00209 --Degrees of Freedom 44 --

Statistic Estimate F 50849 p lt 0001

Adjusted R2 07570 AIC 561444

Test Material 1 Test Material 2 RBA 058 073 Lower bound 042 052 Upper bound 080 103 Standard Error 0109 0145 g 005 estimate is uncertain

Exp11_Liverxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 2b - All DataPhase II Experiment 11 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 233E+00 b 111E+03 946E+02 c1 129E-03 121E-03 c2 853E-04 865E-04 c3 921E-04 871E-04

Covariance (c1c2) 09770 --Covariance (c1c3) 09728 --Degrees of Freedom 43 --

Statistic Estimate F 50761 p lt 0001

Adjusted R2 07567 AIC 561591

Test Material 1 Test Material 2 RBA 066 071 Lower bound Upper bound Standard Error 0147 0156 g 005 estimate is uncertain

Exp11_Liverxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 2c - All DataPhase II Experiment 11 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 134E+01 234E+00 b 207E+03 204E+03 c1 144E+03 155E+03 c2 221E+03 254E+03 c3 202E+03 219E+03

Covariance (c1c2) 09824 --Covariance (c1c3) 09793 --Degrees of Freedom 43 --

Statistic Estimate F 50798 p lt 0001

Adjusted R2 07568 AIC 561543

Test Material 1 Test Material 2 RBA 065 071 Lower bound Upper bound Standard Error 0146 0157 g 005 estimate is uncertain

Exp11_Liverxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 2d - All DataPhase II Experiment 11 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve 1600 1600

Control Lead Acetate

Control Test Material 11400

1200

1000

800

600

400

200

1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 5 5

Control Lead Acetate

0 1 2 3 4 5 6 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

44

3

2

1

0

-1

-2

-3 Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 0 1 2 3 4 5 6

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 133E+01 234E+00 b1 205E+00 953E-01 b2 134E+00 773E-01 b3 154E+00 793E-01 c 905E-01 976E-02

Covariance (b1b2) 09327 --Covariance (b1b3) 09175 --Degrees of Freedom 43 --

Statistic Estimate F 51275 p lt 0001

Adjusted R2 07586 AIC 560976

Test Material 1 Test Material 2 RBA 063 073 Lower bound 006 028 Upper bound 091 117 Standard Error -- --

Exp11_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

200

400

600

800

1000

1200

1400

1600

APPENDIX E

Figure 3a - All DataPhase II Experiment 11 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600

Control Test Material 2

Control Test Material 1

Control Lead Acetate 1400

1200

1000

800

600

400

200

1400

1200

1000

800

600

400

200

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

-4

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Lead Acetate

-4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Control Test Material 2

Control Test Material 1

44

33

22

11

00

-1-1

-2-2

-3-3

Parameter Estimate Standard Error a 203E+01 413E+00

b1 168E+00 248E-01 b2 612E-01 905E-02 b3 918E-01 144E-01

Covariance (c1c2) 00267 --Covariance (c1c3) 00454 --Degrees of Freedom 44 --

Statistic Estimate F 43248 p lt 0001

Adjusted R2 07253 AIC 576648

Test Material 1 Test Material 2 RBA 036 055 Lower bound 025 038 Upper bound 052 078 Standard Error 0075 0115 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_LIN)

0

1

2

3

4

5

APPENDIX E

Figure 3b - All DataPhase II Experiment 11 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 160016001600

Control Lead Acetate

Control Test Material 1

Control Test Material 21400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 189E+01 424E+00 b 549E+02 204E+02 c1 383E-03 188E-03 c2 203E-03 117E-03 c3 180E-03 867E-04

Covariance (c1c2) 08761 --Covariance (c1c3) 08456 --Degrees of Freedom 43 --

Statistic Estimate F 31501 p lt 0001

Adjusted R2 07177 AIC 578650

Test Material 1 Test Material 2 RBA 053 047 Lower bound 005 022 Upper bound 093 104 Standard Error 0148 0127 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_EXP)

0

1

2

3

4

5

APPENDIX E

Figure 3c - All DataPhase II Experiment 11 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 16001600

Control Test Material 1

Control Test Material 2

Control Lead Acetate1400 1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

Control Test Material 1

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 191E+01 426E+00 b 111E+03 656E+02 c1 534E+02 390E+02 c2 112E+03 929E+02 c3 111E+03 791E+02

Covariance (c1c2) 09475 --Covariance (c1c3) 09350 --Degrees of Freedom 43 --

Statistic Estimate F 31472 p lt 0001

Adjusted R2 07175 AIC 578702

Test Material 1 Test Material 2 RBA 048 048 Lower bound Upper bound Standard Error 0128 0126 g 005 estimate is uncertain

Exp11_Kidneyxls (Graph_MM)

0

1

2

3

4

5

APPENDIX E

Figure 3d - All DataPhase II Experiment 11 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1600 1600 1600

Control Lead Acetate

Control Test Material 1

Control Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght) 1400

1200

1000

800

600

400

200

1400 1400

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

1200

1000

800

600

400

200

1200

1000

800

600

400

200

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

0 1 2 3 4 5 6 7 8 SQRT(W) Dose

Control Test Material 2

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 195E+01 430E+00 b1 261E+00 140E+00 b2 112E+00 779E-01 b3 146E+00 867E-01 c 907E-01 111E-01

Covariance (b1b2) 09422 --Covariance (b1b3) 09294 --Degrees of Freedom 43 --

Statistic Estimate F 31801 p lt 0001

Adjusted R2 07196 AIC 578247

Test Material 1 Test Material 2 RBA 039 052 Lower bound Upper bound 058 096 Standard Error -- --

Exp11_Kidneyxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4a - All DataPhase II Experiment 11 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate 4040

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

onc

(ug

g as

hed

resi

due) 35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 2

Control Test Material 1

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4 -4

-5 -5 -5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 698E-01 132E-01 b1 528E-02 546E-03 b2 205E-02 192E-03 b3 390E-02 339E-03

Covariance (c1c2) 00688 --Covariance (c1c3) 00673 --Degrees of Freedom 44 --

Statistic Estimate F 108800 p lt 0001

Adjusted R2 08708 AIC 198208

Test Material 1 Test Material 2 RBA 039 074 Lower bound 031 059 Upper bound 049 093 Standard Error 0052 0096

Exp11_Femurxls (Graph_LIN)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F 3663 RBA DIV0 DIV0b 000E+00 000E+00 p 00117 Lower boundc1 000E+00 000E+00 Adjusted R2 01816 Upper boundc2 000E+00 000E+00 AIC 856334 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4b - All DataPhase II Experiment 11 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Test Material 2

Control Test Material 1

Control Lead Acetate

4040

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_EXP)

Parameter Estimate Standard Error Statistic Estimate Test Material 1 Test Material 2a 000E+00 000E+00 F DIV0 RBA DIV0 DIV0b 000E+00 000E+00 p DIV0 Lower boundc1 000E+00 000E+00 Adjusted R2 DIV0 Upper boundc2 000E+00 000E+00 AIC DIV0 Standard Errorc3 000E+00 000E+00

Covariance (c1c2) 00000Covariance (c1c3) 00000Degrees of Freedom 0

Summary of Fitting Goodness of Fit RBA and Uncertainty

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlLead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

ControlTest Material 2

5

10

15

20

25

45

APPENDIX E

Figure 4c - All DataPhase II Experiment 11 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240

35

30

40 40

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

35

30

25

20

15

10

5

35

30

25

20

15

10

5

0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

------

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp11_Femurxls (Graph_MM)

5

5

10

15

20

25

30

35

40

45

APPENDIX E

Figure 4d - All DataPhase II Experiment 11 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Murray Smelter Soil) Test Material 2 (NIST Paint)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 45 45

Control Lead Acetate

Control Test Material 1

Control Test Material 240 40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e) 35

30

25

20

15

10

5

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

35

30

25

20

15

10

5

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d) Dose (ug Pbkg-d)

0

Residual Plot Residual Plot Residual Plot 55

Control Lead Acetate

Control Test Material 1

Control Test Material 2

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4 -4-4

-5 -5-5 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 721E-01 144E-01 b1 456E-02 171E-02 b2 167E-02 795E-03 b3 327E-02 143E-02 c 103E+00 740E-02

Covariance (b1b2) 09444 --Covariance (b1b3) 09443 --Degrees of Freedom 43 --

Statistic Estimate F 80328 p lt 0001

Adjusted R2 08686 AIC 200024

Test Material 1 Test Material 2 RBA 038 073 Lower bound 018 045 Upper bound 048 091 Standard Error -- --

Exp11_Femurxls (Graph_POWER)

This page intentionally left blank to facilitate double-sided printing

APPENDIX E

EXPERIMENT 12

Test Material 1 Galena-enriched Soil Test Material 2 Palmerton Location 2 (Reproducibility Study)

Test Material 3 California Gulch Oregon Gulch Tailings

Figure 1a Blood AUC - Linear Model Figure 1b Blood AUC - Exponential Model Figure 1c Blood AUC - Michaelis-Menton Model Figure 1d Blood AUC - Power Model

Figure 2a Liver - Linear Model Figure 2b Liver - Exponential Model Figure 2c Liver - Michaelis-Menton Model Figure 2d Liver - Power Model

Figure 3a Kidney - Linear Model (All Data) Figure 3a Kidney - Linear Model (Outliers Excluded) Figure 3b Kidney - Exponential Model Figure 3c Kidney - Michaelis-Menton Model Figure 3d Kidney - Power Model

Figure 4a Femur - Linear Model Figure 4b Femur - Exponential Model Figure 4c Femur - Michaelis-Menton Model Figure 4d Femur - Power Model

OSWER 92857-77

-3

-2

-1

0

1

2

3

4

5

20

40

60

80

100

120

140

160

APPENDIX E

Figure 1a - All DataPhase II Experiment 12 Blood AUC

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AUC

(ug

dL-d

ays)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 140140

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate 120120

100

80

60

40

20

0

100

80

60

40

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lAU

C (u

gdL

-day

s)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l AU

C (u

gdL

-day

s)

20

0 0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate

40 60 80 100 SQRT(W) Dose

Control

Test Material 3

0 20

Control

Test Material 2

-4

0 50 100 150 200 250 300 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 5 10 15 20 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 855E+00 963E-01

b1 476E-01 369E-02 b2 310E-03 291E-03 b3 372E-01 324E-02 b4 434E-02 132E-02

Covariance (c1c2) 01535 --Covariance (c1c3) 00703 --Covariance (c1c4) 00746 --Degrees of Freedom 47 --

Statistic Estimate F 124227

p lt 0001

Adjusted R2 09062

AIC 375135

Test Material 1 Test Material 2 Test Material 3 RBA 001 078 009 Lower bound 000 064 004 Upper bound 002 094 014 Standard Error 0006 0088 0028

Exp12_AUCxls (Graph_LIN)

APPENDIX E

Figure 1b - All DataPhase II Experiment 12 Blood AUC

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300

SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

AU

C (u

gdL

-day

s)

Stan

dard

ized

Wei

ghte

d R

esid

ual

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 762E+00 962E-01 b 169E+02 482E+01 c1 402E-03 159E-03 c2 293E-05 200E-05 c3 286E-03 107E-03

Covariance (c1c2) 05770 --Covariance (c1c3) 09418 --Degrees of Freedom 46 --

Statistic Estimate F 104665

p lt 0001

Adjusted R2 09104

AIC 370380

Test Material 1 Test Material 2 Test Material 3 RBA 001 071 007 Lower bound 000 055 004 Upper bound 002 099 013 Standard Error 0004 0094 0020 g 005 estimate is uncertain

Exp12_AUCxls (Graph_EXP)

APPENDIX E

Figure 1c - All DataPhase II Experiment 12 Blood AUC

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

Residual Plot Residual Plot 5 5

4

3

2

1

0

-1

-2

-3

Control

Test Material 2 4

3

2

1

0

-1

-2

-3

Control

Test Material 3

-4

-5 -4

-5 0 20 40 60 80 100 0 5 10 15 20

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 764E+00 971E-01 b 298E+02 106E+02 c1 438E+02 208E+02 c2 604E+04 445E+04 c3 612E+02 278E+02

Covariance (c1c2) 06443 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 104126

p lt 0001

Adjusted R2 09100

AIC 370760

Test Material 1 Test Material 2 Test Material 3 RBA 001 072 007 Lower bound 000 046 003 Upper bound -001 095 016 Standard Error 0004 0094 0021 g 005 estimate is uncertain

Exp12_AUCxls (Graph_MM)

-4

-3

-2

-1

0

1

2

3

4

5

APPENDIX E

Figure 1d - All DataPhase II Experiment 12 Blood AUC

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

AU

C (u

gdL

-day

s)

Dose-Response Curve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

AU

C (u

gdL

-day

s)

Dose-Response Curve 140

120

100

80

60

40

20

0

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

AU

C (u

gdL

-day

s)

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual PlotResidual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

Control

Lead Acetate

5

4

3

2

1

0

-1

-2

-3

Control

Test Material 3

Stan

dard

ized

Wei

ghte

d R

esid

ual

-5

-4

-5 0 5 10 15 20

SQRT(W) Dose 0 20 40 60 80 100

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 761E+00 110E+00 b1 101E+00 355E-01 b2 124E-02 109E-02 b3 778E-01 275E-01 c 855E-01 523E-02

Covariance (b1b2) 07381 --Covariance (b1b3) 09551 --Degrees of Freedom 46 --

Statistic Estimate F 98107

p lt 0001

Adjusted R2 09049

AIC 374839

Test Material 1 Test Material 2 Test Material 3 RBA 001 074 007 Lower bound 057 Upper bound 001 095 012 Standard Error -- -- --

Exp12_AUCxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

100

200

300

400

500

600

700

APPENDIX E

Figure 2a - All DataPhase II Experiment 12 Liver

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 700700

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

600

500

400

300

200

100

00

600

500

400

300

200

100

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot Residual Plot Residual Plot 5 5

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3 4 4

3

2

1

0

-1

-2

-3

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4 -4

-5 -5 0 2 4 6 8 10

SQRT(W) Dose 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 938E+00 221E+00 b1 690E-01 149E-01 b2 126E-02 784E-03 b3 863E-01 145E-01 b4 751E-02 301E-02

Covariance (c1c2) 02961 --Covariance (c1c3) 01132 --Covariance (c1c4) 01251 --Degrees of Freedom 47 --

Statistic Estimate F 33199

p lt 0001

Adjusted R2 07163

AIC 506975

Test Material 1 Test Material 2 Test Material 3 RBA 002 125 011 Lower bound 000 082 004 Upper bound 004 203 021 Standard Error 0011 0322 0047 g 005 estimate is uncertain

Exp12_Liverxls (Graph_LIN)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom

020809573

930704

000E+00000E+00000E+00 -00841

0

000E+00000E+00

0000000000

DIV0Test Material 1

RBA and UncertaintyEstimateEstimate

Goodness of FitSummary of Fitting

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2b - All DataPhase II Experiment 12 Liver

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_EXP)

Parameter Standard Error Statistic Test Material 2 Test Material 3a 000E+00 F RBA DIV0 DIV0b 000E+00 p Lower boundc1 000E+00 Adjusted R2 Upper boundc2 000E+00 AIC Standard Errorc3 000E+00

Covariance (c1c2)Covariance (c1c3)Degrees of Freedom 0

Goodness of FitSummary of Fitting

000E+00000E+00

0000000000

DIV0DIV0

DIV0

Estimate000E+00000E+00000E+00 DIV0

Test Material 1RBA and Uncertainty

EstimateDIV0

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

APPENDIX E

Figure 2c - All DataPhase II Experiment 12 Liver

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

------

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 3

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

NO SOLUTION The software could not find a solution

or the solution was unstable andor had unrealistic parameter estimates

Exp12_Liverxls (Graph_MM)

Reference Material (Lead Acetate)

APPENDIX E

Figure 2d - All DataPhase II Experiment 12 Liver

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-10 10 30 50 70 90 110 130 150 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

700

600

500

400

300

200

100

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

RBA and Uncertainty

Control

Test Material 3

5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 110E+01 194E+00 b1 167E-01 121E-01 b2 103E-03 138E-03 b3 164E-01 125E-01 c 135E+00 152E-01

Covariance (b1b2) 08593 --Covariance (b1b3) 09467 --Degrees of Freedom 46 --

Statistic Estimate F 31031

p lt 0001

Adjusted R2 07465

AIC 493797

Test Material 1 Test Material 2 Test Material 3 RBA 002 098 012 Lower bound Upper bound Standard Error -- -- --

Exp12_Liverxls (Graph_POWER)

-3

-2

-1

0

1

2

3

4

5

500

1000

1500

2000

2500

3000

APPENDIX E

Figure 3a - All DataPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 30003000

Control

Test Material 3

Outlier

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Outlier Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot Residual Plot 55

Control

Lead Acetate

Control

Test Material 2

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4-4

-5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10

SQRT(W) Dose SQRT(W) Dose

44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

33

22

11

00

-1-1

-2-2

-3-3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 771E+00 483E+00 b1 124E+00 435E-01 b2 956E-03 130E-02 b3 580E-01 264E-01 b4 549E-02 539E-02

Covariance (c1c2) 00560 --Covariance (c1c3) 00379 --Covariance (c1c4) 00304 --Degrees of Freedom 47 --

Statistic Estimate F 7238

p lt 0001

Adjusted R2 03285

AIC 868907

Test Material 1 Test Material 2 Test Material 3 RBA 001 047 004 Lower bound -001 011 -003 Upper bound 003 130 016 Standard Error 0011 0264 0046 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN)

-3

-2

-1

0

1

2

3

4

5

50

100

150

200

250

300

350

APPENDIX E

Figure 3a - Outliers ExcludedPhase II Experiment 12 Kidney

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 350350

Control

Test Material 3 Control

Test Material 1

Control

Lead Acetate

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Ti

ssue

Con

cent

ratio

n (u

gg

wet

wei

ght)

300

250

200

150

100

50

00

300

250

200

150

100

50

0 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot Residual Plot Residual Plot Residual Plot 5 55

Control

Lead Acetate Control

Test Material 2

Control

Test Material 3

-4

0 50 100 150 200 SQRT(W) Dose

Control

Test Material 1

-4 -4-4

-5 -5 -5 -5 0 2 4 6 8 10 0 2 4 6 8 10 0 10 20 30 40 50

SQRT(W) Dose SQRT(W) Dose SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

4 44

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3 33

2 22

1 11

0 00

-1 -1-1

-2 -2-2

-3 -3-3

Parameter Estimate Standard Error a 768E+00 172E+00

b1 107E+00 160E-01 b2 972E-03 537E-03 b3 581E-01 112E-01 b4 551E-02 232E-02

Covariance (c1c2) 01129 --Covariance (c1c3) 00686 --Covariance (c1c4) 00542 --Degrees of Freedom 45 --

Statistic Estimate F 37309

p lt 0001

Adjusted R2 07477

AIC 458069

Test Material 1 Test Material 2 Test Material 3 RBA 001 054 005 Lower bound 000 035 002 Upper bound 002 080 009 Standard Error 0005 0128 0023 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_LIN_outliers)

APPENDIX E

Figure 3b - All DataPhase II Experiment 12 Kidney

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 772E+00 499E+00 b 489E+02 101E+03 c1 353E-03 963E-03 c2 196E-05 503E-05 c3 119E-03 263E-03

Covariance (c1c2) 08332 --Covariance (c1c3) 09615 --Degrees of Freedom 46 --

Statistic Estimate F 5696

p lt 0001

Adjusted R2 03152

AIC 870070

Test Material 1 Test Material 2 Test Material 3 RBA 001 034 003 Lower bound Upper bound Standard Error 0009 0285 0040 g 005 estimate is uncertain

Exp12_Kidneyxls (Graph_EXP)

APPENDIX E

Figure 3c - All DataPhase II Experiment 12 Kidney

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Reference Material (Lead Acetate)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Summary of Fitting Goodness of Fit Parameter Estimate Standard Error

a 772E+00 499E+00 b 108E+03 346E+03 c1 669E+02 265E+03 c2 113E+05 407E+05 c3 186E+03 631E+03

Covariance (c1c2) 09197 --Covariance (c1c3) 09839 --Degrees of Freedom 46 --

Statistic Estimate F 5687

p lt 0001

Adjusted R2 03148

AIC 870320

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 10

RBA and Uncertainty Test Material 1 Test Material 2 Test Material 3

RBA 001 036 003 Lower bound Upper bound Standard Error 0009 0315 0044 g 005 estimate is uncertain

20 30 40 50

SQRT(W) Dose

Exp12_Kidneyxls (Graph_MM)

APPENDIX E

Figure 3d - All DataPhase II Experiment 12 Kidney

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Residual Plot

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

0

500

1000

1500

2000

2500

3000 Control

Test Material 2

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Dose-Response Curve

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Dose-Response Curve 3000

2500

2000

1500

1000

500

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

4

3

2

1

0

-1

-2

-3

-4

-5 0 10 20 30 40 50

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty

Stan

dard

ized

Wei

ghte

d R

esid

ual

Tiss

ue C

once

ntra

tion

(ug

g w

et w

eigh

t)

Control

Test Material 3

Parameter Estimate Standard Error a 877E+00 486E+00

b1 298E-01 594E-01 b2 136E-03 451E-03 b3 199E-01 356E-01 c 126E+00 371E-01

Covariance (b1b2) 08626 --Covariance (b1b3) 09574 --Degrees of Freedom 46 --

Statistic Estimate F 5929

p lt 0001

Adjusted R2 03258

AIC 864518

Test Material 1 Test Material 2 Test Material 3 RBA 001 073 008 Lower bound Upper bound Standard Error -- -- --

Exp12_Kidneyxls (Graph_POWER)

-4

-3

-2

-1

0

1

2

3

4

5

2

4

6

8

10

12

14

APPENDIX E

Figure 4a - All DataPhase II Experiment 12 Femur

Linear Model y = a + b1x1 + b2x2 + b3x3

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve Dose-Response Curve Dose-Response Curve 1414

Control

Lead Acetate Control

Test Material 1

Control

Test Material 3

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Sta

ndar

dize

d W

eigh

ted

Res

idua

lTi

ssue

Con

c (u

gg

ashe

d re

sidu

e)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

12

10

8

6

4

2

0

12

10

8

6

4

2

00 0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Sta

ndar

dize

d W

eigh

ted

Res

idua

l Control

Test Material 3

Residual Plot Residual Plot 5

4Control

Lead Acetate Control

Test Material 2

Sta

ndar

dize

d W

eigh

ted

Res

idua

l

3

2

1

0

-1

-2

-3

-5

-4

-5 0 50 100 150 200

SQRT(W) Dose 0 50 100 150 200

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 569E-01 105E-01 b1 318E-02 424E-03 b2 301E-04 312E-04 b3 301E-02 425E-03 b4 358E-04 900E-04

Covariance (c1c2) 01724 --Covariance (c1c3) 00760 --Covariance (c1c4) 01361 --Degrees of Freedom 47 --

Statistic Estimate F 82424

p lt 0001

Adjusted R2 08646

AIC 137166

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound -001 069 -004 Upper bound 003 130 006 Standard Error 0010 0177 0028 g 005 estimate is uncertain

Exp12_Femurxls (Graph_LIN)

APPENDIX E

Figure 4b - All DataPhase II Experiment 12 Femur

Exponential Model y = a + b(1-exp(-c1x1))+b(1-exp(-c2x2)) + b(1-exp(-c3x3))

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot 5

Stan

dard

ized

Wei

ghte

d R

esid

ual 4

3

2

1

0

-1

-2

-3

-4

-5

Control

Test Material 3

0 500 1000 1500

SQRT(W) Dose

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 655E+01 273E+02 c1 507E-04 221E-03 c2 487E-06 219E-05 c3 482E-04 209E-03

Covariance (c1c2) 09760 --Covariance (c1c3) 09990 --Degrees of Freedom 46 --

Statistic Estimate F 61801

p lt 0001

Adjusted R2 08563

AIC 139150

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0185 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_EXP)

APPENDIX E

Figure 4c - All DataPhase II Experiment 12 Femur

Michaelis-Menton Model y = a + bx1(c1+x1) + bx2(c2+x2) + bx3(c3+x3)

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 1

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Dose-Response Curve

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12

10

8

6

4

2

0

Control

Test Material 3

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Stan

dard

ized

Wei

ghte

d R

esid

ual

5

4

3

2

1

0

-1

-2

-3

-4

-5

Residual Plot

Control

Test Material 2

0 50 100 150 200 SQRT(W) Dose

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 560E-01 113E-01 b 131E+02 571E+02 c1 394E+03 180E+04 c2 410E+05 193E+06 c3 415E+03 189E+04

Covariance (c1c2) 09781 --Covariance (c1c3) 09991 --Degrees of Freedom 46 --

Statistic Estimate F 61857

p lt 0001

Adjusted R2 08565

AIC 139151

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound Upper bound Standard Error 0009 0184 0027 g 005 estimate is uncertain

Exp12_Femurxls (Graph_MM)

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Lead Acetate

Tiss

ue C

onc

(ug

g as

hed

resi

due)

APPENDIX E

Figure 4d - All DataPhase II Experiment 12 Femur

Power Model y = a + b1x1^c + b2x2^c + b3x3^c

Reference Material (Lead Acetate) Test Material 1 (Galena-enriched Soil) Test Material 2 (Palmerton Location 2) Test Material 3 (California Gulch Oregon Gulch Tailings)

Dose-Response Curve

Control

Test Material 1

Dose-Response Curve 14

Dose-Response Curve

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Dose (ug Pbkg-d)

Control

Test Material 2

Tiss

ue C

onc

(ug

g as

hed

resi

due)

14

12 12

10 10

8 8

6 6

4 4

2 2Ti

ssue

Con

c (u

gg

ashe

d re

sidu

e)

0 0

Control

Test Material 3

0 200 400 600 800 1000 0 200 400 600 800 1000

Dose (ug Pbkg-d) Dose (ug Pbkg-d)

Tiss

ue C

onc

(ug

g as

hed

resi

due)

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual

Control

Lead Acetate

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 1

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 2

Residual Plot

-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 100 300 500 700 900 1100 1300 1500

SQRT(W) Dose

Stan

dard

ized

Wei

ghte

d R

esid

ual Control

Test Material 3

Summary of Fitting Goodness of Fit RBA and Uncertainty Parameter Estimate Standard Error

a 567E-01 118E-01 b1 325E-02 213E-02 b2 314E-04 482E-04 b3 308E-02 201E-02 c 995E-01 127E-01

Covariance (b1b2) 07455 --Covariance (b1b3) 09584 --Degrees of Freedom 46 --

Statistic Estimate F 63930

p lt 0001

Adjusted R2 08605

AIC 139183

Test Material 1 Test Material 2 Test Material 3 RBA 001 095 001 Lower bound 006 Upper bound 004 Standard Error -- -- --

Exp12_Femurxls (Graph_POWER)

APPENDIX F

DETAILED LEAD SPECIATION DATA FOR TEST MATERIALS

OSWER 92857-77

This page intentionally left blank to facilitate double-sided printing

APPENDIX F

METAL CONTENT OF TEST MATERIALS

Experiment Test Material Concentration (ppm)

Al As Au Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Na Ni Pb Sb Se Tl V Zn

2 Bingham Creek Residential 10600 512 41 143 071 13600 42 75 166 691 16100 - 4340 7020 466 362 150 1590 10 U lt17 lt17 208 903

Bingham Creek Channel Soil 10100 1490 172 152 073 8500 87 79 179 1720 22500 - 4150 5970 376 314 151 6330 187 lt17 lt17 220 -

3 Jasper County High Lead Smelter 8850 251 13 284 170 45800 337 193 238 94 40200 064 1490 7860 784 399 448 10800 490 10U 14U 225 10000

Jasper County Low Lead Yard 4370 107 06 94 100 81800 1880 64 152 144 18000 130 927 1390 240 403 301 4050 10 U 10U 180 148 50000

4 Murray Smelter Slag 9370 710 183 2140 086 89600 309 454 340 2100 170000 100 2430 11200 2640 836 167 11700 557 4390 1260 736 49500

Jasper County High Lead Mill 9380 164 188 211 140 19900 1390 343 646 96 26600 1210 1400 2280 1270 339 1100 6940 10 U 10U 14U 230 17200

5 Aspen Berm 5070 669 923 1640 130 37200 419 171 77 145 33700 077 1090 14300 2220 249 298 14200 520 200 180 115 6580

Aspen Residential 8440 167 189 1030 082 17300 474 111 104 52 23000 023 2140 6890 934 114 219 3870 114 038 027 160 4110

6 Midvale Slag 10500 619 11U 637 058 93200 245 330 1420 1330 202000 074 4250 6180 1640 7910 31U 8170 719 3970 810 101U 33300

Butte Soil 7540 226 405 134 056 15700 422 92 69 838 48500 220 3560 2950 12800 530 80 8530 1060 027 180 270 12100

7

California Gulch Phase I Residential Soil 8670 203 430 605 060 20100 599 20 91 657 68120 126 1500 9521 7090 6560 56 7510 180 190 lt05 337 13738

California Gulch FeMn PbO 11900 110 167 266 100 3930 385 69 75 165 27500 490 1770 2520 1190 279 75 4320 600 080 370 179 2650

8 California Gulch AV Slag 20800 1050 212 2430 120 117000 128 538 431 2080 207000 011 7390 6360 6910 4080 71 10600 572 6130 180 372 67300

9 Palmerton Location 2 7750 110 95 6850 140 1160 1950 188 303 462 25900 170 515 725 6320 667 150 3230 600 1180 190 531 6500

Palmerton Location 4 7850 1340 51 1090 200 2480 3190 174 266 350 26700 110 512 684 9230 2100 268 2150 740 690 085 498 19100

11 Murray Smelter Soil 6520 310 111 584 048b 69000 238 115 164 856 38700 052 2040 15000 863 5320b 104 3200 200 680 480 283 10400

NIST Paint 5850 48 063U 1320 047b 11800 40 83 208 12 8890 092 1360 2900 272 819b 580b 8350 87 U 061U 087U 116 1880

12 Galena-enriched Soil 6340 49 063U 112 049b 2650 08 31 102 11 10000 006b 1460 2790 293 3120b 380b 11200 870 061U 087U 1260b 107

California Gulch Oregon Gulch Tailings 248 1290 417 14 200 8290 40 101 80 350 391000 024 451 118 126 34 282 1270 744 053 086 477 441

All samples were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in accord with USEPA Method 2007

OSWER 92857-77 Appendix F_TALxls (TAL)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min Max Total Lib Total Lib

Density Fraction Cerussite 2 2 4 2 5 10 10 028 028 66 0776 Fe-Pb Oxide 30 30 15 2 75 151 151 1793 1793 4 0052 Fe-Pb Silicate 14 14 10 8 20 70 70 552 552 35 0052 Mn-Pb Oxide 21 21 22 2 110 106 106 1813 1813 51 0159 Pb-As Oxide 3 3 4 2 8 15 15 052 052 6 05 Pb Phosphate 43 43 13 1 110 216 216 2170 2170 51 037 Fe-Pb Sulfate 86 86 10 1 120 432 432 3591 3591 37 0134

TOTAL 199 199 13 1000 1000 10000 10000

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 382 382 82 82 5-9 221 221 122 122 10-19 191 191 130 130 20-49 156 156 303 303 50-99 35 35 188 188 100-149 15 15 176 176 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib 18 46 12

181 19

504 219

18 46 12

181 19

504 219

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Mn-Pb Oxide

Pb-As Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Res)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 57 56 4 1Anglesite 30 116 114 626 623 63 0684 1 1 2 2Cerussite 2 02 02 005 005 66 0776 25 25 17 4Fe-Pb Oxide 60 51 51 1088 1088 40 0053 1 1 5 5FeSbO 5 02 02 013 013 4 4 15 10Fe-Pb Silicate 20 08 08 156 156 35 0057 1 1 50 50Galena 50 02 02 130 130 75 0866 5 5 21 5Mn-Pb Oxide 50 10 10 267 267 51 0159 2 2 105 100Lead Organic 110 04 04 545 545 13 0037 3 3 4 1Pb-As Oxide 8 06 06 029 029 60 0500 1 1 10 10Lead Barite 10 02 02 026 026 45 0031

42 42 12 1Lead Phosphate 100 86 86 1301 1301 51 0370 349 349 6 1Fe-Pb Sulfate 110 711 711 5815 5815 37 0134

491 490 8TOTAL 1000 998 10000 9997

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 662 660 139 138 5-9 136 136 175 175 10-19 98 98 184 184 20-49 61 61 200 200 50-99 31 31 205 205 100-149 12 12 96 96 150-199 00 00 00 00 200-249 00 00 00 00 gt250 00 00 00 00

TOTAL 100 100 100 100

Relative Lead Mass ()Total Lib

284 283 03 03 24 24 00 00 03 03 89 89 23 23 03 03 09 09 00 00

258 258 304 304

1000 999

OSWER 92857-77 Appendix F_Tablesxls (2_Ch)

APPENDIX F

EXPERIMENT 2 - BINGHAM CREEK CHANNEL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Lead Organic

Pb-As Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (2_Ch)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Total Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 1 1 12 12 2 2 48 35

Anglesite Calcite

12 025 025 60 050 050

011 087

011 087

63 28

0684 0050

12 11 31 8Cerussite 90 30 28 339 326 66 0776 2 2 35 10 24 24 45 10

Clay Fe-Pb Oxide

60 050 050 150 60 60

064 1004

064 1004

31 40

0005 0037

22 22 83 4Fe-Pb Silicate 175 55 55 1680 1680 37 0100 5 5 47 12Mn-Pb Oxide 100 13 13 218 218 51 0112 56 0 2 1Native Lead 9 140 00 107 000 113 1000 6 1 6 1Lead Oxide 10 15 03 031 002 40 0037

117 117 7 1 62 62 94 15 90 75 5 1

Lead Phosphate Slag Fe-Pb Sulfate

90 293 293 300 155 155 10 226 188

725 5358 375

725 5358 320

51 37 37

0310 0012 0100

399 322 27TOTAL 1000 807 10000 9795

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5

Total Freq Lib Freq Total RLM 444 281 172

Lib RLM 38

5-9 185 160 150 57 10-19 80 75 78 64 20-49 83 83 140 140 50-99 100-149

90 90 319 88 88 96

319 96

150-199 200-249

20 20 38 05 05 03

38 03

gt250 05 05 04 04

TOTAL 100 81 100 76

Relative Lead Mass () Total Lib 09 09 02 02 321 307 002 002 27 27 115 115 23 23

222 00 009 001 211 211 43 43 26 22

1000 760

OSWER 92857-77 Appendix F_Tablesxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY HIGH LEAD SMELTER

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Oxide

Native Lead

Mn-Pb Oxide

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_HL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadTotal Lib Avg Min

Mineral Max Total Lib Total Lib

Density Fraction 3 3 3 2 95 95 15 1 1 1 15 15 18 18 36 8 9 9 33 5 2 1 53 25 10 10 25 8 1 1 8 8 2 2 2 1 32 32 11 1 9 9 20 1

Anglesite Cerussite Clay Fe-Pb Oxide Fe-Pb Silicate Galena Mn-Pb Oxide Pb-As Oxide Lead Silicate Lead Phosphate Fe-Pb Sulfate

6 16 16 130 522 522 15 05 05

100 99 99 100 49 49 80 11 05 55 55 55 8 05 05 2 11 11

80 176 176 100 49 49

031 4337 046

1953 911 321 773 024 009

1042 553

031 4337 046

1953 911 076 773 024 009

1042 553

63 66 31 4

37 75 51 71 8

51 37

0684 0776 0005 0037

01 0866 0112 0243 0167 031 01

182 181 18TOTAL 1000 995 10000 9756

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size lt5 5-9 10-19 20-49 50-99 100-149

Total Freq Lib Freq Total RLM 286 286 50 203 203 85 209 209 171 198 198 302 77 71 236 27 27 156

Lib RLM 50 85

171 302 178 156

150-199 200-249

00 00 00 00 00 00

00 00

gt250 00 00 00 00

TOTAL 100 99 100 94

Relative Lead Mass ()Total Lib

048 048 811 811 0003 0003 11 11 12 12 76 18 16 16 015 015 004 004 60 60 075 075

1000 942

OSWER 92857-77 Appendix F_Tablesxls (3_LL)

APPENDIX F

EXPERIMENT 3 - JASPER COUNTY LOW LEAD YARD

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Lead Phosphate

Lead Silicate

Pb-As Oxide

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Anglesite

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (3_LL)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

10 00 11 10

004 004 00 00 15 15 92 26 08 08 07 05 57 51 39 33

687 546 70 70 03 03 003 003

1000 768

Mineral

Anglesite 3 0 12 10 15 02 00 004 000 63 0684 Cerussite 4 3 8 3 15 03 02 004 004 66 0776 Fe-Pb Oxide 3 3 18 8 35 02 02 007 007 4 0031 Fe-As Oxide 3 3 17 4 35 02 02 006 006 Fe-Pb Silicate 9 9 28 8 80 07 07 032 032 4 022 Galena 98 7 2 1 15 72 05 027 008 75 0866 Mn-Pb Oxide 7 7 31 8 110 05 05 028 028 51 0112 Native Lead 3 2 3 2 4 02 01 001 001 113 1 Pb-As Oxide 39 31 6 1 60 29 23 030 027 71 05 Pb(M)O 8 3 18 2 110 06 02 019 016 8 05 Lead Oxide 143 79 8 1 100 105 58 148 118 95 093 Slag 1037 1037 73 5 310 761 761 9671 9671 365 00038 Fe-Pb Sulfate 2 2 55 10 100 01 01 014 014 37 01 Zn-Pb Silicate 4 3 16 10 30 03 02 008 007 51 0014

TOTAL 1363 1189 58 1000 872 10000 9938

This mineral is now considered to be equivalent to Fe-Pb Oxide

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 145 41 156 54 5-9 126 112 137 79 10-19 147 139 229 173 20-49 62 62 171 153 50-99 203 203 162 162 100-149 238 238 128 128 150-199 42 42 08 08 200-249 32 32 08 08 gt250 04 04 01 01

TOTAL 100 87 100 77

OSWER 92857-77 Appendix F_Tablesxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - MURRAY SMELTER SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Fe-As Oxide

Fe-Pb Silicate

Galena

Mn-Pb Oxide

Native Lead

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Zn-Pb Silicate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_Mur)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Counts Lib

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () Max Total Lib Total LibAvg Min

Density Lead Total Lib

Relative Lead Mass () Fraction

16 16 001 001 01 01 570 570 002 002 16 16 81 81 34 00 87 87 22 00 65 52 053 053 74 74 14 14 14 14

1000 931

Mineral

Anglesite 1 1 25 25 25 036 036 036 036 63 0684 Lead Barite 1 1 3 3 3 036 036 004 004 45 0045 Calcite 1 1 25 25 25 036 036 036 036 28 005 Cerussite 90 90 8 1 70 320 320 1074 1074 66 0776 Clay 3 3 24 8 40 11 11 104 104 31 0005 Fe-Pb Oxide 33 33 22 3 110 117 117 1044 1044 4 0037 Fe-Pb Silicate 41 41 36 1 210 146 146 2116 2116 37 01 Galena 6 0 6 1 30 21 00 051 000 75 0866 Mn-Pb Oxide 39 39 27 3 125 139 139 1477 1477 51 0112 Native Lead 3 0 4 1 10 11 00 018 000 113 1 Lead Oxide 3 1 17 5 40 107 036 071 057 95 093 Lead Silicate 1 1 10 10 10 036 036 014 014 8 045 Lead Phosphate 15 15 21 2 100 53 53 453 453 51 031 Slag 24 24 92 15 210 85 85 3145 3145 365 0012 Fe-Pb Sulfate 20 20 13 3 60 71 71 358 358 37 01

TOTAL 281 270 25 1000 961 10000 9916

This mineral is now considered to be equivalent to Fe-Pb Oxide Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM

Total

lt5 228 203 83 72 5-9 206 199 129 116 10-19 221 217 243 227 20-49 189 185 337 309 50-99 85 85 128 128 100-149 57 57 65 65 150-199 07 07 02 02 200-249 07 07 13 13 gt250 00 00 00 00

TOTAL 100 96 100 93

OSWER 92857-77 Appendix F_Tablesxls (4_HL)

APPENDIX F

EXPERIMENT 4 - JASPER COUNTY HIGH LEAD MILL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Fe-Pb Sulfate

Slag

Lead Phosphate

Lead Silicate

Lead Oxide

Native Lead

Mn-Pb Oxide

Galena

Fe-Pb Silicate

Fe-Pb Oxide

Clay

Cerussite

Calcite

Lead Barite

Anglesite Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (4_HL)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01 66 66 01 01

617 596 91 79 120 101 45 45 00 00 13 13 47 24

1000 925

Mineral Total Lib Avg Min Max Total Lib

Clay 4 4 55 10 Anglesite 34 34 5 1 Lead Barite 3 3 10 2 Cerussite 71 68 20 1 Fe-Pb Oxide 80 69 35 2 Galena 8 6 27 10 Mn-Pb Oxide 9 9 56 10 Lead Organic 2 2 70 40 Lead Phosphate 7 7 45 10 Fe-Pb Sulfate 61 39 15 4

TOTAL 279 241 24

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

120 14 14 330 330 26 002 90 122 122 263 263 63 0684 25 11 11 045 045 45 005

110 254 244 2080 2011 66 0776 210 287 247 4143 3609 4 0095 50 29 22 323 270 75 086

150 32 32 758 758 51 02 100 07 07 210 210 13 0018 110 25 25 473 473 51 009 90 219 140 1375 687 37 016

1000 864 10000 8657

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 265 254 25 23 190 158 59 56 215 176 144 126 172 143 297 263 82 57 253 234 61 61 190 190 07 07 18 18 07 07 14 14 00 00 00 00

100 86 100 92

OSWER 92857-77 Appendix F_Tablesxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN BERM

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Berm)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

421

Density Fraction

5

Max Total Lib Total Lib

07 07 027 027 63 0684 125 120 120 2457 2457 66 0776 100 474 474 3818 3818 4 0095 110 24 03 521 331 75 086 80 48 48 973 973 51 02 80 03 03 241 241 13 0018 60 24 24 449 449 51 009 60 299 299 1515 1515 37 016

1000 979 10000 9810

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 385 385 45 45 351 340 93 75 124 117 92 72 82 79 227 202 38 38 86 86 21 21 457 457 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 94

Relative Lead Mass ()Total Lib

06 06 642 642 74 74 171 109 51 51 00 00 11 11 46 46

1000 938

Anglesite Cerussite Fe-Pb Oxide Galena Mn-Pb Oxide Lead Organic Lead Phosphate Fe-Pb Sulfate

TOTAL

2 2 535 35 23138 138 97 1 25

14 14 231 1 807 7 2187 87 6

291 285 11

558031

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (5_Res)

APPENDIX F

EXPERIMENT 5 - ASPEN RESIDENTIAL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250 Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (5_Res)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Cerussite Fe-Pb Oxide Galena Native Lead Pb-As Oxide Lead Oxide Slag Sulfosalts Fe-Pb Sulfate

TOTAL

7 7 22 10 4 4 26 12 2 2 90 80

67 6 4 1 119 41 16 1 61 29 12 1

1721 1721 131 10 1 1 50 50 2 2 15 15

1984 1813 115

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 04 04 007 007 66 0776 45 02 02 004 004 4 015

100 01 01 008 008 75 0866 40 34 03 012 004 113 1

100 60 21 082 061 71 05 55 31 15 031 026 9 083

600 867 867 9852 9852 365 0004 50 01 01 002 002 6 025 15 01 01 001 001 37 014

1000 914 10000 9965

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 65 01 84 02 10 05 35 22 32 18 177 87 44 41 337 292 203 203 177 177 286 286 94 94 185 185 40 40 129 129 38 38 47 47 18 18

100 91 100 77

Relative Lead Mass () Total Lib 38 38 03 03 57 57

154 50 326 242 259 216 160 160 04 04 01 01

1000 770

OSWER 92857-77 Appendix F_Tablesxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - MIDVALE SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Cerussite

Fe-Pb Oxide

Galena

Native Lead

Pb-As Oxide

Lead Oxide

Slag

Sulfosalts

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Mid)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadDensity FractionTotal Lib Relative Lead Mass ()

Total Lib 01 01

362 356 03 03 70 56 125 124 202 181 00 00 36 01

201 186

1000 907

Mineral Total Lib Avg Min Max Total Lib

Clay 3 3 58 30 Anglesite 138 134 12 1 Cerussite 1 1 10 10 Fe-Pb Oxide 37 27 61 4 Galena 37 35 10 1 Mn-Pb Oxide 161 150 44 3 Lead Barite 1 1 5 5 Lead Phosphate 12 1 54 5 Fe-Pb Sulfate 245 226 38 2

TOTAL 635 578 34

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

100 05 05 082 082 32 0039 100 217 211 751 737 63 0684 10 02 02 005 005 66 0776

180 58 43 1048 828 4 015 55 58 55 172 170 75 0866

200 254 236 3277 2929 51 0108 5 02 02 002 002 45 0058

200 19 02 303 006 51 0208 250 386 356 4361 4055 37 0111

1000 910 10000 8813

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 230 222 34 33 148 132 98 95 140 124 114 107 230 217 265 258 137 113 250 221 90 80 170 151 16 14 29 29 08 05 33 15 02 02 06 06

100 91 100 91

OSWER 92857-77 Appendix F_Tablesxls (6_Butte)

APPENDIX F

EXPERIMENT 6 - BUTTE SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Lead Barite

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (6_Butte)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Total Lib

102 80 197 187 58 58 222 222 301 286 01 00 01 01 59 59 11 00 01 01 20 00 19 19 01 01 06 06

1000 920

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib Anglesite 54 28 9 1 45 81 42 202 158 63 0684 Cerussite 53 33 14 1 125 80 50 328 311 66 0776 Fe-Pb Sulfate 70 65 31 1 120 105 98 959 956 37 014 Mn-Pb Oxide 83 83 43 1 250 125 125 1577 1577 5 024 Lead Phosphate 150 115 19 1 150 226 173 1257 1196 51 04 Pb-As Oxide 3 0 3 1 5 05 00 004 000 71 024 Lead Barite 6 1 18 2 100 09 02 048 044 45 0058 Fe-Pb Oxide 176 166 52 1 300 265 250 4045 4040 4 0031 PbO-Cerussite 15 0 3 1 10 23 00 018 000 66 0776 Lead Organic 9 9 78 20 110 14 14 308 308 13 0023 Galena 19 0 3 1 10 29 00 027 000 75 0866 Lead Silicate 4 4 30 10 50 06 06 053 053 6 05 Lead Vanidate 1 1 10 10 10 02 02 004 004 64 032 Slag 22 22 121 25 250 33 33 1171 1171 365 0012

TOTAL 665 527 34 1000 792 10000 9818

Particle Size Distribution

Size Total Freq Lib Freq Total RLM Lib RLM lt5 244 83 51 17 5-9 90 50 53 20 10-19 177 173 119 112 20-49 220 220 223 223 50-99 146 144 224 217 100-149 92 92 274 274 150-199 12 12 30 30 200-249 11 11 06 06 gt250 09 09 21 21

TOTAL 100 79 100 92

OSWER 92857-77 Appendix F_Tablesxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH PHASE I RESIDENTIAL SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Lead Barite

Cerussite

Fe-Pb Oxide

Galena

Mn-Pb Oxide

Pb-As Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

PbO-Cerussite

Slag

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_Res)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Lead Barite 7 1 5 2 Clay 1 1 50 50 Fe-Pb Oxide 186 186 20 0 Mn-Pb Oxide 71 71 45 2 Lead Organic 2 2 103 80 Lead Silicate 1 1 15 15 Lead Vanidate 2 2 6 3 Lead Phosphate 66 64 8 1 Fe-Pb Sulfate 48 48 10 3

TOTAL 384 376 21

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 18 03 040 010 45 005 50 03 03 061 061 31 0005

130 484 484 4485 4485 4 0031 125 185 185 3914 3914 51 024 125 05 05 249 249 13 00232 15 03 03 018 018 6 05 8 05 05 013 013 64 032 60 172 167 616 609 51 031 100 125 125 603 603 37 01

1000 979 10000 9962

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 255 240 40 38 193 190 48 47 240 237 109 108 172 172 234 234 104 104 417 417 36 36 153 153 00 00 00 00 00 00 00 00 00 00 00 00

100 98 100 997

Relative Lead Mass ()Total Lib 01 00 00 00 84 84 721 721 01 01 08 08 04 04

147 145 34 34

1000 997

OSWER 92857-77 Appendix F_Tablesxls (7_FeMn)

APPENDIX F

EXPERIMENT 7 - CALIFORNIA GULCH FeMn PbO

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Organic

Lead Phosphate

Fe-Pb Sulfate

Clay

Lead Silicate

Lead Vanidate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (7_FeMn)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Anglesite 3 3 37 30 Cerussite 3 3 11 8 Galena 6 1 16 1 Native Lead 4 1 6 2 Pb-As Oxide 253 34 8 1 Lead Oxide 139 18 8 1 Slag 1206 1206 126 5 Fe-Pb Sulfate 5 1 37 10

TOTAL 1619 1267 96

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 02 02 007 007 63 0684 15 02 02 002 002 66 0776 80 04 01 006 005 75 0866 15 02 01 002 001 1134 1 125 156 21 130 090 6 05 125 86 11 073 059 95 0930 450 745 745 9768 9768 365 00035 55 03 01 012 004 37 0091

1000 783 10000 9936

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 191 01 113 01 85 69 47 06 82 74 68 44 50 46 235 209 86 86 242 242 192 192 224 224 101 101 17 17 128 128 27 27 86 86 27 27

100 78 100 80

Relative Lead Mass () Total Lib 24 24 09 09 31 27 14 09 309 214 510 415 99 99 03 01

1000 796

OSWER 92857-77 Appendix F_Tablesxls (8_AV)

APPENDIX F

EXPERIMENT 8 - CALIFORNIA GULCH AV SLAG

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Galena

Pb-As Oxide

Native Lead

Fe-Pb Sulfate

Slag

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (8_AV)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 1 1 10 10 Anglesite 2 2 4 3 Lead Barite 11 11 8 1 Fe-Pb oxide 15 15 8 3 Mn-Pb Oxide 68 68 17 2 Lead Phosphate 16 16 19 1 Fe-Pb Sulfate 1 1 8 8

TOTAL 114 114 11

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 10 09 09 06 06 31 0005 4 18 18 04 04 63 0684 41 96 96 50 50 45 0018 20 132 132 74 74 4 0015

100 596 596 688 688 51 0055 45 140 140 174 174 51 008 8 09 09 05 05 37 01

1000 1000 1000 1000

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 263 263 108 108 228 228 54 54 254 254 167 167 184 184 276 276 61 61 324 324 09 09 71 71 00 00 00 00 00 00 00 00 00 00 00 00

100 100 100 100

Relative Lead Mass ()Total Lib 00 60 14 15

661 244 06

00 60 14 15

661 244 06

1000 1000

OSWER 92857-77 Appendix F_Tablesxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 2

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Lead Phosphate

Fe-Pb Sulfate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P2)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () LeadMineral Total Lib Avg Min

Clay 3 3 Anglesite 8 0 Lead Barite 1 1 Fe-Pb Oxide 14 14 Mn-Pb Oxide 65 65 Pb-As Oxide 17 0 Lead Silicate 1 1 Lead Vanidate 5 5 Lead Phosphate 1 1 Zn-Pb Silicate 2 2

TOTAL 117 92

24 8 1 1 12 12 16 8 31 4 1 1 4 4 15 5 15 15 26 12

15

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 45 26 26 290 290 31 0005 1 68 00 032 000 63 0684 12 09 09 048 048 45 0018 40 120 120 902 902 4 0015 110 556 556 8082 8082 51 0055 1 145 00 068 000 71 05 4 09 09 016 016 6 05 35 43 43 298 298 64 032 15 09 09 060 060 51 008 40 17 17 207 207 55 005

1000 786 1000 990

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 248 34 127 18 145 145 50 50 214 214 88 88 248 248 344 344 128 128 323 323 17 17 68 68 00 00 00 00 00 00 00 00 00 00 00 00

100 79 100 89

Relative Lead Mass ()Total Lib 01 01 40 00 01 01 16 16 658 658 70 00 14 14

177 177 07 07 16 16

1000 891

OSWER 92857-77 Appendix F_Tablesxls (9_P4)

APPENDIX F

EXPERIMENT 9 - PALMERTON LOCATION 4

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Clay

Anglesite

Lead Barite

Fe-Pb Oxide

Mn-Pb Oxide

Pb-As Oxide

Lead Silicate

Lead Vanidate

Lead Phosphate

Zn-Pb Silicate Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (9_P4)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead

358112

Mineral Total Lib Avg Min

Density FractionMax Total Lib Total Lib 3 02 02 002 002 65 0005 40 16 14 066 038 63 0684 8 09 09 022 022 4 0031

30 129 02 062 021 75 0866 55 103 37 159 122 71 0527 15 14 09 027 018 7 03 25 23 19 061 056 95 093

310 700 700 9576 9576 365 00037 35 02 02 024 024 37 014

1000 796 10000 9878

Particle Size Distribution

Total Freq Lib Freq Total RLM Lib RLM 227 33 265 52 103 98 106 88 293 290 176 169 171 169 334 275 59 59 78 78 84 84 18 18 28 28 08 08 26 26 10 10 09 09 05 05

100 80 100 70

Relative Lead Mass ()Total Lib 00 00

140 82 01 01

200 66 294 224 28 18

266 242 64 64 06 06

1000 704

As(M)O Cerussite Fe-Pb Oxide Galena Pb-As Oxide Pb(M)O Lead Oxide Slag Fe-Pb Sulfate

TOTAL

1 1 37 6 144 4 855 1 244 16 56 4 710 8 9299 299 471 1 35

427 340 34

2535

Size lt55-910-1920-4950-99100-149150-199200-249gt250

TOTAL

OSWER 92857-77 Appendix F_Tablesxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - MURRAY SMELTER SOIL

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

As(M)O

Cerussite

Fe-Pb Oxide

Galena

Pb-As Oxide

Pb(M)O

Lead Oxide

Slag

Fe-Pb Sulfate

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

This mineral is now considered to be equivalent to Fe-Pb Oxid

OSWER 92857-77 Appendix F_Figuresxls (11_Mur)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Lead Speciation Summary Statistics

Counts Particle Size Count Freq () LW Freq () Lead Relative Lead Mass ()Mineral Total Lib Avg Min

Anglesite 3 3 7 4 Cerussite 183 183 9 1 Lead Oxide 88 88 9 1

TOTAL 274 274 9

Size Total Freq Lib Freq lt5 755 755 5-9 44 44 10-19 58 58 20-49 80 80 50-99 58 58 100-149 04 04 150-199 00 00 200-249 00 00 gt250 00 00

TOTAL 100 100

Density FractionMax Total Lib Total Lib Total Lib 12 11 11 087 087 63 0684 06 06

110 668 668 6780 6780 66 0776 553 553 80 321 321 3132 3132 95 093 441 441

1000 1000 10000 10000 1000 1000

Particle Size Distribution

Total RLM Lib RLM 150 150 31 31 64 64 278 278 439 439 37 37 00 00 00 00 00 00

100 100

OSWER 92857-77 Appendix F_Tablesxls (11_NIST)

APPENDIX F

EXPERIMENT 11 - NIST PAINT

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Anglesite

Cerussite

Lead Oxide

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (11_NIST)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 224 224

TOTAL 224 224

Avg 17

17

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 80 1000 1000 10000 10000 75 0866

1000 1000 10000 10000

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 1000

1000 1000

Total Freq Lib Freq 478 22 45 411 45 00 00 00 00

478 22 45

411 45 00 00 00 00

Total RLM 49 07 33

759 153 00 00 00 00

Lib RLM 49 07 33

759 153 00 00 00 00

100 100 100 100

OSWER 92857-77 Appendix F_Tablesxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - GALENA-ENRICHED SOIL

Speciation and Particle Size Data

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Gal)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Lead Speciation Summary Statistics

Particle Size Count Freq () LW Freq () LeadCountsMineral Total Lib

Galena 217 4

TOTAL 217 4

Avg 2

2

Min 1

Size lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

TOTAL

Density FractionMax Total Lib Total Lib 25 1000 18 10000 514 75 0866

1000 18 10000 514

Particle Size Distribution

Relative Lead Mass ()Total Lib

1000 51

1000 51

Total Freq Lib Freq 853 09 468 12 83 00 215 00 60 09 267 40 05 00 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Total RLM Lib RLM

100 2 100 5

OSWER 92857-77 Appendix F_Tablesxls (12_Or)

APPENDIX F

EXPERIMENT 12 - CALIFORNIA GULCH OREGON GULCH TAILINGS

Speciation and Particle Size Data

Panel A Relative Lead Mass

0 10 20 30 40 50 60 70 80 90 100

Galena

Frequency of Occurrence Relative Lead Mass

Panel B Particle Size Distribution

0

10

20

30

40

50

60

70

80

90

100

lt5 5-9 10-19 20-49 50-99 100-149 150-199 200-249 gt250

Particle Size (ȝm)

Freq

uenc

y

OSWER 92857-77 Appendix F_Figuresxls (12_Or)

This page intentionally left blank to facilitate double-sided printing

  • ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS USING IN VIVO AND IN VITRO METHODS
  • EXECUTIVE SUMMARY
  • TABLE OF CONTENTS
  • 10 INTRODUCTION
  • 20 IN VIVO STUDIES
  • 30 IN VITRO STUDIES
  • 40 REFERENCES
  • TABLES
  • FIGURES
  • APPENDIX A
  • APPENDIX B
  • APPENDIX B ATTACHMENT 1
  • APPENDIX C
  • APPENDIX D
  • APPENDIX E
  • APPENDIX F