45

Era of Discovery with CMS Detector TAMU Group Teruki Kamon , Alexei Safonov , David Toback

  • Upload
    neorah

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

Era of Discovery with CMS Detector TAMU Group Teruki Kamon , Alexei Safonov , David Toback. Special Colloquium, LHC… Alexei Safonov 09/17/08 (Next Wednesday). Precision Cosmology at the Large Hadron Collider. Bhaskar Dutta Texas A&M University. Based on plenary talks at - PowerPoint PPT Presentation

Citation preview

Page 1: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback
Page 2: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Era of Discovery with CMS DetectorEra of Discovery with CMS Detector

TAMU Group Teruki Kamon, Alexei Safonov, David

Toback

Special Colloquium, LHC… Alexei Safonov09/17/08 (Next Wednesday)

Page 3: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Precision Cosmology at the Precision Cosmology at the Large Hadron ColliderLarge Hadron Collider

Bhaskar Dutta

Texas A&M University

311th September ’ 08

Based on plenary talks atCosmo’08, IDM’08,Santa Fe’08,DM’08

Page 4: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

LHC Days…

4

The mechanism for generating masses

We will try to understand:

The physics behind the scale of W, Z boson mass scale ~ electroweak scale

The origin of dark matter

Do we have any further evidence of grand unification?

Is there any particle physics connection?

Precision Cosmology at the LHC

Mplanck>>MW

Page 5: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

The Standard Model (SM) describes all these particles and 3 of 4 forces. We have confirmed the existence of those in the laboratory experiments.

The Standard ModelThe Standard Model

+ Higgs boson

Higgs has not yet been discovered

The mass is constrained from LEP and Tevatron data:

114 GeV<MH<154 GeV

Precision Cosmology at the LHC 5

Page 6: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

SM problems and solutionsSM problems and solutionsThe Standard Model :• Cannot provide a dark matter

candidate.• Has a serious Higgs mass

divergence problem due to quantum correction.

• Cannot accommodate masses for neutrinos.

• Cannot provide enough matter-antimatter asymmetry.

Standard Model has fallen!

6Precision Cosmology at the LHC

• Solves the Higgs mass problem in a very elegant way.

• Supersymmetric grand unified models include neutrinos!

Dutta, Mimura, Moahapatra, PRL 100 (2008); 96, (2006) 061801; 94, (2005) 091804; PRD 72 (2005) 075009.

• Can produce correct matter-antimatter asymmtery

Dutta, Kumar, PLB 643 (2006) 284• Can provide Inflation

• Can provide new sources of CP violation, e.g., Bs

Dutta, Kumar, Leblond, JHEP 0707 (2007) 045; Allahverdi, Dutta and Mazumdar, PRL99 (2007) 261301., PRD (2008) to appear.

Dutta, Mimura, PRL 97 (2006) 241802; PRD (Rapid Com) 77 (2008)051701.

Supersymmetry :Provides a candidate for dark matter ~ neutralino.

What is the new model?

Goldberg’ 83; Ellis, Hagelin, Nanopoulos, Olive, Srednicki’84

Page 7: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Particle Physics and Cosmology

SUSY is an interesting class of models to provide a weakly interacting massive neutral particle (M ~ 100 GeV).

SUSY

SUSY

CDM CDM == Neutralino ( ) Neutralino ( )01~

Ast

roph

ysic

sA

stro

phys

ics

8

pb9.0

1~

23.0

2

2

ann

0

ann

2~ 0

1

M

dxv

h fx

LHC

23/04/22 7

LHC

LHCLHC

Precision Cosmology at the LHC

Page 8: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

The fundamental law(s) of nature is hypothesized to be symmetric between bosons and fermions.

Fermion Boson

Have they been observed? ➩ Not yet.

Supersymmetrized SMSupersymmetrized SM

Precision Cosmology at the LHC 8

Page 9: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

SUSY partner of Z boson: neutralino

SUSY partner of W boson: chargino

Lightest neutralinos are always in the final state! This neutralino is the dark matter candidate!!

SUSY partner of lepton: stau

SUSY Interaction DiagramsSUSY Interaction Diagrams

Precision Cosmology at the LHC 9

Page 10: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

The grand unification of forces occur

in SUSY models.

Dream of the UnificationDream of the Unification

☺U(1)Y ForceU(1)Y Force

Precision Cosmology at the LHC

Unification scale can also be pushed to 1017-18 GeVAmeliorates Proton decay problem in the very successful SO(10) modelDutta, Mimura, Mohapatra , Phys.Rev.Lett.100:181801,2008

10

Page 11: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Search for SUSY-upcoming days

11Precision Cosmology at the LHC

Large Hadron Collider- susy particles will be directly produced

Higgs mass in the well motivated SUSY models: < 150 GeV Current experimental bound: 114 - 154 GeV

Direct detection experiment, CDMS, Xenon 100, LUX etc

Indirect detection experiments, e.g., PAMELA has already observed excess of positron excess in cosmic rayFermi Gamma Ray Space Telescope: Sensitive to gamma ray from Dark Matter annihilation

Tevatron search for Bs highest reach on SUSY masses)

Existence of Higgs will be explored

IceCube: Sensitive to neutrinos from DM annihilation

Arnowitt, Dutta, Kamon and Tanaka, Phys.Lett.B538 (2002) 121.

e+

Page 12: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

The signal : jets + leptons + missing Energy

SUSY at the LHC

(or l+l-, )

DM

DM

Colored particles get produced and decay into weakly interacting stable particles

High energy jet[mass difference is large]

The energy of jets and leptons depend on the sparticle masses which are given by models R-parity conserving

12Precision Cosmology at the LHC

(or l+l-, )

MW,MZ

Page 13: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Excess in ETmiss + Jets R-parity conserving SUSY

Meff Measurement of the SUSY scale at 10-20%.

Excess in Excess in EETTmissmiss + Jets + Jets

Hinchliffe and Paige, Phys. Rev. D 55 (1997) 5520

q

The heavy SUSY particle mass is measured by combining the final state particles

q

q

q01~

01~

g~g~

ETj1 > 100 GeV, ET

j2,3,4 > 50 GeV Meff > 400 GeV (Meff ET

j1+ETj2+ET

j3+ETj4+ ET

miss) ET

miss > max [100, 0.2 Meff]

Precision Cosmology at the LHC 13

Since squarks and gluinos are

heavier than W,Zs

Page 14: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

SUSY scale can be measured with an accuracy of 10-20%

This measurement does not tell us whether the model can generate the right amount of dark matter

The dark matter content is measured to be 23% with an accuracy less than 4% at WMAP Question:To what accuracy can we calculate the relic density based on the measurements at the LHC?

Relic Density and Meff

Precision Cosmology at the LHC14

Page 15: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

15

2

1CDM

+ ….

A near degeneracy occurs naturally for light stau in mSUGRA.

011 ~~ MMM

Δ

fTMe k/Δ

2

01~

1~+ + ….

Co-annihilation (CA) ProcessGriest, Seckel ’91

Anatomy of Anatomy of annann

pbM

vann 1~~ 2

2

Precision Cosmology at the LHC

Page 16: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Dark Matter Allowed RegionDark Matter Allowed Region

16

GeV 15~5Δ MCo-annihilation

Region

Precision Cosmology at the LHC

Page 17: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

4 parameters + 1 signtan <Hu>/<Hd> at MZ

m1/2 Common gaugino mass at MGUT

m0 Common scalar mass at MGUT

A0 Trilinear couping at MGUT

sign() Sign of in W(2) = Hu Hd

MHiggs > 114 GeV Mchargino > 104 GeV 2.2x104 <B(b s ) <4.5x104 (g2)deviation from SM

Key Experimental Constraints

12900940 201

.h. ~

Minimal Supergravity Minimal Supergravity (mSUGRA)(mSUGRA)

<Hd>

<Hu>

<H> =

246 G

eV

SUSY model in the framework of unification:

+

Arnowitt, Chamesdinne, Nath, PRL 49 (1982) 970; NPB 227 (1983) 121. Barbieri, Ferrara, Savoy, PLB 119 (1982) 343.Lykken, Hall, Weinberg, PRD 27 (1983) 2359.

Precision Cosmology at the LHC 17

Page 18: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

DM Allowed Regions in mSUGRA

[Stau-Neutralino CA region]

[Focus point region]the lightest neutralino has a larger Higgsino componentFeng, Matchev, Wilczek, PLB482 388,2000. [A-annihilation funnel region]This appears for large values of m1/2

[Bulk region] is almost ruled out

18Precision Cosmology at the LHC

Arnowitt, Dutta, Santoso, NPB 606:59,2001.

Ellis, Falk, Olive, PLB 444:367,1998.

Overdense region

Page 19: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Signals of the Allowed RegionsSignals of the Allowed Regions Neutralino-stau coannihilation region: jets + taus (low energy) + missing energy[Arnowitt, Dutta, Gurrola, Kamon, Krislock, TobackArnowitt, Dutta, Gurrola, Kamon, Krislock, Toback, , PRL, 100, (2008) 231802PRL, 100, (2008) 231802;Arnowitt, Dutta, Kamon, Kolev, TobackArnowitt, Dutta, Kamon, Kolev, Toback,, PLB 639 (2006) 46PLB 639 (2006) 46;;Arnowitt, Aurisano, Dutta, Kamon, Kolev, Simeon, Toback, Wagner; Arnowitt, Aurisano, Dutta, Kamon, Kolev, Simeon, Toback, Wagner; PLB 649 PLB 649 (2007)73(2007)73] Focus point: jets+ leptons +missing energy [Crockett, Dutta, Flanagan, Gurrola, Kamon, Kolev, VanDyke, 08;Crockett, Dutta, Flanagan, Gurrola, Kamon, Kolev, VanDyke, 08;

Tovey, PPC 2007; Baer, Barger, Salughnessy, Summy, Wang , PRD, 75, 095010 (2007)Tovey, PPC 2007; Baer, Barger, Salughnessy, Summy, Wang , PRD, 75, 095010 (2007)]] Bulk region: jets+ leptons +missing energy [Nojiri, Polsello,

Tovey’05] Annihilation funnel: mass of pseudo scalar Higgs = 2 mass of DM Overdense regions: Higgs+Jets, Z+jets, taus+jets+missing energy [Dutta, Gurrola, Kamon, Krislock, [Dutta, Gurrola, Kamon, Krislock, Lahanas, Mavromatos, Nanopoulos, arXiv:0808.1372 ]Lahanas, Mavromatos, Nanopoulos, arXiv:0808.1372 ]

19Precision Cosmology at the LHC

Page 20: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Goal for the analysisGoal for the analysis Establish the “dark matter allowed region” signal

Measure SUSY masses Determine mSUGRA parameters

Predict h2 and compare with CDMh2 20Precision Cosmology at the LHC

Page 21: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Smoking Gun of CA RegionSmoking Gun of CA Region

100%1~

Lu~

01χ~

02χ~

g~

97%

u

u

SUSY

Mas

ses

(CDM)2 quarks+2 ’s

+missing energy

Uniq

ue k

inem

atics

21

Low energy taus exist in theCA regionHowever, one needs to measure the model parameters to predict thedark matter content in this scenario

Precision Cosmology at the LHC

Page 22: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Low EnergyLow Energy and and MM Low energy ’s are an enormous challenge for the detectors

Precision cosmology at the LHC 22

Num

ber

of C

ount

s / 1

GeV

ETvis(true) > 20, 20 GeV

ETvis(true) > 40, 20 GeV

ETvis(true) > 40, 40 GeV

GeV) 5.7(

011

02

M

~~~

Arnowitt, Dutta, Kamon, Kolev, Toback PLB 639 (2006) PLB 639 (2006) 4646

We need to involve the low energy ’sIn our analysis

Low energy

Page 23: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

23

We use ISAJET + PGS4PLB 639 (2006) 46PLB 639 (2006) 46

Precision Cosmology at the LHCArnowitt, Dutta, Kamon, Kolev, Toback

EETTmissmiss+2+2+2j Analysis+2j Analysis

Page 24: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

OSOSLS MLS M Distribution Distribution

Clean peak even for low M

(GeV) visM

maxpeak MM

24

GeV 6 10 .M

First, our goal is to determine all the masses

Precision Cosmology at the LHC

Page 25: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

SUSY Anatomy

Mj

M

pT()

100%1~

Lu~

01χ~

02χ~

g~

97%

u

u

SUSY

Mas

ses

(CDM)

25

Meff

Precision Cosmology at the LHC

Page 26: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

MMeffeff , , MMeffeff (b)Distribution (b)Distribution

26Precision Cosmology at the LHC

ETj1 > 100 GeV, ET

j2,3,4 > 50 GeV [No e’s, ’s with pT > 20 GeV] Meff > 400 GeV (Meff ET

j1+ETj2+ET

j3+ETj4+ ET

miss [No b jets; b ~ 50%]) ET

miss > max [100, 0.2 Meff]At Reference Point Meff

peak = 1274 GeV

Arnowitt, Dutta, Gurrola, Kamon, Krislock, Toback, PRL, 100, (2008) 231802

Meff(b)

> 400 GeV(Meff

(b) ET

j1=b+ETj2+ET

j3+ETj4+ ET

miss

[j1 = b jet])

Meff(b)peak = 1026 GeV

MMeffeff((bb)) can be used to determine

A0 and tan

Page 27: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Observables

SM+SUSY Background gets reduced

NN

• Ditau invariant mass: M

• Jet-- invariant mass: Mj

• Jet- invariant mass: Mj

• PT of the low energy • Meff : 4 jets +missing energy• Meff(b) : 4 jets +missing energy

Since we are using 7 variables, we can measure the model parameters and the grand unified scale symmetry (a major ingredient of this model)

1.Sort ’s by ET (ET1 > ET

2 > …)• Use OSLS method to extract pairs from the

decays

All these variables depend on masses model parameters

27Precision Cosmology at the LHC

Page 28: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

7 Eqs (as functions of SUSY parameters)

)~,~(

)~,~,,~(

)~,~,,~ (

)~,~,~(

)~,(

)~,~,(

6peakeff

01

025

(2)peak2

01

024

(2)peak1

01

023

(2)peak

012

01

021

peak

L

Lj

Lj

Lj

qgfM

MqfM

MqfM

qfM

MfSlope

MfM

Invert the equations to Invert the equations to determine the massesdetermine the masses

Determining SUSY Masses (10 Determining SUSY Masses (10 fbfb11))

1 ellipse

)91.5( 8.09.5/

)19.3( 2.01.3/0.26.10

;19141;15260

;21831 ;25748

01

02

01

02

~~

~~

~~

~~

theoryMM

theoryMMM

MM

MM

g

g

gqL

10 fb-1

28

Phys. Rev. Lett. 100, (2008) 231802Phys. Rev. Lett. 100, (2008) 231802

Meff(b) = f7(g, qL, t, b)~ ~ ~ ~

Precision Cosmology at the LHC

Arnowitt, Dutta, Gurrola, Kamon, Krislock, TobackArnowitt, Dutta, Gurrola, Kamon, Krislock, Toback

Page 29: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

GUT Scale SymmetryWe can probe the physics at the Grand unified theory (GUT) scale

The masses , , unify at the grand unified scale in SUGRA models

01~

m1/2

mas

s

MZMGUTLog[Q]

g~

01~

02~

02~ g~

Gaugino universality test at ~15% (10 fb-1)

Another evidence of a symmetry at the grand unifying scale!

Use the masses measured at the LHC and evolve them to the GUT scale using mSUGRA

29Precision Cosmology at the LHC

Page 30: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

[1] Established the CA region by detecting low energy ’s (pT

vis > 20 GeV)

[2] Determined SUSY masses using:M, Slope, Mj, Mj, Meff

e.g., Peak(M) = f (Mgluino, Mstau, M , M ) [3] Predict the dark matter relic density by determining m0, m1/2, tan, and A0

DM Relic Density in mSUGRADM Relic Density in mSUGRA

01~0

2~

30Precision Cosmology at the LHC

[4] We can also predict the dark matter-nucleon scattering cross section but it has large theoretical error

p

Page 31: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Determining mSUGRA ParametersDetermining mSUGRA Parameters

),tan,,(),(

002/14)(

eff

02/13eff

AmmfMmmfM

b

),tan,,(),(

002/12

02/11

AmmfMmmfM j

Solved by inverting the following functions:

140tan160

43505210

0

2/1

0

A

mm

10 fb-1

),tan,( 02/102

~01

AmmZh

1fb 10 L1fb 50

31

Phys. Rev. Lett. 100, (2008) 231802Phys. Rev. Lett. 100, (2008) 231802

Precision Cosmology at the LHC

)fb 30( %7/ 1~~ 0

101

pp

)fb 70( %1.4)fb 30( %2.6/

1

12~

2~ 0

101

hh

Direct Detection

Page 32: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Focus Point (FP)-IIFocus Point (FP)-IIm0 is large, m1/2 can be small, e.g., m0= 3550 GeV, m1/2=314 GeV, tan=10, A0=0

32

M(gluino) = 889 GeV, ΔM(χ3

0- χ10) = 81 GeV,

ΔM(χ20- χ1

0) = 59 GeV, ΔM(χ3

0- χ20) = 22 GeV

Br(g → χ20 tt) = 10.2%

Br(g → χ20 uu) = 0.8%

Br(g → χ30 tt) = 11.1%

Br(g → χ30 uu) = 0.009%

~~~~

---

-

Precision Cosmology at the LHC

Page 33: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

33

Dilepton Mass at FP

)( OSDF e

)OSSF( ee

M(ll) (GeV)

Eve

nts/

GeV

GeV 59)()( 01

02 ~M~M GeV 81)()( 0

103 ~M~M

)( OSDFOSSF eee

Tovey, talk at PPC 2007Baer, Barger, Salughnessy, Summy, Wang , PRD 75, 095010 (2007)Crockett, Dutta, Flanagan, Gurrola, Kamon, Crockett, Dutta, Flanagan, Gurrola, Kamon, Kolev, Krislock, VanDyke (2008)Kolev, Krislock, VanDyke (2008)

Precision Cosmology at the LHC

Relic density calculation depends on , tan and m1/2

mm1/21/2 and tan and tan can be can be solved from M(gluino), solved from M(gluino), ΔM (χΔM (χ33

00- χ- χ1100) and ΔM (χ) and ΔM (χ22

00- χ- χ1100))

Errors of (300 fb-1): M(gluino) 4.5%ΔM (χ3

0- χ10) 1.2%

ΔM (χ2

0- χ10) 1.7%

Chargino masses can be measured! Work in

Progress…

tan 22% 0.1%

Page 34: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Bulk Region-IIIThe most part of this region in mSUGRA is experimentally (Higgs mass limit, bs ) ruled out

mSUGRA point:

The error of relic density: 0.108 ± 0.1(stat + sys)

sparticle

mass

97.2

398

189

607

533

End pts value errormll 81.2 0.09

Mlq((max) 365 2.1

Mlq(min) 266.9 1.6

Mllq(max) 425 2.5

Mllq(min) 207 1.9

M(max) 62.2 5.0

Relic density is mostly satisfied by t channel selectron, stau and sneutrino exchange

Perform the end point analysis to determine the masses

01

~

02

~

l~

g~

uL~

m0=70; A0=-300m1/2=250; >0;tan=10;

[With a luminosity 300 fb-1, edge controlled to 1 GeV]

Nojiri, Polsello, Tovey’05

~Includes: (+0.00,−0.002 )M(A); (+0.001, −0.011) tan β; (+0.002,−0.005) m(2)

Precision Cosmology at the LHC 34

Page 35: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Overdense Region-IVOverdense Region-IV

35

m0

The final states contain Z, Higgs, staus

Lahanas, Mavromatos, Nanopoulos, Phys.Lett.B649:83-90,2007.

Dilaton effect creates new parameter space

Precision Cosmology at the LHC

Overdense region (Large ): Too much dark matter

In some models, this overdense region is not really overdense, e.g.,

Allowed region is moved up

Page 36: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Observables involving Z and Higgs

We can solve for masses by using the end-points

Precision Cosmology at the LHC

Observables:Effective mass: Meff (peak): f1(m0,m1/2)

Effective mass with 1 b jet: Meff (b) (peak): f2(m0,m1/2, A0, tan)

Effective mass with 2 b jets: Meff (2b) (peak): f3(m0,m1/2, A0, tan)

Higgs plus jet invariant mass: Mbbj(end-point): f4(m0,m1/2)

4 observables => 4 mSUGRA parametersDutta, Gurrola, Kamon, Krislock, Lahanas, Dutta, Gurrola, Kamon, Krislock, Lahanas, Mavromatos, Nanopoulos, arXiv:0808.1372Mavromatos, Nanopoulos, arXiv:0808.1372

36

Page 37: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Determining mSUGRA ParametersDetermining mSUGRA ParametersSolved by inverting the following functions:

1839tan9501544050472

0

21

0

A

mm

/

),tan,( 02/102

~01

AmmZh

1fb 1000 L

%~h/h ~~ 1502201

01

)tan()tan(

)()(

00214peak )(

eff

00213peak )(

eff

0212peakeff

0211point end

A,,m,mXMA,,m,mXM

m,mXMm,mXM

/bb

/b

/

/jbb

1000 fb-1

37Precision Cosmology at the LHC

Page 38: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

2 tau + missing energy dominated regions:Solved by inverting the following Observables:

340tan450

660023440

0

21

0

A

mm

/

),tan,( 02/102

~01

AmmZh

%~h/h ~~ 192201

01

)tan()tan(

)()(

00214peak

00213peak )(

eff

0212peakeff

0211(2)peak

A,,m,mXMA,,m,mXM

m,mXMm,mXM

/

/b

/

/j

500 fb-1

For 500 fb-1 of data

Dutta, Gurrola, Kamon, Krislock, Lahanas, Mavromatos, Nanopoulos, arXiv:0808.1372Dutta, Gurrola, Kamon, Krislock, Lahanas, Mavromatos, Nanopoulos, arXiv:0808.1372 Precision Cosmology at the LHC 38

Page 39: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Dark Matter particle

DM Particle: Direct Detection?

detector

µ

(*) The TAMU group is one of the leading institutions in the US.

(*)

The measurement at the LHC will pinpoint the parameters of SUSY models. We can predict the direct detection probability of dark matter particles.

Complementary

measurements !

39

James White

Precision Cosmology at the LHC

Page 40: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Ongoing/future projects: CDMS, LUX, XENON100, ZEPLINStatus:– DAMA group (Italy) – claims to have observed some events.– CDMS, ZEPLIN, XENON10, Cogent – dispute their claim.

Status - Direct Detection

James White

Close to the current sensitivity

Accomando, Arnowitt, Dutta, Santoso, NPB 585 (2000) 124

10-8 pb

40

Rupak Mohapatra

ZEPLIN

CDMS

DAMA

XENON

Bob Webb

Page 41: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

ConclusionConclusion

41

SM of particle physics has fallen.Supersymmetry seems to be natural in the rescue act and the dark matter content of the universe can be explained in this theory.The minimal SUGRA model is consistent with the existing experimental results.

[1] LHC can probe the minimal SUGRA model directly.

All the dark matter allowed regions can be probed at the LHC

The dark matter content can be measured with an accuracy of 6% in the stau-neutralino coannihilation region

This accuracy depends on the final states[2] This analysis can be applied to any SUSY

model Precision Cosmology at the LHC

Page 42: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Conclusion…[3] Direct detection experiments will simultaneously confirm the existence of these models.[4] Indirect detection experiments will also confirm the existence of SUSY models[5] Very exciting time ahead…

42Precision Cosmology at the LHC

Page 43: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

Brahma

Page 44: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback

23/04/22 44

All of these will be supersymmetry phenomenology/model papers

Conclusion…Conclusion…

Page 45: Era of Discovery with CMS Detector TAMU Group   Teruki Kamon , Alexei  Safonov , David  Toback