42
Estimation of large dimensional sparse covariance matrices Noureddine El Karoui Department of Statistics UC, Berkeley May 15, 2009 Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Estimation of large dimensional sparse covariancematrices

Noureddine El Karoui

Department of StatisticsUC, Berkeley

May 15, 2009

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 2: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Sample covariance matrix and its eigenvalues

Data: n × p matrix X

n (independent identically distributed) observations of arandom vector (Xi )

ni=1 in Rp.

Suppose Xi -s have covariance matrix Σp

Often interested in estimating Σp (e.g for PCA); eigenvalues:λi

Standard estimator: Σp = (X − X )′(X − X )/(n − 1);eigenvalues li

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 3: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Role of eigenvalues: examples

Principal Component Analysis (PCA); large eigenvalues:

Optimization problems: Example in risk management:“Invest” aj in Xt,j . Risk measured by var (Xta) = a′Σpa.(Constraints on a in more realistic versions: e.g

∑ai = 1)

Role of small(/all) eigenvalues.

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 4: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Classical results from multivariate StatisticsClassical theory: p fixed, n →∞

Fact: Σ unbiased,√

n-consistent estimator of Σ:

√n‖Σ− Σ‖ = OP(1) .

Also, fluctuation theory (CLT) for largest eigenvalues (Anderson,’63), under eg normality of the dataMuch more is known about estimation of covariance matrices:Efron, Haff, Morris, Stein etc...

Will focus here on “large n, large p” situation (quite commonnow), so p/n has finite non-zero limit

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 5: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Visual Example

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

35

40

45

Histogram eigenvalues of X'X/nXi: N(0,Id)p=2000n=5000

"True" (i.e population) eigenvalues

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 6: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Graphical illustration: n=500, p=200

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Marchenko-Pastur Law and Histogram of empirical eigenvalues

X: 500*200 matrix, entries i.i.d N(0,1)

Histogram of eigenvalues of X'X/n and corresponding Marchenko-Pastur density superimposed

Note: Σ = Id, so all population (or “true”) eigenvalues equal 1.

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 7: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Surprising?

Previous plots perhaps surprising:

In particular, CLT implies that σij − σij = O(n−1/2): goodentrywise estimation

But poor spectral estimation

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 8: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Importance of ρn = p/nCase of Σ = Id

Suppose entries of n × p matrix X are iid mean 0, sd 1, 4thmoment. Population covariance = IdLet ρn = p/n.

Theorem (Marcenko-Pastur, ’67)

li : (decreasing) eigenvalues of 1nX ′X. Assume ρn → ρ ∈ (0, 1].

If Fp(x) = 1p{#li ≤ x}, then

Fp =⇒ Fρ in probability .

Fρ has known density.

Support: [a, b], with a = (1− ρ1/2)2, b = (1 + ρ1/2)2

Bias issue/inconcistency problems for these asymptotics.

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 9: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Marcenko-Pastur law illustrationPopulation covariance: Σ = Id

Here, density of limiting spectral distribution computable:

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5Density of Marcenko−Pastur law for varying r

.01

.05

.10

.15

.20

.40

.60

.801.0

r =

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 10: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Remark about extensions/limitations

RMT also gives results about limiting spectral distribution ofeigenvalues when Σ 6= IdModels of form Xi = Σ1/2Yi , entries of Yi i.i.d (say 4+εmoments)

Problem: geometric implications for the data; nearorthogonality, near constant norm of X/

√p, when λ1(Σ)

bounded

Two models can have same Σ and different limiting spectraldistributions

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 11: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Estimation problems

Previous results highlights fact that naive estimation of covariancematrix results in inconsistency in high-dimension.

Question: can we find procedures that consistently estimatespectral properties of these matrices? (I.e also eigenspaces) Andare more robust to distributional assumptions?

Can we exploit good entrywise estimation to improved spectralestimation?

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 12: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Previous workRelated ideas: Banding

Scheme proposed by P. Bickel and L. Levina (’06):

Consider population covariance matrices with small entriesaway from the diagonal

Technically: Σp satisfies

maxj{∑|i−j |>m

|σ(i , j)|} < Cm−α, ∀m

Recommend banding: σi ,j = 0 if |i − j | > k , otherwise keep

estimate from Σp

Call this estimator Bk(Σp)

Theorem (Bickel and Levina)

If k � (n−1/2 log(p))−1/(α+1), + tail decay conditions

|||Bk(Σp)− Σp|||2 → 0

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 13: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

SparsityIntroduction

Oft-made assumption: many σ(i , j)=0 or “small”

Appeal of thresholding (i.e keep large values, and put smallones to 0)

Aim: find simple methods for improving estimation

Practical requirements: speed, parallelizability, limitedassumptions

Theoretical requirements: good convergence properties, inspectral norm (||| · |||2)

Estimator not sensitive to ordering of variables

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 14: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

What is a good estimator?

Requirement:|||Σp − Σp|||2 → 0

where (for symmetric matrices)

|||M|||2 = σ1(M) =√λ1(M∗M) = max

i|λi (M)| .

Convergence of ||| · |||2 implies

Consistency of all eigenvalues (Weyl’s inequality)

Consistency of stable subspaces corresponding to separatedeigenvalues (Davis-Kahan sin θ theorem)

Our aim: permutation equivariant estimator, operator-normconsistentOur strategy: (hard) thresholding

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 15: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Standard notion of sparsityIll-suited for spectral problems

Standard notion : count number of non-zero elements

E1 =

1 1√p

1√p . . . 1√

p1√p 1 0 . . . 0

......

. . .. . . 0

1√p 0 0 1 0

1√p 0 0 . . . 1

Eigenvalues E1:

1±√

p−1p , 1

(multiplicity: p-2)

E2 =

1 1√p 0 . . . 0

1√p 1 1√

p . . . 0

0 1√p 1 1√

p . . ....

. . .. . .

. . . 1√p

0 . . . 0 1√p 1

.

Eigenvalues E2:

1 + 2√p cos

(πkp+1

),

k = 1, ..., p

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 16: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Adjacency matrices

E1 =

1 1√p

1√p . . . 1√

p1√p 1 0 . . . 0

......

. . .. . . 0

1√p 0 0 1 0

1√p 0 0 . . . 1

A1 =

1 1 1 . . . 11 1 0 . . . 0...

.... . .

. . . 01 0 0 1 01 0 0 . . . 1

6

5

4

3

1

2

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 17: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Adjacency matrices

E2 =

1 1√p 0 . . . 0

1√p 1 1√

p . . . 0

0 1√p 1 1√

p . . ....

. . .. . .

. . . 1√p

0 . . . 0 1√p 1

A2 =

1 1 0 . . . 01 1 1 . . . 00 1 1 1 . . ....

. . .. . .

. . . 10 . . . 0 1 1

6

5

4

3

2

1

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 18: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Adjacency matrices and graphs: comparisonClosed walks of length k

Closed walk: start and finishes at same vertexLength of walk: number of vertices it traverses

6

5

4

3

1

2 6

5

4

3

2

1

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 19: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Adjacency matrices and graphsConnection with spectrum of covariance matrices

Closed walk (length k) γ: i1 → i2 → . . .→ ik → ik+1 = i1Weight of γ: wγ = σ(i1, i2) . . . σ(ik , i1)

(4,4)¾

(5,5)¾

(6,6)¾

(1,6)¾

(1,5)¾(1,4)¾

(1,3)¾

(3,3)¾

(2,2)¾

(1,2)¾

(1,1)¾

6

5

4

3

1

2

1

2

3

4

5

6

(1,2)¾

(2,3)¾

(3,4)¾(4,5)¾

(5,6)¾

(1,1)¾

(2,2)¾

(3,3)¾(5,5)¾

(4,4)¾

(6,6)¾

trace(

Σk)

=∑

λki (Σ) =

∑γ∈Cp(k)

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 20: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Notion of sparsity compatible with spectral analysisA proposal

Given Σp, p × p covariance matrix, compute adjacency matrixAp = 1σ(i ,j) 6=0

Associate graph Gp to it

Consider Cp(k) ={closed walks of length k on the graph with adjacency matrix Ap}and φp(k) = Card {Cp(k)} = trace

(Ak

p

).

Call sequence of Σp β-sparse if

∀k ∈ 2N , φp(k) ≤ f (k)pβ(k−1)+1

where f (k) independent of p and 0 ≤ β < 1

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 21: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

ExamplesComputation of sparsity coefficients

Diagonal matrix : Ap = Idp. φ(k) = p, for all k . Sparsitycoefficient: 0.

Matrices with at most M non-zero elements on each lineφ(k) ≤ pMk−1. Sparsity coefficient: 0.

Matrices with at most Mpα non-zero elements on eachline φ(k) ≤ M(k−1)ppα(k−1). Sparsity coefficient: α

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 22: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Assumptions underlying results

In all that follows,

1 Σp(i , i) stay bounded

2 Xi ,j have infinitely many moments

3 Rows of (n × p) data matrix X i.i.d

4 p/n→ l ∈ (0,∞)

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 23: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Simple case: gap in entries of covariance matrixGaussian MLE, centered case

Xi ,j centered; cov(Xi ) = Σ

Suppose Σp β-sparse, β = 1/2− η and η > 0

Theorem

Sp =1

n

n∑i=1

X ′X , and Tα(Sp)(i , j) = Sp(i , j)1|Sp(i ,j)|>Cn−α .

Tα(Sp)= thresholded version of Sp at level Cn−α

Then, if α = β + ε, ε < η/2,

|||Tα(Sp)− Σp|||2 → 0i.p .

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 24: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Beyond truly sparse matricesApproximation by sparse matrices

How does thresholding perform on matrices approximated bysparse matrices?

Suppose ∃Tα1(Σp) = Σp, β-sparse.

Suppose |||Σp − Σp|||2 → 0.

Suppose ∃α0 < α1 < 1/2− δ0 such that adjacency matrix of(i , j)’s such that Cn−α1 < |σ(i , j)| < Cn−α0 is γ-sparse,γ ≤ α0 − ζ0, ζ0 > 0.

Proposition

Then conclusions of theorem above apply: for α ∈ (α0, α1),

|||Tα(Sp)− Σp|||2 → 0 i.p .

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 25: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Complements

Theorems apply to sample covariance matrix, i.e(X − X )′(X − X )/(n − 1), not just the Gaussian MLE

Also to correlation matrices

Finite number of moments possible

p = nr for certain r depending on β

Proof provides finite n, p bounds on deviation probabilities of|||Tα(Sp)− Σp|||2

Example: Σ(1)p (i , j) = ρ|i−j |, and Σp = P ′Σ

(1)p P, P random

permutation matrix

Can be approximated by Σp = Tn−1/2+ε(Σp)

Σp is asymptotically 0-sparse

Proposition above applies when moment conditions satisfied

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 26: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Sharpness of 1/2-sparse assumption

Consider

Σp =

1 α2 α3 . . . αp

α2 1 0 . . . 0...

.... . .

. . . 0αp−1 0 0 1 0αp 0 0 . . . 1

.

with, e.g, αi = 1√p

Σp: 1/2-sparse (eigenvalues Ap : (1±√

p − 1 and 1’s)

Oracle estimator (O(Σp)) of Σp inconsistent in Gaussian case:

|||O(Σp)− Σp|||22 =∑p

i=2(αi − αi )2

1/2− η sparsity assumption “sharp”

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 27: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Practical observationsAsymptopia?

Practical implementation

Practicalities: implemented thresholding technique using FDRat level 1/

√p

Theory: great results possible; Practice: good results (n,p afew 100’s to a few 1000’s); maybe not as good as hoped for.

Practice very good when few coefficients to estimate; far awayfrom “σ/

√n” (unsurprisingly)

Making “mistakes” OK. Softer techniques (Huber-type) mightbe good alternatives, especially for non-sparse matrices

Eigenvector practice somewhat “disappointing”. In hardsituations, performs OK. In less hard situations, resultscomparable or a bit worse than sparse PCA.

Example thresholding

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 28: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Conclusions

Highlighted some difficulties in covariance estimation in “largen, large p” setting

Proposed notion of sparsity compatible with spectral analysis

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 29: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Real world exampleData Analysis: Portfolio of Industry Indexes

Data:

Daily Returns 48 Indexes, by Industry: Agriculture, Toys,Beer, Soda, etc... from Kenneth French’s website atDartmouth. p = 48

2 years of observations n = 504

Effect of shrinkage on smallest eigenvalue:lempirical1 ' 0.023l shrunk1 ' 0.217

Through Subsampling, get (0.205,0.303) 95% CI

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 30: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Data Analysis: Portfolio of Industry Indexes

0 5 10 15 20 25 30 35 40 45 500

5

10

15

20

25

30

Scree plot for Industry Index Portfolio data

Smallest eigenvalue ∼ .02

Figure: Scree plot for Industry index data

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 31: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Data Analysis: Portfolio of Industry Indexes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

20

40

60

80

100

120

140

160

Subsampling distribution of adjustedestimator ofsmallest eigenvalue

Industry indexes

n=504p=48

number Repetitions: 500

number subsamples: 450

empirical smallest eigenvalue ∼ .02

Figure: Subsampling distribution of estimator

Back

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 32: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

(Easy) Example 1: Toeplitz(1,.3,.4)n = p = 500

0 50 100 150 200 250 300 350 400 450 5000

0.5

1

1.5

2

2.5

3

Population eigenvalues

Thresholded matrix eigenvalues

Population covariance:Toeplitz(1,0.3,0.4)n=p=500

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 33: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

(Easy) Example 1: Toeplitz(1,.3,.4)n = p = 500

0 50 100 150 200 250 300 350 400 450 5000

0.5

1

1.5

2

2.5

3

Population eigenvalues

Thresholded matrix eigenvalues

Population covariance:Toeplitz(1,0.3,0.4)n=p=500

Oracle eigenvalues

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 34: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

(Easy) Example 1: Toeplitz(1,.3,.4)n = p = 500

0 50 100 150 200 250 300 350 400 450 500−1

0

1

2

3

4

5

6

Population eigenvalues

Thresholded matrix eigenvalues

Population covariance:Toeplitz(1,0.3,0.4)n=p=500

Sample Covariance eigenvalues

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 35: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Example 2: Toeplitz(2,.2,.3,0,-.4)n = p = 500

0 50 100 150 200 250 300 350 400 450 5000.5

1

1.5

2

2.5

3

3.5

Population Spectrum

Spectrum Thresholded Matrix

Population covariance:Toeplitz(2, .2,.3,0,−.4)n=p=500

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 36: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Example 2: Toeplitz(2,.2,.3,0,-.4)n = p = 500

0 50 100 150 200 250 300 350 400 450 500−1

0

1

2

3

4

5

6

7

8

9

Population Spectrum

Spectrum Thresholded Matrix

Population covariance:Toeplitz(2, .2,.3,0,−.4)n=p=500

Sample Covariance Matrix

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 37: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Example 2: Toeplitz(2,.2,.3,0,-.4)Independent simulation

0 50 100 150 200 250 300 350 400 450 5000

0.5

1

1.5

2

2.5

3

3.5

4

Blue: Thresholded Matrix eigenvalues

Black line: Population eigenvalues

Green + : oracle banded matrixRed .: oracle matrix

Population covariance:Toeplitz(2, .2,.3,0,−.4)n=p=500

Back

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 38: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Estimating the theoretical frontierPractical implementation

Data: from Fama-French website.

Year 2005-2006. n = 252.

Those are p = 48 industry indexes.

Orders of magnitude:

α = −0.0401 , β = 0.3449 , γ = 14.2261 .

a = −0.0324 , b = 0.0887 , c = 11.5163

Also,

δ = 4.9050 , d = 1.0208

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 39: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Estimating the theoretical frontierPractical implementation: 252 days, 47 assets; raw data

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.480

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

σ

Targ

et R

etur

ns

Correction to empirical frontier: 1 year of data

Naive Plug-in EstimatorCorrected Estimator

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 40: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Estimating the theoretical frontierPractical implementation: 252 days, 47 assets; simulations

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.440

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1Correction of efficient frontier: simulation results

Efficient frontierMean of Corrected FrontierBottom of 95% CI for corrected frontierTop of 95% CI for corrected frontierMedian of Corrected FrontierMean uncorrected FrontierBottom of 95% CI for uncorrected frontierTop of 95% CI for uncorrected frontier

Back

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 41: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

EigenfacesAn interesting example of PCA

Question: compression of digitized pictures of human faces.

Idea: Gather a database of faces.

Example: ORL face database: 10 pictures of 40 distinctsubjects

Pictures are say 92*112=10304 pixels, 256 levels of grayimages. Code them as vectors. Get data matrix X.

Run Principal Component Analysis on the correspondingmatrix

Eigenvectors corresponding to large eigenvalues are“eigenfaces”.

Need only a few numbers to approximate a new face:coefficients of its projection on eigenfaces.

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices

Page 42: Estimation of large dimensional sparse covariance matrices · random vector (X i)n i=1 in R p. ... Notion of sparsity compatible with spectral analysis A proposal Given p, p p covariance

Some eigenfaces for ORL face database

Data obtained from Wikipedia. Copyright by AT&T LaboratoriesCambridge.

Back

Noureddine El Karoui Estimation of large dimensional sparse covariance matrices