40
Equation of state and phase diagram of strongly interacting matter Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Darmstadt, May 22 2014 th 1

Equation of state and phase diagram of strongly interacting ...pawlowsk/talks/QM14...Full dynamical QCD Phase structure Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002 0 50 100

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Equation of state and phase diagram of

    strongly interacting matter

    Jan M. Pawlowski

    Universität Heidelberg & ExtreMe Matter Institute

    Darmstadt, May 22 2014th

    1

  • C. Fischer ‘Locating the CEP’

    A. Tripolt ‘Spectral functions from the functional renormalization group’

    N. Strodthoff ‘QCD-like theories at finite density’

    M. Mitter ‘Phase Structure of Strongly Interacting Matter: Thermodynamics and Chiral Anomaly’

    R. Stiele ‘Thermodynamics and phase structure of strongly-interacting matter’

    K. Morita ‘The Chiral Criticality in the Probability Distribution of Conserved Charges’

    Related Talks & Posters

    L. Fister ‘On the phase structure and dynamics of QCD’

    M. Huber ‘Nonperturbative gluonic three-point correlations’

    M. Hopfer ‘The role of the quark-gluon vertex function in the QCD phase transition’

    M. Strickland ‘Three loop HTL perturbation theory at finite temperature and chemical potential’

    2

    https://indico.cern.ch/event/219436/session/11/contribution/95https://indico.cern.ch/event/219436/session/11/contribution/95https://indico.cern.ch/event/219436/session/11/contribution/378https://indico.cern.ch/event/219436/session/11/contribution/378https://indico.cern.ch/event/219436/session/2/contribution/438https://indico.cern.ch/event/219436/session/2/contribution/438https://indico.cern.ch/event/219436/session/2/contribution/463https://indico.cern.ch/event/219436/session/2/contribution/463https://indico.cern.ch/event/219436/session/2/contribution/627https://indico.cern.ch/event/219436/session/2/contribution/627https://indico.cern.ch/event/219436/session/2/contribution/590https://indico.cern.ch/event/219436/session/2/contribution/590https://indico.cern.ch/event/219436/session/2/contribution/581https://indico.cern.ch/event/219436/session/2/contribution/581https://indico.cern.ch/event/219436/session/2/contribution/173https://indico.cern.ch/event/219436/session/2/contribution/173https://indico.cern.ch/event/219436/session/2/contribution/398https://indico.cern.ch/event/219436/session/2/contribution/398https://indico.cern.ch/event/219436/session/18/contribution/21https://indico.cern.ch/event/219436/session/18/contribution/21

  • Tem

    per

    atu

    re

    µ

    early universe

    neutron star cores

    LHCRHIC

    SIS

    AGS

    quark−gluon plasma

    hadronic fluid

    nuclear mattervacuum

    FAIR/JINR

    SPS

    n = 0 n > 0

    ∼ 0

    = 0/

    = 0/

    phases ?

    quark matter

    crossover

    CFLB B

    superfluid/superconducting

    2SC

    crossover

    3

  • !Phase Structure of QCD and Equation of State

    !Spectral Functions & Transport Coefficients

    !Outlook

    Outline

    4

  • Functional Methods for QCD

    hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)i

    quark-gluon correlations -1 -1 -1-1

    5

  • Functional Methods for QCD

    quark-gluon-hadron correlations -1 -1 -1-1hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)h(z1) · · ·h(zl)i

    5

  • Functional Methods for QCD

    Functional renormalisation group equations

    Dyson-Schwinger equations

    2PI/nPI hierarchies

    ...

    Xoff-shell

    off-shell(

    functional relations

    ' +... ... ... ... ...scattering amplitude/vertex functions

    (

    quark-gluon-hadron correlations -1 -1 -1-1hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)h(z1) · · ·h(zl)i

    5

  • Functional Methods for QCD

    Xoff-shell

    off-shell(

    functional relations

    ' +... ... ... ... ...scattering amplitude/vertex functions

    (

    properties

    access to physics mechanisms

    low energy models naturally encorporated

    numerically tractable no sign problemsystematic error control via closed form

    lattice: see talk of D. Sexty

    quark-gluon-hadron correlations -1 -1 -1-1hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)h(z1) · · ·h(zl)i

    5

  • Functional Methods for QCD

    Xoff-shell

    off-shell(

    functional relations

    ' +... ... ... ... ...scattering amplitude/vertex functions

    (

    properties

    access to physics mechanisms

    low energy models naturally encorporated

    numerically tractable no sign problemsystematic error control via closed form

    lattice: see talk of D. Sexty

    QCD low energy models

    quark-gluon-hadron correlations -1 -1 -1-1hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)h(z1) · · ·h(zl)i

    5

  • Functional Methods for QCD

    Xoff-shell

    off-shell(

    functional relations

    ' +... ... ... ... ...scattering amplitude/vertex functions

    (

    properties

    access to physics mechanisms

    low energy models naturally encorporated

    numerically tractable no sign problemsystematic error control via closed form

    lattice: see talk of D. Sexty

    QCD low energy models

    quark-gluon-hadron correlations -1 -1 -1-1hq(x1) · · · q̄(x2n)Aµ(y1) · · ·Aµ(ym)h(z1) · · ·h(zl)i

    e.g. lattice input on rhs

    FunMethods complementary to lattice

    e.g. volume flucs., finite density, dynamics, ...

    5

  • Functional Methods for QCDFunctional RG

    @t�k[�] =

    free energy/grand potential

    gluequantum fluctuations

    quark quantum fluctuations

    hadronic quantum fluctuations

    ! "#$ S"#$ !k

    k=%

    k

    "#$

    k 0

    IR UV

    k- k&

    RG-scale k: t = ln k

    free energy at momentum scale k

    JMP, AIP Conf.Proc. 1343 (2011)

    FRG QCD surveyJMP, Aussois ’12

    Phase diagram surveyJMP, Schladming ’13

    6

    http://www.thphys.uni-heidelberg.de/~pawlowsk/talks/schladming13_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/schladming13_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/erg12_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/erg12_pawlowski.pdf

  • Functional Methods for QCDFunctional RG

    @t�k[�] =

    free energy/grand potential

    gluequantum fluctuations

    quark quantum fluctuations

    hadronic quantum fluctuations

    ! "#$ S"#$ !k

    k=%

    k

    "#$

    k 0

    IR UV

    k- k&

    RG-scale k: t = ln k

    free energy at momentum scale k

    JMP, AIP Conf.Proc. 1343 (2011)

    FRG QCD surveyJMP, Aussois ’12

    Phase diagram surveyJMP, Schladming ’13

    dynamical Gies, Wetterich ’01 JMP ’05 Flörchinger, Wetterich ’09

    Dynamical hadronisation

    · · ·

    6

    http://www.thphys.uni-heidelberg.de/~pawlowsk/talks/schladming13_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/schladming13_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/erg12_pawlowski.pdfhttp://www.thphys.uni-heidelberg.de/~pawlowsk/talks/erg12_pawlowski.pdf

  • Functional Methods for QCD

    ∂t = 2 + + +2

    @t = � 3 +6 +3 � 6

    � 12

    +

    ∂t−1

    = +

    ∂t−1

    = − −1/2

    +

    2PI-resummation

    DSE-flowYang-Mills propagators

    2

    3

    4

    1

    0 5 64321

    FRG: Fischer, Maas, JMP, Annals Phys. 324 (2009) 2408

    lattice: Sternbeck et al, PoS LAT2006 (2006) 076

    p2�A A⇥(p2)

    p [GeV]

    Yang-Mills

    ... +

    see poster of M. Huber

    7

  • QCD

    @t�k[�] =

    0

    5

    10

    15

    20

    25

    30

    35

    0.1 1 10

    Yuka

    wa

    inte

    ract

    ion

    h(k

    )

    k [GeV]

    FRG-QCD: Fister, Herbst, Mitter, Rennecke, Strodthoff, JMP

    preliminary

    quark-meson coupling

    hk

    90

    8

  • QCD

    @t�k[�] =

    0

    5

    10

    15

    20

    25

    30

    35

    0.1 1 10

    Yuka

    wa

    inte

    ract

    ion

    h(k

    )

    k [GeV]

    FRG-QCD: Fister, Herbst, Mitter, Rennecke, Strodthoff, JMP

    preliminary

    quark-meson coupling

    hk

    Low energy models

    FRG:

    (com

    plet

    ely)

    fixe

    d fro

    m Q

    CD

    Model results on the phase structure of QCD

    ∂tΓk[φ] =1

    2− − + 1

    2+ ∂tΓk[φ] = 12 − − + 12+

    PQM-model PNJL-model QM-model NJL-model

    90

    8

  • Functional Methods for QCD

    - + 12

    present best approximation

    ∂t−1

    = +

    ∂t−1

    = − −1/2

    +

    momentum dependence

    ∂t = 2 + + +2

    @t = � 3 +6 +3 � 6

    � 12

    +

    momentum dependence

    2PI-resummed momentum dependence

    momentum dependence

    momentum dependence

    +matter-contributions

    all tensor structures

    h[⇥,⇤�]

    full mesonic field-dependence

    momentum dependence

    Aconst0

    full field-dependence

    + ...

    ... +

    Ve� [⇥,⇤�;A0]all tensor structures

    FRG-QCD: Fister, Herbst, Mitter, Rennecke, Strodthoff, JMP

    DSE: see poster of M. Hopfer

    9

  • Phase Structure and Equation of State

    10

  • Confinement

    0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    T/Tc

    Polyakov loop

    SU(3)

    �gA02⇥

    -0.5-0.4-0.3-0.2-0.1

    0 0.1 0.2 0.3 0.4

    0 0.2 0.4 0.6 0.8 1

    !4 V

    (! <"

    0>)

    ! /(2#)

    0.3 0.5 0.7

    276 MeV

    295 MeV

    286 MeV

    280 MeV

    276 MeV

    271 MeV

    �4 VYM[A0]

    Polyakov loop Potential

    �[A0] =1

    3

    (1 + 2 cos

    1

    2

    �gA0)

    lattice : Tc/p

    � = 0.646

    Tc/p

    � = 0.658± 0.023

    Braun, Gies, JMP, PLB 684 (2010) 262

    Fister, JMP, PRD 88 (2013) 045010

    FRG:

    FRG, DSE, 2PI:

    see also talk of C. Sasaki

    11

  • Confinement

    0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    T/Tc

    Polyakov loop

    SU(3)

    �gA02⇥

    -0.5-0.4-0.3-0.2-0.1

    0 0.1 0.2 0.3 0.4

    0 0.2 0.4 0.6 0.8 1

    !4 V

    (! <"

    0>)

    ! /(2#)

    0.3 0.5 0.7

    276 MeV

    295 MeV

    286 MeV

    280 MeV

    276 MeV

    271 MeV

    �4 VYM[A0]

    Polyakov loop Potential

    �[A0] =1

    3

    (1 + 2 cos

    1

    2

    �gA0)

    lattice : Tc/p

    � = 0.646

    Tc/p

    � = 0.658± 0.023

    Fister, JMP, arXiv:1112.5440

    0.0 0.5 1.0 1.5 2.00

    1

    2

    3

    4

    5

    p [GeV]

    Transversal Propagator GT

    FRG: T = 0

    FRG: T = 0.361Tc

    FRG: T = 0.903Tc

    FRG: T = 1.81Tc

    Lattice: T = 0

    Lattice: T = 0.361Tc

    Lattice: T = 0.903Tc

    Lattice: T = 1.81Tc

    transversal gluon propagator

    gauge independence

    from the full propagators

    confinement criteria

    Braun, Gies, JMP, PLB 684 (2010) 262

    Fister, JMP, PRD 88 (2013) 045010

    FRG:

    FRG, DSE, 2PI:

    see also talk of C. Sasaki

    11

  • Full dynamical QCDPhase structure

    Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002

    0

    50

    100

    150

    200

    250

    300

    0 π/3 2π/3 π 4π/3

    T [M

    eV

    ]

    2πθ

    TconfTχ

    imaginary chemical potential

    =2Nf

    T� ' Tconf

    chiral limit

    0

    0.2

    0.4

    0.6

    0.8

    1

    150 160 170 180 190 200 210 220 230

    T [MeV]

    fπ(T)/fπ(0)

    Dual density

    Polyakov Loop

    160 180 200

    χL,d

    ual

    12

  • Full dynamical QCDPhase structure

    Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002

    0

    50

    100

    150

    200

    250

    300

    0 π/3 2π/3 π 4π/3

    T [M

    eV

    ]

    2πθ

    TconfTχ

    imaginary chemical potential

    =2Nf

    T� ' Tconf

    chiral limit

    0

    0.2

    0.4

    0.6

    0.8

    1

    150 160 170 180 190 200 210 220 230

    T [MeV]

    fπ(T)/fπ(0)

    Dual density

    Polyakov Loop

    160 180 200

    χL,d

    ual

    see talk of C. Fischer

    Luecker, Fischer, Fister, JMP, PoS CPOD2013 (2013) 057 Fischer, Luecker, Welzbacher, arXiv:1405.4762

    50 100 150 200 250T [MeV]

    0

    0.2

    0.4

    0.6

    0.8

    1

    ∆l,

    s(T

    )/∆

    l,s(

    0)

    Lattice QCDQuark Condensate

    =2+1Nf

    0

    0.2

    0.4

    0.6

    0.8

    1

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    ∆l,s

    t

    Wuppertal-Budapest, 2010

    PQM FRG

    PQM eMF

    PQM MF

    Herbst, Mitter et al, PLB 731 (2014) 248-256

    QCD-improved PQM model DSE

    12

  • Glue Potential

    Yang-Mills Potential

    Polyakov loop potential in full QCD

    0 0.2 0.4 0.6 0.8 1βgA0 / 2π

    -0.8

    -0.6

    -0.4

    -0.2

    0

    β4V

    [A0]

    glueYang-Mills

    t = -0.05

    t = 0

    t = 0.05

    �4V [A0]

    JMP, AIP Conf.Proc. 1343 (2011)

    Haas, Stiele et al, PRD 87 (2013) 076004

    Full dynamical QCDImproving models towards QCD

    U [�, �̄]

    �[A0]

    �gA02⇥

    see poster of R. Stiele

    @t�k[�] =

    @t�k[�] =Yang-Mills

    glue

    13

  • Glue Potential

    Yang-Mills Potential

    Polyakov loop potential in full QCD

    0 0.2 0.4 0.6 0.8 1βgA0 / 2π

    -0.8

    -0.6

    -0.4

    -0.2

    0

    β4V

    [A0]

    glueYang-Mills

    t = -0.05

    t = 0

    t = 0.05

    �4V [A0]

    Full dynamical QCDImproving models towards QCD

    U [�, �̄]

    �[A0]

    �gA02⇥

    Mitter, Schaefer, Phys.Rev. D89 (2014) 054027

    0

    200

    400

    600

    800

    1000

    1200

    0 50 100 150 200 250 300

    mass

    es

    [MeV

    ]

    T [MeV]

    π, η’σ

    a0η

    without anomalous breaking of axial U(1)

    0

    200

    400

    600

    800

    1000

    1200

    0 50 100 150 200 250 300

    mass

    es

    [MeV

    ]

    T [MeV]

    π σ a0 η’ η

    with anomalous breaking of axial U(1)

    see poster of M. Mitter

    QM-model

    13

  • Full dynamical QCD

    Herbst, Mitter, JMP, Schaefer, Stiele, Phys.Lett. B731 (2014) 248-256

    Pressure

    Shaded area: systematic error estimate due to low initial scale 1 GeV

    Interaction measure

    0

    1

    2

    3

    4

    5

    6

    7

    8

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6(ε

    - 3

    P)/

    T4

    t

    Wuppertal-Budapest, 2010

    HotQCD Nt=8, 2012

    HotQCD Nt=12, 2012

    PQM FRG

    PQM eMF+π

    PQM MF+π

    PQM eMF

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    P/T

    4

    t

    Wuppertal-Budapest, 2010

    PQM FRG

    PQM eMF+π

    PQM MF+π

    PQM eMF

    Equation of state

    see poster of M. Mitter

    lattice: see talk of A. Bazavov

    high T: see talk of M. Strickland

    14

  • 0 0.2 0.4 0.6 0.8 1βgA0 / 2π

    -0.8

    -0.6

    -0.4

    -0.2

    0

    β4V

    [A0]

    glueYang-Mills

    t = -0.05

    t = 0

    t = 0.05

    Full dynamical QCDPhase structure at finite density

    0 50

    100

    150

    200

    0 50 100 150 200 250 300 350

    T [

    Me

    V]

    µ [MeV]

    mπ=138 MeV

    χ crossoverσ(T=0)/2Φ crossover—Φ crossoverχ 1st orderCEP

    Polyakov loop potential in full QCD

    FRG QCD results at finite densityHaas, Braun, JMP ’09, unpublished

    Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

    �4V [A0]

    Phase diagram of quantised PQM-model

    15

  • 0 0.2 0.4 0.6 0.8 1βgA0 / 2π

    -0.8

    -0.6

    -0.4

    -0.2

    0

    β4V

    [A0]

    glueYang-Mills

    t = -0.05

    t = 0

    t = 0.05

    Full dynamical QCDPhase structure at finite density

    0 50

    100

    150

    200

    0 50 100 150 200 250 300 350

    T [

    Me

    V]

    µ [MeV]

    mπ=138 MeV

    χ crossoverσ(T=0)/2Φ crossover—Φ crossoverχ 1st orderCEP

    Polyakov loop potential in full QCD

    �4V [A0]

    Phase diagram of quantised PQM-model µBT

    = 2

    see poster of N. Strodthoff

    diquarks, baryons,

    see poster of K. Morita

    higher moments

    inhomogeneous phases

    0

    50

    100

    150

    200

    0 100 200 300 400 500

    T[M

    eV]

    µ [MeV]

    Chiral density wavehom. spinodalshom. 1st orderhom. 2nd order

    Müller, Buballa, Wambach, PLB 727 (2013) 240 Carignano, Buballa, Schaefer, arXiv:1404.0057

    0

    30

    60

    90

    120

    150

    180

    0 50 100 150 200 250 300 350 400 450

    T (M

    eV)

    µ (MeV)

    15

  • µBT

    = 3

    Full dynamical QCDPhase structure at finite density

    Phase diagram of quantised PQM-model

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300 350

    T [

    Me

    V]

    µ [MeV]

    mπ=138 MeV

    χ crossoverσ(T=0)/2Φ crossover—Φ crossoverχ 1st orderCEP

    Phase diagram of 2+1 flavor QCD

    DSE

    Polyakov loop at finite density

    0 50 100 150 200µq [MeV]

    0

    50

    100

    150

    200

    T [M

    eV]

    Lattice: curvature range κ=0.0066-0.0180DSE: chiral crossoverDSE: critical end pointDSE: deconfinement crossover

    µB/T=2µB/T=3

    lattice curvature

    µBT

    < 2

    Critical point unlikely for

    µBT

    = 2

    see talk of C. Fischer

    Fischer, Luecker, PLB 718 (2013) 1036

    Fischer, Fister, Luecker, JMP, PLB732 (2014) 248

    Kaczmarek at al. ’11Endrodi, Fodor, Katz, Szabo ’11Cea, Cosmai, Papa ’14

    16

  • µBT

    = 3

    Full dynamical QCDPhase structure at finite density

    Phase diagram of quantised PQM-model

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300 350

    T [

    Me

    V]

    µ [MeV]

    mπ=138 MeV

    χ crossoverσ(T=0)/2Φ crossover—Φ crossoverχ 1st orderCEP

    Phase diagram of 2+1 flavor QCD

    DSE

    Polyakov loop at finite density

    0 50 100 150 200µq [MeV]

    0

    50

    100

    150

    200

    T [M

    eV]

    Lattice: curvature range κ=0.0066-0.0180DSE: chiral crossoverDSE: critical end pointDSE: deconfinement crossover

    µB/T=2µB/T=3

    lattice curvature

    µBT

    < 2

    Critical point unlikely for

    µBT

    = 2

    16

  • Spectral functions & Transport Coefficients

    17

  • Viscosity in pure glue

    Complex DSEs

    Tripolt, Strodthoff, von Smekal, Wamach, PRD 89 (2014) 034010 Kamikado, Strodthoff, von Smekal, Wambach, EPJ C74 (2014) 2806

    spectral functions

    T=100

    FRG

    gluon spectral function

    T=100 MeV - 1 GeVT=0

    analytic complex FRG

    M. Haas, Fister, JMP, arXiv:1308.4960

    FRG+MEM

    Strauss, Fischer, Kellermann, PRL 109 (2012) 252001

    pion and sigma spectral functions

    see talk of A. Tripolt

    see poster of L. Fister

    18

  • Viscosity in pure glue

    pure glue

    PHSD spectral functions

    T=1.44 Tc

    =2+1Nf

    spectral functions

    T=1.44 Tc

    transversalM. Haas, Fister, JMP, arXiv:1308.4960

    see talk of E. Bratkovskaya

    see poster of L. Fister

    19

  • Viscosity in pure glueshear viscosity

    T . 2Tc

    Shaded area: MEM error estimates

    : MEM+optimised RG-scheme systematic error estimates

    M. Haas, Fister, JMP, arXiv:1308.4960

    H. Meyer ’09

    entropy lattice

    Kubo relation

    Diagrammatic representation

    =⇢⇡⇡ + +

    + ... 3-loop closed form

    ⌘ =1

    20

    d

    d!

    ����!=0

    ⇢⇡⇡(!, 0)

    H. Meyer ’09

    20

  • Viscosity in pure glueshear viscosity

    T . 2Tc

    Shaded area: MEM error estimates

    : MEM+optimised RG-scheme systematic error estimates

    minimum at T = 1.25 : Tc⌘

    s= 1.45

    1

    4⇡

    scale matching with QCD: ⌘

    s= 2.27

    1

    4⇡

    M. Haas, Fister, JMP, arXiv:1308.4960

    20

  • Viscosity in pure glueshear viscosity

    minimum at T = 1.25 : Tc⌘

    s= 1.45

    1

    4⇡

    scale matching with QCD: ⌘

    s= 2.27

    1

    4⇡

    Christiansen, M. Haas, JMP, Strodthoff, in prep.

    2-loop terms

    21

  • Viscosity in pure glueshear viscosity

    minimum at T = 1.25 : Tc⌘

    s= 1.45

    1

    4⇡

    scale matching with QCD: ⌘

    s= 2.27

    1

    4⇡

    Christiansen, M. Haas, JMP, Strodthoff, in prep.

    Chen, Deng, Dong, Wang ’11

    Yang-Mills

    2-loop terms

    21

  • Viscosity in pure glueshear viscosity

    minimum at T = 1.25 : Tc⌘

    s= 1.45

    1

    4⇡

    scale matching with QCD: ⌘

    s= 2.27

    1

    4⇡

    Christiansen, M. Haas, JMP, Strodthoff, in prep.

    Chen, Deng, Dong, Wang ’11

    Yang-Mills

    Chen, Deng, Dong, Wang ’11

    scale matching

    2-loop terms

    21

  • Summary & Outlook

    22

  • !Phase structure and Equation of State

    Summary & outlook

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    P/T

    4

    t

    Wuppertal-Budapest, 2010

    PQM FRG

    PQM eMF

    PQM MF

    0 50 100 150 200µq [MeV]

    0

    50

    100

    150

    200

    T [M

    eV]

    Lattice: curvature range κ=0.0066-0.0180DSE: chiral crossoverDSE: critical end pointDSE: deconfinement crossover

    µB/T=2µB/T=3

    0

    50

    100

    150

    200

    250

    300

    0 π/3 2π/3 π 4π/3

    T [

    Me

    V]

    2πθ

    TconfTχ

    µBT

    = 3

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300 350

    T [M

    eV

    ]

    µ [MeV]

    mπ=138 MeV

    χ crossoverσ(T=0)/2Φ crossover—Φ crossoverχ 1st orderCEP

    µBT

    = 2

    0

    1

    2

    3

    4

    5

    6

    7

    8

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    (ε -

    3P

    )/T

    4

    t

    Wuppertal-Budapest, 2010

    HotQCD Nt=8, 2012

    HotQCD Nt=12, 2012

    PQM FRG

    PQM eMF+π

    PQM MF+π

    PQM eMF

    23

  • !Phase structure and Equation of State

    !Spectral functions and Transport Coefficients

    Summary & outlook

    24

  • !Phase structure and Equation of State

    !Spectral functions and Transport Coefficients

    !Towards quantitative precision

    !Baryons, high density regime, dynamics

    !Hadronic properties

    !hadron spectrum & in medium modifications

    ! low energy constants

    Summary & outlook

    25