6
eGaN® FET DATASHEET EPC2053 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate. EPC2053 eGaN® FETs are supplied in passivated die form with solder bumps. Die size: 3.5 mm x 2 mm Applications • 48 V Servers • Lidar/Pulsed Power • Isolated Power Supplies • Point of Load Converters • Class D Audio • LED Lighting • Low Inductance Motor Drive Benefits • Higher Switching Frequency – Lower switching losses and lower drive power • Higher Efficiency – Lower conduction and switching losses, zero reverse recovery losses • Ultra Small Footprint - Higher power density EFFICIENT POWER CONVERSION HAL EPC2053 – Enhancement Mode Power Transistor V DS , 100 V R DS(on) , 3.8 mΩ I D , 48 A G D S Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 100 V Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 120 I D Continuous (T A = 25°C) 48 A Pulsed (25°C, T PULSE = 300 µs) 246 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage -4 T J Operating Temperature -40 to 150 °C T STG Storage Temperature -40 to 150 Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 0.7 °C/W R θJB Thermal Resistance, Junction-to-Board 4.7 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 53 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. # Defined by design. Not subject to production test. Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 0.4 mA 100 V I DSS Drain-Source Leakage V DS = 80 V, V GS = 0 V, T J = 25°C 0.07 0.3 mA I GSS Gate-to-Source Forward Leakage V GS = 5 V, T J = 25°C 0.03 4 mA V GS = 5 V, T J = 125°C 0.7 9 mA Gate-to-Source Reverse Leakage # V GS = -4 V, T J = 25°C 0.03 0.3 mA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 9 mA 0.8 1.4 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 25 A 3.1 3.8 V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 1.9 V

EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

EPC2053 eGaN® FETs are supplied in passivated die form with solder bumps.Die size: 3.5 mm x 2 mm

Applications• 48 V Servers• Lidar/Pulsed Power• Isolated Power Supplies• Point of Load Converters• Class D Audio• LED Lighting• Low Inductance Motor Drive

Benefits• Higher Switching Frequency – Lower switching losses and lower drive power• Higher Efficiency – Lower conduction and switching losses, zero reverse recovery losses• Ultra Small Footprint - Higher power density

EFFICIENT POWER CONVERSION

HAL

EPC2053 – Enhancement Mode Power Transistor

VDS , 100 VRDS(on) , 3.8 mΩID , 48 A

G

D

S

Maximum Ratings

PARAMETER VALUE UNIT

VDS

Drain-to-Source Voltage (Continuous) 100V

Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 120

ID

Continuous (TA = 25°C) 48A

Pulsed (25°C, TPULSE = 300 µs) 246

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage -4

TJ Operating Temperature -40 to 150°C

TSTG Storage Temperature -40 to 150

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 0.7

°C/W RθJB Thermal Resistance, Junction-to-Board 4.7

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 53Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

# Defined by design. Not subject to production test.

Static Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITBVDSS Drain-to-Source Voltage VGS = 0 V, ID = 0.4 mA 100 V

IDSS Drain-Source Leakage VDS = 80 V, VGS = 0 V, TJ = 25°C 0.07 0.3 mA

IGSSGate-to-Source Forward Leakage

VGS = 5 V, TJ = 25°C 0.03 4 mA

VGS = 5 V, TJ = 125°C 0.7 9 mA

Gate-to-Source Reverse Leakage# VGS = -4 V, TJ = 25°C 0.03 0.3 mA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 9 mA 0.8 1.4 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 25 A 3.1 3.8 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 1.9 V

Page 2: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 2

200

150

100

50

0

200

150

100

50

0

10

8

6

4

2

0

10

8

6

4

2

0

1.0 1.5 2.0 2.5 3.0

VGS = 5 VVGS = 4 VVGS = 3 VVGS = 2 V

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.5 2.0 3.0 3.5 4.0 4.5 5.0 2.5 2.0 3.0 3.5 4.0 4.5 5.0

ID = 25 A

25ºC125ºC

VDS = 3 V

25ºC125ºC

Figure 1: Typical Output Characteristics at 25°C

Figure 3: RDS(on) vs. VGS for Various Currents Figure 4: RDS(on) vs. VGS for Various Temperatures

Figure 2: Transfer Characteristics

0 0.5

ID = 12 A ID = 25 A ID = 37 A ID = 50 A

I D –

Drai

n Cu

rrent

(A)

R DS(o

n) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ)

R DS(o

n) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ)

I D –

Drai

n Cu

rrent

(A)

VDS – Drain-to-Source Voltage (V) VGS – Drain-to-Source Voltage (V)

VGS – Gate-to-Source Voltage (V) VGS – Gate-to-Source Voltage (V)

Dynamic Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITCISS Input Capacitance#

VDS = 50 V , VGS = 0 V

1453 1924

pF

CRSS Reverse Transfer Capacitance 10.4

COSS Output Capacitance# 642 963

COSS(ER) Effective Output Capacitance, Energy Related (Note 2)VDS = 0 to 50 V, VGS = 0 V

749

COSS(TR) Effective Output Capacitance, Time Related (Note 3) 903

RG Gate Resistance 0.6 Ω

QG Total Gate Charge# VDS = 50 V, VGS = 5 V, ID = 25 A 11.4 14.8

nC

QGS Gate to Source Charge

VDS = 50 V, ID = 25 A

4.1

QGD Gate to Drain Charge 1.5

QG(TH) Gate Charge at Threshold 3.2

QOSS Output Charge# VGS = 0 V, VDS = 50 V 45 68

QRR Source-Drain Recovery Charge 0# Defined by design. Not subject to production test.Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.

Page 3: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 3

Capa

citan

ce (p

F)

1800

1600

1400

1200

1000

800

600

400

200

00 25 50 75

25 50 75

100 0 25 50 75 100

Figure 5a: Capacitance (Linear Scale)

Capa

citan

ce (p

F)

10000

1000

100

10

Figure 5b: Capacitance (Log Scale)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

Norm

alize

d On

-Sta

te R

esist

ance

– R

DS(o

n)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

Figure 9: Normalized On-State Resistance vs. Temperature

200

150

100

50

0

Figure 8: Reverse Drain-Source Characteristics

5

4

3

2

1

00

Figure 7: Gate Charge80

64

48

32

16

0

3.5

2.8

2.1

1.4

0.7

0.0

Figure 6: Output Charge and COSS Stored Energy

100 2 4 6 8 10 12

ID = 25 A VDS = 50 V

ID = 11 A VGS = 5 V

Q OSS –

Out

put C

harg

e (nC

)I SD

– So

urce

-to-D

rain

Curre

nt (A

)

V GS –

Gat

e-to

-Sou

rce V

olta

ge (V

)

E OSS –

C OSS St

ored

Ener

gy (µ

J)

VDS – Drain-to-Source Voltage (V)

VDS – Drain-to-Source Voltage (V) VDS – Drain-to-Source Voltage (V)

2.5 2.0 3.0 3.5 0.5 0.0 1.0 1.5 4.0 4.5 5.0

VGS = 0 V

25ºC125ºC

QG – Gate Charge (nC)

VSD – Source-to-Drain Voltage (V) TJ – Junction Temperature (°C)

0

Page 4: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 4

Figure 11: Transient Thermal Response Curves

0.001

0.01

0.1

1

10-5 10-4 10-3 10-2 10-1 1 10tp - Rectangular Pulse Duration (s)

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce Duty Factors:

0.50.20.10.05

0.02

0.01

Single PulseNotes:Duty Factor = tp/TPeak TJ = PDM x ZθJB x RθJB + TB

t p P

T

DM

Junction-to-Board

0.01

0.001

0.1

1

tp - Rectangular Pulse Duration [s]

Z θC,

Norm

alize

d The

rmal

Impe

danc

e

Junction-to-Case

Duty Factors:0.5

0.10.05

0.02

0.01

Single Pulse

0.2

Notes:Duty Factor = tp/TPeak TJ = PDM x ZθJC x RθJC + TC

t p P

T

DM

10-5 10-4 10-3 10-2 10-1 1 10

Norm

alize

d Th

resh

old V

olta

ge

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.60 25 50 75 100 125 150

Figure 10: Normalized Threshold Voltage vs. Temperature

ID = 9 mA

TJ – Junction Temperature (°C)

Page 5: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 5

DIE MARKINGS

Figure 12: Safe Operating Area

0.1

1

10

100

1000

0.1 1 10 100 1000

I D- D

rain

Curre

nt (A

)

VDS - Drain-Source Voltage (V)

TJ = Max Rated, TC = +25°C, Single Pulse

Pulse Width1 ms100 μs10 μs

Limited by RDS(on)

2053

YYYY

ZZZZ

TAPE AND REEL CONFIGURATION4mm pitch, 8mm wide tape on 7” reel

7” reel

a

d e f g

c

b

EPC2053 (note 1) Dimension (mm) target min max

a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (see note) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (see note) 2.00 1.95 2.05 g 1.5 1.5 1.6

Note 1: MSL 1 (moisture sensitivity level 1) classi�ed according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bar isunder thiscorner

Die is placed into pocketsolder bar side down(face side down)

Loaded Tape Feed Direction

2053

YYYY

ZZZZ

Part Number

Laser Markings

Part #Marking Line 1

Lot_Date CodeMarking line 2

Lot_Date CodeMarking Line 3

EPC2053 2053 YYYY ZZZZ

Pin 1 indicator

Page 6: EPC2053 – Enhancement Mode Power Transistor - epc-co.com€¦ · EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 Gallium Nitride’s exceptionally high electron

eGaN® FET DATASHEET EPC2053

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 6

B

A

e

d

c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Seating Plane

685

+/- 1

5

200+

/- 2

0

885

Information subject to change without notice.

Revised March 19, 2020

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

RECOMMENDED LAND PATTERN (units in µm)

Pad 1 is Gate;Pads 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 25, 26, 27, 28 are Source; Pads 5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24 are Drain.

Pad 1 is Gate;Pads 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 25, 26, 27, 28 are Source; Pads 5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24 are Drain.

DIE OUTLINESolder Bump View

Side View

DIMMICROMETERS

MIN Nominal MAX

A 3470 3500 3530B 1920 1950 1980c 450d 500e 238 264 290

DIM MICROMETERS

A 3500B 1950c 450d 500e 230

DIM MICROMETERS

A 3500B 1950c 450d 500f 300g 250

RECOMMENDED STENCIL DRAWING (measurements in µm)

Recommended stencil should be 4 mil (100 µm)thick, must be laser cut, opening per drawing.The corner has a radius of R60.Intended for use with SAC305 Type 4 solder,reference 88.5% metals content.

Additional assembly resources available at: https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

B

A

e

d

c

3 7 11 15 19 23 27

4 8 12 16 20 24 28

1 5 9 13 17 21 25

2 6 10 14 18 22 26

B

A

f

d

c

g

3 7 11 15 19 23 27

4 8 12 16 20 24 28

1 5 9 13 17 21 25

2 6 10 14 18 22 26