Er Men Trout 1991 Multiple

Embed Size (px)

Citation preview

  • 7/25/2019 Er Men Trout 1991 Multiple

    1/23

    J. Math. Biol. (199l) 29:195-217

    Journal o f

    Mathematical

    iology

    Springer-Verlag 1991

    Multiple pulse interactions and averaging

    in systems of coupled neural oscillators

    G B Ermen trout I and N Kopell 2

    z Departm ent of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

    2 Departm ent of Mathematics, Boston University, Boston , USA

    Received November 28, 1989; received in revised form April 6, 1990

    Abstract Osci l la tors coupled s t rongly a re capable of compl ica ted behavior

    which may be pa thologica l for b io logica l cont ro l sys tems. Never the less , s t rong

    coupl ing may be needed to prevent asynchrony. We discuss how some neura l

    ne tworks may be des igned to achieve only s imple locking behavior when the

    coupl ing i s s t rong. The des ign is based on the fac t tha t the m etho d o f averaging

    produces equa t ions tha t a re capable only of locking or dr i f t , no t pa thologica l

    complexi ty . Fur thermore , i t i s shown tha t osc i l la tors tha t in te rac t by means of

    mult iple pulses per cycle , dispersed around the cycle , behave l ike averaged

    equatio ns, even if the nu mb er o f pulses is small. We discuss the biological

    in tu i t ion behind th is scheme, and show numer ica l ly tha t i t works when the

    oscil la tors are tak en to be com posites, each unit o f which is gove rned b y a

    wel l -known m ode l o f a neura l osc il lator . F ina l ly , we desc ribe numer ica l meth ods

    for comput ing f rom equa t ions for coupled l imi t cyc le osc i l la tors the averaged

    coupl ing func t ions of our theory .

    Key words:

    Oscil la t ions - N eur on s - Avera ging - N eura l c ircuits

    1 Introduction

    Many phys io logica l cont ro l sys tems a re governed by coupled neura l osc i l la tors

    [ 1-4] . In these sys tems, i t is impo r tant to m ain ta in some degree of synchroniza -

    t ion . In orde r to m ainta in synchrony , coupl ing be tween the osc i l lat ing uni ts mus t

    be suff ic iently strong; w eak co upling can synch ronize onl y osci l la tors that are

    very c lose in natural f requency. I f the dif ference between units is too great and

    coupl ing i s weak, desyn chrono us behavior can a r ise , such as phase dr i f t [5]. On

    the o ther hand, i f the coupl ing is too s t rong var ious pa tho logica l s i tua t ions a r ise .

    Fo r exam ple , in [6] i t is show n th at s trong diffusive coup ling between chem ical

    * Research partially supported by the National Science Foundation under grants DMS 8796235 and

    DMS 8701405 and the Air Force Office of Scientific Research under University Research Contract

    F 49620-C-0131 to Northeastern University

  • 7/25/2019 Er Men Trout 1991 Multiple

    2/23

    196 G .B . Ermentrout and N. Kopell

    osc i l l a to r s can l ead to chaos . S imi l a r ly , we have found tha t s t rong inh ib i to r i l y

    co u p l ed n eu r a l o s c i l l a t o r s can s o me t i mes l ead t o co mp l ex d y n ami ca l b eh av i o r

    [ u n p u b li s hed ] . I n a p r ev i o u s p ap e r [ 7 ] , w e s h o w ed t h a t m u t u a l ex c i t a to r y

    coup l ing o f su f fi c ien t s t r eng th be tw een a p a i r o f l imi t cyc l e osc i l l a to r s can ac t t o

    s top the osc i l l a ti on ( o sc i l l a to r dea th ) . T he m echan i sm d escr ibed in [7 ] can

    o ccu r i n m o d e l s o f n eu r a l i n t e rac t io n s t h a t i n v o lv e ch emi ca l s y n ap s es ev en i f t h e

    neura l o sc i l l a to r s a re i den t i ca l . We are t hus f aced wi th t he fo l lowing p rob lem:

    H o w can w e ma i n t a i n s y n ch r o n y b e t w een p o s s i b l y d i s p a r a t e o s c i l l a t o r s w i t h o u t

    s t r eng then ing the coup l ing so mu ch as t o cause loss o f osc i l l a ti on o r o the r

    d y n ami c p a t h o l o g i e s ?

    W e sho w in [7 ] t ha t o sc i l l a to r dea th c ann o t occ ur if t he osc i l l a to r s a re wea k ly

    co u p l ed . Wh en co u p l i n g i s w eak , i n v a r i an t man i f o l d t h eo r y may b e u s ed t o

    reduce the sys t em o f non l inear osc i l la to r s t o a se t o f equa t ions on a t o rus .

    A v e r ag i n g t h eo r y may t h en b e u s ed t o o b t a i n eq u a t i o n s t h a t d ep en d o n l y o n t h e

    differences of the pha ses o f the osc i l la to r s . Fo r a pa i r o f osc i l la to r s the ave raged

    eq u a t i o n s h av e o n l y t w o p o s s i b l e b eh av i o r s : s y n ch r o n i za t i o n o r q u as i p e r i o d i c

    osc i l la t i ons (phase d r i ft ) . The l a t t e r oc curs i f t he unco up le d f r equencies o f t he

    osc i l l a to r s a re no t su f f i c i en t ly c lose t o one ano ther .

    I n t h is p ap e r w e s h o w t h a t , ev en w i t h s t r o n g i n t e rac t io n s , t h e s y s t em m ay

    b eh av e a s i f av e r ag ed , an d w e d es c ri b e s o me n eu r a l n e t w o r k s t h a t c an acco m -

    p l ish thi s . The fund am enta l i dea is t ha t , i f i n t e rac t ions a re d i sper sed a ro un d the

    cy c le o f th e o s c il la t o rs , t h e s y s t em can b e h av e a s t h o u g h t h e co u p l i n g w er e

    av e r ag ed o v e r a cy c le , an d t h u s a l l o f th e a b o v e p a t h o l o g i ca l b eh av i o r is

    p r ev en t ed . F o r s u ch a s y s t em, t h e co u p l i n g can b e s t r o n g en o u g h t o o v e r co me

    man y f r eq u en cy i n h o mo g en e i t i e s t h a t co u l d o t h e r w i s e l e ad t o p h as e d r i f t .

    The paper i s o rgan ized as fo l lows: i n Sec t . 2 , we rev i ew the der iva t ion o f

    p h as e mo d e l s f r o m t h e f u l l s y s t em o f o s c i l l a t o r s . We t h en d i s cu s s h o w p h as e

    eq u a t i o n s m o d e l li n g a p a i r o f co u p l ed o s c i ll a to r s m ay b e formally av e r ag ed , an d

    wh en th is averag ing m etho d is va lid . In Sec t. 3 we sho w tha t , i f t he coup l ing

    co n s is t s o f a s u m o f t e r ms each co r r e s p o n d i n g t o a p u ls e , an d i f t h e s e p u ls e s a r e

    su f fi c ien t ly d i sper sed a rou nd the cyc l e , t hen the averag ing m eth od i s va l id fo r a

    suff iciently large nu m be r o f pulses . W e also d iscuss the b io logica l in tu i t ion

    b eh i n d t h e mu l t ip l e p u l s e co u p li n g , an d h o w s u ch co u p l in g i s n a tu r a l l y o b t a i n ed

    w hen the osc i l l a to r is a com pos i t e o f neurons , poss ib ly wi th d i f f e ren t ce l l t ypes .

    N u mer i ca l c a l cu l a t i o n s a r e d o n e i n S ec t . 4 t o s h o w t h a t ev en a s ma l l n u mb er o f

    p u l s e s (e . g. 3 o r 4 ) m ay b e en o u g h t o r ad i ca ll y ch an g e t h e b eh av i o r o f t h e

    co u p l ed sy s t em, f r o m o n e th a t u n d e r g o es o s c i l la t o r d ea t h i f t h e i n t e rac t io n i s

    on ly by a s ing le pu l se t o one tha t phase- locks l i ke a sys t em whose coup l ing

    depends on ly on the d i f f e rences on the phases .

    Th e co m p o s i t e o s c i ll a to r s o f t h e n e t w o r k s o f S ec t. 3 h av e e l emen t s t h a t a r e

    very t i gh t ly coup led compared to t he i n t e r -osc i l l a to r coup l ing . In Sec t . 5 , we

    s h o w n u mer i ca l ly t h e r eq u i r em en t f o r t ig h t i n t r a -o s c i ll a to r co u p l i n g can b e

    r e lax ed an d s till h av e t h e s y s t em b eh av e w i t h o u t p a t h o l o g y . Th i s i s d o n e b o t h f o r

    p h as e mo d e l s ( r ed u ced f r o m f u l l eq u a t i o n s d e s c r i b i n g amp l i t u d es a s w e l l a s

    p h as es ) a s w e l l a s th e f u ll eq u a t i o n s , an d a l lo w s t h e co n s t r u c t io n o f av e r ag i n g

    ne two rks t ha t a re m ore phys i ca l ly r ea li s ti c and mo re genera l .

    I n t h e ap p en d i x , w e co n s id e r n u mer i ca l me t h o d s f o r co m p u t i n g an ap p r o x i -

    ma t i o n t o t h e av e r ag ed co u p l i n g f u n c t i o n s H ( w h i ch d ep en d o n l y o n t h e p h as e

    di f ference ~b = 02 - 01) . H( t~) i s co m pu ted u nd er tw o al terna t ive hyp othes es . In

    the f ir st , the limi t cyc l e has i n f in i te a t t r ac t ion b u t t he coup l ing need no t be

    weak ; i n t he second , t he r a t e o f a t t r ac t ion to t he l imi t cyc l e i s f in ite , bu t t he

  • 7/25/2019 Er Men Trout 1991 Multiple

    3/23

    Mu ltiple pulse interactions and averaging 97

    c o u p l i n g is w e a k , I n t h e f ir s t c a se , o n e u s e s t h e n u m e r i c a l t e c h n i q u e s t o f ir s t r e d u c e

    t o a p h a s e m o d e l a n d t h e n t o a v e r a g e . I n t h i s s i t u a t i o n , w h e n t h e a t t r a c t i o n i s

    e x t r e m e l y s t r o n g , t h e d e p e n d e n c e o f th e lo c a l f r e q u e n c y o n t h e a m p l i t u d e s Y i i s

    n o t v e r y i m p o r t a n t . I n t h e se c o n d c a s e, i n w h i c h th e a t t r a c t i o n n e e d n o t b e e x t r e m e l y

    s t ro n g , t h e d e p e n d e n c e o f

    d O i / d t

    o n t h e a m p l i tu d e s m a y n o t b e ig n o r e d . T h i s is

    a m o r e s u b t le c a lc u l a ti o n , w h i c h is d o n e i n tw o w a y s . W e a p p l y o u r m e t h o d t o

    a cl as s o f n e u r a l e q u a t i o n s t h a t i n c lu d e t h e L e c a r - M o r r i s s y s t e m [8 ] a n d t h e

    W i l s o n - C o w a n e q u a t io n s [9].

    2 Redu ct ion to phase mo de l s and averag ing

    2 . 1. R e d u c t i o n t o p h a s e m o d e l s

    F o r c o m p l e t e n e s s , w e b r i e fl y r e v i e w th e r e d u c t i o n o f a p a i r o f c o u p l e d o s c i l la t o r s

    t o a s y s te m o f e q u a t i o n s o n t h e t o m s . C o n s i d e r t h e c o u p l e d s y s t e m o f n o n l i n e a r

    os c i l l a t o r s :

    d X l / d t

    = F I X , ) + f l G , X i , X 2 ),

    d X 2 / d t = F 2 X 2 ) + f l G 2 X : , X , ) . 2 . 1 )

    H e r e X j ~ R , f l i s a p a r a m e t e r d e t e r m i n i n g t h e s t re n g t h o f c o u p l i n g b e t w e e n t h e

    t w o o s c i ll a to r s , G j i s t h e c o u p l i n g f u n c t i o n , a n d i t i s a s s u m e d t h a t

    d X f l d t = F j ( X j )

    h a s a s a s o l u t i o n a n o r b i t a l l y a s y m p t o t i c a l l y s t a b l e p e r i o d i c s o l u t i o n w i t h f re q u e n c y

    c oj. I n [ 1 0 ] i t i s s h o w n t h a t t h e r e i s a c h a n g e o f c o o r d i n a t e s i n t h e n e i g h b o r h o o d

    o f t h e l i m i t c y c l e s u c h t h a t , i f f l i s n o t t o o l a r g e , ( 2 . 1 ) c a n b e w r i t t e n a s

    o g f I d O s / d t = 1 + q J ( Y s , O j ) + f l e j ( y j , Y k , O j , O k , f l) ,

    ( 2 . 2 )

    d y J d t = a j ( y j , O j ) + 4 ( Y J, Y k , O j, O k , ) ,

    j , k = 1 , 2 , j # k ( se e a l so t h e a p p e n d i x ) . H e r e q j ( 0 , 0 ) = a j ( 0 , 0 ) = 0 , a n d a ll

    f u n c t i o n s a r e p e r i o d i c i n t h e i r 0 a r g u m e n t s . T h e c o o r d i n a t e s

    Y i ~ R n - 1

    a r e

    t r a n s v e r s e t o t h e p e r i o d i c o r b i t s a n d 0 j ~ S t li es a l o n g t h e l im i t c y c l e o f t h e j t h

    o s c i l l a t o r . I n a b s e n c e o f c o u p l i n g (/3 = 0 ) e a c h o s c i l l a t o r t r a v e r s e s i ts c y c l e w i t h

    a p e r i o d o f 2rr/c 0j. T h e r e a r e t w o s i t u a ti o n s i n w h i c h w e c a n r e d u c e ( 2 . 2 ) f r o m a

    2 n - d i m e n s i o n a l s y s t em t o a f lo w o n a t w o - d i m e n s i o n a l t o r u s . I f / / a n d IF I - F 2 1

    a r e s u f f ic i en t ly s m a l l, w e c a n u s e i n v a r i a n t m a n i f o l d t h e o r y [ 1 1] t o c o n s t r u c t a t o r u s

    y j (Oj , Ok)

    w h i c h is i n v a r i a n t f o r (2 . 2 ). O n t h a t t o r u s , t h e e q u a t i o n s h a v e t h e f o r m

    o ) f ' d O j / d t = 1 - t - / / h j O j , O k , / / ) ,

    ( 2 . 3 )

    j , k = 1 , 2 , j ~ k . I f ](o j - o)k[ = 0 ( / / ) , t h e n a v e r a g i n g t h e o r y [ 12 ] i m p l i e s th a t t h e r e

    i s a n a l m o s t i d e n t i t y c h a n g e o f c o o r d i n a t e s s u c h t h a t , i n t h e n e w v a r i a b l e s, ( 2 . 3 )

    h a s t h e f o r m

    ( o f I d O J d t

    = 1 + / / H j ( 0 k - - 0 j ) + 0 ( / /2 ) . ( 2 . 4 )

    H e r e , / / j i s a 2 n - p e r i o d i c f u n c t i o n o f i ts a r g u m e n t s . I f q~ = 0 2 - 0 1, t h e f u n c t i o n s

    / / j a re d e t e r m i n e d f r o m h j b y

    n ~ ~ ) = 1 / 2 ~ ) / /h 1 0 1 , O , + 4 ~ , // )

    dO l

    ( 2 . 5 )

    g 2 - 4 ,) = 1 / 2 r 0 / / h ~ O ~ ,O~ - ~ , / /) dO~ .

  • 7/25/2019 Er Men Trout 1991 Multiple

    4/23

    1 98 G . B . E r m e n t r o u t a n d N . K o p e l l

    T h e s e c o n d s i tu a t i o n i n w h i c h 2 .2 ) c a n b e r e d u c e d t o a f lo w o n t h e t o m s i s

    i f t h e a t t r a c t i o n t o t h e l i m i t c y c l e is s tr o n g s e e [7 ]). S t r o n g a t t r a c t i o n i m p l i e s

    t h a t { yj} r e m a i n c l o s e t o 0 , s o th a t 2 . 2 ) re d u c e s t o

    co) 1 d O j/dt = 1 + ~h: Oj, Ok, ~), 2 . 6 )

    w h e r e n o w hj O j, Ok, 8) i s g iv en exp l i c i t l y by c0 j e j 0 , 0 , 0j , Ok, 8) .

    I n t h e a b s e n c e o f t h e O /~2 ) t e r m s , 2 . 4 ) i s c a p a b l e o n l y o f p h a s e - l o c k i n g o r

    p h a s e - d r if t . E q u a t i o n s o f t h e f o r m 2 .6 ) a r e m o r e g e n e r a l , a n d a r e c a p a b l e o f

    c o n s i d e r a b l y m o r e c o m p l e x b e h a v i o r , i n c l u d i n g a v a r i e t y o f lo c k i n g p a t t e r n s a n d

    o s c i l l a to r d e a t h [7 ]. T h e l a t t e r is v e r y e a s y t o o b t a i n , p a r t i c u l a r l y w h e n h i , h 2 a r e

    d e r i v e d f r o m e x c i t a t o r y n e u r a l c o u p l i n g s e e [7 ]). I f t h e c o u p l i n g is su f f ic i e n tl y

    s t r o n g th a t t h e a v e r a g in g t h e o r e m c a n n o t b e a p p li e d to p r o d u c e 2 .4 ) , w e a r e

    c o n f r o n t e d b y t h e p r o b l e m s d i s c u s s e d i n t h e i n t r o d u c t i o n .

    R e m a r k 2 . 1 . I n [7 ], w e s h o w t h a t f o r s o m e m o d e l s o f e x c i t a t o r y n e u r a l c o u p l i n g ,

    t h e f u n c t i o n s hj Og, Ok, 8) h a v e t h e f o r m P j O k ) R j 0 i ) w h e r e P O) i s a pos i t i ve

    p u l s e - l i k e f u n c t i o n a n d

    R O)

    i s a n a l o g o u s t o t h e p h a s e - r e s p o n s e c u r v e f o r a

    f o r c e d o s c i l l a t o r . S e e [ 7] a n d [ 1 ].)

    2 .2 . Averag ing

    I f /~ i s s m a l l, a v e r a g i n g t h e o r y p r o v i d e s a n a l m o s t i d e n t i t y c h a n g e o f c o o r d i n a t e s

    s u c h t h a t , i n t h e n e w c o o r d i n a t e s , t h e c o u p l i n g d e p e n d s o n l y o n t h e d i f fe r e n c e ~b

    o f t h e p h a s e s . E v e n i f/ ~ i s n o t s m a l l , o n e m a y r e w r i t e 2 . 6 )

    b y f o r m a l l y

    a v e r a g i n g ,

    l e a v i n g a r e m a i n d e r t e r m :

    d O 1 / d t = (I )1 - ~ H I ( ( ~ ) + F 1 ( 0 1 , 0 2 ) , ( 2 . 7 )

    dO2/dt = 0 )2 + H 2 - ~ b ) + F2 02 , 01 )

    w h e r e ~b = 0 2 - 0 1, H I , / / 2 a r e a s in 2 .5 ) a n d

    F 1 ( 0 1 , 0 2 ) = f l h l 0 1 , 0 2 , f l ) - H i ( 0 2 - 0 1 ) ,

    F2 02, 01) = f lh2 02, O r, f l ) - H2 01 - 02).

    L e t M = m a x [ F j 0 j , Ok,/~) I, J , k = 1 , 2 ; j ~ k . I f M ha pp en s t o be su f f i c i en t ly sm a l l

    . 01 02

    a s i s a u t o m a t i c a l l y t r u e i f / ~ is s m a l l ), t h e c o n s e q u e n c e s o f a v e r a g i n g t h e o r y f o r

    s m a l l / ~ s t i l l h o l d . F o r e x a m p l e :

    P r o p o s i t i o n 2 . 1 . S u p p o s e t h a t

    d

    = ~ 1 - ~ 2 + H , ~ ) - H 2 - ~ ) 2 . 8 )

    has a hyperb o l i c f i xe d p o in t , wh ere c~ = 0 2 - 01 . T hen fo r M su f f i c i en t ly sma l l ,

    2 . 7 ) has a hyperbo l i c l imi t cyc l e o f t he same s tab i l i t y charac t e r i s t i c s .

    P r o o f . A c r i ti c a l p o i n t o f 2 . 8 ) c o r r e s p o n d s t o a p e r i o d i c s o l u t i o n o f

    dO1/d t =co l + HI ~b), 2.9)

    d O 2 / a t = o ~ + i - I 2 - e ~ ) .

  • 7/25/2019 Er Men Trout 1991 Multiple

    5/23

    M ultiple pulse interactions and averaging 99

    C o n s i d e r a P o i n ca r 6 s ec t i o n t h r o u g h t h a t p e r i o d i c s o l u t i o n an d t ak e t h e s ame

    sect ion fo r (2 .7) . The n fo r M suff icient ly smal l , the Poinc ar6 m ap o f (2 .7) is st il l

    def ined and i s c lose t o t ha t o f (2 .9 ) . The refo re , i t has a h ype rbo l i c f ixed po in t

    wi th t he sam e s t ab i li t y charac t e r is t ics . [ ]

    S ince M rep resen t s t he dev ia t ion f rom be ing averaged , we re fer t o i t as t he

    m o d u l u s o f av e r ag eab i l it y . A s y s t em w i t h a lo w mo d u l u s can n o t u n d e r g o

    osc i l l a to r d ea th , i .e . (2 .9 ) has n o c r i ti ca l po in t s . T hat is , by con t inu i ty we

    h av e

    P r o p o s i t i o n 2.2. Sup pos e tha t ] dO1/dt, dO2/dt)] o f (2 .9) i s b o u n d e d a w a y f r o m

    zero. Th is is tru e fo r gen eric 091 , co2. Then fo r M suf f ic ient ly smal l , (2.7) has no

    cr i t ical poin ts . [ ]

    R e m a r k 2 . 2 .

    Th e ab o v e p r o p o s i t i o n s a l s o w o r k f o r ch a i n s o f N o s c il la t o rs . T h e

    k t h eq u a t i o n i s av e r ag ed o v e r Ok, w ith Ok+ l = q~k + Ok a n d Ok_ l = Ok -- ~k - 1.

    The avera ged sys t em i s t hen a fun c t ion o f on ly the p hase d i f fe rences {q~k}. The

    ma i n h y p o t h es i s , a s i n t h e ab o v e t h eo r em, i s t h a t t h e max i mu m o v e r t h e

    N - t o r u s o f t h e d i ff e ren ce b e t w een t h e tr u e R .H .S . o f t h e eq u a t i o n an d t h a t o f

    t h e av e r ag ed r i g h t - h an d s i d e ( co n s i d e r ed a s a f u n c t i o n o f {Ok }) be suff icient ly

    small.

    3 M u l t i p l e p u l s e s a n d th e r ed u c t i o n o f t h e m o d u l u s o f a v e r a g e a b i li t y

    In t he l as t sec tion , we no te d tha t i f t he phase equ at ions (2 .7 ) a re c lose eno ugh

    to the av erage d equat ions , t hen the i r behav io r is a lso s imi la r. H ere we sha l l

    descr ibe som e ne two rks o f osc i l l a to r s wh ich exp lo i t t h is f ac t . These ne tw orks

    are des igned so as t o d i s t r i bu t e t he impu l ses over t he cyc l e o f t he osc i l l a t i on ,

    r a t h e r t h an co n cen t r a t i n g t h em n ea r o n e p a r t icu l a r p h as e o f t h e cy c le . A s w e

    sha ll see , t hese ne tw orks beh ave l ike ave rag ed equa t ions , and hence avo id the

    p r o b l ems d es c r i b ed ab o v e .

    C o n s i d e r a p a i r o f o s c i ll a to r y u n it s an d a s s u me t h a t t h e s e u n it s a r e co m -

    pose d , no t o f a s ing le pace m aker , bu t r a ther o f m osc i l la t ing subun i t s . (Th ese

    subun i t s need no t be cap ab le o f osc i ll a ti ng in i so la t i on . ) Fo r exam ple , i t i s

    be l i eved tha t t he segm enta l o sc i l la to r s o f t he l eech cen t ra l pa t t e rn gen era to r

    cons i s t s o f a t l eas t fou r sub un i t s t h a t o sc i ll a te . (See [3 ] fo r a 197 8 ver s ion o f

    the l oca l osc i l l a to r ; s i nce then , o ther osc i l l a t i ng componen t s have been d i scov-

    e r ed ( M . N u s s b au m, p e r s . co mm. ) . ) We a s s u me f u r t h e r t h a t t h e s e s u b u n i t s

    have f ixed phas e r e l a t i onsh ips t o o ne an o the r a nd do n o t a l l o sc i ll a t e i n phase ;

    th i s can be accompl i shed us ing some inh ib i to ry coup l ing ( see Sec t . 5 ) . The

    coup l ing wi th in a s ing le un i t i s assume d to be su f f ic i en tly s t rong so tha t , i f one

    of t he un i ts i s phase- sh i f t ed b y a s timulus , t hen the o ther subun i t s fo l low

    a l mo s t i mmed i a t e l y .

    Co ns ider t he fo l lowing spec i a l exam ple , i n wh ich ea ch su bun i t o f an osc i l-

    l a t i ng un i t synapses on ly on i t s ana logue in t he o ther osc i l l a to ry sys t em. These

    assum pt ions a re i l l u s tr a t ed in F ig . 1 . Le t 01 den o te t he ph ase o f a f ixed

    o s c il la t in g s u b u n i t i n o n e s y s t em an d 02 d en o t e t h e p h as e o f th e a n a l o g o u s

    subun i t i n t he o ther sys t em. S ince we assume tha t a l l subun i t s i n each sys t em

    have f ixed pha se r e l a t i ons , 01 de t e rm ines t he ph ases o f t he r ema in ing subun i t s :

    01 q- ~1 . . . . , 01 ~ ~m - 1 W e a ssu m e a s imi lar re lat ionsh ip exis t s betw ee n 02 an d

  • 7/25/2019 Er Men Trout 1991 Multiple

    6/23

    2 00 G . B . E r m e n t r o u t a n d N . K o p e l l

    F i g . 1 . A p a i r o f o s c i l l a ti n g n e t w o r k s ,

    e a c h c o n s i s t i n g o f f o u r s u b u n i t s . T h e

    p h a s e r e l a t i o n s h i p s w i t h i n a n e t w o r k a r e

    f ixed , re l a t ive to G0 = 0 in each o sc i l l a to r

    t h e o t h e r s u b u n i t s i n o s c i l l a t o r 2 . T h e e q u a t i o n s f o r t h i s n e t w o r k a r e

    l m - I

    d O l / d t = o ) 1 - ~ m i E-Z-O ~ 0 1 - [ - ~ i , 02 -~- ~1 ) ,

    ( 3 . 1 )

    l m - I

    d O 2 / d t = o ~2 + - - Y . h d O ~ + ~ , , O , + ~ , ) .

    m i = 0

    H e r e 4 0 = 0 . T h e s u m s i n (3 . 1 ) a ri s e o u t o f o u r a s s u m p t i o n s t h a t r e s e t t in g o n e

    s u b u n i t i n s t a n t a n e o u s l y r e s e ts t h e o t h e r u n i t s b y a n i d e n ti c a l a m o u n t . T h e f a c t o r

    1/m m u l t ip l y i n g t h e s e s u m s is a n o r m a l i z a t i o n s o t h a t t h e t o t a l i n fl u e n c e o f o n e

    o s c il la ti n g s y s t e m o n t h e o t h e r h a s m a g n i t u d e i n d e p e n d e n t o f m . N o t e t h a t i f

    t h e r e i s o n l y a s i n g l e u n i t o r i f a l l m u n i t s f i re s y n c h r o n o u s l y ( i .e . i = 0 ) ( 3 . 1 ) i s

    t h e s a m e a s (2 . 6 ). T h u s , w e m a y v i e w e q u a t i o n s o f t h e f o r m ( 3 .1 ) a s g e n e ra l iz a -

    t io n s o f o u r o r i g i n a l p h a s e m o d e l f o r t w o c o u p l e d o s c i ll a to r s . S u p p o s e m i s l a rg e ,

    h ~ i s i n d e p e n d e n t o f i a n d t h e p h a s e s 4 ; h a v e a d e n s i t y r/( ~), i. e. t h e p r o b a b i l i t y

    o f ~ l y in g b e t w e e n ~ a n d + d ~ is q( ~ ) d ~ . T h e n t h e s u m s i n ( 3 .1 ) c o n v e r g e t o

    i n t e g r a l s a s m t e n d s t o i n f in i t y :

    1 m 1 ~ 2 n

    S m ~ - m i~ = o h l ( O l 'J - ~ i ' O 2 J - i ) ~ J o h ~ ( x ' x + O 2 - O l ) q ( X ' O l ) d X 3 . 2

    I n p a r t i c u l a r, i f q ( ~ ) i s u n i f o r m , i .e ., t h e p h a s e s a r e d i s t r i b u t e d e q u a l l y a r o u n d t h e

    c i rc l e, th e n q ( ~ ) = 1 / 2 n a n d ( 3 . 2 ) b e c o m e s

    S _ _ 1 ~

    h ~ ( x , x + O z - O O d x , ( 3 . 3 )

    w h i c h i s j u s t t h e a v e r a g e d r i g h t - h a n d s i d e a s d e f in e d i n ( 2 .5 ) , ( 2 .9 ) . T h i s

    c a l c u l a t i o n s h o w s :

    P r o p o s i t i o n 3 . 1 . I f h~ and h~2 are independent o f i, and the puls es are un iform ly

    dis t r ibuted around the cycle , then the mo dulus M tends to 0 as the num ber o f pulses

    m tends to oo. Hence, the solut ions to ( 3 . 1 ) are close to those o f the averaged

    equations ( 2 . 9 ) as the num ber o f subuni t s becom es large. []

    Rem a r k 3 .1 .

    E v e n a s m a l l n u m b e r o f p u l s e s ( m = 3 o r 4 ) c a u s e s a s i g n i fi c an t

    d e c r e a se in t h e m o d u l u s o f a v e r a g ea b i li ty , a n d a d r a m a t i c c h a n g e i n t h e b e h a v i o r

    o f t h e s y s t e m . T h i s i s d e t a i l e d n u m e r i c a l l y i n S e c t . 4 .

    Remark 3 .2 . I n o r d e r t h a t M b e c o m e s m a l l, i t i s n o t n e c e s s a r y t h a t h ~ a n d h ~ b e

    i n d e p e n d e n t o f i . I t s u ff i ce s t h a t t h e s e f u n c t i o n s b e s u f f i c ie n t l y s i m i l a r f o r d i f f e r-

    e n t v a l u e s o f i . F u r t h e r m o r e , i t i s e a s y t o c o n s t r u c t e x a m p l e s i n w h i c h h ~ , h ~ a r e

  • 7/25/2019 Er Men Trout 1991 Multiple

    7/23

    M u l t i p l e p u l s e i n t e r a c t i o n s a n d a v e r a g i n g 2 01

    i J O

    o I _1 I I

    a o . o

    O~

    l

    t

    m.

    o

    to

    o

    5

    o

    o l J

    b

    F i g . 2 a , b . M o d u l u s o f a v e r a g e a b i l i t y f o r p u l s e s o f d i f f e r e n t s tr e n g t h s a n d p h a s e s h i f ts f o r t h e

    e q u a t i o n 01 = ~P O2)R 01)+ (1 - ct)P 02+ 1)R(01 + ~ l ) ; P O) = ( + os 0)4 , R O) = s in 0 . a ~1 = n ,

    ct v a r i e s b e t w e e n 0 a n d . N o t e t h a t c t - - s t h e c a s e d e s c r i b e d i n t h e p r o p o s i t i o n , ~ = 0 c o r r e s p o n d s

    t o a s i n g l e p u l s e ; b c t = , ~ v a r i e s b e t w e e n 0 a n d ~ . ~ , = 0 c o r r e s p o n d s t o a s i n g l e p u l s e a n d ~ l = n

    i n t h e c a s e d e s c r i b e d i n t h e p r o p o s i t i o n

    q u i t e d i f f e r e n t f o r d i f f e r e n t i, a n d t h e p u l s e s a r e n o t u n i f o r m l y d i s t r i b u t e d . F o r

    e x a m p l e , c o n s i d e r t h e s i m p l e c a s e h ~ =

    ~ P O 2 ) R 0 1 ) ,

    h i = ( 1 - - c 0 P ( 0 2 + ~ 1 )

    R 0 1 + ~ 1 ) , w i t h P O ) l 1

    ( ~ + s c o s 0 ) 4 ,

    R O ) =

    s i n 0 . A s s e e n i n F i g . 2 , M i s

    s i g n i f i c a n t l y d e c r e a s e d e v e n i f t h e t w o p u l s e s a r e q u i t e d i f f e r e n t i n s i z e ( ~ ) o r

    n o t u n i f o r m l y d i s t r i b u t e d ( ~ l r ) .

    R e m a r k 3 . 3 .

    F i n a l l y , i t i s n o t n e c e s s a r y t h a t e a c h s u b u n i t o f a n o s c i l l a t o r

    s y n a p s e o n l y o n i ts a n a l o g u e . I f s u b u n i t

    I i )

    o f o s c i l l a t o r 1 r e s p o n d s t o a p u l s e

    f r o m s u b u n i t i o f o s c i l l a t o r 2 , t h e n s u c h a p u l s e c o n t r i b u t e s

    e l ( 0 2 ~ ~ i ) g i ( o1 ~ - ~ i (i ))

    t o th e e q u a t i o n f o r

    dO~/dt.

    T h e l a t t e r e x p r e s s i o n c a n b e w r i t t e n a s

  • 7/25/2019 Er Men Trout 1991 Multiple

    8/23

    202

    G. B. Ermentrout and N. Kopell

    i .e ., a t e r m o f t h e f o r m p r e v i o u s l y d i s c u s s e d , w i t h a d i f f e r e n t r e s p o n s e c u r v e . I t

    is n o w c l e a r th a t t h e s a m e p r in c i p le s a l l o w o n e t o c o n s t r u c t a v e r a g i n g n e t -

    w o r k s f r o m c o m p o s i t e o s c i ll a to r s , w i t h o u t r e q u i r in g t h a t t h e c o n n e c t i o n s

    b e t w e e n t h e o s c i l l a t o r s l i n k o n l y a n a l o g o u s s u b u n i t s . O n e d o e s r e q u i r e t h a t t h e

    e f fe c ti v e r e s p o n s e f u n c t i o n s / ~ h a v e t h e p r o p e r t y t h a t a v e r a g i n g t h e m l o w e r s

    v a r i a t i o n f r o m t h e m e a n o v e r 0 , a s i n t h e p r e v i o u s e x a m p l e .

    4 N u m e r i c a l r e s u l ts

    I n t h is s e c ti o n, w e c o m p a r e P o i n c a r6 m a p s f o r a v e r a g e d s y s t e m s o f c o u p l e d

    o s c i ll a t o rs t o o n e s w i t h m u l t i p le p u l s e , b u t u n a v e r a g e d c o u p l i n g . O n e o f o u r

    m a i n c o n c l u s i o n s i s t h a t , e v e n f o r h i g h ly n o n l i n e a r a n d d i s c o n t i n u o u s m o d e l s

    u s in g c o u p l in g b y f - f u n c t i o n s , t h e n u m b e r o f p u l se s r eq u i r e d f o r g o o d a g r e e m e n t

    b e t w e e n t h e P o i n c a r 6 m a p s i s s m a l l ( e . g . , 3 o r 4 ) . W e a l s o c o m p a r e t h e a v e r a g e

    p h a s e d i f fe r e n c e o v e r a c y c le f o r s o m e p h a s e - l o c k e d u n a v e r a g e d s y s t e m s w i t h t h e

    c o n s t a n t p h a s e d i f f e r en c e o f t h e s a m e s y s t e m s w h e n a v e r a g e d . W e f in d t h a t t h e r e

    i s l i t t l e d i f f e r e n c e e v e n i f t h e r e i s o n l y o n e p u l s e p e r c y c l e , i . e . , in the range where

    these oscillators do not undergo death, th ey behave ve ry m uch l ike their averaged

    counterparts.

    W e s h a l l w o r k w i t h p h a s e e q u a t i o n s c o u p l e d b y p u s l e s , w h e r e t h e p h a s e

    e q u a t i o n s a r e d e r i v e d b y a s s u m i n g t h a t t h e a t t r a c t i o n t o t h e li m i t cy c l e i s v e r y

    l ar g e , a s se e m s t o b e t h e c a s e f o r t h e W i l s o n - C o w a n e q u a t i o n s [9 ]. ( S e e [7 ], 2,

    R e m a r k 2 .1 .) I f t h e r e a r e m u l t i p le p u l s e s c e n t e re d a r o u n d p h a s e s

    ;, i = 1 . . . . m , th e e q u a t i o n s a r e

    dOl/dt=COl + 1 ~ P O 2-i )R 0 1- i ) ,

    i =

    ( 4 . 1 )

    dO2/dt=o92+ 1 ~ P O , - i )R 0 2- i ) .

    i =

    W e s h a l l t a k e 4 , - =

    2rci/m,

    a n d

    e o) = ( 0 . 5 + 0 . 5 c o s ( 0 ) ) o r 3 ( 0 ) , ( 4 . 2 )

    R O)

    = - ~[ sin (0 + r/) - sin(r/)] .

    T h r o u g h o u t t h es e c o m p u t a t i o n s , w e h a v e s e t n = 4. U s i n g r e p e a t e d i n t e g r a ti o n

    b y p a r t s , w e f i n d t h a t t h e a v e r a g e f u n c t i o n , a s d e f i n e d i n S e c t i o n 2 , i s

    H( ~b) = I ' ~ I s i n ( - ~ b + r /) - n - -- ~1 s i n ( r / ) ]n ( 4 .3 )

    w h e r e

    I . = ~ P O ) d O -

    1 . 3 . 5 . . . . . 2 n - 1

    2 . 4 . 6 . . . . . 2 n

    I n o u r f ir s t s e t o f s i m u l a t i o n s , w e fi x a ll p a r a m e t e r s ( n = 4 , r / = - t a n - ~ ( 0 . 5 ) ,

    = 2 ) e x c e p t f o r m , t h e n u m b e r o f pu l se s , a n d c o m p a r e t h e P o i n ca r 6 m a p s o f

    ( 4 .1 ) w i t h t h o s e o f t h e a v e r a g e d e q u a t i o n s ( 2 .9 ) , w i t h o 9 1 = 1, 0 9 2 = 0 . 8 .

    H ~ = / - / 2 = H , w i t h H g i v e n b y ( 4 .3 ) . F i g u r e 3 a s h o w s t h e P o i n c a r 6 m a p t a k e n a t

    t h e 0~ = 0 s e c t i o n f o r P O) = 6 0) a n d m = 1 , a l o n g w i t h t h a t o f th e a v e r a g e d

    e q u a t i o n ; t h e t w o a r e q u i t e d i s si m i la r . H o w e v e r , f o r a s f e w a s 4 p u l s e s p e r c y c le

  • 7/25/2019 Er Men Trout 1991 Multiple

    9/23

    M ultiple pulse interaction s and averaging 203

    7r

    2~

    o ~ ~

    i / / ~

    o

    a o ~ b o

    2 r r

    Fig. 3 a,b. Poincar6 m aps com pared to the averaged analogues dashed) for co1 = 1, co =0 .8,

    P O ) = 6 0), R O) = -2[sin 0 + ~/) -sin ~/)], ~/= -tan- l ). a 1 Pulse per cycle; b 4 pulses per cycle

    m = 4 ), t h e r e i s a q u a l i t a t i v e a n d q u a n t i t a t i v e s i m i l a r it y b e t w e e n t h e t w o , a s c a n

    b e s e e n i n F i g . 3 b . T h i s r e s u l t i s t y p i c a l . F i g u r e 4 s h o w s t h e P o i n c a r 6 m a p s o f

    4 . 1 ) f o r m = 1 a n d m = 4 , w i t h P O ) s m o o t h a s i n 4 .2 ) a n d R O) a s d e f i n e d i n

    4 .2 ) a = 1, ~ / = - 0 . 5 ) , a l o n g w i t h t h a t o f t h e a v e r ag e d e q u a t i o n s f o r c o m p a r i -

    s o n . A t m = 1 , t h e m a p i s q u i t e d i f f e r e n t a n d p h a s e s h i f t e d f r o m t h a t o f t h e

    a v e r a g e , b u t f o r m = 4 , t h e m a p s a r e v e r y c lo s e . F o r h i g h e r v a l u e s o f m , t h e

    P o i n c a r 6 m a p i s i n d i s ti n g u i s h a b le f r o m t h a t o f t h e a v e r a g e d e q u a t i o n s .

    S u p p o s e t h a t w e c h o o s e ~ l a r g e e n o u g h s o t h a t t h e r e i s o s c i l l a t o r - d e a t h f o r

    4 .1 ) wh en m = 1 i .e . ( 0 1 ( t ) , 0 2 ( / ) ) - - I ( 0 1 , 0 2) , a s t e a d y s t a te ) . I f w e t h e n a d d

    m o r e p u l s e s i n c r e a s e m ) i t i s p o s s i b l e t o p r e v e n t o s c i l l a t o r d e a t h f o r t h e s y s t e m

    o f o s c il la t o rs . A n a t u r a l q u e s t i o n i s: H o w m a n y p u l s e s a re r e q u i r e d t o p r e v e n t

    o s c i l l a t o r d e a t h f o r a g i v e n p a i r o f o s c i l l a t o r s ? T h e a n s w e r t o t h i s q u e s t i o n

    d e p e n d s o f c o u rs e o n t h e n a t u r e o f t h e f u n c t io n s , P O) , R O) , t h e s t r e n g t h o f

    cou p l ing , ~ t, an d the f req uenc ie s e91 an d 0~2. F o r pu rp oses o f i l l u s t ra t ion , w e

    2~

    I

    I

    I I

    /

    I I

    I I

    I

    0 0

    a 0 2rr b 0 2rr

    F i g . 4 a , b . S a m e a s F i g . 3 a , b , b u t P O)= + c o s 0 ) 4 . a 1 P u l s e p e r c y c l e ; b 4 p u l s e s p e r c y c l e

  • 7/25/2019 Er Men Trout 1991 Multiple

    10/23

    2 04 G . B . E r m e n t r o u t a n d N . K o p e l l

    ab l e 1 . M a x i m u m c o u p l i n g

    s t r e n g t h a n d p u l s e n u m b e r

    m 0tm

    1 2 .43

    2 4 .88

    3 8 .20

    4 17.92

    5 38 .08

    c o n s i d e r t h e c a s e o f t w o i d e n t i c a l o s c i ll a t o r s a n d f ix r / = - 0 . 5 , c 01 , (.D

    ~--

    1.0,

    n = 4 , an d l e t 0t va ry . T ab le 1 show s the v a lues o f ~t a t w h ich a t l e a s t m pu l s e s

    a r e r e q u i r e d t o p r e v e n t o s c i l l a t o r d e a t h . T h u s , i f 0t < 2 .4 3 , p h a s e - d e a t h c a n n e v e r

    occur ; fo r 2 .43 < ~ < 4 .88 , a t l e a s t two pu l s e s a re requ i red to p reven t dea th , e t c .

    I t i s c l e a r f r o m t h e t a b l e t h a t o n l y a f e w p u l s e s a r e r e q u i r e d t o p r e v e n t d e a t h ,

    e v e n w i t h v e r y s t r o n g c o u p l i n g ( s t r o n g r e l a ti v e t o t h e s iz e o f t h e f r e q u e n c i e s o91

    a n d 0 )2 ). W e n o t e t h a t w h e n at i s l a r g e , a n d i n t h e l o c k i n g r e g i m e , t h e P o i n c a r 6

    m a p s f o r b o t h t h e a v e r a g e d e q u a t i o n s a n d E q s . ( 4 .1 ) a r e q u i t e f la t i n t h e se n s e

    t h a t n o m a t t e r w h a t t h e i n i t i a l c o n d i t i o n i s , a f t e r o n e c y c l e , t h e t w o o s c i l l a t o r s

    h a v e a l m o s t a z e r o p h a s e - d i ff e r e n c e ( t h u s , i f

    A O)

    i s t h e P o i n c a r 6 m a p ,

    A O) ,~ 0

    for a l l 0) .

    I n t h e n e x t s e t o f n u m e r i c a l c a l c u l a ti o n s , w e c o m p a r e t h e a v e r a g e p h a se -

    d i f f e r e n c e b e t w e e n 0 2 ( 0 a n d

    01 0

    w i t h t h e p h a s e - d i f f e r e n c e s o f t h e a v e r a g e d

    e q u a t i o n s w h e n a s t a b l e p h a s e - l o c k e d s o l u t i o n t o ( 4 .1 ) e x i s ts . W e f i x 0)2 = 1 a n d

    let 0)~ E (0, 1]. W e use P O ), R O) as in (4 .2 ) P O) s m o o t h , n = 4, r / = 0 .5 ) a n d

    c o n s i d e r s e v e r al d i f f e r e n t v a lu e s f o r ~ t. W e w i l l fi n d t h e f o l l o w i n g b e h a v i o r : f o r

    w e a k c o u p l i n g , a s t h e f r e q u e n c y 0)2 d e c r e a s e s t h e r e is a t r a n s i t i o n f r o m l o c k i n g

    t o p h a s e - d r i f t ; f o r s t r o n g c o u p l i n g , t h e t r a n s i t i o n i s f r o m l o c k i n g t o o s c i l l a t o r -

    d e a t h .

    F o r any a v e r a g e d s y s t e m , t h e p h a s e - d i f f e r e n c e i s c o n s t a n t w h e n l o c k i n g

    o c c u r s , a n d i f t h e m o d e l is o f t h e f o r m ( 4 .2 ) i t is e a s i ly f o u n d t h a t t h e

    phase -d i f fe rence ~b = 0 2 - 01 be tw een the tw o ave r aged osc i l l a to r s s a t is f i es

    sin(~b)

    = / 0 ) 2 - 0 ) 1 ) ,

    w h e r e x i s a c o n s t a n t d e p e n d i n g o n a l l o f th e p a r a m e t e r s . T h u s , i f s in (tk ) is

    p lo t t ed a s a fu nc t ion o f 0)~ an d 0)2 f ixed a t 1 , a s t r a ig h t l ine i s ob ta ine d . W e

    d e f i n e t h e a v e r a g e p h a s e - d i f f e r e n c e b e t w e e n t w o p h a s e - l o c k e d o c i U a t o r s b y

    f [

    4 > - - ~ o2 0 - Ol t ) dr ,

    w h e r e T i s t h e p e r i o d o f t h e p h a s e - l o c k e d s y s t e m . I f 02 a n d 01 s a t i sf y a v e r a g e d

    e q u a t i o n s o f t h e f o r m ( 2 .7 ) , t h e n ( 4 ~ ) = 4~ = 0 2 ( 0 - 0 1(t), a c o n s t a n t . I n t h e

    f o l l o w i n g f i g u r es , w e p l o t s i n ( ( 4 ~ ) ) v e r s u s 0 )1 f o r m = 1 a n d 3 v a l u e s o f t h e

    cou p l in g s t ren g th cc In F ig . 5a , e = 1 ; e i s su f f i c i en t ly sm a l l so tha t bo th the

    a v e r a g e d a n d t h e u n a v e r a g e d e q u a t i o n s l o s e l o c k i n g a t a v a l u e o f 0)~ i n t h e

    i n t e r v a l [ 0 . 5 , 1 ] . W e h a v e m a r k e d t h e c r i t i c a l v a l u e o f t h e f r e q u e n c y a t w h i c h

    l o c k i n g is l o s t f o r t h e a v e r a g e d a n d u n a v e r a g e d s y s t em s . B e c a u s e e is s m a l l , i t

    i s n o t s u r p r i s i n g t h a t t h e a v e r a g e p h a s e - d i f fe r e n c e s b e t w e e n t h e t w o o s c i l l a t o r s

    a r e s i m i l a r f o r t h e a v e r a g e d a n d u n a v e r a g e d s y s t e m s .

  • 7/25/2019 Er Men Trout 1991 Multiple

    11/23

    ,t

    Multiple pulse interactions and averaging

    0 . 5 ~ 0 . 7 0 . 8 0 . 9 1 . 0

    to1

    205

    i I ~ - ~ ~

    l

    0 5 0 6 0 7 0 8 0 9 t 0

    . w

    r/)

    3

    0 . 7 5 0 , 8 0 O . B 5 0 . 9 0 0 . 9 5 1 . 0 0

    co1

    Fig. a- e. Sin(~b} vs. ~o for different

    coupling strengths, w here (~b} = 1/

    T S~ 02 0 - O1 t ) dr . Dashed curve shows

    sin ~b for an averaged system, a Coup ling

    strength = 1, arrows mark value of ~o, at

    which locking is lost for single pulse

    (~0.65) and averaged (~0.62) system;

    b coupling strength = 2; e coupling

    strength = 3

    F i g u r e 5 b h a s p a r a m e t e r s i d e n t ic a l t o F i g . 5 a e x c ep t t h a t t h e c o u p l i n g is

    t w i c e a s s t r o n g ( ~ = 2) . T h e c o u p l i n g i s s ti ll s u f fi c ie n t ly w e a k s o t h a t o s c i l l a t o r -

    d e a t h d o e s n o t o c c u r f o r 0 . 5 ~< o91 ~< 1 . F i n a l l y , i n F i g . 5 c w e s h a l l s h o w t h e

    a v e r a g e p h a s e - d i f f e r e n c e w h e n ~ = 3 . A t t h e c r i t i c a l v a l u e , o h ,,~ 0 . 7 5 , o s c i l l a t o r

    d e a t h o c c u r s f o r ( 4 .1 ) s o t h a t t h e r e a r e n o p e r i o d i c s o l u t i o n s f o r s m a l l e r v a lu e s

    o f c o 1

    I n t h e l a s t s i m u l a t i o n , w e f ix a = 6 s o t h a t t h e r e i s o s c i l l a t o r - d e a t h f o r a n y

    v a l u e o f a h ~< 1 w h e n m = 1. T h e c o u p l i n g i s n o w b y 4 p u l s e s ( m = 4 ), w h i c h

    p r e v e n t s t h e o s c i l l a t o r d e a t h , a n d w e s h o w t h r e e c u r v e s i n F i g . 6 a s o~1 v a r i e s

    f r o m 1 . 0 d o w n t o 0 . 1 . T h e s e c u r v e s a r e s i n ( ( ~ b ) ) , s in ( ~b m , .) , a n d s in (~ bm i,),

    w h e r e ~ bm ,x ( r e s p . ~m in = m a x 0 2 0 - 0 1 t ) ( r e s p . m i n 0 2 ( 0 -

    0 1 t ) ) .

    W e

    0

  • 7/25/2019 Er Men Trout 1991 Multiple

    12/23

    2 0 6

    0.

    I I 1 i ~~

    0 3 0 5 0 6 0 8 1 0

    G . B . E r m e n t r o u t a n d N . K o p e l l

    F i g, , 6 . S a m e a s F i g . 5 a - c b u t c o u p l i n g -

    s t r e n g t h = 6 , 4 p u l s e s p e r c y c l e s h o w i n g

    s i n ~ . . . . s i n ~ b ~ n , s i n( q ~ ) , w h e r e

    ~ bm ax = m a x

    0 2 0 - 0 1 0 ,

    ~ b m i n = m i n

    O ~ t ~ T O ~ t ~ T

    0 2 0 - - 0 1 t ) , ~ ) = I / T S ~ 0 2 ( 0 - - 0 1 ( t ) dt .

    S m a l l d a s h e s a r e u s e d f o r f f m ~ x, l a r g e f o r

    ~ bm i , s o l i d f o r ( ~ )

    5 Re al i s t i c ne twork s and s table d i str ibut ion of phases

    In Sect. 3, we showed that if a network is able to stably distribute phases about

    its cycle, then it is possible to obtain 1 : 1 locking and nearly averaged behavior

    with strong interactions between oscillators. This averageability is shown to

    prevent oscillator-death and other complex dynamical behavior. Two assump-

    tions are implicit in the creation of these networks. First, we have assumed that

    we can arrange coupling within the network so that the cells within the network

    fire out of phase. Second, we have assumed that the interaction with another

    similar network does not disrupt this firing pattern. That such networks are

    realizable is not obvious. In this section, we show two examples, a phase model

    and a neural model, that exhibit the desired properties: (i) within the network,

    the oscillators are phase-shifted so that there is uniform dispersion of phases, and

    (ii) when two such networks are coupled, it is possible to obtain stable 1:1

    locking even though the two oscillations are far apart in frequency.

    5 .1 . P h a s e m o d e l s

    The most obvious way to set up a pattern of phases is to arrange the units of the

    network in a geometric ring and attempt to form a travelling wave that cycles the

    ring. If the wavelength is m, where m is the number of units in the ring, then

    the phases must necessarily be a multiple of 2 r r / m apart. A wavelength of 0

    corresponds to synchronous oscillations in the ring. Other wavelengths corre-

    spond to nearest neighbor phase-lags of 2rc /k where k is a divisor of m. In [13],

    it is shown that oscillators that are coupled in a ring with some inhibition have

    as stable solutions waves of the desired form. Furthermore, if the inhibition is

    strong enough, the synchronous solution of the ring is unstable--the phases

    necessarily separate. (A more explicit definition of such inhibition is given

    below.) The model analyzed in [13] has the form

    Oj = 09 + ~ H Oi - O j , i - j ) , j = 0 . . . . . m . (5.1)

    i O

  • 7/25/2019 Er Men Trout 1991 Multiple

    13/23

    M ultiple pulse interactions and averaging 207

    S i n c e w e a r e s h o w i n g t h a t , e v e n i f th e i n t e r a c t i o n s a r e n o t v i a p h a s e - d i f f e re n c e s ,

    t h e n e t w o r k s c a n a v e r a g e t o c r e a te si m i la r b e h a v i o r , w e d o n o t w a n t t o s t a r t

    w i t h e q u a t i o n s o f t h e f o r m ( 5. 1) . I n s t e a d w e w i ll k e e p t h e r i n g g e o m e t r y a n d

    c o n s i d e r a g e n e r a l i z a t i o n o f ( 5 . 1 ) :

    m 1

    O j = c o + ~ h O i , O j, i - j ) , j = 0 . . . . . m . (5 .2)

    i = 0

    W e h a v e i n m i n d t h e c l as s o f m o d e l s d e r iv e d in S e c t. 2 u n d e r t h e a s s u m p t i o n s o f

    i n f i n i t e a t t r a c t i o n t o t h e l i m i t c y c le . F o r t h i s ty p e o f m o d e l ,

    h O , , O j, i - j ) = P O , ) R O j ) w i - j ) , (5 .3)

    w h e r e

    P O i )

    i s t h e i m p u l s e o f t h e o s c i l l a t o r i c a u s i n g t h e r e s p o n s e

    R 0 i )

    o n

    o s c i l l a to r j w i t h w e i g h t w i - j ) . A b o u t R O j ) , w e a s s u m e t h a t R ' < 0 f o r a

    n e i g h b o r h o o d o f 0 = 0 . S u c h a n R i s p r o d u c e d a s d i s c u s s e d i n S e ct . 2 f r o m

    n e u r a l m o d e l s d e s c r i b i n g c o u p l i n g v i a e x c i t a t o r y i n t e r a c t i o n s , i . e . , o n e s i n w h i c h

    t h e v o l t a g e i s i n c r e a s e d i n t h e t a r g e t n e u r o n . I n h i b i t o r y c o u p l i n g l e a d s t o

    r e s p o n s e f u n c t i o n s R w i t h R ' > 0 n e a r 0 = 0 . T h u s , w e c a n m o d e l e x c i t a t o r y

    ( r e s p . i n h i b i t o r y ) c o u p l i n g u s i n g a f ix e d r e s p o n s e f u n c t i o n R s a t i s f y i n g R ' ( 0 ) < 0

    a n d l e t t i n g t h e w e i g h t s w b e p o s i t i v e ( r e s p . n e g a t i v e ) .

    E q u a t i o n ( 5. 3) i s d e r i v e d f r o m a r i n g o f id e n t ic a l n e u r o n s t h a t h a v e s t r o n g l y

    a t t r a c t i n g l i m i t c y c le s a s s o l u t i o n s . P r e l i m i n a r y w o r k i n d i c a t e s f o r t h e n e t w o r k

    ( 5 .3 ) t h a t i f t h e c o u p l i n g i s e x c i t a t o r y , t h e n t h e i n - p h a s e s o l u t i o n

    O j t ) = Oe t ) V i , j i s a s t a b l e s o l u t i o n t o ( 5 . 3 ) . W e m u s t a v o i d t h i s , f o r o t h e r w i s e

    t h e o s c i l l a t o r s i n t h e r i n g a l l s y n c h r o n i z e a n d t h e n e t w o r k i s e q u i v a l e n t t o a

    s i n g l e o s c i l l a t o r . T h u s , w e a s s u m e t h a t s o m e o f t h e c o u p l i n g i n t h e r i n g i s

    i n h i b i t o r y .

    W e co n s i d e r ( 5 .2 ) a n d ( 5 .3 ) c o u p l e d t o a n o t h e r s u c h r i n g w i t h e x c i t a t o r y

    c o u p l i n g b e t w e e n r i n g s :

    ao~ /at = Oil + R o~ ) w i - j ) P o ~ ) + ~ P o { ) ,

    ; (5.4)

    O J z /d t = 092 + R O J 2 ) w i - - j ) P O i 2 ) + o ~ P O ~ ) ,

    w h e r e

    P u ) = (0.5 + 0.5 cos(u)) 4, R u ) = - ( s in (u + 0 .4 ) - - s in (0 .4 ) ) . (5 .5 )

    E a c h o s c i l l a t o r r i n g 1 i s c o u p l e d t o n e i g h b o r s i n t h e r in g a n d t o i t s a n a l o g u e

    o s c i l l a t o r in r i n g 2 . I n a b s e n c e o f c o u p l i n g b e t w e e n r i n g s (~ = 0 ), w e c h o o s e w k )

    s o t h a t t h e r e i s a w a v e i n e a c h r i n g . I n t h e n u m e r i c a l e x p e r i m e n t w i t h r i n g

    s t ruc tu re , we hav e cho sen m = 6 , w(0 ) = 0 , w(1 ) = w( - 1 ) = 0 .1,

    w ( 2 ) = w ( - 2 ) = - 0 . 6 , a n d w ( 3 ) = - 0 . 2 , co l = 1 , a n d co2 = 0. 5.

    I n t h e f i r s t n u m e r i c a l e x p e r i m e n t w e s i m p l y c o u p l e t w o o s c i l l a t o r s w i t h o u t

    the r ing s t ruc tu re ( i .e . , we l e t w-= 0 ). F o r 0~ sm a l l t he re i s no lock ing , a s i s

    expec ted s ince the f requenc ie s a re qu i t e d i f fe ren t . As ~ inc rea se s the re i s a

    c o m p l i c a t e d s e q u e n c e o f n : m l o c k i n g p a t t e r n s f o r w h i c h m < n . T h a t i s, t h e r e

    a r e a l w a y s m o r e c y c l e s o f t h e f a s t o s c i l l a to r 1 t h a n t h e r e a r e o f th e s l o w o s c i l l a to r

    2 . A t a p a r t i c u l a r v a l u e o f ~ ( ~ ~ 1 .6 5), o s c i l l a to r 2 s t o p s ; t h a t is , i t n o l o n g e r

    t r a v e r s e s a c o m p l e t e c y c le . O s c i l l a t o r 1 c o n t i n u e s t o t r a v e r s e t h e c y c le a n d t h i s

    b e h a v i o r p e r s i s ts f o r a l l h i g h e r v a l u e s o f ~ . T h u s o s c i l l a t o r 1 a n d 2 d o n o t e v e r

    l o c k i n a 1 : 1 m a n n e r .

  • 7/25/2019 Er Men Trout 1991 Multiple

    14/23

    2

    2 8

    2~

    0 0 1

    2rr

    G. B. Ermentrout and N. KopeU

    F i g . 7 . 0 v s . 0 f o r ~ = 2 . N o t e t h a t

    t r a j e c t o r y is c l o s e t o s t r a i g h t li n e i .e .

    0 - 0 is a l m o s t i n d e p e n d e n t o f t

    2~

    0 J ( t )

    Fig. 8. 0 (t) vs. t. No te that the wav e structure is maintained even if the cou pling between rings is

    mo derately strong

    I n t h e s e c o n d e x p e r i m e n t w e u s e t h e r in g s t r u c t u r e . F o r ~ sm a l l, t h e r e i s a g a i n

    n o l o c k i n g . A s w e i n c r e a s e ~ w e f i n d t h a t 1 : 1 l o c k i n g o c c u r s . I n F i g . 7 , w e s h o w

    t h e p h a s e - p l a n e d i a g r a m o f 0 vs 0 f o r ~ = 2 . N o t e t h a t t h e t r a j e c t o r y i s n e a r ly

    a s t r a i g h t l i n e , i n d i c a t i n g t h a t t h e s y s t e m i s b e h a v i n g a s i f i t w e r e a v e r a g e d . I n

    F i g . 8 , w e s h o w t h e t i m e - d e p e n d e n c e o f t h e t r a j e c to r i e s f o r e a c h o f t h e p h a s e s .

    T h i s fi g u re s h o w s t h a t ev e n w i t h s t r o n g c o u p l i n g b e t w e e n t h e r in g s , t h e p h a s e

    r e l a t i o n s h i p s w i t h i n a r i n g a r e p r e s e r v e d . W e f u r t h e r n o t e t h a t t h e i n t r a - r i n g

    c o u p l i n g i s s m a l l c o m p a r e d t o t h e c o u p l i n g b e t w e e n r i n g s ; t h u s w e d o n o t n e e d

    t o a s s u m e t h a t t h e c o u p l i n g w i t h i n t h e r i n g i s m u c h s t r o n g e r .

    F i n a l ly , o n e m i g h t a r g u e t h a t i t is t h e p r e s e n c e o f in h i b i t o r y c o u p l i n g w i t h i n

    t h e r i n g r a t h e r t h a n t h e e x i s t e n c e o f p h a s e - s h i f t s t h a t i s r e s p o n s i b l e f o r p r e v e n t -

    i n g th e o s c i l l a t o r d e a t h o f t h e c o u p l e d s y s te m . T o s ee i f t h is is t h e c a s e, w e

  • 7/25/2019 Er Men Trout 1991 Multiple

    15/23

    Mu lt ip le pulse in teract ions and averaging 2 9

    c o n s i d e r t h e f o l l o w i n g v a r i a t io n o f 5 . 4 ) :

    dOi/dt

    = 3 ) 1

    --~R Ol)Im~o= w i )P 01 )+ ~P 02 )] ,

    5 . 6 )

    ]

    O2/dt = o92 + R 0 2) w i ) P 0 2 ) ~ P 0 1)

    i

    E q u a t i o n 5 . 6 ) is j u s t t h e s y m m e t r i c f o r m o f 5 . 4 ), t h a t i s, 0 4 = 01 f o r a ll j a n d

    s i m i la r ly f o r 0 ~. N o t e t h a t t h e s y m m e t r i c s o l u t i o n i s u n s t a b l e a s a s o l u t i o n t o

    5 . 4 ) . ) A s i n t h e f i r s t c a s e , n u m e r i c a l e x p e r i m e n t s i n d i c a t e t h a t 1 : 1 l o c k i n g i s s ti ll

    i m p o s s i b l e a n d a s e q u e n c e o f b i f u r c a t i o n s i m i la r to t h a t w i t h o u t t h e ri n g

    s t r u c t u r e o c c u r s . F o r ~ l a r g e e n o u g h , o s c i l la t o r 2 is s t o p p e d .

    W e h a v e d o n e s i m i l a r n u m e r i c a l e x p e r i m e n t s f o r d i f f e r e n t p a r a m e t e r s a n d

    d i f fe r e n t n u m b e r s o f o s c il l a to r s i n t h e r in g a n d f i n d th e s a m e b e h a v i o r w i t h i n

    s o m e li m i ts . O b v i o u s l y , i f ~ b e c o m e s t o o la r g e w e l l b e y o n d t h e v a l u e s t h a t y i e ld

    : 1 l o c k i n g i n th e r i n g s) , t h e n o s c i l la t o r d e a t h c a n a n d d o e s o c c u r .

    5.2. Neural net models

    I n th i s s e ct io n , w e s tu d y t w o c o u p l e d r in g s o f W i l s o n - C o w a n n e u r a l e q u a t io n s :

    d e ~ /d t = - e ~

    + f e f l l e E ~ - - f l ie I ~ + o ~ g J 2) ,

    ,

    e ie - i iI - w k - j ) I ,

    k = o 5 . 7 )

    = + f e f l e e E 2 - - f l ie [ 2 +

    d I { / d t = + f , . e , E { - 8 , ,1 { - w k - j ) I , j = 0 , . . . , 5

    k =

    H e r e E j a n d / j r e fe r t o p o p u l a t i o n s o f e x c i t a to r y a n d i n h i b i t o r y n e u r o n s . F o r

    m = 1 a n d c o u p l i n g c o e f f i c i e n ts e = 0 t h e s y s t e m o f E l , I1 r e s p . E 2 , I2 ) f o r m s a n

    o s c i ll a to r . T h e ju s t i f ic a t i o n f o r t h e f o r m o f 5 . 7 ) c a n b e f o u n d i n o t h e r a r t ic l es

    [ 9 ] . C o u p l i n g

    within

    t h e r in g i s so l e y t h r o u g h t h e

    inhibitory

    n e u r o n s / j . C o u p l i n g

    across t h e t w o r i n g s i s t h r o u g h t h e excitatory n e u r o n s . B o t h r i n g s a r e i d e n t i c a l

    w i t h t h e e x c e p t i o n o f t h e p a r a m e t e r ,

    flee,

    w h i c h i s d i f f e r e n t i n t h e t w o r i n g s . T h i s

    p a r a m e t e r h a s a l a r g e e f f e c t o n t h e i n t r in s i c f r e q u e n c y o f t h e o s c i l l a t o r s , s o i t i s

    v a r i e d i n o r d e r t h a t t h e u n c o u p l e d s y s t e m s h a v e d i f f e r e n t f r e q u e n c i e s . T h e

    p a r a m e t e r s u s e d i n o u r e x p e r i m e n t s a r e a s i n th e c a p t i o n t o F i g . 9. T h e r e a r e

    t h r e e e x p e r i m e n t s a s i n t h e p h a s e m o d e l .

    I n t h e f ir s t e x p e r i m e n t , w e a l lo w 5 . 7 ) t o e v o l v e f r o m r a n d o m i n it ia l

    c o n d i t io n s . W e f in d a l a r g e r a n g e o f c o u p l i n g s t r e n g t h s e t h a t l e a d to 1 : 1

    e n t r a i n m e n t w i t h n o d i s t o r ti o n i n t h e w a v e s h a p e s. F i g u r e 9 s h o w s t h e e x c i ta t o r y

    v a r i a b l e s E~ t ) a n d E~ t ) . N o t e t h a t t h e f a s t e r o s c i l l a t o r i s s l i g h t l y a d v a n c e d . T h e

    o t h e r c o m p o n e n t o s c i l l a t o r s h a v e i d e n t i c a l p r o f i l e s b u t t h e y a r e p h a s e - s h i f t e d . I n

    F i g . 9 b , w e s h o w t h e c o m p l e t e s et o f w a v e s f r o m n e t w o r k 1. N o t e t h a t t h e p h a s e

    r e l a t i o n s h i p s a r e n o t d i s t o r t e d b y t h e c o u p l i n g b e t w e e n t h e r i n g s .

    I n t h e n e x t e x p e r i m e n t , w e t r y to e n t r a i n t h e tw o o s c i l la t o r s w i t h o u t

    e x p l o i t i n g t h e r i n g s t r u c t u r e . F o r t h i s e x p e r i m e n t ,

    w k ) - 0 .

    W e f i n d t h a t f o r e

    s m a l l , t h e r e i s n o l o c k in g ; r a t h e r t h e t w o o s c i l la t io n s u n d e r g o q u a s i - p e r i o d i c

  • 7/25/2019 Er Men Trout 1991 Multiple

    16/23

    G B E r m e n t r o u t a n d N . K o p e l l

    2 1 0

    tl.I

    51 52

    b 51 L 52

    F i g . 9 . a . W i l s o n C o w a n n e t w o r k s c o u p l e d t o g e t h e r.

    E t )

    a n d

    E t )

    a r e p l o t t e d f o r o n e l o c k e d

    c y c l e fl e~ = 1 2 fl eSe= 1 8 f li g = 0

    file

    = 2 0

    f le i : 1 8 , W O ) = O , W 1 ) = W - - 1 = O . 1 ,

    w(2) = w (- 2 ) = 2, w(3) = 0.3; f~(u) = ~(1 + tan h(u - )); ~(u) = ~ 1 + ta nh(u - 4)); ~ = 10. b E{ (t).

    No te that the w aves persist after coupling

    b e h a v i o r . A s ~t i n c r e a s e s , t h e r e a r e r e g i m e s o f p e r i o d i c n : m l o c k i n g f o r n # m ,

    s e p a r a t e d b y q u a s i -p e r i o d i c a n d c h a o t i c b e h a v i o r . A t ~ ,~ 1 0, t h e s o l u ti o n s

    a p p e a r t o b e c h a o t i c a n d a s ~ i n c re a s e s t h e y b e c o m e p e r i o d i c a n d b u r s t - l i k e

    ( sev e r a l sp i ke s r epe a t ed ) . A t c t ~ 10 .5 t h e r e i s 1 : 1 l ock i ng b u t t h i s pe r s i s t s o n l y

    u n t i l 0 t ~ 1 0 .5 8 a t w h i c h p o i n t a l l o s c i ll a t io n s a r e s t o p p e d . T h e r e g i m e f o r 1 : 1

    l o c k i n g is v e r y s m a ll a n d d e p e n d s a g r e a t d e a l o n t h e p a r a m e t e r s f l l and f l~e .

    F i n a ll y , w e p e r f o r m t h e e x p e r im e n t a n a l o g o u s t o t h e t h i rd e x p e r i m e n t a b o v e

    i n o r d e r t o c o n v i n c e o u r s e l v e s t h a t i t i s i n f a c t t h e i n t r a - r i n g p h a s e s h i f t s , n o t t h e

    p r e s e n c e o f i n h i b i t o r y c o u p l i n g , t h a t a r e r e s p o n s i b le f o r o u r a b i l i ty t o o b t a i n 1 : 1

    l o c k in g . T h u s , w e c o n s i d e r t h e m o d i f i e d v e r s io n o f (5 . 7 ) w h e r e

    E~, I~)= E~ , I~)

    a n d ( E ~, I ~ ) = ( E ~, I t ) . H e r e , w e

    do

    f i n d a s l i m r a n g e o f

    c o u p l i n g s t r e n g t h s f o r w h i c h 1 : 1 l o c k i n g i s p o s s ib l e b u t t h e w a v e f o r m s a r e

    s e v e r e l y d i s t o r t e d ; t h e f a s t e r o s c i l l a t o r h a s a s m a l l r e s i d u a l s p i k e t h a t a p p e a r s t o

    b e a r e s i d u e o f a 2 : 1 l o c k e d s t a te .

    T h e s e n u m e r i c a l re s u lt s a re o n l y p r e l i m i n a r y a n d b y n o m e a n s e x h a u s ti v e ;

    o u r g o a l h e r e i s t o s h o w t h a t n e t w o r k s t h a t c a n p r o d u c e a v e r a g e d i n t e r a c t i o n s

  • 7/25/2019 Er Men Trout 1991 Multiple

    17/23

    M ultiple pulse interactions and averaging 211

    a r e s i m p l y c o n s t r u c t e d . T h e s e i n t e r a c ti o n s a p p e a r t o m a k e i t m u c h e a si e r f o r t h e

    t w o o s c i l la t o r s to e n t r a i n o v e r a l a r g e r a n g e o f c o u p l i n g s t r e n g t h s a n d i n t r in s i c

    f r e q u e n c i e s w i t h o u t s i g n i f i c a n tl y d i s t o r t i n g t h e w a v e f o r m s o f t h e o s c i l la t i o n s . I n

    a l a t e r p a p e r , w e w i ll s y s t e m a t i c a l l y e x p l o r e m o d e l s t h a t a r e v a r i a t i o n s o f ( 5 . 4)

    a n d ( 5 . 7 ) .

    Acknowledgement.

    We w ish to tha nk L . Glass, whose resolute disbeliefprovoked us to b ack up some

    of our claims.

    Appendix Com putation of the averaged functions

    W e d e s c r i b e in m o r e d e t a i l t h e c h a n g e o f c o o r d i n a t e s d i s c u s s e d i n S e c t. 2 i n o r d e r

    t o o b t a i n e x p l i c i t i n f o r m a t i o n a b o u t t h e f u n c t i o n s i n ( 2 . 2 ) . W e t h e n u s e t h i s

    i n f o r m a t i o n t o d e r iv e n u m e r i c a l t e c h n i q u es f o r o b t a i n i n g t h e a v e r a g e d e q u a t i o n s

    ( 2 .4 ) w h e n t h e r e is w e a k c o u p l i n g a n d t h e f u n c t i o n s

    hk(Ok, Oj)

    o f ( 2 .6 ) w h e n t h e

    a t t r a c t i o n t o t h e l i m i t c y c le i s v e r y s t r o n g . W e w i l l s ee t h a t t h e c a s e o f w e a k

    c o u p l i n g i s c o n s i d e r a b l y m o r e d i f fi c u lt , e s s e n t ia l l y b e c a u s e t h e p r o p e r t i e s o f t h e

    e q u a t i o n s o f f t h e l i m i t c y c le s c a n a f f e ct t h e a v e r a g e d e q u a t i o n s , a n d w e d o t h a t

    d e r i v a t i o n i n t w o w a y s . ( S e e [1 0] a n d t h e a p p e n d i x o f [1 4] f o r r e l a t e d c a l c u l a-

    t i o n s .) F i n a l l y , w e a p p l y t h e m e t h o d s t o a c l a s s o f n e u r a l m o d e l s .

    A 1 . Osc i l l a tor s w i th s t rong ly a t t rac t ing l imi t cyc l e s

    C o n s i d e r t h e p a i r o f c o u p l e d o s c i l la t o r s ( 2 .1 ) . W e a s s u m e a s b e f o r e t h e

    d X g / d t = F k ( X k )

    h a s a n a s y m p t o t i c a l l y st a b l e l i m i t c y c le s o l u t i o n w h i c h w e s h a l l

    ca l l

    Uk(t/Ogk),

    wh ere COk i s the f requ ency o f the l imi t cyc le an d

    U k ( O )

    is

    2 n - p e r i o d i c i n i t s a r g u m e n t . L e t

    Uk = Tk(Ok, Yk ) , Yk

    ~ R n - l , b e th e c o o r d i n a te

    t r a n s f o r m a t i o n s . T h e s e t r a n s f o r m a t i o n s c a n b e c h o s en s o t h a t

    uk( t ) = U~(Ok( t ) ) + M k(Ok( t ) ) yk ( t ) + O([y~

    [ ) , (ml )

    w h e r e

    M k ( O )

    i s an n x (n - - 1 ) ma t r ix and

    M k ( O ) r M k ( O )

    = 1(, _ ,) (, _ 1),

    A2)

    U ~ (O ) ~M ~ ( O ) = 0 1 ( n - 1 ~ .

    I n t h e a p p e n d i x t o [ 7 ] i t w a s s h o w n t h a t

    Oh, Yk

    sa t i s fy

    ( D k I d O k / d t 1 + O f f l ( g k ) Z [ ( D k + ( D k ) r ) M k y k + G k] ,

    ( A 3 )

    o 9 ; 1 d y k / d t = ( ( M k ) T D k M k + ( M k ) T M k ) Y k q - ( M k ) T G k .

    ( H e r e ~ o ; 1 a r is e s f r o m d i f f e r e n ti a t io n o f

    Uk(Ok/~Ok)

    w i t h r e s p e c t t o t i m e . ) W e w i l l

    u s e ( A 3 ) a s t h e b a s i s f o r t h e r e s t o f t h e c a l c u l a t i o n s i n t h i s a p p e n d i x .

    I n th e li m i t o f i n f i n it e a t t r a c t i o n t o t h e l im i t c y cl e, y k ~ 0 , a n d ( A 3 )

    b e c o m e s ( 2 . 6 ) w i t h

    h k ( O k , O j ) = o ~ O ; 1 ( O ~ ) ( V ~ ) ~ ( O ~ ) G ~ ( ~ : ~ ( O ~ ) , ~ 0A ). A4)

    T h e s ig n if ic a n ce o f ( A 4 ) is t h a t i t a ll o w s u s t o c o m p u t e a n a p p r o x i m a t e p h a s e

    m o d e l , w h i c h is m o r e a c c u r a t e t h e g r e a t e r t h e s tr e n g t h o f th e a t t r a c t i o n o f t h e

    l i m i t c y c le . F u r t h e r m o r e , t h e a v e r a g e s i n ( 2 .7 ) , ( 2 .9 ) c a n b e q u i c k l y a n d e a s i ly

  • 7/25/2019 Er Men Trout 1991 Multiple

    18/23

    212

    co mp u t ed w i t h o u t f i r s t p e r f o r mi n g t h e r ed u c t i o n t o a p h as e mo d e l :

    ' f 0

    k((f f) = ~ 09k O kl( t ) (U 'k)T( t )G k(U a( t ) , U j( t 4- cp~) d t ,

    whe re q~ = 0 - 0h. (See [7 ] fo r com pu ta t i on o f t he r e l evan t phas e mo del . )

    G. B. Ermentrout and N. Kopell

    ( A 5 )

    A 2 . W e a k c o u p li n g

    I f t he coup l ing i s wea k , Eqs . (2 .1 ) ma y be d i r ec t ly averaged , i n s t ead o f

    f ir s t r ed u ced t o a p h as e m o d e l an d t h en av e r ag ed . I t f o l l o w s f r o m i n v a r i an t

    man i fo ld t heory t ha t when the coup l ing i s weak , t here a lways ex i s t s an i nvar i -

    an t t o rus [11 ] . Ho we ver , un l ike t he f i rs t case , t he i nvar i an t t o rus i s no t neces -

    sar il y the p ro du ct o f t he limi t cyc l es , and so am pl i t ude v ar i a t i ons m ay af fec t

    t h e l o cal f req u en c ie s . Th e am p l i t u d e e f f ect s m ak e t h e ca l cu l a ti o n o f t h e

    averaged func t ions H() much more d i f f i cu l t , s i nce we mus t dea l wi th t he

    co m p l e t e n - d imen s i o n a l s y s t em in s t ead o f r es t ri c ti n g o u r av e r ag in g t o t h e

    p h a s e co m p o n en t . O u r g o a l i n t h e rema i n d e r o f th is s ec t io n is t o d e r iv e a

    genera l fo rm ula t ha t w i ll enab le us t o c a l cu l a t e t he phase e f f ec t s i n wea k ly

    coup led osc i l l a to r s .

    I n o r d e r t o s t u d y w eak co u p l i n g , w e mu s t a s s u me t h a t

    F k

    = F + O(e) where

    ~ 1 and the O(e) t e rms co n t r i bu t e smal l f r equency d i ff e rences be tw een the two

    osc i l l a to r s . We rep l ace

    G k

    an d

    eGg

    an d ab s o r b t h e f r eq u en cy d i f f e r n ce t e r ms

    in to t he eGk t e rms . We can assume wi th no l oss i n genera l i t y t ha t , t o l owes t

    order , (ok = 1.

    M e t h o d I .

    W e r ep lace Y k b y

    e S k ,

    s ince

    Y k

    wi l l be 0 (8 ) on t he i nvar i an t t o rus .

    E q u a t i o n ( A 3 ) b e c o m e s

    dO k/d t = 1 + e [b (Ok)S + Q- ' (Ok ) (u ' )T (O k)G k(U (O k) ,

    U(0j))] + O(e2),

    ( h 6 )

    d s k / d t = a (O k )S k + M r ( O k ) G k ( U ( O k ) , U ( O b )) + 0 ( 8 ) .

    w h e r e

    b(O) = q

    -I(U )T(D

    -~ D T ) M ,

    a(O ) = M T D M + ( M ' ) r M .

    ( A 7 )

    N o t e t h a t

    a ( O )

    a n d

    b ( O )

    d ep en d o n l y o n t h e o r ig i n a l li m i t cy c l e an d d o n o t

    de pe nd on the fo rm o f the coup l ing. T he solu t ion to (A6 ) i s Ok = t + (~k w here (~k

    is cons t a n t t o l owe s t o rder . F r om (A6) , w e ob t a in equ a t ions fo r (~k and Sk:

    d(~k/dt = e[b(t)sk(t; Zp) + Q- a ( t ) ( U ' ) r ( t ) G k ( U ( t ) , U ( t + ~))] + O(e2), (A 8a )

    d s ~ / d t = a ( t ) s k (t ; q~) + n r ( t ) G k ( U ( t ) , U ( t

    + q~)) + O(e), (A 8b )

    w here q~ = ~ - Ok O n the inva r iant m an i fold Sk = Sk(Ok, Oj) = sk(t , t + 2p) +

    O(e) , wh en , t o l ow es t o rde r i n e , (~ is cons t an t . W e w r i te Sk( t ; ~ t o mak e t h i s

    d ep en d en ce ex p l i c i t . W e s o l v e ( A 8 b ) f o r Sk(t; dp) and subs t i t u t e t h i s i n to (A8a) .

    We are t hen in a pos i t i on t o average equat ion (A8a) , y i e ld ing

    d t =

  • 7/25/2019 Er Men Trout 1991 Multiple

    19/23

    M ultiple pulse interactions and averaging 213

    w h e r e

    1 f f ~

    k ( ~ ) = ~ b ( t )S k ( t ; (~ ) + 0 - ( t ) ( U ) r ( t ) G k ( U ( t ) , U ( t + q~-))d t .

    T h e f un ctio n/-T k q~ ) c o n s i s ts o f t w o c o m p o n e n t s , o n e c o r r e s p o n d i n g t o t h e e f fe c ts

    o f a m p l i t u d e o n t h e l o c a l fr e q u e n c i es . T h e s e c o n d c o m p o n e n t i s i d e n t i c a l t o

    A 5 ) , s o t h e d i f f e r e n c e b e t w e e n t h e c o u p l i n g f u n c t i o n H k f o r s t r o n g l i m i t c y c l e s

    a n d t h e t r u e c o u p l i n g f u n c t i o n / - 7 k i s the in teg ra l

    f k ( ~ ) = ~ b ( t ) s k ( t ; 0~ ) d t . A 9 )

    /-/k h a s t h e b e n e f i t t h a t i t d o e s n o t d e p e n d o n t h e c o o r d i n a t e m a t r i x

    M k ,

    s o t h a t

    i t is ea s il y c o m p u t e d f o r a r b i t r a r y l i m i t c y cl es . W e n o w t u r n o u r a t t e n t i o n t o t h e

    c o m p u t a ti o n o f ~ k .

    F r o m a n u m e r i c a l s t a n d p o i n t , i t is v e r y w a s t e f u l to s o lv e f o r sk a n d s u b s t i tu t e

    i n t o A 9 ) , s i n c e t h e v a l u e o f s k c h a n g e s e a c h t i m e t h e c o u p l i n g f u n c t i o n s a r e

    c h a n g e d . F u r t h e r m o r e , i t is i m p r a c t ic a l t o m a i n t a i n t h e a r r a y s k i n m e m o r y s in c e,

    f o r e a c h o f t h e n - 1 c o m p o n e n t s o f sk , o n e m u s t s t o r e K 2 n u m b e r s i f s k i s t o b e

    eva lua te d a t K t imes an d K va lues o f 4~- Ins t e ad , w ha t i s de s i red i s a s ing le vec to r

    f u n c t i o n U * ( t ) t h a t i s i n d e p e n d e n t o f t h e c o u p l i n g a n d i s s u c h t h a t

    1 f 2 ~

    k ( ~ ) = ~ U * r ( t ) G k ( U ( t ) , U ( t + q ~)) d t . A I O )

    B e s id e s r e q u i r i n g l es s c o m p u t e r s t o r a g e , t h e o t h e r a d v a n t a g e o f U * i s t h a t i t n e e d

    o n l y b e c a l c u l a t e d o n c e ; / - tk c a n t h e n b e c o m p u t e d f o r a r b i t r a r y t y p e s o f

    c o u p l in g . W e w i ll n o w s h o w h o w s u c h a fu n c t i o n U * t ) c a n b e c o m p u t e d . L e t

    E t ) s a t i s f y

    d E / d t = a ( t ) E , E O) = I , _ 1) , - 1), A 11 )

    i.e.,

    E ( t )

    i s t h e e x p o n e n t i a l o f

    a( t ) .

    L e t

    Q ( t ) = b ( O E ( ~ ) d ~ . A 1 2 )

    W e r e w r i t e A 9 ) a s

    9 ~ k ( 6 ) = ~ b ( t ) E ( t ) E - l ( t ) s k ( t ; q~) d t

    1 d / d t ( Q ( t ) ) E - l ( t )s k ( t ; ~ ) d t

    2 ~

    = - - 1 f2 ~

    1 Q 2~r)E-x 2z0sk 2zr ; 6) - ~ J0 Q t ) d t ( E - l ( t ) s , ( t ; 4 7)) d t . A 1 3 )

    2 g

    N o t e t h a t Q t ) d o e s n o t d e p e n d o n t h e c o u p li n g a n d is a f u n c t i o n o n l y o f t h e

    n o r m a l c o o r d i n a t e s a n d t h e li m i t c y c le . T o e v a l u a t e t h e la s t i n t e g r a l o f A 1 3 ) , w e

    u s e t h e d e f i n i t i o n o f E ( t ) a n d A 8 b ) t o o b t a i n

    d 1

    d t [ E - ( t )s k ( t ; 6)] = E - l ( t ) M r ( t ) G k ( U ( t ) , U ( t + 6 ) ) . A1 4)

    B e f o r e s u b s t i t u t i n g t h is i n t o A 1 3 ) , w e n e e d t o f i n d sk 2 1r; ~ . W e i n t e g r a t e A 1 4 )

  • 7/25/2019 Er Men Trout 1991 Multiple

    20/23

    214

    G. B. Ermentrout and N. Kopell

    an d use the fact tha t Sk(2rC; q~) = S k(0 ;~. Th us,

    o

    k 2 ~ ; ~ ) = [ I - e E r 0 1 - 1 e 2 ~ ) e-a t )M ~ t)Gk U t) , g t + ~ ) d t . A 1 5 )

    Fina l ly , we subs t i t u t e (A14) and (A15) i n to (A13) t o ob t a in

    ~ g ) = ~ { a ; ~ ) [ I - e 2 ~ ) ] - I _ a t ) } e- ~ t )M ~ t l 6 ~ V t ) , V t + ~ ) ) d t

    l f o : ~

    - 2 ~ t r ( t ) G k ( U ( t ) , U ( t + q ~ )) d t . ( A 1 6 )

    ( N o t e t h a t w e h av e u s ed t h e f ac t t h a t

    E ( t ) ,

    E - ~ ( t ) a n d [ I - E ( t ) ] - ~ a ll c o m m u t e

    in o rder t o s impl i fy (A16) . ) Th e ve c to r func t ion t /( t) is inde pend en t o f t he

    coup l ing as r equ i red . Our func t ion U * ( t ) is

    U * ( t ) = [ 0 - ~ ( t ) U ( t ) t l ( t ) ] . ( A 1 7 )

    M e t h o d 2 . Th e ab o v e d e r i v a t io n o f t h e fu n c t i o n s / ~ k ( ~ h as a r a t h e r g eo me t r i c

    f l av o r . A n o t h e r ap p r o ach i s t o u s e t h e F r ed h o l m a l t e r n a t i v e an d f o r ma l p e r t u r -

    b a t i o n ex p an s i o n s . W e w i l l s k e t ch t h i s me t h o d b e l o w an d s h o w t h a t t h e r e s u l t s

    a re equ iva l en t . Cons ider t he coup led equat ions :

    d X k / d t = F ( X k ) + e G k (z ~ k, ~ . ( A 1 8 )

    O n e s eek s s o l u t i o n s o f t h e f o r m

    X k ( t ) = U ( t + O g ( z ) ) + e W g ( t , z ,

    e) , where z =

    e t

    i s a s l ow t ime sca l e and W k ( t , Z , 5 ) is a s m o o t h f u n c t i o n o f it s co m p o n en t s .

    Sub s t i t u t i on o f t h is fo rm ula i n to (A 18) y i e lds a t o rde r e

    ~ ( t + O k ) =-- [ d / d t - - D ( t + O g ) l W k ( t , z , O )

    = - - U ( t + O k ) c 3 O k / a Z + G k ( U ( t + O k ) , U ( t + O j ) ) . ( A 1 9 )

    Per iod i c so lu t i ons W k are sough t . The l i near equa t ion

    .~q~(t)(( t) = f ( t)

    has a per iod i c so lu t i on i f and on ly i f

    o2~ Z * ( t ) f ( t ) d t = O ,

    w h er e z * ( t ) i s t h e u n i q u e p e r i o d i c s o l u t i o n t o t h e ad j o i n t p r o b l em

    [ d / d t - D T(t)]*(t) -- ~q *( t)z* (t) = 0,

    f 2 ~ ( A 2 0 )

    2 - -~ Z * ( t ) u ( t ) d t = 1 .

    Th u s , ( A 1 9 ) h a s a s o l u t io n i f an d o n l y i f

    1 fo~

    Ok/ t3Z = f fI k( Oj - - Ok) - - ~ Z* ( t ) G k( U ( t ) , U ( t + Oj - Ok) ) d t . ( A 2 1 )

    Eq u a t i o n ( A 2 1 ) h a s t h e s ame f o r m a s ( A 1 0 ) . W e p r o v e t h a t U * r ( t ) = Z*(t) is the

    s o l u t io n t o ( A 2 0 ) an d t h u s s h o w u n i q u en es s o f U * b y v ir t u e o f t h e u n i q u en es s

  • 7/25/2019 Er Men Trout 1991 Multiple

    21/23

    M ultiple pu lse interactions and averaging 215

    o f ;( *. Th i s a ls o i mp li e s t h a t H = ~ . W e s eek s o lu t i o n s x * ( t ) t o ( A 2 0 ) o f t h e f o r m

    *( t) = U ' ( t ) ( ( t ) + M ( t ) z ( t ) .

    ( A 2 2 )

    Subs t i t u t i on o f (A22) i n to (A20) l eads t o

    U ( + U '( + M ' z + M z + D r U ' ( + D r M z

    = 0 . (A23 )

    W e mu l t i p l y ( A 2 3 ) b y U ' r an d u s i ng ( A 2 ) w e o b t a i n

    U ' r U ( + 5 ( + ( U r M + U ' r D r M ) z + U ' r D r U ' ( = 0 . (A24 )

    F r o m , r ,

    - U k ) M k = ( U ' k ) r( D k ) r M k and the f ac t t ha t U = D U ' , w e s ee t h a t ( A 2 4 )

    simplifies to

    ( U r U + u ' r u ) ( + 5~ = O.

    Since ( U r U ' + U ' r U ) = ( u ' r u ' ) = 5 ' , w e h av e 5 ' ( + 5 ( ' = 0 . A l o n g w i t h t h e

    norm al i za t i on con d i t i on o f (A20) t h i s impl i es

    ( ( t) = 5 - ' ( 0 - ( A 2 5 )

    W e n o w m u l t i p l y ( A 2 3 ) b y M r an d , u s i n g ( A 2 ) , o b t a i n

    z ' = - ( M r D r M + M T M ' ) z - ( M r U + M r D r u ' ) 5 - 1.

    ( A 2 6 )

    Again us ing t he f ac t t ha t U = DU and a l so (A12) , w e see t ha t (A26) is j u s t

    z = - a r ( t ) z - b r (t ). ( A 2 7 )

    T h e f u n d a m e n t a l m a t ri x f o r z ' =

    - a r ( t ) z

    is

    E - l ( t ) r

    a n d

    z ( t )

    i s r equ i red t o be

    2~r-periodic; thus

    z (t ) = E - 1 ( 0

    7 - { [ /_ E ( 2 r0 q - iQ(2r0 r _ Q r ( t ) } . (A 28)

    C o mb i n i n g ( A 2 8 ) w i t h ( A 2 5 ) an d ( A 2 3 ) , w e s ee t h a t Z* ( t ) = U * r ( t ) as r equ i red .

    [ ]

    A3 . Avera ged coup ling fo r neura l mod e l s

    W e n o w w i s h t o ap p l y t h e r e s u lt s o f S ec ts . A 1 an d A 2 t o t w o - d i me n s i o n a l n eu r a l

    mod el s . The genera l r esu lt s in Sects . A1 an d A 2 o f t h i s append ix p rov ide

    mach i n e r y f o r d e t e r mi n i n g t h e av e r ag ed f u n c t i o n ~ ( ~ b ) f o r a r b i t r a r y w eak l y

    coup led osc i l l a to r s . Th i s t ask i s s t r a igh t fo rward once we have chosen coord ina t es

    t o t r an s f o r m t h e s y s t em o f eq u a t i o n s i n t o eq u a t i o n s o f t h e f o r m ( A 3 ) . Th u s , w e

    mu s t f i r s t p r o v i d e a me t h o d f o r co n s t r u c t i n g t h e ma t r i x M ( O ) which sat i sf ies the

    cond i t i ons (A2) . In t he two-d imens iona l case , M ( O ) i s j u s t a two-d imens iona l

    co l u mn v ec t o r .

    Le t t h e co m p o n e n t s o f t h e li m i t- cy cl e f o r t h e t w o - d i men s i o n a l s y s tem b e

    U(O)

    - (ul (0), u2(0)). Th en

    U'(O) = (u'l (0), u'2(O)).

    W e l e t

    5 0 ) = I I

    u , o ) I I

    2 -

    + u 2 o )

    a n d c h o o s e

    M ( O ) = ( u~ (O ), - u~ ( 0 )) r / x / - ~ .

    Clear ly , th i s choice sat i sf ies (A2) .

  • 7/25/2019 Er Men Trout 1991 Multiple

    22/23

    H O)

    216 G .B. Ermentrout and N. K opell

    H e )

    b

    2~r

    Fig. 10.

    H O )

    for Wils on-C owan equations, flee= 12, fl/ ,= 14,

    flei =

    18, fl~i=0;

    f e U ) =

    2X(l+tanh(u--)); f~ (u )= ~ l+ ta n h( u -6 )) , a excitatory-excitatory coupling; b inhibitory-

    inhibitory coupling

    We now use this M to construct H(~b) . Equations (A11) and (A12) are scalar

    equations that are readily integrated using standard methods. This a l lows us to

    easily construct the functions

    U * O )

    defined in (A17) and consequently determine

    the averaged function ~(~b) for any two-dimensional osci l la tor .

    We have writ ten a comput er p rogram for numerical calcula t ion of the

    function

    U * O )

    which is then used to der ive the averaged function for any system

    of weak ly coupled two -dime nsion al oscillators. In Fig. 10, we plot the average d

    func t ions for two coupled Wilson-Cowan mode ls :

    d E j / d t = - E j d - f e f l e e g ] . - - f l ie I j J r C r e E k ) ,

    h29)

    d l j / d t = - I j + f ~ f l e , E j - f l , , I j - C t ,I k ) ,

    for j, k = 1, 2 j ~ k. In Fig. 10a, we assu me tha t 0ti = 0 and 0 < ~e ~ 1, i.e., we ak

    exc itat ory -exc itat ory couplin g. In Fig. 10b, we assu me th at c(e = 0 and 0q is small

    and posit ive , corresponding to weak inhibitory- inhibitory coupling. The slope a t

    the origin determines the stability of the in-phase solutio n for two cou pled identical

    oscil lators. Fro m this , one sees that w eak inhibitory- inhibitory coupling a lways

    results in unstable in-phase solutions; the stable phase-difference is half a cycle.

    Weak excitatory-excitatory coupling is more complicated; for identical oscillators,

    the in-phase solution is not stable, and the stable solution has a small phase-differ-

    ence. We have verified this by integrating the full equations (A29) for small *(e

  • 7/25/2019 Er Men Trout 1991 Multiple

    23/23

    Mu lt ip le pulse in te rac tions and averaging 217

    eferences

    1. Glass , L. , M ackey, M . : Fro m c locks to chaos : the rhythm s o f li fe . Pr ince ton: Pr ince ton

    Un iversi ty Press 1988

    2. K ope l l , N. Erm ent rout , G. B. : Coupled osc i l la tors and the des ign of cent ra l pa t te rn genera tors .

    M ath. Biosci . 90, 87 -10 9 1988)

    3 . Fr iesen , W. O. , Poon, M. , S tent , G. : Neurona l cont ro l of swimming in the medic ina l l eech IV.

    Ident i f ica tion of a ne two rk o f osc il l a tory in te rneurons . J . Exp. Biol. 75 , 25-4 3 1978)

    4 . Ko pe l l , N. : T ow ard a theo ry of mode l l ing cent ra l pa t te rn genera tors . In : Cohen , A. H . ,

    Ross ignol , S ., Gri l lne r , S. eds. ), The neu ra l cont ro l of rhythm ic movem ents in ve r tebra tes , pp .

    369 -413 . Ne w Y ork : W i l ey 1987

    5. Erm ent rou t G . B., Rinzel , J . M.: Phase wa lkthr oug h in biological oscil la tors. A m. J . Physiol.

    246, R6 02-6 06 1983)

    6. Schrieber, I . , Marek, M.: Strange at tractors in coupled react ion-diffusion cel ls . Physica 15d,

    258-272 1982)

    7 . E rmen t rout , G. B. , Ko pe l l , N. : Osc i l la tor dea th in sys tems of coupled neura l osc il la tors. SIA M

    J. Appl . Math . , to appear

    8. M orris , C . , Lecar, H.: Vo ltage oscil la t ions in the barnacle giant m uscle fiber. Bioph ysical J . 35,

    193-213 1981)

    9 . W i lson, H. R. , Cow an J . D. : Exc i ta tory and inhib i tory in te rac t ions in local ized popu la t ions o f

    m od el neuron s. Biophys. J . 12, 1- 24 1972)

    10. Er men t rout , G. B. , Kop e l l , N. : Freq uency p la teaus in a cha in of weakly coupled osci ll ators , I .

    SIA M J . Ma th . Ana l . 15 , 215 -237 1984)

    11. F eniche l , N. : Pe rs is tence and smoothness of invar iant m ani fo lds for flows. Indiana Un iv . Math .

    J . 21, 193 -22 6 1971)

    12. Sanders, J . A., Verhulst , F . : A vera ging me thod s in non linear dynam ical systems. Ap pl. M ath.

    Sci . , vol . 59) Springer: New York 1985

    13. Erm entro ut , G . B.: Th e behavio r of rings of coup led oscil la tors. J . M ath. B iol, 23. 55 -7 4 1986)

    14. Aro nson, D. G. , Erm ent rout , G. B. , Kope l l , N. : Am pl i tude response of coupled osci ll ators .

    Phys ica D, to appear