ES11-08 Stud Ver

Embed Size (px)

Citation preview

  • 8/3/2019 ES11-08 Stud Ver

    1/61

    1/30/12 1

    CentroidsandCenterof

    Gravity

    Lecture8

  • 8/3/2019 ES11-08 Stud Ver

    2/61

    Centerofgravitypointofapplica6onoftheweightofthebody

    Centroidgeometriccenterofabody

  • 8/3/2019 ES11-08 Stud Ver

    3/61

    5 - 3

    !

    M! : summation of moments

    My :! xW= xi"Wi!Mx :! yW= yi"Wi!

    Wi

    yi

    xi

    Several Wis

    x

    y

    x

    y

    EquivalentForceSystems

    F! : W = "Wi!

    =G

    W

    x

    y

    (X,Y)

    xW= xdW!yW= ydW!

    (x, y )

    Coordinatesof

    thecentroid

  • 8/3/2019 ES11-08 Stud Ver

    4/61

  • 8/3/2019 ES11-08 Stud Ver

    5/61

    dW= !gadL

    =density(masspervolume)

    g=accelera6onduetogravity

    a=cross-sec6onalarea

    dL=lengthofdifferen6alelement

    xW= xdW!yW= ydW!

    W= ! g a L

    W=weightoflineelement

    x!gaL = x!gadL!y!gaL = y!gadL!

    xL = x dL!yL = ydL!

    Forahomogeneouswirewithuniformcrosssec6on

  • 8/3/2019 ES11-08 Stud Ver

    6/61

    5 - 6

    x

    y

    )3,4(kg101 =m

    )6,2(kg302 =m

    )2,8(kg153

    =m

    Find the center of gravity (center of mass) of the three particles.

    ( ) ( )

    27.3153010

    )2)(15()6)(30()3)(10(

    :

    =++

    ++=

    ==

    =

    y

    m

    ym

    m

    ymy

    ygmgmy

    M

    i

    ii

    T

    ii

    iiT

    x

    ( ) ( )

    0.4153010

    )8)(15()2)(30()4)(10(

    :

    =

    ++

    ++

    =

    ==

    =

    x

    m

    xm

    m

    xmx

    xgmgmx

    M

    i

    ii

    T

    ii

    iiT

    y

    x

    y

    xy

  • 8/3/2019 ES11-08 Stud Ver

    7/61

    x

    dAx

    y

    y

    QX= yA

    Qy = xA

    = AY dAxQ

    First moment of area about

    First moment of area about

    QX = ydAA!

    Units? Length3(m3ormm3orin3)

  • 8/3/2019 ES11-08 Stud Ver

    8/61

    x

    dA

    y

    y

    x

    dA

    yy

    x

    yQx>0

    Qx

  • 8/3/2019 ES11-08 Stud Ver

    9/61

    9

    Centroidal axis any line passingthrough the centroid of the area.

    Axis of symmetry an axis wherein

    for every area on one side of the

    axis, there exists a correspondingarea on the other side

    x-axis: axis of symmetryQx= 0

    y-axis: axis of symmetryQy= 0

    Note: Axis of symmetry is also centroidal axis but not vice versa.

    0'=XQ

    'x0' =YQ

    0=XQ

    x

    y

    C

    'y

    0=YQ

    x-axis: not axis of symmetryy-axis: not axis of symmetry

  • 8/3/2019 ES11-08 Stud Ver

    10/61

    5 - 10

    Wherecanyoufindthecentroidofthefigure?Why?

    BBisanaxisofsymmetry.Thefirstmomentoftheareawithrespecttotheaxisofsymmetryis

    zero.Therefore,ifanareapossessesanaxisof

    symmetry,itscentroidliesonthisaxis.

    Wherecanyoufindthecentroidofthefigure?Why?

    Ifanareacontainstwoaxesofsymmetry,thecentroidliesontheintersec6onofthetwoaxes.

    Wherecanyoufindthecentroidofthefigure?Why?

    AnareaissymmetricwithrespecttoacenterOifforeveryelementdAat(x,y)thereexistsanarea

    dAofequalareaat(-x,-y).Thecentroidofthe

    areacoincideswiththecenterofsymmetry.

  • 8/3/2019 ES11-08 Stud Ver

    11/61

    11

    yAdAyQA

    X == xAdAxQ AY ==where and are the coordinates of the centroidx y

    x

    A

    x

    y

    y

    yAQX =A

    Qy x=

    xAQY = A

    Qx Y=

  • 8/3/2019 ES11-08 Stud Ver

    12/61

    12

    Using a similar derivation for line elements:

    yLdLyQL

    X ==

    xLdLxQL

    Y ==

    where and are the coordinates of the centroid of the linex y

    yLQX=

    L

    Q

    yx

    =

    xLQY =L

    Qx Y=

    x

    dL

    x

    y

    y

  • 8/3/2019 ES11-08 Stud Ver

    13/61

    x

    dxy

    2(x)

    yy

    1(x)

    ===

    ===

    dAydydxydAyAy

    dAxdydxxdAxAx

    el

    el Doubleintegra6ontofindthefirstmomentmaybeavoidedbydefiningdAas

    athinrectangleorstrip.

    x1 x2

    xA = xel dA!= x y

    1(x)" y

    2(x)[ ]

    x1

    x2! dx

    yA = yel dA!

    =

    y1(x)+y

    2(x)

    2

    #

    $%&

    '(y1(x)" y

    2(x)[ ]

    x1

    x2! dx

    x

    dy

    x2(y)

    y

    x1(y)

    y1

    y2

    xA=

    xel dA!=

    x1(y)+x

    2(y)

    2

    "

    #$%

    &'x2 (y)( x1(y)[ ]

    y1

    y2! dy

    yA = yel dA!y x

    2(y)( x

    1(y)[ ]

    x1

    x2! dy

  • 8/3/2019 ES11-08 Stud Ver

    14/61

    5 - 14

    ( )

    ( )ydxy

    dAyAy

    ydxx

    dAxAx

    el

    el

    =

    =

    =

    =

    2

    ( )[ ]

    ( )[ ]dyxay

    dAyAy

    dyxaxa

    dAxAx

    el

    el

    =

    =

    +

    =

    =

    2

    Checkifthevariablesinintegrandareconstantor

    arevaryingalongxory

  • 8/3/2019 ES11-08 Stud Ver

    15/61

    15

    Find the coordinates of the centroid of the righttriangle whose base is band whose altitude is h.

    x

    b

    y

    h

  • 8/3/2019 ES11-08 Stud Ver

    16/61

    1

    =

    AX dAyQ

    Since we need Qx, we can use

    horizontal strips (parallel to x-axis).

    ==

    AAX yedydAyQ

    Since eis not totally independent

    of y, express ein terms of y (using

    similar triangles).

    edydA =

    x

    dy

    y

    y

    e

    ( )hyhbe

    =

    ( )6

    2

    0

    bhdyyhy

    h

    bQ

    h

    X == 3

    h

    A

    Qy x ==

  • 8/3/2019 ES11-08 Stud Ver

    17/61

    17

    = AY dAxQ

    ==A

    AY xldxdAxQ

    Using similar triangles,

    ldxdA =

    x

    dx

    y

    x

    l

    ( )b

    xbhl

    =

    ( )6

    2

    0

    hbdxxbx

    b

    hQ

    b

    Y ==

    3

    b

    A

    Qx Y ==

  • 8/3/2019 ES11-08 Stud Ver

    18/61

    18

    x

    m0.4

    2

    5

    1xy =

    y

    Findthexandycoordinatesofthespandrelshown.

  • 8/3/2019 ES11-08 Stud Ver

    19/61

    19

    QY = xel dAA

    !The expression fordA is dxdyin

    the definition of first moment.

    Using dxdy, we will be faced with

    double integral in solving forQ.

    To avoid this, we get strips as our

    dA.

    hdxdA =

    x

    dx

    2

    5

    1xy =

    y

    x

    h

    QY =

    xeldA

    A! = xhdx

    A

    !

    Since his varying along

    x, express hin terms of

    x.2

    5

    1xyh ==

    Some6mes,itismoreconvenientto

    orientthestripsparalleltotheaxis

    wherethefirstmomentisrequired.

    SinceweneedQy,wewilluse

    ver6calstrips(paralleltoy-axis).

  • 8/3/2019 ES11-08 Stud Ver

    20/61

    20

    hdxdA =

    x

    dx

    2

    5

    1xy =

    y

    x

    h

    QY = xel dAA! = xhdx

    A!

    Note: The advantage of using strips that are parallel to the axis is that thecoordinate of the centroid is the distance of the strip to the axis. (x in this

    example)

    =4

    0

    2

    5

    1dxxxQY

    3

    4

    0

    4

    8.1220

    mx

    QY ==

  • 8/3/2019 ES11-08 Stud Ver

    21/61

    21

    ==A

    A

    hdxdAA

    =4

    0

    2

    5

    1dxxA

    2

    4

    0

    3

    27.415

    mx

    A ==

    For xA

    Qx Y= We need to solve for the area first to get x

    mm

    m

    A

    Qx Y 0.3

    27.4

    8.12

    2

    3

    ===

    x

    y

    mx 0.3=

  • 8/3/2019 ES11-08 Stud Ver

    22/61

    22

    QX = y eldAA! If we use horizontal strips:

    QX = y eldAA!= ybdy

    A!

    Since bis varying along y,

    express bin terms ofy.

    yxb 544 ==

    bdydA =

    x

    dy

    2

    5

    1 xy =

    y

    y

    byx 5=

    y

    5

    16=

    y

    QX = y 4! 5y( )1/2( )dy

    0

    165" = 4.096 y =

    Qx

    A= 0.96 m

    Seatwork,setuptheintegralforfindingQxusinghorizontalstrips.

  • 8/3/2019 ES11-08 Stud Ver

    23/61

    23

    QX = y eldAA! Alternatively, we could still usethe vertical strips:

    QX = y eldAA!= h / 2( )hdx

    A!

    QX =1

    2

    1

    5x2

    !

    "#

    $

    %&1

    5x2

    !

    "#

    $

    %&dy

    0

    4

    ' = 4.096 y =Qx

    A= 0.96 m

    hdxdA =

    x

    dx

    2

    5

    1xy =

    y

    x

    h 2

    5

    1xyh ==

  • 8/3/2019 ES11-08 Stud Ver

    24/61

    24

    Determine the location of the centroid of a semicircular arc ofradius r.

    Since the curve is symmetrical

    about the y-axis, 0=x

    x

    dld

    y

    rddL = sinry =

    r

    rL

    Qy X

    222

    ===

    2

    0

    22sin

    === drydLQL

    X

  • 8/3/2019 ES11-08 Stud Ver

    25/61

    5 - 25

  • 8/3/2019 ES11-08 Stud Ver

    26/61

    5 - 26

  • 8/3/2019 ES11-08 Stud Ver

    27/61

    5 - 27

  • 8/3/2019 ES11-08 Stud Ver

    28/61

    5 - 28

    x y

  • 8/3/2019 ES11-08 Stud Ver

    29/61

    5 - 29

    x y

  • 8/3/2019 ES11-08 Stud Ver

    30/61

    5 - 30

  • 8/3/2019 ES11-08 Stud Ver

    31/61

    Usually,flateplatescanbedividedintocommonshapes.Tofindthecenterofgravity,recall:

    My :! xW= xi"Wi!

    Mx

    :! yW= yi"Wi!

    Iftheplateishomogeneouswithuniformthickness,thecenterofgravitycoincideswiththecentroid.

    Thefirstmomentcanbeexpressedasasumofeachelementaryarea.(Similartointegra6on).

    Qy = X!A = !xA

    Qx =Y!A = !yA

    x

    y

    mm50mm25

    mm100

    Composite Area

    x

    y

    mm75

    mm125

    mm200

    O30

    Composite Line

  • 8/3/2019 ES11-08 Stud Ver

    32/61

    32

    x

    y

    TA

    ( )TT yx ,

    1A

    3A

    2A

    x

    y

    ( )33

    , yx

    ( )22

    , yx

    ( )11, yx

    areasubithofareaAi =

    )(. compositecentroidofcoordxxT =

    )(. compositecentroidofcoordyyT = )(. areassubcentroidofcoordyyi =

    )(. areassubcentroidofcoordxxi =

    areatotalAAAAT

    =++=321

  • 8/3/2019 ES11-08 Stud Ver

    33/61

    33

    1A

    3A

    2A

    x

    y

    2XQ

    1YQ

    1XQ

    2YQ

    3XQ

    3YQ

    321 XXXXT QQQQ ++= 321 YYYYT QQQQ ++=

    332211yAyAyAyA TT ++=

    332211xAxAxAxA

    TT++=

    =

    i

    ii

    TA

    yAy

    =

    i

    ii

    T

    A

    xAx

  • 8/3/2019 ES11-08 Stud Ver

    34/61

    34

    ( ) ( ) ( )mm

    A

    yAy

    i

    ii

    T 0.375491

    61.1049133.332500502500=

    ++==

    ( ) ( ) ( ) mmA

    xA

    xi

    ii

    T 945.05491

    61.1049167.1625005.122500=

    ++==

    1A

    3A

    2A

    x

    y

    ( )33, yx

    ( )22, yx

    ( )11

    , yx

    mm100

    mm50mm25

    Determinethexandycoordinateofthecentroid.

  • 8/3/2019 ES11-08 Stud Ver

    35/61

    35

    ATyT = A1x1 +A2x2!A3x3

    332211yAyAyAyA TT +=

    =T

    A

    321AAAA

    T +=

    321 XXXXT QQQQ

    +=

    A1A2

    A3

    QYT=Q

    Y1+Q

    Y2!Q

    Y3

  • 8/3/2019 ES11-08 Stud Ver

    36/61

    =T

    A A1A2

    A3

    A(mm2) x y xA(mm3) yA(mm3)

    A1 37500 125 75 487500 2812500

    A2 525 275 50 154875 281250

    A3 -(8835.7293) 75 118.190 -279 -1044109

    34289 557195 204940

    x =162.49mm

    y=

    59.77mm

  • 8/3/2019 ES11-08 Stud Ver

    37/61

    37

    linesubithoflengthLi =

    )(. compositecentroidofcoordxxT =

    )(. compositecentroidofcoordyyT = )(. areassubcentroidofcoordyyi =

    )(. areassubcentroidofcoordxxi =

    lengthtotalLLLLT =++= 321

    Acompositelinecanbebrokendownintosub-lineswherein

    thegeometricproper6es(lengthsandindividualcentroids)of

    sub-linesareavailable.

    TL

    ( )TT yx ,

    x

    y

    ( )33

    , yx( )

    22, yx

    ( )11, yx

    1L

    3L2L

    x

    y

  • 8/3/2019 ES11-08 Stud Ver

    38/61

    38

    321 XXXXT QQQQ++=

    321 YYYYT QQQQ++=

    332211yLyLyLyL TT ++= 332211 xLxLxLxL TT ++=

    =

    i

    ii

    TL

    yLy

    =

    i

    ii

    T

    L

    xLx

    XTQ

    YTQ

    x

    y

    TL

    1L

    3L

    2L

    3XQ 3YQ

    x

    y

    2XQ

    2YQ

    1YQ

    1XQ

  • 8/3/2019 ES11-08 Stud Ver

    39/61

    39

    ( ) ( ) ( )mm

    L

    xL

    xi

    ii

    T 0.276.560

    6.16120006.2355.137125=

    ++==

    ( ) ( ) ( )mm

    L

    yLy

    i

    ii

    T 9.376.560

    5020075.476.2350125=

    ++

    ==

    1L

    3L

    2L

    mm75

    mm125

    mm200

    O30 x

    y

    321LLLL

    T++=

  • 8/3/2019 ES11-08 Stud Ver

    40/61

  • 8/3/2019 ES11-08 Stud Ver

    41/61

    5 - 41

    To find the center of gravity:

    = jWjW

    ( ) ( ) ( )jWrjWrjWrjWr

    G

    G

    =

    =

    == dWrWrdWW G

    Resultsareindependentofbodyorienta6on,

    === zdWWzydWWyxdWWx

    === zdVVzydVVyxdVVx

    dVdWVW == and

    Forhomogeneousbodies,

  • 8/3/2019 ES11-08 Stud Ver

    42/61

    42

    First Moment of a Volume w.r.t. a plane

    x

    y

    dV

    z

    y

    dxdydzdV =

    z

    x

    = VXY dVzQ

    = VXZ dVyQ

    = VYZ dVxQ

    Unit: length to the

    fourth power e.g.444

    ,, ftcmm

  • 8/3/2019 ES11-08 Stud Ver

    43/61

    43

    The first moment of a volume, Qcan have a positive, negative or

    zero value (+, - , or 0) depending upon the location of the volume

    relative to the axis where moment is required. Here are some

    examples

    +=XYQ

    +=YZQ

    The perpendicular distances from thexy-plane (zs) are all positive (above

    xy-plane) thus yielding a positive Qxy.

    The perpendicular distances from theyz-plane (xs) are all positive (front of

    yz-plane) thus yielding a positive Qyz.x

    y

    dV

    z

    y

    dxdydzdV=

    z

    x

    +=XZQ

  • 8/3/2019 ES11-08 Stud Ver

    44/61

    44

    +=YZQ

    +=XYQ

    =XZQ

    The perpendicular distances

    from the xy-plane (zs) are all

    positive (above xy-plane)

    thus yielding a positive Qxy.

    The perpendicular distances

    from the xz-plane (ys) are all

    negative (left of xz-plane)

    thus yielding a positive Qxz.

    The perpendicular distances

    from the yz-plane (xs) are all

    positive (front of yz-plane)

    thus yielding a positive Qyz.

    x

    y

    dV

    z

    y

    z x

  • 8/3/2019 ES11-08 Stud Ver

    45/61

    45

    Whenthesumofthefirst

    momentsofthevolumesabove

    thexy-plane(posi6vez-values)

    equalsthesumofthefirstmomentsofthevolumesbelow

    thexy-plane(nega6vez-values)

    willresultto

    Qxy=0

    =XYQ

    +=

    XYQ

    x

    dV

    z

    yz

    z

    dV

  • 8/3/2019 ES11-08 Stud Ver

    46/61

    4

    Centroidal plane any plane that

    passes through the centroid of the

    volume. The first moment of the

    volume about any of these planes is

    zero. Qxy= 0. xy-plane is a centroidalplane thus Qxy=0.

    xy-plane: centroidal planeQxy= 0

    yz-plane: centroidal planeQyz= 0

    xz-plane: centroidal planeQxz= 0

    xy-plane: centroidal planeQxy= 0

    x

    =XY

    Q

    +=XYQ

    dV

    z

    yz

    z

    dV

    C

    x

    z

    yC

    planexy '

  • 8/3/2019 ES11-08 Stud Ver

    47/61

    47

    Plane of symmetry a plane whereinfor every point P there exists a point P

    of the same volume, and the line PP is

    perpendicular to the given plane and is

    bisected by that plane.

    Which are planes of symmetry in the

    figure?

    xy-plane: NOT plane of symmetry but

    still Qxy= 0

    Note: Plane of symmetry is also

    centroidal plane but not vice versa.

    x

    =XYQ

    +=XYQdVyz

    z

    dV

    C

    x

    z

    yC

    planexy '

  • 8/3/2019 ES11-08 Stud Ver

    48/61

    48

    The first moment of a volume can also be expressed as the product

    of the volume and some value.

    zVdVzQV

    XY == yVdVyQ VXZ == xVdVxQ VYZ ==

    where , and locate the centroid of the volume.x y z

    V

    Qy XZ=

    V

    Qx YZ=

    V

    Qz XY=x

    y

    x

    y

    z

    z

  • 8/3/2019 ES11-08 Stud Ver

    49/61

    Thecentroidofavolumeboundedby

    analy6calsurfacescanbedetermined

    byevalua6ng:

    dVusecubeofsizedx,dy,dzasdifferen6alvolumerequirestripleintegra6on

    = dVxVx = dVyVy = dVzVz

    x

    dV

    yz

    dV

    C

  • 8/3/2019 ES11-08 Stud Ver

    50/61

    WhenavolumeVpossessesaplaneofsymmetry,thefirstmomentofV

    withrespecttothatplaneiszero

    = xdVVx

    0==zdVVz

    First moment wrt x-z

    First moment wrt x-y

    First moment wrt y-z

    x

    y

    z

    0== ydVVy

  • 8/3/2019 ES11-08 Stud Ver

    51/61

    Single integration can be used by choosing a thin slab fordV

    .

    = dVxVx el

    Illustration: For bodies of revolution, usecircular slabs for dV

    0== zy

    xxel=

    dxrdV 2=

    express xel and dV interms of x

    x

    y

    z

    r

    xel

    dx

  • 8/3/2019 ES11-08 Stud Ver

    52/61

  • 8/3/2019 ES11-08 Stud Ver

    53/61

    53

    But eis varying along z

    The relationship eand zcan be found

    using similar triangles. x

    z

    yz

    dz edzedV

    2

    =dzedV 2=

    h

    z

    y

    e

    z

    ( )h

    zhre

    =

    ( )

    ===

    h

    VVxy

    dzh

    zhrzdzezzdVQ

    0

    2

    2

    12

    22hrQxy

    =

    4

    3

    122

    22

    h

    hr

    hr

    V

    Qz

    xy===

  • 8/3/2019 ES11-08 Stud Ver

    54/61

    SampleProblem5.13

    Determinetheloca6onofthe

    centroidofthehalfrightcircular

    coneshown.

    SOLUTION:

    Volumeissymmetricaboutthex-yplane;zcoordinateofcentroidis0.

    0=z

    dVxVxel

    =

    dVyVy el=

  • 8/3/2019 ES11-08 Stud Ver

    55/61

    dxrdV2

    2

    1=

    xxel =3

    4ryel =

    xh

    ar

    h

    a

    x

    r==

    First moment wrt y-z plane: dVxVxel

    =

  • 8/3/2019 ES11-08 Stud Ver

    56/61

    First moment wrt x-z plane: dVyVy el=

    dxrdV2

    2

    1=

    xxel =3

    4ryel =

    xh

    ar

    h

    a

    x

    r==

  • 8/3/2019 ES11-08 Stud Ver

    57/61

    57

  • 8/3/2019 ES11-08 Stud Ver

    58/61

    58

    Forhomogeneousbodies, === VzVZVyVYVxVX

    MomentofthetotalweightconcentratedatthecenterofgravityGisequaltothesumofthemomentsoftheweights

    ofthecomponentparts.

    === WzWZWyWYWxWX

  • 8/3/2019 ES11-08 Stud Ver

    59/61

    59

    Forhomogeneousbodies,=== VzVZVyVYVxVX

  • 8/3/2019 ES11-08 Stud Ver

    60/61

    0

  • 8/3/2019 ES11-08 Stud Ver

    61/61

    34in.2865in08.3== VVxX

    34 in.2865in5.047== VVyY

    34in.2865in.6181== VVzZ

    in.577.0=X

    in.577.0=Y

    in.577.0=Z